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Abstract

Several problems of characterizing a digital object, and particularly, those re-

lated to boundary description, have been studied in this thesis. New algorithms

and their applications to various aspects of image analysis and retrieval have

been reported. A combinatorial technique for constructing the outer and in-

ner isothetic covers of a digital object has been developed. The resolution of

the background 2D grid can be changed by varying the grid spacing, and this

procedure can be used to extract shape and topological information about the

object. Next, an algorithm has been designed for constructing the orthogonal

(convex) hull of a digital object against a background grid by employing a com-

binatorial technique. On the application side, it has been shown how the shape

code derived from the isothetic cover with varying resolutions can be used in

image analysis and retrieval. The nature of the isothetic cover also provides a

measure of the shape complexity of the underlying object. Several properties

of isothetic cover are shown to be useful in defining features of handwritten

characters. An algorithm for polygonal approximation of a thick digital curve

based on its outer and inner isothetic covers has also been developed.

To describe the contour of a digital object by an unordered set of points of

optimal or sub-optimal size, a new concept called the “pointillist ensemble”, is

introduced in this thesis. This is derived from the end points of digital straight

pieces describing the curve satisfying certain neighborhood properties. This is

based on the idea of pointillism, a style of painting with dots, developed by

the Neo-Impressionist painters of France. The procedure of reconstructing the

object from the ensemble is also presented. Finally, other topological properties

of an object, namely, those based on the Euler number have been used to devise

an algorithm for efficient image indexing. This has been formulated deploying

a novel concept of randomized spatial masking of the digital object.

The algorithms, the proofs of their correctness, and the relevant experimental

results on diverse databases have been reported to substantiate the theoretical

findings presented in this thesis.





Contents

1 Introduction 1

1.1 Geometric Characterization of Digital Objects . . . . . . . . . . . . . . . . . 1

1.2 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Tight Isothetic Covers of a Digital Object . . . . . . . . . . . . . . . 2

1.2.2 Orthogonal Hull of a Digital Object . . . . . . . . . . . . . . . . . . 3

1.2.3 Shape Analysis using Isothetic Covers . . . . . . . . . . . . . . . . . 4

1.2.4 Polygonal Approximation of Thick Digital Curves . . . . . . . . . . 6

1.2.5 Pointillist Ensemble of a Digital Object . . . . . . . . . . . . . . . . 6

1.2.6 Image Indexing with Connectivity Features . . . . . . . . . . . . . . 7

1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Construction of Isothetic Covers of a Digital Object 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Definitions and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Contribution of Our Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Outer Isothetic Cover of a Single Connected Component . . . . . . . . . . . 19

2.5.1 Combinatorial Classification of a Grid Point . . . . . . . . . . . . . . 19

2.5.2 Construction of P (S) . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.3 Algorithm Make-OIP . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Generalized Algorithms for Constructing Isothetic Covers . . . . . . . . . . 27

2.6.1 Outer Isothetic Cover . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.2 Inner Isothetic Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Isothetic Covers on a Non-uniform 2D Grid . . . . . . . . . . . . . . . . . . 29

2.8 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8.1 Geometric Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8.2 Logo and Object-type Images . . . . . . . . . . . . . . . . . . . . . . 32

2.8.3 Optical and Handwritten Characters . . . . . . . . . . . . . . . . . . 36

2.8.4 Scanned Document Images . . . . . . . . . . . . . . . . . . . . . . . 38

2.8.5 Inner Isothetic Cover . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.8.6 Non-uniform Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



ii CONTENTS

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Construction of Orthogonal Hull of a Digital Object 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Motivation and Related Works . . . . . . . . . . . . . . . . . . . . . 48

3.1.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Definitions and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Orthogonal Traversal of the Object Contour . . . . . . . . . . . . . . 51

3.3 Rules for Finding the Orthogonal Hull . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Pattern 1331: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.2 Pattern 1333: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.3 Applying the Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Algorithm for Constructing the Orthogonal Hull . . . . . . . . . . . . . . . 58

3.4.1 Proof of Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.2 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.3 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Shape Analysis using Isothetic Covers 79

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Multigrid Shape Analysis using Shape Code . . . . . . . . . . . . . . . . . . 79

4.2.1 Proposed Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 Shape Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.3 Multigrid Shape Code . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.4 Image Retrieval using MuSC . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Shape Complexity Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.1 Shape Complexity of Objects using Outer Isothetic Cover . . . . . . 87

4.3.2 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Ranking of Optical Character Prototypes in a Large Database . . . . . . . . 90

4.4.1 Characterization of an Isothetic Polygon using Isothetic Chord Lengths 91

4.4.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4.3 Dissimilarity Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4.4 Ranking of Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.5 Goodness of the Database . . . . . . . . . . . . . . . . . . . . . . . . 95



CONTENTS iii

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.1 Multigrid Shape Code . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.2 Shape Complexity Measure . . . . . . . . . . . . . . . . . . . . . . . 97

4.5.3 Ranking of Optical Character Prototypes . . . . . . . . . . . . . . . 99

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Polygonal Approximation of Thick Digital Curves 107

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1.1 Existing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Cellular Envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3 Cellular Straight Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4 Polygonal Approximation Using Cellular Envelope . . . . . . . . . . . . . . 114

5.4.1 Stage I: Finding the Cellular Envelope . . . . . . . . . . . . . . . . . 114

5.4.2 Stage II: Finding the Cellular Straight Segments . . . . . . . . . . . 115

5.4.3 Efficiency of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . 116

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 From a Digital Object to its Pointillist Ensemble 129

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2.1 Works Related with Sampling and Reconstruction . . . . . . . . . . 132

6.2.2 Applications Based on Curve Sampling . . . . . . . . . . . . . . . . 134

6.2.2.1 Video coding . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2.2.2 Biometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.2.2.3 Deformation analysis . . . . . . . . . . . . . . . . . . . . . 136

6.2.2.4 Shape-based segmentation . . . . . . . . . . . . . . . . . . 137

6.3 Proposed Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3.2 Polygonal Decomposition of a Digital Object . . . . . . . . . . . . . 140

6.3.3 Pointillistic Object Representation . . . . . . . . . . . . . . . . . . . 141

6.3.4 Curve Reconstruction from its Ensemble . . . . . . . . . . . . . . . . 144

6.3.5 Reconstruction Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3.6 Sampling Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146



iv CONTENTS

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7 Archival Image Indexing with Connectivity Features

using Randomized Masks 161

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.2 Proposed Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.2.1 Euler Number and its Primary Features . . . . . . . . . . . . . . . . 164

7.2.2 The Fuzzy Model and Membership Function . . . . . . . . . . . . . 165

7.2.3 Generation of Randomized Mask . . . . . . . . . . . . . . . . . . . . 166

7.2.4 Iterative XOR-ing with Randomized Masks . . . . . . . . . . . . . . 170

7.2.5 Variable Feature Vector . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.2.6 Algorithm for Computing the Feature Vector . . . . . . . . . . . . . 172

7.2.7 Data Structure for Storing Image Features . . . . . . . . . . . . . . . 174

7.2.8 Image Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.2.9 Translation, Scaling, and Rotation Invariance . . . . . . . . . . . . . 177

7.2.9.1 Insertion and Deletion of an Image . . . . . . . . . . . . . . 177

7.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8 Summary and Open Problems 185

Bibliography 188

Author’s Statement



List of Algorithms

Fig. 2.5 AlgorithmMake-OIP to construct P (S) for an object

S having a single connected component

Fig. 2.6 AlgorithmMake-OIC to construct P (S) for an object

S with multiple connected components

Fig. 2.7 Algorithm Make-IIC to construct the Inner Isothetic

Cover (IIC)

Fig. 3.7 Algorithm Ortho-Hull to construct the orthogonal

hull of an object S

Sec. 4.3 Algorithm SCOPE to compute the shape complexity

of an object

Fig. 5.3 Algorithm Find-Cellular-Envelope to construct

the cellular envelope

Fig. 5.4 Algorithm Find-CSS to extract the ordered set of

CSS’s from the cellular envelope

Sec. 7.2.6 Algorithm Compute-Feature-Vector for comput-

ing the feature vector

Sec. 7.2.8 Algorithm for image retrieval using the feature vector





List of Figures

1.1 The isothetic covers of a digital object. . . . . . . . . . . . . . . . . . . . . 3

1.2 The orthogonal hulls of a digital object for different grid sizes. . . . . . . . 4

1.3 A sample logo image and its Multigrid Shape Codes (MuSC) corresponding

to its OIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 OICs and their total horizontal chord lengths for a typical prototype . . . . 5

1.5 Polygonal approximation of an image “duck” for g = 8. . . . . . . . . . . . 6

1.6 The digital object (d), the vertex set of the digital polygon corresponding

to (d), and the point ensembles, (b) and (c), for different pointillist factors. 7

1.7 Two images, having the same Euler number and number of connected com-

ponents and holes, are xor-ed with a random mask to produce images with

distinct pairs of number of connected components and holes. . . . . . . . . 8

2.1 The outer isothetic cover (OIC) and the inner isothetic cover (IIC), corre-

sponding to the image “bear”. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Four neighboring UGBs and the OIC and IIC of a digital object S . . . . . 12

2.3 Two digital objects S1 and S2 (a) and (d); their D-borders (b) and (e),

which are traced by Rosenfeld’s crack following algorithm; the OICs (c)

and (f) as constructed by the proposed algorithm. . . . . . . . . . . . . . . 15

2.4 An example of backtracking in a complex region from the current vertex vc

lying in a dead end (object S shown in gray and background S′ in white).

In the proposed algorithm, no such backtracking is required. See text for

details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Vertex classification in an OIC . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 The algorithm Make-OIP and the related procedures to construct P (S)

for an object S having a single connected component. . . . . . . . . . . . . 26

2.7 The generalized algorithm Make-OIC and the procedures to construct

P (S) for an object S with multiple connected components (possibly having

holes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.8 Vertex classification and the algorithm to construct the IIC. . . . . . . . . . 29

2.9 Vertex classification in an OIC on non-uniform grid . . . . . . . . . . . . . . 30



viii LIST OF FIGURES

2.10 The OICs and IICs of different geometric shapes and the OICs of a square

under rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.11 The OICs of a spiral at different grid sizes: g = 2, 5, and 14. . . . . . . . . 31

2.12 Plot on the number of vertices (n) and the perimeter (s) of the OICs versus

the grid size (g) corresponding to the images “spiral” and “myth”. . . . . . 33

2.13 Plot on CPU time (in milliseconds) for construction of the OICs versus the

grid size (g) corresponding to the images “spiral” and “myth”. . . . . . . . 33

2.14 Plot on the number of vertices, n, versus g, and plot on n versus θ . . . . . 34

2.15 Frequency of errors (f(g, d⊤)) plotted against the isothetic error (d⊤) . . . . 34

2.16 The outer isothetic covers (OIC) for a set of logo images. . . . . . . . . . . 35

2.17 The outer isothetic covers (OIC) for a set of animal images. . . . . . . . . 36

2.18 The outer isothetic covers (OIC) for two leaf images . . . . . . . . . . . . . 37

2.19 OICs corresponding to the image “India” for g = 2 and g = 4. . . . . . . . . 37

2.20 Numbers of loosely connected components varies with g . . . . . . . . . . . 38

2.21 The OICs of a few Bengali characters (optical and handwritten) . . . . . . 39

2.22 The OICs of a few English characters (optical and handwritten) . . . . . . 40

2.23 The OIC of a document image for grid size g = 24 corresponding to different

regions of interest in a typical document page. . . . . . . . . . . . . . . . . . 41

2.24 The OICs of a part of a document image to show their abilities in extracting

the letters and the words from a document page . . . . . . . . . . . . . . . 42

2.25 The IICs of a logo image corresponding to different grid sizes. . . . . . . . . 42

2.26 OICs and IICs corresponding to the image “myth” . . . . . . . . . . . . . . 43

2.27 Inner and outer polygons of “Lincoln” image on non-uniform grids. . . . . . 44

2.28 The OICs of the binarized images of different real-world gray-scale images . 45

3.1 A sample 2D object, its convex hull, and its orthogonal hulls for g = 22 and 8 50

3.2 Different vertex types of an orthogonal polygon . . . . . . . . . . . . . . . . 51

3.3 A concave region possesses two or more consecutive vertices of Type 3 . . . 52

3.4 Concavity (shaded regions) detection and removal rules for pattern 1331. . 54

3.5 Concavity detection and removal rules for pattern 1333. . . . . . . . . . . . 56

3.6 Demonstration of the algorithm on a sample 2D object . . . . . . . . . . . . 58

3.7 The algorithm Ortho-Hull that uses the procedure Next-Vertex . . . . 60

3.8 The procedure to remove the concavity formed by the vertex pattern 1331 61

3.9 The procedure to remove the concavity formed by the vertex pattern 1333 62

3.10 A step-by-step demonstration of the proposed algorithm on a digital object 65



LIST OF FIGURES ix

3.11 Orthogonal hull of the binary image “dragon” for g = 8 . . . . . . . . . . . 69

3.12 Plots on the number of vertices of the orthogonal hull and CPU times vs. g 70

3.13 Plots on frequency of errors versus g for different images . . . . . . . . . . . 72

3.14 The orthogonal hulls of a set of logo images . . . . . . . . . . . . . . . . . . 74

3.15 The orthogonal hulls for another set of logo images . . . . . . . . . . . . . . 75

3.16 The orthogonal hulls of a set of geometric shapes . . . . . . . . . . . . . . . 76

3.17 Results on some optical characters . . . . . . . . . . . . . . . . . . . . . . . 77

3.18 The orthogonal hulls of the binarized images of some real-world objects . . 78

4.1 The OIC of an image with increasingly finer resolution. . . . . . . . . . . . 81

4.2 An OIC consisting of an outer polygon, and two (outer) hole polygons . . . 82

4.3 A sample logo image and its OIC for different grid sizes representing the

corresponding MuSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Grid point types 1, 2, and 3 on the outer ploygon (shown partially). . . . . 88

4.5 The encoding of outer polygon of a given object and the steps of reduction

by using the reduction rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.6 Outer polygons and their total horizontal chord lengths for a typical prototype 93

4.7 The results of querying the database with the query image . . . . . . . . . . 96

4.8 Shape codes extracted at low grid sizes aid in object visualization . . . . . . 98

4.9 The shape complexity values for a set of synthetic images. . . . . . . . . . . 98

4.10 The shape complexity values for a set of logo images. . . . . . . . . . . . . . 99

4.11 Instance of a prototype that needs two outer polygons to cover it completely100

4.12 Sample prototypes of Bangla numerals ‘8’ and ‘9’ shown with their ranks . 101

4.13 Best offbeat prototypes (rank = 1) and worst offbeat prototypes (rank = 50)102

4.14 Distribution of mean dissimilarity measure and mv
u . . . . . . . . . . . . . . 103

5.1 Cellular envelope of a real-world (thick and reducible) curve-shaped object . 110

5.2 Examples of cellular curves explaining the straightness properties (R1)–(R4) 113

5.3 Algorithm Find-Cellular-Envelope (C,G, p) in stage I. . . . . . . . . . . 114

5.4 Algorithm Find-CSS (E, c0) in stage II. . . . . . . . . . . . . . . . . . . . . 116

5.5 Inclusion and exclusion of terminal cell(s) of CSS in T . . . . . . . . . . . . . 117

5.6 Results of algorithm PACE for cell size g = 4 on “duck”. . . . . . . . . . . 118

5.7 Polygonal approximation of the image “duck” for few other grid sizes . . . . 120



x LIST OF FIGURES

5.8 Plots on quality of approximation for the images “duck”, “diver”, and

“boat” (compression ratio, CR = N/M , versus the approximation param-

eter, g, and error frequency f(d⊥) versus the error of approximation, d⊥) . 122

5.9 Result-wise comparison of the proposed thinning-free method with the ex-

isting thinning-based methods for “duck” image. . . . . . . . . . . . . . . . 124

5.10 Polygonal approximation of the image “duck” after being injected by salt-

and-pepper noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.11 Results on “diver” for g = 4. See text and Fig. 5.6 for explanation. . . . . . 127

5.12 Results on “boat” for g = 4. See text and Fig. 5.6 for explanation. . . . . . 127

6.1 The vertices of a digital polygon cannot create a definite impression of the

underlying object. However, with the proposed method, the pseudo-vertices

along with the polygon vertices reflect the actual object . . . . . . . . . . . 130

6.2 A sample/set of points (left) representing a “fork” and its reconstruction

using the Travelling salesman tour and the algorithm of [Amenta et al. (1998)]134

6.3 Some instances of pointillist ensembles of a digital curve, showing the diffi-

culty of solving the problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.4 Chain codes for defining various digital curves. . . . . . . . . . . . . . . . . 140

6.5 An example of polygonal decomposition of a digital curve set . . . . . . . . 141

6.6 Different cases for finding the minimum distance between two edges of (same

or different) polygon(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.7 Step-by-step demonstration of the reconstruction from the pointillist en-
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Chapter 1

Introduction

The eight chapters comprising this doctoral thesis present several algorithms and their

applications to image analysis using geometric representation and characterization of ob-

jects in the digital plane. Algorithms presented in this thesis are mostly combinatorial in

nature and have been designed in the perspective of digital geometry. The applications in-

volving geometric characterization have been shown to produce encouraging results, which

are relevant to digital image processing, shape analysis, image indexing, etc. This chapter

summarizes the overall flow of the thesis.

1.1 Geometric Characterization of Digital Objects

Characterization of digital objects has gained immense importance with the advent of

digital imaging. Concomitantly, several new areas of theoretical interest have emerged,

which include,

(i) digital calculus [Nakamura and Aizawa (1984), Nakamura and Rosenfeld (1997)];

(ii) digital geometry [Bertrand et al. (2001), Klette (1982, 2001a,b), Klette and Rosenfeld

(2004a), Rosenfeld (1974)];

(iii) discrete tomography [Balazs (2008), Gesù et al. (2008), Gesù and Valenti (2004),

Herman (1980), Herman and Kuba (1999), Lorentz (1949)];

(iv) digital topology [Brimkov and Barneva (2004), Kong (2001), Kong and Rosenfeld

(1996), Rosenfeld (1979)];

Such geometric characterization of digital objects may be used in various real-world

applications as listed below:

(i) VLSI layout design [Nandy and Bhattacharya (2000), Preparata and Shamos (1985)];

(ii) robot grasping [Gatrell (1989), Kamon et al. (1995), Lengyel et al. (1990), Morales

et al. (2002)];



2
Chapter 1

Introduction

(iii) rough sets [Pal and Mitra (2004a,b), Pawlak (1990), Tadrat et al. (2007), Zhu and

Wang (2007)];

(iv) document analysis [Antonacopoulos and Meng (2002), Gatos and Mantzaris (2000),

Gatos et al. (1999), Jain and Yu (1998), Yacoub et al. (2005)];

(v) digital imaging and modeling [Gonzalez and Woods (1993), Li and Holstein (2003),

Rosenfeld and Kak (1982), Tian et al. (2003)];

(vi) studies in digital planarity [Brimkov and Barneva (2005), Brimkov et al. (2007)];

(vii) analysis of discrete curvature [Anderson and Bezdek (1984), Fischler andWolf (1994),

Freeman and Davis (1977), Teh and Chin (1989), Wuescher and Boyer (1991)]

(viii) shape analysis [Antoine et al. (1996), Bhowmick et al. (2007a), Biswas et al. (2005b,

2007b), Buvaneswari and Naidu (1998), Pavlidis et al. (1997), Rosin (2000, 2003)]

(ix) image indexing and retrieval [Biswas et al. (2004, 2007a), Ducksbury and Varga

(1997), Gu and Tjahjadi (1999), Mokhtarian and Mohanna (2002), Wolf et al. (2000)].

1.2 Scope of the Thesis

In this thesis, we have studied the following problems: (i) construction of tight isothetic

covers and orthogonal hull of a digital object and their applications to shape analysis,

(ii) polygonal approximation of a thick digital curve, (iii) describing the contour of a

digital object using a pointillist ensemble, and (iv) image indexing based on connectedness

properties of a digital object. For each of these problems, several combinatorial and

geometric properties have been explored, on the basis of which new algorithms have been

developed and relevant applications have been demonstrated.

1.2.1 Tight Isothetic Covers of a Digital Object

The shape of a digital object can be approximately captured in the form of a tight iso-

thetic cover taken from the exterior (outer cover) or from the interior (inner cover). Sev-

eral applications related to these representations in shape analysis and retrieval have been

demonstrated. An isothetic cover of a digital object, which comprises a set of isothetic

polygons, not only specifies a simple representation of the object but also provides approx-

imate information about its structural content and geometric characteristics. Such covers

can be used in various applications like image retrieval, deriving shape complexity, outer

and inner approximation in rough sets, VLSI design layout, etc. In Chapter 2, we have

proposed a combinatorial algorithm, which constructs the isothetic cover (outer or inner)
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(a)A digital object. (b)Outer Isothetic Cover. (c) Inner Isothetic Cover.

Figure 1.1: The isothetic covers of a digital object.

of a given digital object [Biswas et al. (2005b)]. A digital object (digitized on unit-sized

grid, i.e., for g = 1), and its outer and inner isothetic covers for g = 8, are shown in Fig. 1.1.

The isothetic covers can be used for deriving shape-codes [Biswas et al. (2005a, 2008)],

shape complexity measure [Biswas et al. (2007b)], for ranking optical character prototypes

in a large database [Bhowmick et al. (2007b)], and for polygonal approximation of thick

digital curves [Bhowmick et al. (2006)].

1.2.2 Orthogonal Hull of a Digital Object

Akin to the notion the isothetic cover, which provides a good approximation of the shape

of a digital object, another way of characterizing the object is to derive its orthogonal

(convex) hull, which further approximates its shape. Orthogonal hull may be employed in

various applications, such as, analysis of land-mark data, shape analysis and classification,

computer vision and pattern recognition [Bookstein (1991), Costa and R. M. Cesar (2001),

Hyde et al. (1997), Pitty (1984)], in discrete tomography [Balazs (2008)], etc. Further,

a digital object may be characterized by its convex deficiency tree, which can be derived

from its orthogonal hull [Gonzalez and Woods (1993)], and can be used to facilitate image

indexing and retrieval. In Chapter 3, an algorithm has been proposed which finds the

orthogonal hull of a given digital object in Z2, such that the hull edges lie on a set of

equally spaced horizontal and vertical grid lines. Fig. 1.2 shows the orthogonal hulls of

the same object shown in Fig. 1.1, for different grid sizes. The orthogonal hulls, with

decreasing grid size, give a more accurate characterization of the object, thereby enabling

a tunable procedure. The regions shown in yellow touching the boundary of the outer
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(a) g = 12 (b) g = 8 (c) g = 4

Figure 1.2: The orthogonal hulls of a digital object for different grid sizes.

isothetic cover of the object have been removed by the algorithm, in order to construct

the orthogonal hull.

1.2.3 Shape Analysis using Isothetic Covers

In Chapter 4 of this thesis, we demonstrate three different applications [Bhowmick et al.

(2007b), Biswas et al. (2007b, 2008)] of outer isothetic cover for shape analysis. The

first one presents an elegant shape coding technique, which captures the shape of the

object(s) present in an image from its gross appearance to its finer details by a set of

isothetic polygons, in a hierarchical manner. Such a Multigrid Shape Code (MuSC) of

an object is shown in Fig 1.3, where, the code is written below the image. We have also

presented an image retrieval scheme based on such shape codes (Sec. 4.2.4). The second

application derives a shape complexity measure by merging the consecutive concavity and

convexity of the outer isothetic cover in multiple tiers to capture the spatial complexity.

The method uses only integer operations (comparison and addition), does not need to

extract the boundary, and is therefore, very fast, efficient, and robust in the presence of

noise.

As a third application we introduce a new concept of conferring ranks on the prototypes

of a large database of handwritten characters based on isothetic chord lengths. The

proposed scheme has a striking potential in deciding the relative merit and usefulness of a

particular prototype with respect to the other prototypes of the corresponding character in

the relevant database. Several quantitative measures along with supporting experimental

results have been discussed, which justify the strength and efficiency of the proposed
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(a) g = 16 (b) g = 8 (c) original

MuSC:(5) (0) (11000001)(01000010)· · · (01000110)(08) ◃ end of 1st polygon

(7) (2) (01000010)(01000001)· · · (01000010)(08) ◃ end of 2nd polygon

(12)(7) (11000001)(01000001)· · · (01000001)(08)(08) ◃ end of g1 = 16
...

(12)(22)(11000001)(01000001)· · · (01000001)(08)(08) ◃ end of g2 = 8

Figure 1.3: A sample logo image and its Multigrid Shape Codes (MuSC) corresponding

to its OIC.

(a)

a prototype of the Bangla nu-

meric character ‘8’.

(b)

g = 8.

Y = ⟨2, 3, 8, 8, 8, 4, 4, 3⟩.

(c)

g = 4.

Y = ⟨2, 3, 4, 5, 5, 16, 15, 14, 9, 6,
7, 6, 5, 5, 2⟩.

Figure 1.4: OICs and their total horizontal chord lengths (elements of Y) for a typical

prototype of the Bangla numeral ‘8’.

method. In Fig. 1.4, we have shown the values of horizontal chord lengths of a typical

prototype of Bangla numeral ‘8’ for two different grid sizes.
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Figure 1.5: Polygonal approximation of an image “duck” for g = 8.

1.2.4 Polygonal Approximation of Thick Digital Curves

Polygonal approximation of digital curves have received enormous attention since the

inception of successful rasterization of curves and objects in the digital space. Several

algorithms have been proposed for approximating a given digital curve. However, these

algorithms use thinning as a preprocessing step before approximating a digital curve. In

Chapter 5, we have introduced a novel thinning-free algorithm for polygonal approximation

of an arbitrarily thick digital curve. The proposed method is demonstrated in Fig. 1.5

with an example, where, the algorithm is run on a digital object (left), showing the

contour of a “duck” image. The corresponding cellular envelope (middle), and the final

polygonal approximation (right) are also shown. The encapsulation of a digital curve

by the cellular envelope enables the proposed method to approximate arbitrarily thick

real-world curves/curve-shaped objects, even in the presence of noise and unexpected

disconnectedness.

1.2.5 Pointillist Ensemble of a Digital Object

In Chapter 6 of this thesis, we address the problem of representing the contour of a digital

object by an unordered set of points. Such representation of an object finds applications

in many diverse areas, namely, video encoding, biometrics, deformation analysis, shape-

based segmentation, etc. Pointillism, a movement of painting with dots that would blend
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(a)Vertex set, P, of a

digital polygon.

(b)Ensemble for mini-

mum pointillist factor

(ϕ = 1).

(c) Ensemble for a

larger pointillist factor

(ϕ = 2).

(d)Actual object.

Figure 1.6: The digital object (d), the vertex set of the digital polygon corresponding to

(d), and the point ensembles, (b) and (c), for different pointillist factors.

in the viewers eye, was developed by certain Neo-Impressionists of France late in the 19th

century. In Chapter 6, we have introduced the pointillistic approach to construct a minimal

ensemble of unordered points to describe the contour of a digital object. Fig. 1.6 (d) shows

an object for which the vertex set of the corresponding polygon is shown in Fig. 1.6 (a),

which hardly gives an impression of the underlying object. The point ensemble Fig. 1.6 (b)

which is a superset of the vertex set, represents the object more prominently. Fig. 1.6 (c)

shows the pointillist ensemble with an increased pointllist factor.

1.2.6 Image Indexing with Connectivity Features

In Chapter 7, we have studied the connectivity features of digital object and their appli-

cations to image indexing. Topological properties of a digital image [Klette and Rosenfeld

(2004a)] typically represent some information about the underlying geometric shape of

the image. One such important topological feature of a binary image is its Euler Number,

which is defined as the number of connected components minus the number of holes present

in the image [Gonzalez and Woods (1993), Pratt (1978)]. In Chapter 7, we have presented

a mechanism for image indexing using a novel concept of randomized spatial masking to

modify the connectivity features, related to the Euler number. This procedure, combined

with a fuzzy approach, yields a unique feature vector for each image in the database. The

algorithm is based on xor-ing the image bit-plane with a few pseudo-random synthetic

masks, and its novelty lies in computing the connectivity-based feature vectors iteratively,

depending on the size and diversity of the image database. For example, in Fig. 1.7,

two images are shown with same Euler number, and with the same number of connected
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I109 : ⟨−2⟩⟨1, 3⟩ I274 : ⟨−2⟩⟨1, 3⟩

J
(1)
109 :

⟨−2⟩⟨1, 3⟩⟨7, 1⟩
J
(1)
274 :

⟨−2⟩⟨1, 3⟩⟨7, 0⟩
Mask: M

(1)
8

Figure 1.7: Two images, having the same Euler number and number of connected com-

ponents and holes (first row), are xor-ed with a random mask (second row rightmost) to

produce images (second row left and middle) with distinct pairs of number of connected

components and holes.

components and holes, each. Thus, they cannot be discriminated using these features.

However, when these two images are xor-ed with a random mask, they produce different

pairs of connected components and holes, namely ⟨7, 1⟩ and ⟨7, 0⟩, and therefore, yield two

distinct feature vectors.

1.3 Organization of the Thesis

We have studied various aspects of geometric characterization of a digital object, starting

with the isothetic cover, the orthogonal hull, followed by several applications of these

representations, which are discussed in Chapter 2, Chapter 3 and Chapter 4 respectively.

In Chapter 5, we have studied digital curves and presented a polygonal approximation

algorithm. The problem of representing a digital curve by an unordered set of points that

preserves visual perception of the curve and aids its subsequent reconstruction, has been

studied in Chapter 6. Next, we have deployed the connectivity features for devising a

mechanism for image indexing in Chapter 7. Finally, in Chapter 8, we conclude the thesis

with critical remarks and discuss some open problems and other future issues.



Chapter 2

Construction of Isothetic Covers of a Digital Object

2.1 Introduction

Determination of the (minimum-)maximum-area outer(inner) isothetic cover correspond-

ing to a 2D digital object is of relevance to various fields. Given a set of isothetic grid

lines under the object plane, an isothetic cover corresponds to a collection of isothetic

polygons, which bears a structural and geometric relation with the concerned object, and

hence can be useful to many interesting applications such as VLSI layout design, robot

grasping and navigation, rough sets, document image analysis. In VLSI layout design,

computation of a minimum-area safety region, referred as the classical safety zone prob-

lem [Nandy and Bhattacharya (2000)], may be necessary to ensure the correctness of design

rules before fabricating an integrated circuit. The trade-off lies between the minimization

of total area of the fabricated parts (an obvious economic constraint) and the necessary

electrical relationship (insulation or contact) in the presence of possible production fluc-

tuations [Preparata and Shamos (1985)]. In robotics, identification of free configuration

space (path-planner) is a pertinent problem in robot navigation. For example, a real-time

robot motion planner often uses standard graphics hardware to rasterize the configuration

space into a series of bitmap slices, and then applies a dynamic programming technique to

calculate paths in this rasterized space [Lengyel et al. (1990)]. The motion paths produced

by the planner should be minimal with respect to the Manhattan distance (L1) metric.

Similarly, for grasping a 3D object, its outer isothetic cover may be helpful, as the me-

chanical fingers of a robot may be constrained by only axis-parallel movements [Gatrell

(1989), Kamon et al. (1995), Morales et al. (2002)]. In many applications of rough sets,

computation of the lower and upper approximations of a rough set is required [Pal and

Mitra (2004a,b), Tadrat et al. (2007), Zhu and Wang (2007)]. For example, in image
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mining [Liu et al. (2004)], a challenging problem is to discover valid, novel, potentially

useful, and ultimately understandable knowledge from a large image database, in order

to overcome the curse of dimensionality. Solutions, using rough-set concepts, mainly in-

clude several partitioning and dimension-reduction algorithms, where the (possibly not

equi-spaced) demarcating lines (analogous to the background grid lines used while finding

isothetic covers) are specified by the corresponding feature values (low, medium, high,

etc.). Subsequently, a tight isothetic cover of the region of interest can be obtained fol-

lowing these demarcating lines. Deriving the electronic version of a paper document for

the purpose of storage, retrieval, and interpretation, requires an efficient representation

scheme. A document representation involves the steps of skew detection, page segmenta-

tion, geometric layout analysis, and logical layout analysis, for which isothetic polygons

can be used [Gatos and Mantzaris (2000), Gatos et al. (1999), Jain and Yu (1998)]. For

example, in the page segmentation method [Akindele and Belaid (1993)], a document page

image is cut into polygonal blocks using the inter-column and the inter-paragraph gaps

as horizontal and vertical lines, followed by the construction of simple isothetic polygonal

blocks using an intersection table. Isothetic polygons can also be used for ground truthing

of complex documents [Antonacopoulos and Meng (2002), Yacoub et al. (2005)].

The problem addressed in this chapter is stated as follows. Given a 2D digital object

S (Def. 2.2.4) registered on a set of horizontal and vertical grid lines G (Def. 2.2.5), the

problem is to find a tight (outer and inner) isothetic cover (Def. 2.2.9 and Def. 2.2.10) of S.

Clearly, the isothetic covers depend on the registration of the object with the underlying

grid. The structure and complexity of the covers are likely to change if the object is made

to translate on the fixed grid or if the grid size is altered. Fig. 2.1 shows the original

“bear” image (left), its outer isothetic cover (OIC) and the inner isothetic cover (IIC) in

the middle, and the superimposed outer and inner isothetic covers (right). It is seen that

the boundary of the object lies in the region OIC minus the interior of IIC.

2.2 Definitions and Preliminaries

Definition 2.2.1 (Digital Plane). The digital plane, Z2, is the set of all points having

integer coordinates in the real plane R2. A point in the digital plane is called a digital

point, or called a pixel in the case of a digital image.

Henceforth, the terms “point” and “digital point” will be used interchangeably.

Definition 2.2.2 (k-connectedness). The set of four horizontally and vertically adjacent
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original OIC IIC
superimposed

(OIC+ IIC)

Figure 2.1: The outer isothetic cover (OIC) and the inner isothetic cover (IIC), corre-

sponding to the image “bear”.

points of a point p(x, y) ∈ Z2 is called the 4-neighborhood of p, which is given by N4(p) :=

{(x′, y′) : (x′, y′) ∈ Z2 ∧ |x − x′| + |y − y′| = 1}. The set of all eight neighbors, i.e.,

the four horizontal and vertical neighbors, and the four diagonal neighbors, defines the 8-

neighborhood of p, given by N8(p) := {(x′, y′) : (x′, y′) ∈ Z2 ∧max(|x− x′|, |y − y′|) = 1}.
Each point in Nk(p) is said to be a k-neighbor (k = 4 or 8) of p. Two points p and q

are k-connected in a digital set S ⊂ Z2 (Def. 2.2.4) if and only if there exists a sequence

⟨p := p0, p1, . . . , pn := q⟩ ⊆ S such that pi ∈ Nk(pi−1) for 1 ≤ i ≤ n. For any point p ∈ S,

the set of points that are k-connected to p ∈ S is called a k-connected component of S. In

other words, a k-connected component of a nonempty set S ⊆ Z2 is a maximal k-connected

set of S. If S has only one connected component, it is called a k-connected set.

Definition 2.2.3 (Isothetic distance). The (isothetic) distance between two points, p(ip, jp)

and q(iq, jq), is the Minkowski norm L∞ [Klette and Rosenfeld (2004a)], which is given

by d⊤(p, q) = max {|ip − iq|, |jp − jq|}. The distance of a point p from an object S is

d⊤(p, S) = min {d⊤(p, q) : q ∈ S}, and the distance between two connected components

S1 and S2 is d⊤(S1, S2) = min {d⊤(p, q) : p ∈ S1, q ∈ S2}.

Definition 2.2.4 (Digital object). A digital object (henceforth referred as an object) is

a finite subset of Z2, which consists of one or more k-connected components.

In this work, each component (8-connected, i.e., k = 8) of an object S may contain

one or more holes. A hole of S is a k̄-connected component of Z2 r S which is completely

surrounded by one of the components of S (for k = 8, we have k̄ = 4, and vice versa)

[Rosenfeld and Kak (1982)]. Let I be a finite rectangular subset of Z2, which contains the

entire object S, then the complement of S is given by S′ := Ir S.



12
Chapter 2

Construction of Isothetic Covers of a Digital Object

U4

V

l  (j+g)
H

l  (j)
H

H
l  (j−g)

q(i,j)
s j

i

j−g
is

j

U

s

1

i

U

3U

2

s i−g
j

l  (i−g)
V V

l  (i) l  (i+g)

(a)UGBs incident at q(i, j). (b)OIC and IIC.

Figure 2.2: (a) Four neighboring UGBs, namely U1 = UGB(i, j), U2 = UGB(i − g, j),

U3 = UGB(i− g, j − g), and U4 = UGB(i, j − g), incident at a grid point q(i, j). (b) OIC

(in red) and IIC (in cyan) corresponding to an object S (in black) having two connected

components.

Definition 2.2.5 (Digital grid). A digital grid (henceforth referred simply as a grid) G :=

(H,V) consists of a set H of horizontal (digital) grid lines and a set V of vertical (digital)

grid lines, where, H = {. . . , lH(j−2g), lH(j−g), lH(j), lH(j+g), lH(j+2g), . . .} ⊂ Z2 and

V = {. . . , lV (i−2g), lV (i− g), lV (i), lV (i+ g), lV (i+2g), . . .} ⊂ Z2, for a grid size, g ∈ Z+.

Here, lH(j) := {(i′, j) : i′ ∈ Z} denotes the horizontal grid line and lV (i) := {(i, j′) : j′ ∈ Z}
denotes the vertical grid line intersecting at the point (i, j) ∈ Z2, called the grid point,

where i and j are multiples of g.

Definition 2.2.6 (Grid segment). A (digital) grid segment (horizontal/vertical) is the

set of points on a (horizontal/vertical) grid line between and inclusive of two consecutive

grid points. Thus, the horizontal grid segment belonging to lH(j) and lying between two

consecutive vertical grid lines, lV (i) and lV (i+ g), is sij = {(i′, j) ∈ lH(j) : i ≤ i′ ≤ i+ g}.
Similarly, the vertical grid segment belonging to lV (i) between lH(j) and lH(j + g) is

sji = {(i, j′) ∈ lV (i) : j ≤ j′ ≤ j + g}.

Definition 2.2.7 (Unit Grid Block(UGB)). The horizontal digital line lH(j) divides Z2

into two half-planes (each closed at one side by lH(j)), which are given by h+H(j) :=

{(i′, j′) ∈ Z2 : j′ ≥ j} and h−H(j) := {(i′, j′) ∈ Z2 : j′ ≤ j}. Similarly, lV (i) divides Z2

into two half-planes, which are h+V (i) := {(i′, j′) ∈ Z2 : i′ ≥ i} and h−V (i) := {(i′, j′) ∈
Z2 : i′ ≤ i}. Then the set, given by

(
h+V (i) ∩ h−V (i+ g)

)
∩
(
h+H(j) ∩ h−H(j + g)

)
, is defined
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as the unit grid block, UGB(i, j). The interior of U1 := UGB(i, j) is given by U1 r(
sji ∪ sji+g ∪ sij ∪ sij+g

)
.

Hence, for a given grid point, q(i, j), there are four neighboring UGBs, namely, U1 :=

UGB(i, j), U2 := UGB(i−g, j), U3 := UGB(i−g, j−g), and U4 := UGB(i, j−g), as shown
in Fig. 2.2. Two adjacent UGBs share a common (horizontal or vertical) grid segment. For

example, the vertical grid segment shared between U1 and U2, is given by sji := U1 ∩ U2.

Thus, U1, U2, U3, and U4 share a common point, namely the grid point q(i, j).

Definition 2.2.8 (Isothetic polygon). A (isothetic) polygon P is a simple polygon (i.e.,

with non-intersecting sides) of finite size in Z2 whose alternate sides are subsets of the

members of H and V. The polygon P , hence given by a finite set of UGBs, is represented

by the (ordered) sequence of its vertices, which are grid points. The border BP of P is the

set of points belonging to its sides. The interior of P is the set of points in the union of

its constituting UGBs excluding the border of P .

An isothetic polygon P can be classified into:

• Outer polygon: P ∩ S ̸= ∅; for each p ∈ BP , 0 < d⊤(p, P ∩ S) 6 g.

• Inner polygon: P ∩ S ̸= ∅; for each p ∈ BP , 0 < d⊤(p, S
′ r P ) 6 g.

• Outer hole polygon: for each p ∈ BP , 0 < d⊤(p, S r P ) 6 g.

• Inner hole polygon: for each p ∈ BP , 0 < d⊤(p, P ∩ S′) 6 g.

Roughly speaking, an outer polygon contains one or more components of S such that its

border is a subset of S′ and the number of its constituting UGBs is minimum. Similarly,

an inner polygon is contained in exactly one component of S such that its border is a

subset of S and the number of its constituting UGBs is maximum. An outer hole polygon

lies in a hole (or a sufficiently large background region with a narrow opening in S) and

its border is a subset of S′, whereas, an inner hole polygon contains a hole and its border

is a subset of S.

Definition 2.2.9 (Outer Isothetic Cover). The outer (isothetic) cover (OIC), denoted by

P (S), is a set of outer polygons and (outer) hole polygons, such that the region, given

by the union of the outer polygons minus the union of the interiors of the hole polygons,

contains a UGB if and only if it has object occupancy (i.e., has a nonempty intersection

with S).
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Definition 2.2.10 (Inner Isothetic Cover). The inner (isothetic) cover (IIC), denoted by

P (S), is a set of inner polygons and (inner) hole polygons, such that the region, given

by the union of the inner polygons minus the union of the interiors of the hole polygons,

contains a UGB if and only if it is a subset of S.

Hence, the OIC of an object consists of minimum number of UGBs and its IIC consists

of maximum number of UGBs. As a consequence, given an object S and a grid imposed

on S, the OIC and the IIC are respectively of minimum and of maximum areas measured

in the grid unit.

The interior of an OIC is given by the union of the interiors of its outer polygons

minus the union of its hole polygons. A point, therefore, is said to lie inside the OIC if

and only if it is an interior point; it is said to lie on the OIC if and only if it lies on the

border of one of its outer polygons or hole polygons. The OIC and the IIC of an object

S having two components are shown in Fig. 2.2. The OIC (shown in red) consists of two

outer polygons and two hole polygons, where one hole polygon corresponds to an actual

hole of the object and the other to a sufficiently large background region with a narrow

opening in S. The IIC polygons (in cyan) are two in number, the larger one being the

inner polygon and the smaller one being the hole polygon.

2.3 Related Works

Rosenfeld and Kak (1982) had presented algorithms for finding individual borders between

the components of the digital object S and S′, where S′ is the complement of S. The border

is defined as the set of points of S that are 4-adjacent to S′. The border is followed by

inspecting the 8-neighbors in counter-clockwise order. The border can also be extracted by

the crack following algorithm. Let C and D be the components of S and S′ respectively,

and let P and Q be 4-adjacent points of C and D, so that (P,Q) defines one of the cracks

on the (C,D)-border. Then, depending on how (U, V ) (the pair of points facing (P,Q))

belongs to C or D, the crack takes a right, left, or no turn and the next crack, (P ′, Q′),

is determined. The algorithm terminates when it comes back to the initial pair. This

algorithm can find the C-border of D (set of points of D that are 4-adjacent to C) and

D-border of C (set of points of C that are 4-adjacent to D).

Fig. 2.3(a) shows a digital object S1. The D-border of C, which consists of the back-

ground pixels, constructed by applying the crack following algorithm of Rosenfeld and

Kak is shown in Fig. 2.3(b). The red pixels denote the border. It may be noted here that

the dark red pixels have been traversed twice while following the crack (shown in dotted
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(a)S1. (b)D-border of C. (c)OIC of S1.

(d)S2. (e)D-border of C. (f)OIC of S2.

Figure 2.3: Two digital objects S1 and S2 (a) and (d); their D-borders (b) and (e), which

are traced by Rosenfeld’s crack following algorithm; the OICs (c) and (f) as constructed

by the proposed algorithm.

line). In fact, we get two polygons, which are connected by a single pixel thick curve. In

our proposed algorithm, the crack following algorithm has been modified for finding the

outer and inner isothetic covers. The OIC constructed by using this modified algorithm

consists of one outer polygon and one outer hole polygon, as shown in Fig. 2.3(c), where

the grid size g is taken as 1. Retracing of the same path has been avoided by using a

combinatorial technique. Also, in Fig. 2.3 (e) and (f), the D-border of C and the OIC of

another object S2 is shown. The crack following algorithm produces a cover of the object

in which the dark red pixels are traced twice when the crack is followed. The OIC avoids

such retracing or backtracking, and outputs one outer polygon.

For a given digital object S, the outer Jordan digitization J+(S) is the union of all

such 2-cells (grid squares) that have nonempty intersections with S, and the inner Jordan

digitization J−(S) is the union of all 2-cells that are completely contained within S. Jordan

digitization (inner/outer) gives the union of cells but does not specify the (inner/outer)
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cover as a sequence of vertices.

Klette and Rosenfeld demonstrated a similar concept called isothetic frontier [Klette

and Rosenfeld (2004a)]. However, there exist some differences between an isothetic cover

and an isothetic frontier. To find the frontier ϑS of an object S in any metric space [A, d],

the (open) ε-neighborhood of a point p in A is defined as Uε(p) = {q : 0 ≤ d(p, q) < ε}.
Then, p ∈ S is a frontier point of S ⊆ A if and only if, for any ε > 0, Uε(p) contains

points of S as well as points of Ar S. In the digital plane, ε is always a positive integer

and A ⊆ Z2. Hence, if ε = 1, then there exists no point p ∈ A for which Uε(p) contains

a point of A r S. In the case of an isothetic cover, the metric used is isothetic distance

d⊤ (Def. 2.2.3), and if a point p lies on the cover, then there exist point(s) q ∈ S as

well as point(s) q′ ∈ S′(:= A r S) such that 0 < d⊤(p, q), d⊤(p, q
′) ≤ g, g being the grid

size (as in Def. 2.2.5). Adopting such a policy ensures that both the outer (or the inner)

isothetic covers have minimum (maximum) area. Also, the isothetic frontier of an object

is defined in a metric space where the background grid is not required. On the contrary,

the isothetic cover of an object is identified assuming that the object is registered on the

underlying grid with the goal of controlling the complexity of the cover by changing the

grid size. For a higher grid size, we get a coarser description of the object, whereas for a

lower one, we get a finer description.

In the literature, several other works dealing with boundary approximation, minimum

perimeter polygons, and concavity trees can be found. Sklansky (1972b) described an

algorithm for computing minimum-perimeter-polygon (MPP) of digitized silhouettes (of-

ten referred as cellular complexes). A technique has been described for describing and

measuring the concavities of such cellular complexes [Sklansky (1972a)]. It combines the

concept of half-cell expansion and the method of finding the cellular convex hulls in order

to determine the concavity tree. The algorithm uses the concept of a stretched string

constrained to lie in the cellular boundary of the digitized silhouette. Sloboda and Zat’ko

(1995) presented a method of boundary approximation for finding the minimum-perimeter

polygon in a given polygonally-defined annular region.

2.4 Contribution of Our Work

The difficulty, in finding the outer (inner) isothetic cover as a sequence of vertices (grid

points), lies in the fact that during the traversal of an isothetic polygon, if the traversed

path enters a complex region (background region in the case of an outer cover or object

region in the case of an inner cover) for which a path of retreat from that region at a
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u

1

v3 v1’

v3’

v2’

vc

v2
v

Figure 2.4: An example of backtracking in a complex region from the current vertex vc

lying in a dead end (object S shown in gray and background S′ in white). In the proposed

algorithm, no such backtracking is required. See text for details.

later stage is not possible, which marks a dead end, then a backtracking is required from

an appropriate vertex lying on the traversed path. If the current vertex vc lies in a dead

end, then a vertex v has to be found on the path vs  vc, where vs denotes the start

vertex, by tracing back from vc to vs, along the path vc  vs. Such a vertex v should

have an alternative path that would possibly come out of the complex region. However,

the alternative path from v may again lead to a vertex v′ lying in a dead end, which

again results in backtracking the path v′  v, and still failing to produce a feasible path

coming out of the corresponding region. This, in turn, calls for (recursively or iteratively)

backtracking and searching another alternative path from some other vertex in v  vs.

An instance where backtracking is required, has been illustrated in Fig. 2.4. The path

(shown in blue) from u leads to the vertex vc (current vertex) that lies in a dead end

(shown as a red square). While backtracking from vc, none of the nine grid points lying

on the path vc  u provides any alternative path, which has to be verified for each of

these points. The vertex v1 is the first vertex found during backtracking, from which an

alternative path is possible. While traversing along this alternative path from v1, however,

it is found that the path terminates at the vertex v′1 that also marks a dead end. Next,
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backtracking is made along v′1  v1, and a vertex v2 is found from which the alternative

path again ends at the vertex v′2 lying in a dead end. No other vertex in the remaining

part of v′1  v1 (i.e., v2  v1) admits an alternative path, and therefore, again a new

vertex is looked for by resuming the backtracking along v1  u. One such vertex is v3,

which again does not produce a successful solution. Finally, the backtracking ends at the

vertex u, which has an alternative path lying outside the concerned region.

The challenge, therefore, lies in recognizing such a complex region against a background

grid, which, if entered, would need backtracking. If the entry point of such a region can be

recognized during the traversal of a polygon belonging to an isothetic cover, then instead

of following the path entering the complex region, the alternative path along the grid lines

can be chosen. Such a strategy would be entirely free of the backtracking process, and

hence can construct the isothetic cover in a simpler and faster way.

We have proposed an algorithm for finding the outer and the inner isothetic covers of

an arbitrarily-shaped digital object. This is a modification of the earlier crack following

algorithm [Rosenfeld and Kak (1982)]. The proposed algorithm does not require any

backtracking of the already traversed path. Also, the concept of background grid has

been introduced whose resolution can be varied to enable fine or coarse analysis of the

underlying shape. Two different approaches on finding the isothetic covers have been

discussed in this chapter; one is for the uniform grid [Biswas et al. (2005b)] and the other

for nonuniform grid [Bhowmick et al. (2005b)].

The strength of the proposed algorithm lies in the fact that it takes into account the

combinatorial arrangement of the grid lines with respect to the object while simultaneously

traversing and determining the boundary of the polygon defining an isothetic cover. The

algorithm is completely devoid of any backtracking, and therefore, is fast and efficient.

Avoidance of backtracking also makes the algorithm output-sensitive, in the sense that its

time-complexity becomes linear in the length of the sum of the perimeters of the polygons

constituting the isothetic cover (in grid units).

The chapter is organized as follows. The preliminaries, including the basic notions of

digital geometry, necessary definitions, and review of earlier works have already been given

in Sec. 2.2 and Sec. 2.3. The algorithm for constructing the outer isothetic cover (OIC) for

a digital object consisting of a single connected component is described in Sec. 2.5. The

generalized algorithm to construct the isothetic covers (both outer isothetic cover (OIC)

and inner isothetic cover (IIC)) of an object with multiple connected components, is given

in Sec. 2.6. The construction of isothetic covers of an object, when the underlying grid is

non-uniform (not equi-spaced), is presented in Sec. 2.7. Section 2.8 contains the relevant
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experimental results on several databases and elaborates the scope of further applications

using isothetic covers. Finally, in Sec. 2.9, we conclude the chapter with few open problems

and with pointers to some possible future directions.

2.5 Outer Isothetic Cover of a Single Connected Component

The algorithm for constructing the outer isothetic cover (OIC), P (S), corresponding to

an object S, which consists of only one connected component without holes, is stated

here. The OIC of such an object consists of only one (outer) polygon. The generalized

algorithm for an object having multiple connected components with or without holes is

stated in Sec. 2.6. To construct P (S), we consider I to be a finite rectangular subset of

Z2, which contains the entire object S. Let the height h and the width w of I be such

that the grid size, g, divides both h − 1 and w − 1, and the boundary UGBs of I do not

contain any part of S.

2.5.1 Combinatorial Classification of a Grid Point

An isothetic polygon has two types of vertices with internal angles 900 and 2700(i.e.,−900).
The procedure for finding P (S) is based on classifying the grid points of I while construct-

ing P (S). The type of any grid point, q(i, j), is determined using the object occupancies

of its neighboring UGBs and their combinatorial arrangements, which are obtained as

follows.

Object Occupancy: UGB(i, j) is described by two horizontal (sij and sij+g) and two verti-

cal (sji and sji+g) grid segments (Fig. 2.2). Since S is 8-connected and a grid segment is

4-connected, the intersection between them is well-defined [Rosenfeld and Kak (1982)].

Hence, S has an intersection with UGB(i, j), or UGB(i, j) is said to have an object occu-

pancy, if and only if there exists a point p in S ∩
(
sij ∪ sij+g ∪ sji ∪ sji+g

)
.

Hence, for each UGB, Ua (a = 1, 2, 3, 4), incident at q(i, j), there are two possibilities:

either Ua ∩ S ̸= ∅ or Ua ∩ S = ∅, thus giving rise to (24 =) sixteen possible arrangements

of the four UGBs. These sixteen possible arrangements are further grouped into five com-

binatorial classes in our algorithm, where a particular class Cm includes all arrangements

for which exactly m(= 0, 1, 2, 3, 4) out of the four neighboring UGBs of q has/have object

occupancy and the remaining (4− q) ones do not have any object occupancy.

Combinatorial Arrangements of UGBs: Let f(Ua) denote the object occupancy of Ua

(a = 1, 2, 3, 4), defined as follows.
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f(Ua) =

0 if Ua ∩ S = ∅

1 if Ua ∩ S ̸= ∅
(2.1)

The number of UGBs having object occupancy is, therefore, given by m = f(U1) +

. . . + f(U4). As a result, the grid point q will belong to one of the following five classes

corresponding to five different values of m, which are also illustrated in Fig. 2.5.

1. C0 (m = 0): None of the four UGBs has object occupancy.

2. C1 (m = 1): Exactly one out of the four UGBs has object occupancy. Four such

arrangements are possible depending on the UGB having occupancy.

3. C2 (m = 2): There are two arrangements for m = 2: UGBs having object occupancy

(i) have a grid segment in common (i.e., adjacent); (ii) do not have a common grid

segment (i.e., diagonally opposite).

i) C2A (Adjacent): Ua and Ub (a, b ∈ {1, 2, 3, 4}, a ̸= b) have object occupancy, such

that (a + b) mod 2 = 1. Four such arrangements are possible depending on the

common grid segment.

ii) C2B (Diagonal): Either U1 and U3, or U2 and U4, have object occupancy.

4. C3 (m = 3): Three neighboring UGBs have object occupancy. Four arrangements

are possible depending on the UGB that has no object occupancy.

5. C4 (m = 4): All four neighboring UGBs have object occupancy.

The positions of a UGB, of a grid segment, and of a grid point, w.r.t. the OIC are

determined using the following lemmas and theorems.

Lemma 1. The interior of a UGB lies outside P (S) if and only if the UGB has no object

occupancy.

Proof. Let, for contradiction, there be a UGB, U ′ ∈ P (S), with no object occupancy.

Then, either U ′ has at least one grid segment on (the boundary of) P (S), or U ′ has none

of its four grid segments on P (S). If U ′ has one or more grid segments on the boundary of

P (S), then the interior and the segments of U ′ lying on P (S) can be excluded from P (S)

so that the segments of U ′ lying inside P (S) redefine the corresponding boundary of P (S).

If U ′ has no segment on P (S), then only the interior of U ′ is excluded from P (S) and

the four segments of U ′ add to the boundary of P (S). In either case, P (S) with a UGB
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(a) C0 (b) C1 (c) C2A (d) C2B (e) C3 (f) C4

Figure 2.5: Vertex classification in an OIC: (a) exterior point, (b) 900 vertex, (c) edge

point, (d) cross vertex, (e) 2700 vertex, and (f) interior point.

having no object occupancy is not of minimum area, which contradicts the definition of

the OIC (Definition 2.2.9).

Conversely, if U ′ lies outside P (S), then U ′ cannot have an object occupancy as no

part of S lies outside P (S).

Lemma 2. A grid segment s belongs to the boundary of P (S) if and only if, out of the

two UGBs having s in common, the interior of one lies outside and that of the other lies

inside P (S).

Proof. Let the two UGBs with s as the common grid segment, be U and U ′. Hence, by

Lemma 1, if the interior of U lies inside and that of U ′ outside P (S), then the segment s

lies on P (S).

The converse is obvious; if s lies on the boundary, then the interior of one UGB is in

P (S) and that of the other is not.

Theorem 1 (90o vertex). A grid point q is a 90o vertex of P (S) if and only if q belongs

to class C1.

Proof. W.l.o.g., let U1 be occupied by the object S and the other three neighbor UGBs of

q(i, j) are not. As, of the two horizontally adjacent UGBs, U1 and U2, only U1 has object

occupancy, the grid segment sji , common to U1 and U2, are on P (S) as stated in Lemma

2. Similarly, sij is on the boundary of P (S), since between the two vertically adjacent

segments, U1 and U4, only U1 is occupied by S. The grid segment si−g
j is not on the

boundary of P (S) as none of its adjacent UGBs, U2 and U3, has object occupancy. Same

is true for sj−g
i . Hence, sji and sij are two grid segments on P (S) incident at q, thereby

making it a 900 vertex.
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Conversely, if q is a 900 vertex, then exactly two mutually perpendicular grid segments,

say sji and sij , of the four incident grid segments at q, are on P (S). As si−g
j and sj−g

i are

not on P (S), it can be shown that only U1 has object occupancy. This is true for other

three combinations for q being a 900 vertex. Thus, if q is a 900 vertex, then it belongs to

class C1.

Theorem 2 (270o vertex). A grid point q is a 270o vertex of P (S) if and only if q belongs

to class C3 or class C2B.

Proof. If q belongs to C3, then exactly three of the UGBs have object occupancy. Let,

w.l.o.g., U1 has no object occupancy. Then, sji (= U1 ∩U2) and sij (= U1 ∩U4) are on the

boundary of P (S) by Lemma 2. The included angle at q being 2700, q is a 2700 vertex.

If q belongs to C2B, then two diagonal UGBs are occupied by S. By Lemma 2, all the

four grid segments incident at q lie on P (S). Hence, q occurs twice in P (S). However,

as each polygon in P (S) is simple, q cannot occur twice in a particular polygon of P (S).

Thus, q occurs in two polygons, once for each. Further, since there is exactly one outer

polygon in P (S) (S being a single component, with or without holes), q lies on at least

one hole polygon. As shown in Fig. 2.5(d), if the segments sj−g
i and si−g

j lie on the same

polygon, and S lies left of the polygon during its traversal, then, while taking a left turn

at q (traversing sj−g
i first and si−g

j next), the part of S in U3 lies left but that in U1 lies

right, which is a contradiction. If there is a right turn at q by traversing sj−g
i first and

sij next, then S lies left, both in U1 and U3. This implies that q is a 2700 vertex for one

polygon. Clearly, for the other polygon, q will be again a 2700 vertex for similar reasons.

Conversely, if q is a 2700 vertex, then one UGB, say U1, has no object occupancy

and both of its adjacent UGBs (U2 and U4) have object occupancy. If U3 has object

occupancy, then q belongs to C3, and if U3 has no object occupancy, then q belongs to

C2B by Lemma 2.

Theorem 3 (edge point). A grid point q is a non-vertex edge point of P (S) if and only

if q belongs to class C2A.

Proof. If q belongs to class C2A, then two adjacent UGBs, say U1 and U2, are occupied by

the object and the other two are not. Thus, by Lemma 2, si−g
j and sij are on the boundary

of P (S). As both the grid segments are horizontal and si−g
j ∩ sij = q, q is a non-vertex

edge point on the boundary of P (S).

If q is an edge point, then both the segments incident at q, which are part of P (S),

are either horizontal or vertical. Thus, only two adjacent UGBs have object occupancy.



2.5 Outer Isothetic Cover of a Single Connected Component 23

Hence, by Lemma 2, when q is an edge point, it belongs to class C2A.

If q belongs to class C2B, then q occurs twice as a vertex in the OIC, which is referred

as a cross vertex in Fig. 2.5(d). If a grid point q is neither a vertex nor an edge point of

P (S), then it lies either inside or outside P (S). The classification of such a grid point

w.r.t. P (S) is done using the following theorems.

Theorem 4 (exterior point). A grid point q lies outside P (S) if and only if q belongs to

class C0.

Proof. If q belongs to class C0, then no Ua (a = 1, 2, 3, 4), incident at q, has object

occupancy, and hence, by Lemma 2, none of the four grid segments incident at q lies on

P (S). As a result, the intersection of these four grid segments, which is q, does not belong

to P (S).

If q lies outside P (S), then none of the four grid segments incident at q is on the

boundary of P (S). Hence, none of the neighboring UGBs has object occupancy, which

means q belongs to class C0.

Theorem 5 (interior point). A grid point q is in the interior of P (S) if and only if q

belongs to class C4.

Proof. When q belongs to class C4, all four UGBs incident at q have object occupancy.

None of the four grid segments incident at q qualifies for being on the boundary of P (S)

by Lemma 1 and Lemma 2. Thus, q is an interior point of P (S).

Conversely, when the grid point q is in the interior of P (S), none of the grid segments

incident at q is on the boundary of P (S). Hence, all the corresponding UGBs have object

occupancy, which means, q belongs to class C4.

It may be mentioned here that, if S is a subset of the interior of a UGB, which may

arise if S is sufficiently small relative to the grid size, then no grid segment intersects

S. Such a degenerate case, where all grid points are classified to C0, can be handled by

determining the object occupancy based on the intersection of S with the interior of a

UGB.

2.5.2 Construction of P (S)

Here we assume that the object S consists of one connected component without any hole,

and its top-left point, p0(i0, j0), is given. The point p0 is the top-left point of S if and
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only if, for each other point (i, j) ∈ S, either j < j0, or j = j0 and i > i0. The start

point of traversal, qs, is first determined from p0. Then the construction starts from qs

and ends when the traversal reaches qs (Theorem 7). The traversal is guided by the type

of each grid point q, which is obtained from the corresponding class of q. The type t

of q corresponding to its internal angle 900, 1800, and 2700, w.r.t. an isothetic polygon

is considered to be 1, 0, and −1 respectively. The algorithm outputs P (S) (here, one

outer polygon) as an ordered set of vertices. The information stored corresponding to

each vertex are its coordinates and type. In the degenerate case in which S lies in the

interior of a single UGB, the P (S) is empty.

Determination of Start Point: If p0 lies in the interior of a UGB (w.l.o.g, say U1), then

the top-left grid point of U1 is considered as the start point, qs. If p0 coincides with a grid

point, then the top-left grid point of U2 (incident at p0, Fig. 2.2 (a)) is considered as qs.

Otherwise, p0 lies on a horizontal (vertical) grid segment common to two adjacent UGBs,

say U1 and U4; then the top-left grid point of U1 is considered as qs. The coordinates of

qs, therefore, are given by

is = (⌈i0/g⌉ − 1)× g, js = (⌊j0/g⌋+ 1)× g. (2.2)

The intersections of the neighboring UGBs of qs with S are computed and the vertex

type of qs is determined (Theorems 1, 2, 3). Let d denote the direction to be followed

from a vertex or an edge point q while constructing an isothetic polygon of P (S). The

different values of d, namely 0, 1, 2, and 3, denote the directions towards right, top, left,

and down, respectively. The starting direction from qs is given by (2 + ts) mod 4. By

Eqn. 2.2, neither U1 nor U2 (of qs), and no UGB above U1, can have object occupancy.

However, U3 may or may not have an object occupancy, thereby giving rise to two distinct

cases: qs is a 900 vertex when only U4 is occupied; qs is an edge point when both U3 and

U4 are occupied. We get the following lemma.

Lemma 3. The start point is either a 900 vertex or an edge point.

Tracing the Polygon: During the traversal of (the boundary of the polygon in) P (S), the

direction dc from the current grid point qc, and the coordinates (ic, jc) of qc, being known,

we compute the coordinates of the next grid point, qn := (in, jn), lying on P (S), as follows.

dc = 0 : in = ic + g dc = 1 : in = ic dc = 2 : in = ic − g dc = 3 : in = ic

jn = jc jn = jc + g jn = jc jn = jc − g

which is expressed in a simpler way to

(in, jn) = dc ~ (ic, jc). (2.3)
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The vertex type tn of qn is computed by determining the object occupancy of its

neighboring UGBs. The direction of traversal, dn, from qn is given by

dn = (dc + tn) mod 4 (2.4)

Iteratively, the details of each grid point lying on P (S) are computed until qn coincides

with qs. If the grid point is a vertex, then it is added to the sequence of vertices comprising

P (S). The following theorems justify the correctness of P (S) (Definition 2.2.9) and how

the traversal converges to obtain the sequence of its vertices.

Theorem 6. If p is a point lying on P (S), then 0 < d⊤(p, S) ≤ g.

Proof. Since no point on P (S) is in S, d⊤(p, S) > 0. To show that d⊤(p, S) > g, let,

w.l.o.g., p be any point on the horizontal grid segment sij that lies on P (S). Let d⊤(p, S) =

h > g, if possible. For any point q, belonging to U1 or U4, d⊤(p, q) is less than or equal

to g. Since h > g, neither U1 nor U4 has any object occupancy, wherefore their interiors

are outside P (S) (Lemma 1). Hence, sij does not lie on P (S) (Lemma 2), which means p

cannot be on P (S) — a contradiction.

Theorem 7. The construction of P (S) concludes at the start vertex.

Proof. Excepting the degenerate case where S is a subset of the interior of a UGB, S

intersects a subset of UGBs comprising I. Note that in the degenerate case where S is a

subset of the interior of a UGB, S still intersects a UGB but it does not intersect the border

of that UGB and the P (S) is empty. The construction of P (S) starts from a 900 vertex

or an edge point, qs (Lemma 3), whose distance from S is at most g (Theorem 6). The

construction process continues along those grid segments such that all points belonging to

such a grid segment have the maximum distance of g from S (Theorem 6). If qs is a 900

vertex (edge point), then the downward (leftward) grid segment from qs is traversed at

the first step, and its other grid segment on P (S) remains untraversed. Each other vertex

or edge point of P (S) also has exactly two grid segments lying on P (S), which would be

traversed in two consecutive steps during the construction. Hence, the untraversed grid

segment incident at qs is finally traversed, which concludes the construction of P (S).

2.5.3 Algorithm Make-OIP

The algorithm Make-OIP that constructs the outer polygon P , corresponding to an

object S consisting of a single connected component, is shown in Fig. 2.6. The start
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Algorithm Make-OIP (S, p0)

Steps:

1. L← ∅
2. qs ← Start (S, p0)

3. q ← qs

4. d← (2 + ts) mod 4

5. do

6. if t ∈ {1,−1} then L← L ∪ {q}
7. q ← d~ q ◃ Eqn. 2.3

8. t← VType(S, q)

9. if t = −2 then t← −1
10. d← (d+ t) mod 4

11.while (q ̸= qs)

12.return L

Procedure Start (S, p0)

Steps:

1. is ← (⌈i0/g⌉+ 1)× g,

js ← (⌊j0/g⌋ − 1)× g

2. ts ← VType(S, qs)

3. return qs ◃ (is, js, ts)

Procedure VType (S, q)

Steps:

1. m← 0, r ← 0

2. for k ← 1 to 4

3. if Uq
i ∩ S ̸= ∅

4. m← m+ 1, r ← r + k

5. if r ∈ {4, 6} and m = 2 then t← −2
6. else if m ∈ {0, 4} then t← 0

7. else t← 2−m

8. return t

Figure 2.6: The algorithm Make-OIP and the related procedures to construct P (S) for

an object S having a single connected component.

point, qs, is determined by the procedure Start using the top-left point, p0, as input.

The subsequent vertices and edge points of P are visited one by one in the do-while loop

(Steps 5–11) of the algorithm Make-OIP. If |P | denotes the length of the perimeter of

P , then the number of grid points (i.e., vertices and edge points) lying on the perimeter

of P is |P |/g, when the grid size is g. In each iteration (do-while loop), the type of a

grid point q lying on P is checked and added to the list of vertices, L, if q is a vertex of

P . The coordinates and the type of q lying on P are computed in each iteration. The

procedure VType finds the type of q using the four UGBs incident at q. For each UGB,

each point on each of its four defining grid segments is considered one by one to check

whether it belongs to S, which needs O(1) time in the best case and O(g) time in the worst

case. Thus, in the worst case, each iteration takes O(g) time, finding the start point qs

takes O(g) time, and all other steps of the algorithm Make-OIP take Θ(1) time in total.

Hence, the worst-case time-complexity of the algorithm Make-OIP for an object S with
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a single connected component without any hole, is given by (|P |/g)×O(g)+O(g)+Θ(1),

which simplifies to (|P |/g) × O(g) = O(|P |). The best-case time-complexity, found in a

similar way, is (|P |/g) × O(1) + O(1) + Θ(1) = O(|P |/g). The algorithm is, therefore,

linear on the perimeter of the outer polygon, and hence output-sensitive. It may be noted

here that the crack following algorithm of Rosenfeld and Kak (1982) is also linear on the

perimeter, however the outputs are different (as explained in details in Sec. 2.3).

2.6 Generalized Algorithms for Constructing Isothetic Covers

2.6.1 Outer Isothetic Cover

The algorithm Make-OIC to construct the OIC of an object S, having multiple compo-

nents with or without holes, is given in Fig. 2.7. Each grid point, q ∈ I, initialized as

unvisited (Steps 2–4), is considered in row-major order (Steps 5–11). If q is not already

visited (Step 6) and qualifies as a vertex (Step 7 and Step 9), then the construction of a

new polygon of P (S) starts from q as the start vertex (Step 8 and Step 10). The procedure

Make-IP traces an outer polygon if q is a 900 vertex, and a hole polygon if it is a 2700 ver-

tex. The procedure Make-IP is similar in nature as the algorithm presented in Fig. 2.6,

except that the grid points traversed in course of constructing the polygon are marked as

“visited” in Step 4 of Make-IP. In Step 9 of Make-IP, the start vertex is added to the

ordered list, L, to mark the end of one polygon. The vertices of the subsequent polygons,

if any, are appended to L starting at (and ending with) the corresponding start vertices,

so that the final form of OIC is given by L = {q11, q21, . . . , q11, q21, q22, . . . , q21, . . .}, where,
qi1 is the start vertex and qij is the jth vertex of the ith polygon, Pi.

Time Complexity: The basic operation used in the algorithm is the checking of each grid

point of I, in row-major order, for its possible candidature of being a vertex or an edge

point or none, which needs O(g) time in the worst case. This is done exactly once for each

grid point, as already-traversed grid points are marked as “visited”. The number of grid

points in I, excepting the boundary grid points (since they will not lie on the isothetic cover

as per our consideration of I), is ((h−1)/g−1)× ((w−1)/g−1) = Θ(hw/g2). Hence, the

worst-case time-complexity of the algorithm Make-OIC is Θ(hw/g2) ·O(g) = O(hw/g).

2.6.2 Inner Isothetic Cover

The inner cover, P (S), can be constructed in a manner exactly converse to that of P (S).

A grid point q ∈ S is classified as a vertex of P (S), depending on the intersections of the
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Algorithm Make-OIC (S)

Steps:

1. L← ∅
2. for each grid point q ∈ I

◃ in row-major order

3. visited[q]← false

4. t← VType (S, q)

5. for each grid point q ∈ I

6. if visited[q] = false

7. if t = 1

8. Make-IP (S, q, 3)

9. else if t = −1
10. Make-IP (S, q, 0)

11.return L

Procedure Make-IP (S, q, d)

Steps:

1. qs ← q

2. do

3. if t = −2 then t = −1
4. else visited[q]← true

5. if t ∈ {1,−1} then L← L ∪ {q}
6. q ← d~ q ◃ Eqn. 2.3

7. d← (d+ t) mod 4

8. while (q ̸= qs)

9. L← L ∪ {qs}
10.return

Figure 2.7: The generalized algorithm Make-OIC and the procedures to construct P (S)

for an object S with multiple connected components (possibly having holes).

UGBs (incident at q) with S′ := I r S. If m (0 6 m 6 4) denotes the total number of

UGBs intersected by S′, then q belongs to class C ′
m. Class C ′

1 and class C ′
3 correspond

to 900 and 2700 vertices, respectively. For class C ′
2, if the UGBs intersected by S′ has a

common grid segment, then q is an edge point; otherwise, q is a 2700 vertex. Points in C ′
0

and in C ′
4 lie respectively inside and outside P (S).

Figure 2.8 states the algorithm Make-IIC for constructing the inner cover of a general

object S, having one or more components with or without holes. The algorithm is similar

to Make-OIC, but it takes the background, S′, as the input. The construction of a

polygon of P (S) starts from a 900 vertex, qs, keeping S′ left during the traversal. The

polygon is traced to the next grid point, qn. The type of qn is decided and the direction of

traversal from qn is computed. The traversal is continued until qs is reached. As the basic

steps of the algorithm Make-IIC are similar to those of Make-OIC, the time complexity

of the algorithm is same as that of Make-OIC.
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2700 vertex 900 vertex

edge point cross vertex

Algorithm Make-IIC (S′, g)

Steps:

1. L← ∅
2. for each grid point q ∈ I

◃ in row-major order

3. visited[q]← false

4. t← VType (S′, q)

5. for each grid point q ∈ I

6. if visited[q] = false

7. if t = 1

8. Make-IP (S′, q, 0)

9. else if t = −1
10. Make-IP (S′, q, 3)

11.return L

Figure 2.8: Vertex classification and the algorithm to construct the IIC.

2.7 Isothetic Covers on a Non-uniform 2D Grid

The construction of isothetic covers on a non-uniform grid is based on the same basic

principle as discussed earlier for uniform grid. In non-uniform grid, the grid size g, spac-

ing between two consecutive horizontal/vertical grid lines may not be equal as shown in

Fig. 2.9. The classification of a grid point q is done in the same manner by determining

the object occupancy of the four incident UGBs which are probably of different dimen-

sions (height and width). The algorithms used to construct the OICs and IICs of a digital

object on uniform grid can be used on non-uniform grid. However, it should be noted,

while applying these algorithms, that g is variable and each UGB can have two different

values of g (one in horizontal direction and another in vertical direction).

2.8 Experimental Results

We have implemented the proposed algorithm in C in SunOS Release 5.7 Generic of Sun

Ultra 5 10, Sparc, 233 MHz. The algorithm is run on different sets of binary images, such

as i) geometric figures, ii) logo images, iii) object-type images, iv) optical and handwritten

characters, and v) scanned document images. The results related to non-uniform grid are
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(a) C0 (b) C1 (c) C2A (d) C2B (e) C3 (f) C4

Figure 2.9: Vertex classification in an OIC on non-uniform grid: (a) exterior point, (b)

900 vertex, (c) edge point, (d) cross vertex, (e) 2700 vertex, and (f) interior point.

also provided in this section. The results and related findings are discussed in the following

sections.

2.8.1 Geometric Figures

Figure 2.10: The first row shows the OICs and the second row shows the IICs of different

geometric shapes for g = 3 (odd columns) and g = 6 (even columns). The third row shows

the OICs of a square, rotated at the angles 50, 100, 150, 300, and 450.

The isothetic covers for g = 3 and g = 6 corresponding to a few simple geometric

shapes are shown in Fig. 2.10. For a square-shaped object, as shown in this figure, the

number of vertices is four for g = 3 and g = 6. This is in conformity with the fact that

the bounding shapes (or complexities) of the OIC and the IIC of an axis-parallel square

should not alter with a change in the grid size. However, if the square is tilted, then the
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Figure 2.11: The OICs of a spiral at different grid sizes: g = 2, 5, and 14.

complexity (i.e., the number of vertices) of the OIC and that of the IIC increases with a

decrease of the grid size. Further, in the vertex sequence of the OIC (IIC) of a tilted square,

as shown in Fig. 2.10, each vertex of type 1 is followed by a vertex of either type 1 or type

−1, and each vertex of type −1 by a vertex of type 1. Each pattern 1(−1) contains a

horizontal/vertical segment of length kg or (k+1)g, where k > 1, and each pattern (−1)1
contains a vertical/horizontal segment of length g. Such a sequence satisfies the properties

of digital straightness [Freeman (1961b), Klette and Rosenfeld (2004a)], indicating that

the longest subsequence of the OIC having the form 1((−1)1)∗1 corresponds to a straight

part of the underlying shape. Two consecutive vertices with type 1 imply the start of a

new straight edge, thereby corresponding to a 900 corner of a square.

For a disc, the complexities of both the OIC and the IIC decrease with an increase of

the grid size and vice versa, as shown in Fig. 2.10. The symmetry owing to the circular

shape of a disc is also captured in the outer and the inner covers. The symmetry, however,

is only present in each of the two covers only about the vertical, horizontal, and two

diagonal lines (450 and 1350) passing through the center of the corresponding cover due to

the anisotropic nature of an orthogonal grid. Similarly, for an ellipse, the corresponding

OIC and IIC also possess the desired horizontal and vertical symmetries, but not the

diagonal symmetries.

As a more complicated geometric shape, we have considered a spiral and have shown

its OICs in Fig. 2.11. A series of the pattern (1(−1))∗(−1)(−1) occurs while the OIC

traverses inwards or “spirals in”. The spiral unwinds with a consecutive occurrence of the

pattern (11)(1(−1))∗. The pattern (−1)(−1) indicates a concave region and the pattern

11 indicates a convex region. The asymmetry of a spiral is also captured in its OIC and

IIC. The complexity of the cover decreases with an increase of the grid size. When the

grid size is sufficiently high, the OIC may not capture the concavity of the spiral as the
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Table 2.1: Numbers of vertices (n), perimeters (s), and areas (a) of the isothetic covers,

and the respective CPU times (T , in milliseconds) corresponding to different grid sizes.

image image size g OIC IIC
(object size) n s a T n s a T

logo 200× 200 4 100 886 8971 6 104 808 5205 2
(6588) 8 40 704 10589 6 46 684 3481 2

16 14 512 14337 4 12 192 867 2

leaf 296× 412 4 346 2400 49055 14 322 2120 38844 17
(42835) 8 168 2301 54140 14 148 1936 35084 8

16 63 1855 61855 8 70 1696 26708 8

spiral 442× 442 4 300 2096 28777 48 286 2021 20437 20
(23776) 8 158 2032 33009 38 116 1584 16219 12

16 60 1472 41437 25 42 1184 10322 9

myth 420× 710 4 468 4304 55409 69 464 3792 34194 66
(42773) 8 208 3504 63634 49 206 3005 27178 45

16 82 2592 77580 38 66 1600 16168 35

width of the concavity is less than that of the grid size.

Table 2.1 shows the number of vertices and the perimeter of OIC, and the CPU time

required for the computation of an OIC on different grid sizes for several images. As

g increases, the number of vertices of an OIC decreases. The CPU time also decreases

with an increase of the grid size. Figure 2.12 shows how the number of vertices and the

perimeter of an OIC vary with increasing grid size. It may be noted here that the “myth”

image referred here has been shown later in Fig. 2.26. Figure 2.13 shows that the CPU

time decreases as g increases. Figure 2.14 shows how the number of vertices, n, of the

OIC of a given object decreases with the increase of g. The change in number of vertices

n of the OIC, corresponding to g = 4, on rotating a given object by an angle θ, from 10 to

900, is plotted in Fig. 2.14. The plot shows that the pattern of variation of n is repeated

every 450, the pattern is regular for a symmetric object (e.g., square), and it varies for

more complex, irregular objects like logo and spiral. In Fig. 2.15, we have furnished two

3D plots of the error frequency versus g and d⊤ corresponding to the images “spiral” and

“myth”. For a grid size g, the error frequency, f(g, δ), is given by the number of points

on P (S) for which the nearest object points are at a distance δ (measured using d⊤).

2.8.2 Logo and Object-type Images

The OICs of four logo images for g = 8 and g = 16 are shown in Fig. 2.16. The OIC

can be coded using the vertex types, 1 and −1, and the edge lengths, to generate a
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Figure 2.12: Plot on the number of vertices (n) and the perimeter (s) of the OICs versus

the grid size (g) corresponding to the images “spiral” and “myth”.
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Figure 2.13: Plot on CPU time (in milliseconds) for construction of the OICs versus the

grid size (g) corresponding to the images “spiral” and “myth”.

shape code that describes the OIC, and hence to capture the structural information about

the underlying object. Such shape codes can be generated for appropriate grid sizes to

derive a multi-resolution feature-vector. These feature-vectors can be used to compute
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Figure 2.14: Plot on the number of vertices, n, versus g, and plot on n versus θ, where θ

is the angle of rotation for g = 4.
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Figure 2.15: Frequency of errors (f(g, d⊤)) plotted against the isothetic error (d⊤) and

the grid size (g in [1, 40]), corresponding to the images “spiral” (left) and “myth” (right).

the Hamming distance between two or more objects as a measure of similarity for object

indexing and retrieval [Biswas et al. (2005a)].

In Fig. 2.17, the OICs of four animal images, and in Fig 2.18, the OICs of two different

types of leaves, are shown for g = 8 and g = 16. Like logo images, the OICs capture

the shape of the animal images in a similar way. Usually, the OIC consists of a single

polygon. In some cases, however, the OIC also contains a few hole polygons or pseudo-

hole polygons. For example, the OIC of the image “elephant” has one hole polygon and
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g = 8

g = 16

Figure 2.16: The outer isothetic covers (OIC) for a set of logo images.

one pseudo-hole polygon for g = 8, and has two pseudo-hole polygons for g = 16.

The isothetic covers of a digital object can be used for many practical applications.

For example, the shape complexity of a digital object can be computed by chain-code en-

coding [Freeman (1961a)] of the OIC and reducing the chain code using certain reduction

rules (chapter 4 of this thesis [Biswas et al. (2007b)]). Another example is the polygonal

approximation of thick and rough digital curves, which can be derived using their iso-

thetic covers (chapter 5 of this thesis [Bhowmick et al. (2006)]). An example is shown

in Fig. 2.19, where a polygonal approximation of a digital curve representing the map

of India is shown. The outer polygon and the hole polygon corresponding to this curve

approximates the map of India. Similarly, a real-world object, when digitized, may possess

disconnectedness, noisy information, etc. The existing algorithms on component labeling

are liable to produce components that are larger in number than sought for. Whereas,

using the isothetic covers, two or more components that are spatially not far off, may be

reported as a single loosely connected component [Bhowmick et al. (2007a)]. Figure 2.20

shows how we can get a single loosely connected components corresponding to “a flock of

birds” for g = 16.
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g = 8

g = 16

Figure 2.17: The outer isothetic covers (OIC) for a set of animal images.

2.8.3 Optical and Handwritten Characters

Figure 2.21 shows the OICs corresponding to a set of optical and handwritten Bengali

characters and numerals. It is evident from Fig. 2.21 that the OIC corresponding to an

optical character has a regular and definite shape. However, the OIC corresponding to

the same character in the handwritten set is not as definite and regular as the optical

one. For example, a straight segment (horizontal, vertical, or inclined) of the Bengali

character “kaw” is being conformed by the corresponding vertex pattern of its OIC in a

more prominent way in the optical set than in the handwritten set. It is also interesting

to note that the OIC of the handwritten “kaw” consists of a hole polygon inside the main

polygon — a fact supporting the results corresponding to the optical “kaw”. The optical

“kaw” has a pseudo-hole polygon in excess, which is, however, much smaller in size, and

hence might play a negligible role in the similarity measure.

Similar results on few English characters and numerals are presented in Fig. 2.22, and

they demonstrate how the OICs capture the structural information of English characters.

From these results, it is apparent that the covers of optical and handwritten characters can

be used to design an OIC-based system for optical or handwritten character recognition

(OCR/HCR).

Another area in which the OICs of handwritten characters can be used, is rank-

ing the character-prototypes in a large database, which has been presented in Chap-

ter 4 [Bhowmick et al. (2007b)]. Recognizing a handwritten character involves matching

the character with the prototypes or their features — a complex procedure with a large
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Figure 2.18: The outer isothetic covers (OIC) for two leaf images for g = 8 (first one) and

g = 16 (second one).

original image g = 2 g = 4

Figure 2.19: OICs corresponding to the image “India” for g = 2 and g = 4.

overhead. The process can be made faster if we can arrange the prototypes in some order,

using their OICs, so that the recognition time may be reduced. For a given character, a

subset of the prototypes, which are almost similar in their OIC-related information, may

be replaced by a smaller subset depending on the tradeoff between speed and precision.

Similarly, to include a new prototype in the database, we can consider its degree of dis-

similarity with the existing prototypes corresponding to the concerned character in the

database, and take the decision on including that prototype, accordingly.
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g = 4 g = 12 g = 16

Figure 2.20: Numbers of loosely connected components are 3, 2, and 1 for g = 4, 12, and

16 respectively.

2.8.4 Scanned Document Images

The proposed algorithm can be used for document image segmentation also. To find the

OIC of a document image (Fig. 2.23), the object occupancy of an UGB is decided by

checking all the pixels constituting the corresponding UGB. The text lines, which are suf-

ficiently close along the vertical direction, would lie within a single OIC. If two consecutive

paragraphs lie in the same OIC for a particular grid size, say g = g1, then these paragraphs

can be separated into two different OICs by reducing the grid size appropriately, say to

g = g2 < g1. If the inter-paragraph spacing of a document image is same as its inter-line

spacing, then they can be separated by observing that a paragraph starts with a fixed

indentation from the left. A document page can thus be segmented into its paragraphs.

Similarly, from a segmented paragraph, we can segment its lines by decreasing the grid

size further; from a line, we can extract its words; and so forth. Other document features

like mathematical equations, figures and graphical objects, tabular structures, etc., can

also be extracted from the image using an appropriate analysis of the OICs.

In Fig. 2.24, the OICs (in yellow) are shown corresponding to each letter for grid size

g = 1. Some of the letters are touching each other; in such a situation, one single OIC is

derived (shown in blue). For g = 5, all the words are segregated. Thus, with the help of

a multi-resolution treatment, different parts of a document page can be segmented using

its different sets of OICs.
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“aw” “kaw” “1” “9”

g = 4

g = 8

optical character set

g = 4

g = 8

handwritten character set

Figure 2.21: The OICs of a few Bengali characters (optical and handwritten) for two

different grid sizes.

2.8.5 Inner Isothetic Cover

Figure 2.25 shows the IIC of a logo image for different grid sizes. For grid size g = 1 or

g = 2, the IIC is a single polygon; for g = 4, there are three polygons tightly inscribing the

object; whereas, for g = 6, it is again only one polygon. For g = 8, the IIC comprises a

total of four polygons. It may be noted that the fractional part of the object lying outside

the IIC increases with the increase of the grid size.

As per the definition, an OIC should consist of minimum number of UGBs whose union

contains the object without intersecting it, and an IIC should consist of maximum number

of UGBs of the object without intersecting the background. Figure 2.25 shows how an



40
Chapter 2

Construction of Isothetic Covers of a Digital Object

“A” “d” “5” “9”

g = 4

g = 8

optical character set

g = 4

g = 8

handwritten character set

Figure 2.22: The OICs of a few English characters (optical and handwritten) for two

different grid sizes.

IIC consists of maximum number of UGBs belonging to the object. The difference of the

interior of the IIC from the OIC gives an isothetic region in which the object boundary

lies, which has been already illustrated in Fig. 2.1. Figure 2.26 shows the two IICs (bottom

row) of the “myth” image for g = 4 and g = 8 along with two OICs (top row) for the

same grid size.

2.8.6 Non-uniform Grid

The isothetic covers on non-uniform grid are shown in Fig. 2.27. The grid lines are

generated randomly where the grid spacing g varies between 4 to 10. The result shows
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Figure 2.23: The OIC of a document image for grid size g = 24 corresponding to different

regions of interest in a typical document page.
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Figure 2.24: The OICs of a part of a document image for grid sizes g = 1 (left) and g = 5

(right) show their abilities in extracting the letters and the words from a document page.

original g = 1 g = 2 g = 4 g = 6 g = 8

Figure 2.25: The IICs of a logo image corresponding to different grid sizes.

that the isothetic covers (outer and inner) can be extracted correctly using the same

principle which has been employed for uniform grid lines. The isothetic covers on non-

uniform grid is particularly useful for finding the inner and outer approximations in rough

sets.

In Fig. 2.28, we have shown the OICs of the binarized images corresponding to different

real-world gray-scale images for grid size g = 8.

2.9 Conclusion

We have shown how the minimum-(maximum-)area outer (inner) isothetic cover of a dig-

ital object can be constructed corresponding to a given grid. The algorithm proposed

here does not require any backtracking, and hence is an output-sensitive algorithm. The

time complexity is linear on the length of the perimeter of the cover measured in grid

units. Experimental results on various databases justify the efficiency of the algorithm

and demonstrate potential applications.

Several open problems may arise in context to an isothetic cover of a digital object.

It is evident that such a cover of a digital object depends on how the object is positioned
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Figure 2.26: OICs (top row) and IICs (bottom row) corresponding to the image “myth”

for g = 4 and g = 8.
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(a) Outer: g = 4− 10. (b) Inner: g = 4− 10.

Figure 2.27: Inner and outer polygons of “Lincoln” image on non-uniform grids.

or oriented w.r.t. the underlying grid. A challenging problem is, therefore, finding the

object-grid registration for which the complexity of an isothetic cover is minimum. The

complexity measure may be in terms of the number of vertices, or the perimeter, or the

area of the isothetic cover. Another interesting problem is, given a collection of isothetic

covers corresponding to different positions or orientations of the object for a grid size, to

design an algorithm to (approximately) reconstruct the original object. The algorithm

can be extended to higher dimensions for modeling 3-D objects. Also, the algorithm when

extended to the background of non-uniform grid for higher dimensions can be useful in

determining the upper and lower approximations in rough sets.

There are several applications of isothetic polygons, which have been mentioned in

Sec. 2.1 with some results shown in Sec. 2.8. One such application is document image

analysis, where there still remains ample scope of exploiting isothetic polygons for solving

related problems. Extension of the proposed algorithm to 3- and to higher dimensional dig-

ital space is possible following the same principle, however the neighborhood relationship

for object occupancy has to be redefined. This requires further investigation.
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Figure 2.28: The OICs (g = 8) of the binarized images corresponding to different real-

world gray-scale images.
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Construction of Orthogonal Hull of a Digital Object

3.1 Introduction

The convex hull of an object A, denoted by CH(A), is the smallest convex set that

contains A. There exist a number of computational geometric algorithms [Berg et al.

(2000), Cormen et al. (2000), Preparata and Shamos (1985)] to find the convex hull of

a point set or a polygonal object A having arbitrary shape on the real/digital plane.

The time complexities of some of the well-cited ones are of order O(n3) (brute force),

O(n log n) (Graham scan [Graham (1972)]), O(nh) (Jarvis march [Jarvis (1973)]), and

O(n log h) (Kirkpatrick-Siedel’s algorithm [Kirkpatrick and Seidel (1986)]), where, n is

the number of points/vertices constituting A, and h is the number of vertices of CH(A).

Also, there are other algorithms for finding the convex hull, e.g., [Barber et al. (1993),

Chazelle (1993), Swart (1985)]. A detailed analytical study of the convex hull algorithms

is also available in the literature [Avis and Bremner (1995)].

Apart from the concept of convex hull, other types of hulls, such as pseudo-hull, near-

hull [Klette and Rosenfeld (2004a)], digital convex hull [Chaudhuri and Rosenfeld (1998)],

relative convex hull [Sklansky and Kibler (1976)], and α-hull [Edelsbrunner (1992)], can

be also found in the literature, which are designed for specific applications. However,

the execution of these algorithms for a sufficiently large digital object is not as fast as

required in a practical application. This is caused by the inherent procedural complexities

in these algorithms. For example, in Graham scan, to decide whether there is a left-turn

or a right-turn or no turn at a point pi, considering its previous point pi−1 and its next

point pi+1, the sign of a 3 × 3 determinant (which includes the coordinates of the three

consecutive points) is used. Computation of this determinant needs multiplication apart

from comparison and addition/subtraction. Similarly, in Jarvis march, polar coordinates
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of the points are computed from their Cartesian coordinates, which involves trigonometric

operations. On the contrary, in our algorithm, only comparison and addition/subtraction

are required in the integer domain, while computing the orthogonal hull of a digital object.

3.1.1 Motivation and Related Works

Given a 2D digital object S imposed on the background digital grid G (Defn. 2.2.5) con-

sisting of a set of equi-spaced horizontal and vertical lines, the problem is to compute

the orthogonal hull (Defn. 3.2.1) of S. It is evident that the resulting orthogonal hull

is dependent upon the registration of the object with the background grid. Also, the

precision and the complexity of the hull can be made to change by varying the distance

between two consecutive (horizontal and vertical) grid lines, thereby making it amenable

to multi-grid treatment. Depending on the requirement of an application, the specification

of an orthogonal hull covering a digital object may be tuned, therefore, in order to suit

the desired criterion.

Orthogonal hulls find real-world applications in today’s diversifying technologies on

modern computing and digital imaging. For example, in designing a fault-tolerant algo-

rithm in mesh-connected computers, it is important to define a faulty region that is convex,

and at the same time, to include a minimum number of non-faulty nodes. Recently, an

algorithm has been presented by Wu and Jiang (2005) to compute the minimum orthogo-

nal convex polygon, which includes the faulty blocks and minimum number of non-faulty

nodes. The algorithm is based on a labeling scheme. It grows the region with faulty nodes

and finally shrinks to form the orthogonal convex polygon. The algorithm is particularly

suitable for a set of nodes representing the processors in an orthogonal grid. However,

it is not suitable for image analysis, since it is designed to operate on a small number of

nodes.

Some other typical applications involving orthogonal hulls are analysis of land-mark

data, shape analysis and classification, measuring the polygonal entropy, and many such

areas of computer vision and pattern recognition [Bookstein (1991), Costa and R. M. Cesar

(2001), Hyde et al. (1997), Pitty (1984)]. Orthogonal convex polygons also find use in

models of polymers, cell growth, and percolation [Bousquet-Mélou (1996)]. In discrete

tomography, the reconstruction of discrete sets is done using the concept of hv-convex

discrete sets [Balazs (2008)]. A properly defined convex polygon describing a real or a

digital object is often considered to be the domain of interest of the underlying object.

As a result, the subject has received a considerable attention amongst researchers [Boxer
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(1993), Sonka et al. (1993), Stern (1989), Zunic and Rosin (2004)].

Karlsson and Overmars (1988) have presented an algorithm using scanline technique

to compute the orthogonal (convex) hull for a set of points in Z2 with a time complexity

O(n log logn u), where n is the set size and u is the grid size. The survey paper by Audet

et al. (2007) elaborates several optimization issues related to the problem of finding an

empty convex polygon of maximum area or perimeter amidst a point set in R2. Recently,

an algorithm has been proposed by Nandy et al. (2008) to find the largest empty ortho-

convex polygon in a (possibly sparse and scattered) point set in R2. These algorithms

use the scan-line strategy after doing a lexicographical sorting of the points in R2. The

proposed algorithm, on the contrary, finds the orthogonal hull for a given object in Z2,

which is defined by one or more connected components. The algorithm avoids any sorting

and finds the hull while traversing tightly around the object contour. The runtime of the

proposed algorithm has been shown to be, therefore, proportional to the perimeter of the

object.

The concept of row-convex/column-convex polygons are found in the literature [Klette

and Rosenfeld (2004a)], and there exist some works related with such polygons [Bousquet-

Mélou (1996), Bousquet-Mélou and Fédou (1995)]. The latter work deals with the enumer-

ation of different classes of column-convex polygons using complex generating functions,

according to their perimeter, width, and area. The formula for generating convex poly-

ominoes has also been suggested [Bousquet-Mélou (1996)]. A column-convex polygon is

characterized by its nature of intersection with a horizontal or a vertical line segment. In

contrast with an orthogonal hull that has always a single line segment when intersected by

a horizontal or a vertical line, a column-convex polygon may have multiple line segments

as a result of intersection with a horizontal line segment. Further, an implementation of

the generating functions in the digital plane is not readily realizable for their complex

nature.

3.1.2 Main Results

We have designed and tested a novel algorithm for finding the orthogonal hull (Defn. 3.2.1)

of a given digital object such that the hull edges lie on a set of equally spaced horizontal and

vertical grid lines. The ordered list of hull vertices is obtained by an analysis of the object

occupation of the four neighboring quadrants corresponding to a grid point (Defn. 2.2.5)

lying near the boundary of the object. The orthogonal hull consists of fewer vertices

with an increase of the grid size (spacing between two consecutive horizontal/vertical grid
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Figure 3.1: A sample 2D object, its convex hull (left), and its orthogonal hulls for grid

size g = 22 (middle) and g = 8 (right).

lines), enabling an analysis of the object, from fine to coarse. The algorithm is based on

the fact that a polygon is orthogonally convex if and only if a counterclockwise traversal of

its boundary never makes two consecutive right turns (alternatively, a clockwise traversal

of its boundary never makes two consecutive left turns). The algorithm involves only

comparison and addition/subtraction in the integer domain, and hence runs very fast, as

demonstrated by the CPU time in our experiments (Sec. 3.5).

The convex hull and the orthogonal hulls for g = 22 and g = 8, corresponding to a

digital object (22404 pixels), are shown in Fig. 3.1. The convex hull algorithm (Graham

scan) on a digital object shown in this figure takes 2573 milliseconds, whereas the proposed

algorithm on finding the orthogonal hull takes only a few milliseconds (g = 22 : 0.94

milliseconds, g = 8 : 3.16 milliseconds). The time required by the Graham scan algorithm

may be reduced by considering the object contour instead of the entire object as input;

but finding the object contour needs an edge extraction algorithm. On the contrary, given

a digital object, the proposed algorithm runs on the object contour without resorting to

any edge extraction.

Apart from speed, the proposed algorithm has the ability to capture the shape infor-

mation of an arbitrary object. For example, for g = 22, the orthogonal hull of the object

shown in Fig. 3.1 is vertically symmetrical, which conforms to the vertical symmetry of

the object; for g = 8, the orthogonal hull is also almost symmetrical. The vertices of

the orthogonal hull are reported in counterclockwise order in terms of their types (900

and 2700), from which the symmetry can be ascertained. The regions of OIC that give

rise of non-convexity are removed based on a combinatorial analysis These regions also

capture the shape complexity of the concerned object, which can be used in subsequent

applications.
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Figure 3.2: Different vertex types of an orthogonal polygon are decided using the object

(gray dots) occupation in the four cells/quadrants incident at a grid point.

Rest of the chapter is organized as follows. Section 3.2 contains the definitions and

preliminaries, and summarizes how a tight orthogonal traversal around the contour of a

digital object can be made. Section 3.3 describes the rules required to find the orthogonal

hull from the orthogonal traversal explained in Sec. 3.2. Section 3.4 describes the algorithm

to construct the orthogonal hull, presents a detailed demonstration, and justifies the time

complexity of the algorithm. The experimental results and their physical analyses are

reported in Sec. 3.5. Finally, the concluding notes along with some directions for future

work, are presented in Sec. 3.6.

3.2 Definitions and Preliminaries

Definition 3.2.1. The orthogonal convex hull, or simply orthogonal hull, of a digital

object S, denoted by OH(S), is the smallest-area isothetic polygon such that (i) each point

p ∈ S lies inside OH(S) and (ii) intersection of OH(S) with any horizontal or vertical

line is either empty or exactly one line segment.1

3.2.1 Orthogonal Traversal of the Object Contour

In order to detect and remove the concavities, we traverse around the object contour,

orthogonally along the grid lines. The nature of traversal is such that we visit the vertices

(in order) of the smallest-area orthogonal cover of the digital object using an efficient com-

1It may be noted that, a discrete set is referred as horizontally and vertically convex (shortly, hv-

convex) in digital tomography [Balazs (2008)] if all the rows and columns of the set are 4-connected. We

provide the above definition in the perspective of the real plane, since it helps proving the correctness of

our algorithm in a simpler way.
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l3
3 3 3

l

Figure 3.3: A concave region possesses two or more consecutive vertices of Type 3, which

give rise to multiple intersections with a vertical line (left) or a horizontal line (right).

binatorial technique based on object containments of the four cells incident at a particular

grid point [Biswas et al. (2005b)]. The classification of a grid point, q, is based on the

object containment of the four cells (Q1 − Q4) incident at q (Fig. 3.2), as discussed in

Sec. 2.5.1.

During the traversal, a grid point is determined either as a vertex or as a non-vertex

point. Since we traverse orthogonally, a grid point, q, if detected as a vertex, can be a

900 vertex or a 2700 vertex. Otherwise, q is simply a point on the edge of the orthogonal

cover, or a grid point lying inside the object and also inside the orthogonal cover, or lying

outside the object and also outside the orthogonal cover. Henceforth in this work, a 900

vertex is referred to as a Type ‘1’ vertex (1×900), and a 2700 vertex as a Type ‘3’ vertex

(3× 900) for ease of notation.

An intermediate vertex, vi, is represented by a three-tuple ⟨ti, di, li⟩, where, ti (= 1

or 3) is the type of the vertex, di is the direction of traversal from vi to vi+1, and li is

the length of the (horizontal/vertical grid-) line segment from vi to vi+1. The direction of

traversal, di, from vi, can assume the value 0, 1, 2, or 3, indicating the direction towards

right, top, left, or bottom respectively. The direction of traversal di is derived from the

previous direction, di−1 (the direction from vi−1 along which vi has been traversed to), and

the type of the vertex vi, and is given by di = (di−1+ ti) mod 4. Once di is computed, the

next grid point is determined and its class is evaluated. Thus the traversal proceeds from

vi to vi+1 and finally concludes when it returns back to start vertex. It may be noted that

the start vertex, vs, of the traversal is determined by a row-wise scan of the grid points

(see Sec. 2.5.2). The start vertex vs is always a 900 vertex, since vs is the top-left grid

point that is classified as a vertex during the row-wise scan. The direction of traversal ds,

from the start vertex is towards bottom for a counterclockwise traversal. So, ts and ds for

vs have the values 1 and 3 respectively.
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3.3 Rules for Finding the Orthogonal Hull

The concavities present in the orthogonal cover are detected and removed when the object

boundary is traversed orthogonally along the grid lines as mentioned in Sec. 3.2.1. More

importantly, the proposed algorithm finds the orthogonal hull of a digital object without

any prior knowledge about its orthogonal cover. Deriving the orthogonal hull, therefore,

proceeds with the orthogonal traversal around the object boundary.

During the traversal, if two vertices of Type 3 appear consecutively, then it implies a

concave region, which defies the property of orthogonal convexity (Defn. 3.2.1). Illustrated

in Fig. 3.3 are two such patterns for which the intersection of a vertical or a horizontal line,

l, with the orthogonal polygon has more than one segment. Our goal is to identify such

regions and derive the edges of the orthogonal hull such that the properties of orthogonal

convexity are maintained. In this incremental algorithm, the part of the orthogonal hull

obtained upto a point does not contain two consecutive vertices of Type 3, which acts as

the invariant of the algorithm. Whenever such an occurrence appears, we apply necessary

reduction rules to maintain the invariant and to ensure the orthogonal convexity, thereof.

However, rest of the patterns, 13, 31, and 11, are in conformance with the algorithm’s

invariant and hence do not violate the properties of orthogonal convexity. Hence, in effect,

our strategy is to remove all patterns of 33 during the orthogonal traversal such that the

resulting orthogonal polygon is free of two consecutive vertices of Type 3 and is also

area-minimized.

Let v0, v1, v2, v3, and v4 be five consecutive vertices for which the rule has to be

applied in order to remove the concavity, if any, where v4 is the most recently traversed

vertex, and v0 . . . v3 are the previous four vertices already visited. Since a reduction rule

is applied only when two consecutive vertices are of Type 3, we have designed two sets

of rules depending on whether the type of the vertex following the pattern 33 is 1 or 3.

We consider that the two consecutive vertices of Type 3 are designated by v2 and v3, and

the vertex v1 preceding v2 is always of Type 1. The type of the vertex v0 can be either

1 or 3. For, in our algorithm, the traversal always starts from a vertex of Type 1, which

is verified from the combinatorial arrangement of its four neighboring cells, as explained

in Sec. 3.2.1. Adopting this policy of starting the traversal always ensures that there will

be at least one vertex of Type 1 preceding two consecutive vertices of Type 3. A dummy

vertex is introduced before the start vertex to handle the situation when two consecutive

Type 3 vertices appear immediately after the start vertex. It may be observed that only

the Rule R12 may have to be applied in such a case.
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Rule R13 (l1 < l3):

⟨v0(t0, l0), v1(1, l1), v2(3, l2), v3(3, l3), v4(1, l4)⟩ →
⟨v0(t0, l0 + l2), v3(3, l3 − l1), v4(1, l4)⟩

Figure 3.4: Concavity (shaded regions) detection and removal rules for pattern 1331.
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3.3.1 Pattern 1331:

This pattern signifies a Type 1 vertex followed by two consecutive Type 3 vertices and

another Type 1 vertex. Occurrence of two consecutive 3s essentially signifies a concavity

in the object, as explained earlier. The rules for removal of the associated concavities are

stated in Fig. 3.4. The concave regions are detected and coalesced to their corresponding

convex products using the related edge lengths in the reduction mechanism. There can

arise three cases depending on the relation between l1 and l3, which are as follows:

Rule R11: Applied when l1 = l3.

Vertices v1, v2, v3, and v4 are removed, and the length of v0 is modified to l0 + l2 + l4.

Rule R12: Applied when l1 > l3.

The lengths l1 and l2 are modified as l1 − l3 and l2 + l4 respectively. The vertices v3 and

v4 are removed.

Rule R13: Applied when l1 < l3.

Here, v1 and v2 are removed, and l0 and l3 are updated to l0 + l2 and l3 − l1 respectively.

Note that, in each of the above three cases, the type t0 of the vertex v0 remains

unaltered, which holds true and causes no problem even if v0 is the dummy vertex.

3.3.2 Pattern 1333:

Such a pattern signifies a convoluted object boundary. Hence, the traversal is continued

until the orthogonal chain comes out of the convoluted (and non-convex, thereof) region.

The rules for removal of concavity corresponding to this pattern, shown in Fig. 3.5, are as

follows.

Rule R21: Applied when l1 < l3.

Here, v1 and v2 are removed, and l0 and l3 are updated to l0 + l2 and l3− l1 respectively.

Rule R22: Applied when l1 > l3 and d = d2.

Three Type 3 vertices in succession indicate the beginning of a convoluted region (Fig. 3.5).

The traversal is continued from the vertex v4. Let v denote the current vertex up to which

the traversal has progressed so far. Let lH be the horizontal line passing through v2 and

lV be the vertical line passing through v4. The reduction rule is applied only when v

lies below the half-plane defined by lH and to the left of the half-plane defined by lV

simultaneously; otherwise the traversal is continued. As any point above (and inclusive

of) lH or right (and inclusive) of lV falls within the concave region, no action is taken as

long as the current vertex v lies within this region. Two variables, l′ and l′′, which are
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Rule R23 (l1 > l3 and d = d3):

⟨v0(t0, l0), v1(1, l1), v2(3, l2), v3(3, l3), v4(3, l4)⟩ →
⟨v0(t0, l0), v1(1, l1 − l3), v2(3, (l2 − l′′), v3(3, (l1 − l3 − l′)⟩

Figure 3.5: Concavity detection and removal rules for pattern 1333.
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initialized as l1 − l3 and l4 respectively, are used to determine whether v has come out of

the convoluted-cum-concave region. The lengths l′ and l′′ are updated depending upon

the direction of traversal from v. If the direction of traversal from v, denoted by d, is same

as the direction of traversal from v1, i.e., d1, then l′ is updated as l′ = l′ + l, where l is

the traversed length from v. On the contrary, if the direction of traversal is same as that

of v3, then l′ is updated as l′ = l′ − l. Similarly, l′′ is updated as l′′ = l′′ + l or l′′ = l′′ − l,

depending on whether d = d4 or d = d2. The traversal is continued until the conditions

i) l′ < l1− l3, and ii) l′′ < l2 are fulfilled. Once these conditions are reached, the reduction

rule is applied.

As stated above, the quarter-plane below lH and left of lV is the region where, when the

traversal reaches, a reduction rule is applied. Entry to this quarter-plane can occur either

from the half-plane above lH or from the half-plane right of lV . Rule R22 formulates the

reduction for the former case, i.e., when the direction of exit from convoluted region is

same as d2. The length l1 is modified as l′ and l2 is modified as l2 − l′′. The vertices v3

and v4 are removed.

For example, in Fig. 3.5 (middle), the sequence of vertices for reduction is ⟨v0, v1, v2, v3, v4⟩.
Notice that this chain is obtained after the reduction of v1, v1,1, v1,2, v1,3, v1,4 (Rule R21).

When v4,1 is visited, no reduction is done as l′ < l1 − l3 and l′′ > l2, and the traversal is

continued to v4,2. At v4,2, it is found that l′′ < l2 and l′ < l1− l3, and hence the reduction

rule R22 is applied.

Rule R23: Applied when l1 > l3 and d = d3, i.e., when an entry to the quarter-plane

below lH and left of lV occurs from the right.

The direction of traversal is d3 when the conditions i) l′ < l1 − l3 and ii) l′′ < l2 are

fulfilled. The vertex v4 is removed and l1, l2, and l3 are modified as follows: l1 = l1 − l3,

l2 = l2 − l′′, and l3 = l1 − l3 − l′.

To summarize, each rule for the pattern 1331 removes a non-convoluted concave re-

gion depending on l1 and l3, whereas each rule for the pattern 1333 finds the start of

a convoluted region and reduces when the traversal finally comes out of the convoluted

region, using the lengths l0, . . . , l4. It may be noted that the outcome of the Rule R21

and the Rule R23 has a pattern 33 at the end. This pattern is removed when the next

vertex is visited and the appropriate rule is applied depending on its type.
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Figure 3.6: Demonstration of the algorithm on a sample 2D object. Each image shows

the result after removal of the concave parts in successive steps.

3.3.3 Applying the Rules

The rules for detection and removal of concavities are applied while traversing around the

object contour (without touching the contour) in an orthogonal path. A list L is initialized

with a dummy vertex, whose necessity is explained earlier in Sec. 3.3. The traversal starts

from the start vertex, which is determined by a row-wise scan of the grid points. As the

traversal is continued, each new vertex visited is appended to the list L. Then, the last

five vertices of L are checked for reducibility. If a reduction is done, then again the last five

vertices of L are checked for reducibility. When no reduction is done, then the traversal

proceeds to the next vertex. The process is continued until the traversal reaches the start

vertex, which is the terminating condition of the algorithm. At the termination of the

algorithm, the list L contains the list of the vertices of the orthogonal hull in order.

As explained in Sec. 3.3.1 and Sec. 3.3.2, each reduction rule except R21 and R23

produces an output that contains no consecutive 3s. The output of the Rules R21 or

R23 has a trailing pattern of 33. This is removed when the next vertex is visited and the

appropriate reduction rule is applied again. Figure 3.6 demonstrates the algorithm and

shows how the concave regions are removed in successive iterations.

3.4 Algorithm for Constructing the Orthogonal Hull

The algorithm Ortho-Hull that outputs the ordered list of vertices of the orthogonal

hull corresponding to a digital object, is shown in Fig. 3.7. It takes the digital object S,

the grid size g, and the start vertex vs as input parameters. The type (t) and the direction

(d) from the start vertex is determined by a row-wise scan of the grid points, as explained

in Sec. 3.2.1. The list L is initialized with a dummy vertex, vd. The length of the edge
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from vd is trivially set to zero, and the type and the direction of traversal from vd have

no significance in our algorithm. The dummy vertex is required because a reduction rule

is always applied on a sequence of five vertices. A situation may arise when vs, which is

always of Type 1, is followed by two consecutive Type 3 vertices, and one Type 1 vertex,

leading to a pattern 1331 and ll > l3. Then the reduction Rule R12 has to be applied

(on five consecutive vertices), which requires a dummy vertex. In each iteration of the

do-while loop (Steps 3–14), the next vertex is evaluated and appended to L. If the list

L contains more than five vertices (Step 6), then the pattern formed by the types of the

last four vertices in L is checked. The vertices v4, v3, v2, v1, and v0, as mentioned in

Sec. 3.3.1, correspond to the vertices represented by L[k], L[k− 1], L[k− 2], L[k− 3], and

L[k − 4] respectively, where L[k] is the most recently visited vertex. If the pattern due to

types of L[k] . . . L[k − 3] matches 1331, then the reduction rule is applied by calling the

procedure Apply-R1 (Steps 7–8). The procedure Apply-R1 returns the updated value

of k due to reduction. Similarly, if the pattern matches 1333, then the corresponding

reduction rules (Apply-R2) are used (Steps 9–10). Apply-R2 returns the modified k

and ⟨i, j⟩. If a reduction is done, the algorithm continues to evaluate the pattern of last

four vertices after reduction, in the while loop (Steps 5–11), to check if further reductions

are possible. Otherwise, when no rules are applicable (Step 11), it comes out of the while

loop and continues to evaluate the next vertex. The variable k always points to the last

vertex appended to L and is incremented with the visit of each vertex. The procedure

Next-Vertex computes the length corresponding to L[k]. It also computes the direction

d and the type t of the next vertex. The value of k is incremented in Step 12, and d

and t are assigned to the incremented L[k]. The algorithm terminates (Step 14) when the

coordinates ⟨i, j⟩ coincides with ⟨is, js⟩.

In the procedure Next-Vertex, in the while loop (Steps 2–11), the next vertex from

the current vertex (i, j) is evaluated. The coordinates of the next grid point is determined

in Step 3. Steps 4–10 determine whether the grid point is a vertex (Type 1 or 3) or an

edge point. The type of a grid point is determined by the object-intersecting quadrants

incident at that grid point (Steps 4–6), as explained in Sec. 3.2.1. The algorithm continues

to evaluate the subsequent grid points until a vertex (L[k+ 1]) is reached. As it proceeds

to the next grid point, the length is incremented by g (Step 10). The procedure returns

the type and the direction of the vertex L[k+1], which it has traversed to, and the length

l from the current vertex (L[k]) to the next vertex (L[k+1]). The coordinates of the next

grid point are computed (Step 3) based on the direction d from (i, j). If the direction of

traversal is towards right (d = 0) or left (d = 2), then the y-coordinate remains unchanged
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Algorithm Ortho-Hull (S, g, vs)

Steps:

1. L[1]← vd, k ← 2

2. L[k].d = ds, L[k].t = ts, ⟨i, j⟩ ← ⟨is, js⟩
3. do

4. ⟨(d, t, L[k].l), i, j⟩
← Next-Vertex (S, i, j, L[k].d, g)

5. while (true)

6. if (k > 5)

7. if (L[(k − 3)..k].t = 1331)

8. then k ← Apply-R1(L, k)

9. else if (L[(k − 3)..k].t = 1333)

10. then ⟨k, i, j⟩ ← Apply-R2(L, k, i, j, g)

11. else break

12. k ← k + 1

13. L[k].d← d, L[k].t← t

14. while (⟨i, j⟩ ̸= ⟨is, js⟩)

Procedure Next-Vertex (S, i, j, d, g)

Steps:

1. m← 0, r ← 0, l← 0

2. while (true)

3. (i, j)← d~ (i, j)

4. for h← 1 to 4

5. if Qh(i, j) ∩ S ̸= ∅
6. m← m+ 1, r ← r + h

7. if r ∈ {4, 6} and m = 2 then t← 3

8. else if m ∈ {0, 2, 4} then t← 0

9. else t← m

10. d← (t+ d) mod 4, l← l + g

11. if t ̸= 0 then break

12. return ⟨(d, t, l), i, j⟩

Figure 3.7: The algorithm Ortho-Hull that uses the procedure Next-Vertex and the

reduction Rules R1 and R2 (respective procedures in Fig. 3.8 and Fig. 3.9).
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Procedure Apply-R1 (L, k)

Steps:

1. if (L[k − 3].l = L[k − 1].l)

2. then L[k − 4].l← L[k − 4].l + L[k − 2].l + L[k].l

3. k ← k − 4

4. else if (L[k − 3].l > L[k − 1].l)

5. then L[k − 3].l← L[k − 3].l − L[k − 1].l

6. L[k − 2].l← L[k − 2].l + L[k].l

7. k ← k − 2

8. else

9. L[k − 1].l← L[k − 1].l − L[k − 3].l

10. L[k − 4].l← L[k − 4].l + L[k − 2].l

11. L[k − 2]← L[k]

12. L[k − 3]← L[k − 1]

13. k ← k − 2

14.return k

Figure 3.8: The procedure to remove the concavity formed by the vertex pattern 1331

and the x-coordinate is incremented (d = 0) or decremented (d = 2) by g; and if the

direction is upwards (d = 1) or downwards (d = 3), then the y-coordinate is decremented

(d = 1) or incremented (d = 3) while the x-coordinate remains unchanged. In other words,

for d = 0, ⟨i, j⟩ ← ⟨i, j + g⟩; for d = 2, ⟨i, j⟩ ← ⟨i, j − g⟩; for d = 1, ⟨i, j⟩ ← ⟨i+ g, j⟩; and
for d = 3, ⟨i, j⟩ ← ⟨i− g, j⟩. The above transformations are denoted by (i, j) = d~ (i, j)

in Step 3 for notational simplicity. The subsequent direction of traversal is determined in

Step 10.

In procedure Apply-R1, if the lengths of the vertices L[k − 3] and L[k − 1] are same

(Step 1), then the length of L[k− 4] is modified as shown in Step 2. The tail of the list is

reset to k − 4 (Step 3) as the last four vertices are removed according to the Rule R11.

Similarly, Rules R12 and R13, are implemented in Steps 5–7 and Steps 8–13, respectively.

While applying the Rule R13, as vertices L[k− 3] (v1) and L[k− 2] (v2) are removed, the

vertices L[k − 1] (v3) and L[k] (v4) are reassigned as L[k − 3] and L[k − 2] respectively

(Steps 11–12). The tail of the list, k, is reset to k − 2, as two vertices have been removed

(Step 13). The value of k is reset to k − 4 (Step 3) and k − 2 (Step 7) respectively for

Rules R11 and R12. The procedure returns the updated value of k in Step 14.
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Procedure Apply-R2 (L, k, i, j, g)

Steps:

1. if (L[k − 3].l < L[k − 1].l)

2. then L[k − 1].l← L[k − 1].l − L[k − 3].l

3. L[k − 4].l← L[k − 4].l + L[k − 2].l

4. L[k − 2]← L[k]

5. L[k − 3]← L[k − 1]

6. k ← k − 2

7. else ◃ L[k − 3].l > L[k − 1].l

8. then l′ ← L[k − 3].l − L[k − 1].l, l′′ ← L[k].l

9. d← L[k].d

10. while (l′ > L[k − 3].l − L[k − 1].l or l′′ > L[k − 2].l)

11. ⟨(d, t, l), i, j⟩ ← Next-Vertex (S, i, j, d, g)

12. if (d = dk−3) then l′ ← l′ + l

13. else if (d = dk−1), then l′ ← l′ − l

14. if (d = dk) then l′′ ← l′′ + l

15. else if (d = dk−2) then l′′ ← l′′ − l

16. if (d = dk−2)

17. then L[k − 2].l← L[k − 2].l − l′′

18. L[k − 3].l← l′

19. k ← k − 2

20. else if (d = dk−1)

21. then L[k − 3].l← L[k − 3].l − L[k − 1].l

22. L[k − 2].l← L[k − 2].l − l′′

23. L[k − 1].l← L[k − 3].l − L[k − 1].l − l′

24. k ← k − 1

25.return ⟨k, i, j⟩

Figure 3.9: The procedure to remove the concavity formed by the vertex pattern 1333

The procedure Apply-R2 implements the second set of rules corresponding to the

pattern 1333. Rule R21, applied when l1 < l3, is implemented in Steps 1–6. Otherwise,

when l1 > l3 (Step 7), two variables l′ and l′′ are initialized in Step 8. The while loop

(Steps 10–15) is repeated as long as the condition l′ > l1 − l3 or the condition l′′ > l2,

is satisfied. In the while loop, the next vertex is visited and the values of l′ and l′′ are
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modified depending upon the direction of traversal. If the direction of traversal is same

as the direction of traversal from L[k− 3], then l′ is updated to l′ + l; if it is same as that

of L[k − 1], then l′ is updated to l′ − l (Steps 12–13). Similarly, l′′ is also modified (Steps

14–15). Thus, each time a new vertex is visited, the parameters l′ and l′′ are modified.

When it comes out of the while loop, two different rules, R22 and R23, are applied

depending upon the current direction of traversal. If this direction of traversal is same as

that from L[k − 2] (Step 16), then R22 is applied (Steps 17–19). When the direction is

same as that of L[k− 1], Rule R23 is applied (Steps 20–24). The value of k is readjusted

to k − 2 (Step 19) for Rule R22, and to k − 1 (Step 24) for Rule R23. The procedure

returns the updated k and ⟨i, j⟩ (Step 25).

3.4.1 Proof of Correctness

The proof of correctness of the algorithm is based on the fact that the orthogonal hull

produced by the algorithm is of minimum area with each object point strictly lying inside

it, and the intersection of the hull with any horizontal or vertical line is either empty or

exactly one line segment (Defn. 3.2.1).

To show that the orthogonal hull produced by the algorithm Ortho-Hull is of min-

imum area, we first observe that if p is a point lying on the grid line and lying left while

traversing around the object S, then 0 < d⊤(p, S) 6 g1. That d⊤(p, S) > 0 is evident from

our policy of object containment in a cell of the grid, as explained in Sec. 3.2.1. To show

that d⊤(p, S) 6 g, let, w.l.o.g., p be any point on the horizontal grid line-segment common

to Q1 and Q4 (Fig. 3.2). Let, for contradiction, d⊤(p, S) = h > g. For any point p′ in Q1

or Q4, d⊤(p, p
′) ≤ g. Since h > g, neither Q1 nor Q4 has any object containment. Hence,

the traversal traces the grid-line segment common to Q3 and Q4, and then traces either the

grid line-segment common to Q2 and Q3 (900 vertex, Fig. 3.2(a)) or the grid line-segment

common to Q1 and Q2 (1800). In either case, the grid-line segment common to Q1 and

Q4 (and p, there of) lies to the right during the traversal around S — a contradiction.

Thus, each cell lying left of the traversed path around the object contour has object

containment, and each free cell (without object containment) lies right of the traversed

path. Free cells are included in the orthogonal hull only when the reduction rules are

applied. It is evident from the rules (Sec. 3.3) and their related figures (Figs. 3.4 and 3.5)

1Here, d⊤(p, q) = max {|ip − iq|, |jp − jq|} denotes the (orthogonal) distance between two points,

p(ip, jp) and q(iq, jq) (i.e., the Minkowski norm L∞ [Klette and Rosenfeld (2004a)]). The distance of

a point p from the object S is d⊤(p, S) = min {d⊤(p, q) : q ∈ S}.
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that the free cells included in the orthogonal hull are minimum in number. For, if any of

these free cells (making a non-convex region) is not included, then it would create either a

hole inside the hull or two consecutive vertices of Type 3. This completes the proof that

the orthogonal is of minimum area.

Now, to show that the intersection of the orthogonal hull with any horizontal or vertical

(grid or non-grid) line is either empty or a single line segment, we simply observe that

the final polygon does not contain two consecutive vertices of Type 3. In accordance with

the concavity-removal rules, it is evident that, excepting the Rules R21 and Rule R23,

the outcome of each rule contains no two consecutive vertices of Type 3 (Sec. 3.3.2). The

outcome of R21 or R23 has a pattern 33 at the end, which is removed depending on the

type of the next vertex. In the final iteration, the last vertex visited coincides with the

start vertex, which is of Type 1, and hence, the applied rule is one among R11, R12, and

R13. Therefore, on termination, we get no two consecutive vertices of Type 3.

3.4.2 Demonstration

A step-by-step demonstration of the algorithm is shown in Fig. 3.10, which illustrates

how the different rules are applied for removal of some typical concave regions from a

given digital object as the orthogonal traversal proceeds closely around the object contour

without touching it. On the left hand side, the list L is shown as it grows with the

orthogonal traversal or as it shrinks as a result of applying the reduction rules. The start

vertex, u1, is determined by a row-wise scan of the grid points. Note that the vertices are

indicated in the figure by their indices. For simplicity of the representation, the dummy

vertex is not shown here in L. The leftmost column of the table indicates the vertices as

they are visited and associated list is shown to its right. Only the types of the vertices

are shown in the list L. The first non-convex region is detected when u6 is visited. On

visiting u6, the sequence of types of the last four vertices in L matches the pattern 1331

and l3 (the length corresponding to u3) equals l5 (of u5), and hence Rule R11 (Fig. 3.4)

is applied. As a result, all four vertices, namely u3, u4, u5, and u6, are removed, and

the length of u2 (equivalent to v0 in Fig. 3.4) is modified to l2 + l4 + l6. As the traversal

continues, the next non-convex region is detected when u9 is visited. On visiting u9, the

sequence of types of the last four vertices matches the pattern 1333, and l2 > l8. Note

that the length l2 has been modified to l2 + l4 + l6 in the last reduction. So, the two

variables l′ and l′′ are initialized as l2 − l8 and l9 respectively. When u10 is visited, l′ is

modified to l2 − l8 − l10 and l′′ is not changed. As the second condition in the while loop
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u1 1

u2 1 1

u3 1 1 1

u4 1 1 1 3

u5 1 1 1 3 3

u6 1 1 1 3 3 1 ◃R11

1 1

u7 1 1 3

u8 1 1 3 3

u9 1 1 3 3 3 ◃R22

1 1 3 (u10 and u11)

u12 1 1 3 3

u13 1 1 3 3 1 ◃R13

1 3 1

u14 1 3 1 1

u15 1 3 1 1 3

u16 1 3 1 1 3 3

u17 1 3 1 1 3 3 3 ◃R23

1 3 1 1 3 3 (u18, u19 and u20)

u21 1 3 1 1 3 3 1 ◃R12

1 3 1 1 3

u22 1 3 1 1 3 1

u23 1 3 1 1 3 1 1

u24 1 3 1 1 3 1 1 1

u25 1 3 1 1 3 1 1 1 1

u26 1 3 1 1 3 1 1 1 1 3

u27 1 3 1 1 3 1 1 1 1 3 3

u28 1 3 1 1 3 1 1 1 1 3 3 3 ◃R21

1 3 1 1 3 1 1 1 3 3

u29 1 3 1 1 3 1 1 1 3 3 1 ◃R12

1 3 1 1 3 1 1 1 3

u30 1 3 1 1 3 1 1 1 3 1
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Figure 3.10: A step-by-step demonstration of the proposed algorithm on a digital object

(shown in right). Each vertex ui of the orthogonal polygon (right) has been labeled as

‘i’ for sake of simplicity. For each iteration of the algorithm, the last five vertices in the

list L (left) have been highlighted in red before a rule is applied and in green after two

consecutive vertices of Type 3 are removed by the rule.

in Step 9 of the procedure Apply-R2 (Fig. 3.9) still holds, u10 is discarded (not added

to the list L) and the next vertex u11 is visited. Now, l′′ is modified to l9 − l11, and none

of the conditions in the while loop holds true, and so the algorithm comes out of the
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while loop. As the direction of traversal of u11 is same as that of u7, the Rule R22 is

applied. The list L is left with a pattern 113. Subsequently, when vertex u13 is visited,

the Rule R13 is applied. In the course of traversal, when u17 is reached, the procedure

Apply-R2 is called as the sequence of last four vertices in L matches 1333. The vertices

u18 and u19 are visited but not added to L as one of the conditions in the while loop

is still valid. When u20 is visited, none of the conditions in the while loop is valid, and

as d20 equals d16, reduction Rule R23 is applied. Subsequently, Rule R21 is applied at

u28 and Rule R12 at u29. When the traversal finally reaches u1, the list L contains the

vertices of the orthogonal hull of the given digital object in order.

3.4.3 Time Complexity

Since the object is defined as a connected component, the containment of the object in a

cell incident at a grid point q is verified from the intersection of the object with the four

edges of the corresponding cell. For each edge, the intersection can be checked in O(g)

time, where g is the grid size. Hence, checking the object containment in any cell can be

done in 4×O(g) = O(g) time.

During traversal of the grid points lying immediately outside the object contour, we

visit each grid point qi from the preceding one, qi−1, using the information on intersection

of the object with the edges incident at qi−1. For example (Fig. 3.2(a)), if qi−1 is of

Type 1 and has been visited along the vertical edge (from its predecessor, qi−2), then qi

is visited along the horizontal edge from qi−1. Thus, the number of grid points visited

while traversing orthogonally along the object contour is bounded by O(n/g), where n

is the number of points constituting the object contour. The resultant time complexity

for visiting all the vertices is, therefore, given by O(n/g) · O(g) = O(n). Note that, each

grid point lying on the orthogonal path of traversal is visited either once (Fig. 3.2(a, b,

d)) or twice (Fig. 3.2(c)). The time spent over detection and removal of concavities is

associated with checking a pattern (of types of the last four vertices) in the list L in O(1)

time and applying the reduction rule, whenever necessary. If the pattern does not contain

two consecutive 3s, a new vertex is visited in O(g) time. If the pattern undergoes a

reduction, which needs O(1) time, then also the next vertex is visited. Maximum number

of reductions is bounded by O(n/g)− 4, since at most O(n/g) vertices are visited and the

orthogonal hull consists of at least four vertices. Thus, the total number of list operations

is bounded by (O(n/g)− 4) ·O(1) = O(n/g). Hence, the total time complexity for finding

the orthogonal hull of a digital object is given by O(n) + O(n/g) = O(n). This improves

the earlier time complexity [Karlsson and Overmars (1988)].
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3.5 Experimental Results

The proposed algorithm is implemented in C on a Sun Ultra 5 10, Sparc, 233 MHz,

the OS being the SunOS Release 5.7 Generic, and has been tested on (i) database D1

containing 1034 logo images (received on request, from Prof. Anil K. Jain and Aditya

Vailya of Michigan State Univ., USA); (ii) a collected database D2 having 520 shape

images; (iii) some geometric shapes; (iv) a selected database of optical characters; (v) a

set of gray-scale images.

Figure 3.11 shows the result on an image of ‘dragon’ for g = 8. The orthogonal hull

is shown in blue, whereas the red colored polygon indicates the smallest-area orthogonal

polygon describing the object, which is traversed during the derivation of the orthogonal

hull. The interior region of the orthogonal hull has been highlighted in green. The regions

enclosed by the orthogonal hull (blue lines) and the isothetic polygon (red lines) show the

non-convex portions detected by the algorithm. The CPU time required for computation

of the convex hull for the ‘dragon’ image, having size 1000× 1000 and consisting of 89744

object pixels, is 8.61 seconds, which is significantly high compared to 34.29 milliseconds

required for the computation of its orthogonal hull for g = 8 (shown in Table 3.1). The

convex hull is computed using the Graham scan algorithm. The time required for com-

putation of the convex hull is very high compared to orthogonal hulls because of the fact

that the computation of an orthogonal hull is based on the orthogonal traversal around

the boundary of the object, and it requires only comparison and addition/subtraction in

the integer domain. The time required by Graham scan algorithm to compute the convex

hull could be reduced by considering the boundary points of the object, but that requires

an edge detection algorithm.

In Table 3.1, the area of the convex hull and the areas of the orthogonal hulls for

different grid sizes (4, 8, and 14) are presented. The number of convex hull vertices,

the CPU time required for computation of the convex hull, the number of vertices of an

orthogonal hull, and the CPU times at different grid sizes are also presented in the table.

It can be seen from this table that the number of vertices of OH(S) decreases and its area

increases with the increase of grid size. Also, the computation time drops appreciably

for higher grid sizes. Apart from the ‘dragon’ image, Table 3.1 also presents the results

corresponding to four logo images, two OCR images (‘P’ and ‘R’), and one geometric

shape (‘swastik’).

Figure 3.14 shows four logo images and their corresponding orthogonal hulls for grid

size g = 4, 8, and 14. The non-convex regions have been filled in yellow to depict the result
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Figure 3.11: Orthogonal hull (the edges shown in blue and the interior in green) of the

binary image ‘dragon’ for g = 8.

of concavity-reduction rules. First column of each row indicates the number of object

pixels, and each image is accompanied with the number of vertices and the orthogonal

hull area (shown in two boxes) for the corresponding grid size. It is seen that the number

of vertices gets decreased and the hull area gets increased with the increase of g. The

number of vertices is plotted against the grid size (g = 1 to 20) in Fig. 3.12 (a) for



70
Chapter 3

Construction of Orthogonal Hull of a Digital Object

 0

 100

 200

 300

 400

 500

 600

 2  4  6  8  10  12  14  16  18  20

n
u
m

b
e
r 

o
f 

v
e
rt

ic
e
s

g

logo-1149
logo-0125
logo-1287

(a) No. of vertices vs. grid size.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 2  4  6  8  10  12  14  16  18  20

C
P

U
 t

im
e
 (

m
ic

ro
se

c
s)

g

logo-1149
logo-0125
logo-1287

(b) CPU Time vs. grid size.

Figure 3.12: (a) Shows that the number of vertices of the orthogonal hull decreases with

the increasing grid size. (b) The CPU time required for computation of the orthogonal

hull decreases with the increase of grid size.

three different logo images. From these plots, it is evident that the number of vertices

rapidly decreases with the increase of grid size. Figure 3.12 (b) shows the way the CPU
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time decreases with increasing g for the same three images. The orthogonal hulls of all

four logo images in Fig. 3.14 reflect the symmetric nature of the objects. The symmetric

nature of the objects remains almost unchanged with a change in the grid size. Figure 3.15

shows another set of four logo images in which, excepting the first image (‘logo119’), all

images are asymmetric. The similar nature of the last three objects (‘logo353’, ‘logo354’,

and ‘logo355’ ) are captured by their orthogonal hulls. Figure 3.16 shows four geometric

shapes and their orthogonal hulls for various grid sizes. It is seen that the algorithm detects

all the non-convex regions and extracts the orthogonal hulls correctly. The ‘spiral’ image

has a more convoluted shape, and the algorithm successfully constructs the orthogonal

hull. It may be noted that, for all these images, the complexity (number of vertices) of the

orthogonal hull reduces with the increasing grid size. Similar to the images in Fig. 3.14,

the orthogonal hulls of the first two images have also rotational symmetry, which remains

almost invariant with a change in the grid size.

The orthogonal hulls of four optical characters are shown in Fig. 3.17. The optical

characters can be classified into different sets depending upon their orthogonal hulls. A

clear demarcation can be made between different characters by using the non-convex

regions (marked in yellow) in conjunction with orthogonal hulls. Figure 3.18 shows results

on binarized impressions of some real-world gray-scale images. In Fig. 3.13, we have

furnished a 3-D plot on the frequency of errors versus g and distances of points on the

orthogonal hull from the object corresponding to the image ‘dragon’. The error frequency

for an orthogonal distance d is given by the number of points on (the border of) OH(S)

for which the nearest object point is at the distance d. The other three plots (Fig. 3.13(b–

d)) show the distribution of frequency versus distance for three grid sizes (g = 1, 2, 3)

corresponding to the images ‘dragon’, ‘logo355’, and ‘logo353’ respectively. The frequency

is shown in log10-scale. It is evident that the number of object points at a smaller distance

is very high, whereas, the number of object points lying at a larger distance from OH(S)

is low. However, this distribution is dependent on the shape of the object; if there are

more concavities, then the distribution may be different, while the basic trend remains the

same.

3.6 Conclusion

We have presented a combinatorial algorithm to construct the orthogonal convex hulls of a

digital object for various grid resolutions. The worst-case time complexity of the algorithm

is linear in the size of the contour. The actual runtimes on different images demonstrate its
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Figure 3.13: Plots on frequency of errors versus g for different images.



3.6 Conclusion 73

effectiveness for speedy execution. The algorithm is a single-pass algorithm, and outputs

the (types and outgoing edge-lengths of) vertices of the orthogonal hull in order. Hence, we

can utilize the orthogonal hull description in some suitable application like shape analysis,

shape-based image retrieval, etc. For example, the number of times the reduction rules

are applied during the traversal for removal of a concavity can be used to measure the

distribution of shape complexity over a large and complex object. Also, the non-convex

regions along with the orthogonal hull can be used for an appropriate shape analysis.
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n g = 4 g = 8 g = 14

logo245

9868

86 35681 48 37929 26 39887

logo247

10096

66 29921 28 31857 14 33349

logo416

16367

114 36561 52 38497 34 42253

logo415

13590

98 23149 56 24601 40 27735

Figure 3.14: The orthogonal hulls (edges shown in blue) of a set of logo images for grid

size g = 4, 8, and 14. The non-convex regions detected by the algorithm are shown in

yellow. The number of vertices of the orthogonal hull is shown in the left box and the area

of the hull in the right box below the concerned image.
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n g = 4 g = 8 g = 14

logo119

16305

18 33217 16 35649 16 37101

logo353

18122

120 31117 60 32593 32 35953

logo354

7179

88 35385 44 37025 32 41469

logo355

10541

90 39665 48 41625 28 43793

Figure 3.15: The orthogonal hulls for another set of logo images corresponding to g = 4,

8, and 14 (color codes and numerical figures as in Fig. 3.14).
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n g = 4 g = 8 g = 14

32583

96 53473 44 54241 28 59305

24174

204 35825 108 38177 60 41329

28732

50 42445 34 44657 30 46173

23776

126 38033 64 40233 36 43429

Figure 3.16: The orthogonal hulls of a set of geometric shapes for g = 4, 8, and 14 (color

codes and numerical figures as in Fig. 3.14).
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n g = 4 g = 8 g = 14

24170

80 41953 48 44161 32 48105

26369

16 37237 12 39441 8 43149

22320

40 27833 20 28945 18 33741

17592

4 22713 4 23617 8 22261

Figure 3.17: Results on some optical characters (color codes and numerical figures as in

Fig. 3.14).
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Figure 3.18: The orthogonal hulls (color codes and numerical figures as in Fig. 3.14) of

the binarized images corresponding to some real-world gray-scale objects for g = 6.



Chapter 4

Shape Analysis using Isothetic Covers

4.1 Introduction

As mentioned in Chapter 2, isothetic covers may find several areas of application including

image analysis. In this chapter, we present further applications of isothetic covers in shape

analysis. An approximate shape of an object is captured by the isothetic cover from which

a shape code is derived. The use of shape codes in representing an object and subsequent

retrieval of similar images from a database is discussed in Sec. 4.2. The isothetic cover can

also be used to find a measure of the shape complexity of an arbitrary object. Section 4.3

presents the derivation of a shape complexity measure. Section 4.4 presents a mechanism

to rank optical character prototypes in a large database using isothetic chord lengths of

the isothetic covers corresponding to these character prototypes. In Sec. 4.5, we have

presented the experimental results corresponding to these applications.

4.2 Multigrid Shape Analysis using Shape Code

Encoding the shape information of an image is very fundamental to visualization and

retrieval of digital images. An efficient encoding, both in terms of construction and storage,

is of utmost importance in implementing object-based systems, especially in multimedia

research. Encoded shape information plays different roles depending upon the target

application, vis-a-vis localization and retrieval of a specific shape. Several algorithms have

been proposed in the literature that deal with the localization and retrieval problems.

The methods, namely, context-based arithmetic encoder (CAE) [Katsaggelos et al.

(1998)], runlength encoding [Shuster and Katsaggelos (1998)], and polygon-based encod-

ing [O’Conell (1997)] are some of the methods that deal with the problem of localization. In

CAE-based technique, adapted in MPEG-4, the binary shape information is coded utiliz-
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ing the macroblock-based structure in which binary alpha data are grouped within 16×16

binary alpha blocks. In the runlength encoding, the vertices of a polygonal approximation

of the object’s shape are encoded by adapting the representation to a dynamic range of the

relative locations of the object’s vertices. The polygon-based encoding deals with the lossy

encoding of object boundaries that are given as eight-connected chain codes. However, the

shape specification for localization, e.g., shape coding based on rate-distortion [Katsagge-

los et al. (1998)], is not useful for the retrieval as it has to undergo complex decoding and

contour extraction process. Similarly, shape descriptors for retrieval purpose using curva-

ture scale space descriptors [Mokhtarian and Mackworth (1992), Mokhtarian et al. (1997)],

geometric moments [Hu (1962)], etc., are not amenable to localization because the compu-

tation of these descriptors involves nonreversible transformation. The shape encoding has

typically evolved around two basic concepts, one of which being bitmap based [CCITT

(1994), ISO (1992, 1999)] where an object is encoded by its support map, and the other

being contour based (where the object boundary is represented efficiently), e.g., chain

code [Freeman (1961a), Kaneko and Okudaira (1985)], polygonal approximation [Kaup

and Heuer (2000), O’Conell (1997), Shuster and Katsaggelos (1998)], high-order curve

fittings viz. splines [Katsaggelos et al. (1998)], combined polygon-spline approximation

[Gerken (1994)], approximation of polytopes [Bemporad et al. (2004)], etc.

In this work, a fast and efficient shape coding technique based on outer isothetic cover

describing the digital object on a multigrid background, is proposed. This method differs

from other polygonal approximation methods [Kaup and Heuer (2000), O’Conell (1997),

Pal and Mitra (2004b), Shuster and Katsaggelos (1998)] in the fact that it does not require

the contour to be extracted before constructing the outer isothetic cover. It merges both

the requirements of localization and retrieval with proper tuning. It stores the polygons for

a given image imposed on coarse to finer background grids, with remarkably high storage

efficiency. On finer grids, it serves as a good encoder for visualization, as illustrated in Fig.

4.1. For retrieval, at each finer level, the size of the effective search database is diminished,

which favours encouraging matching results.

4.2.1 Proposed Work

We have shown in Chapter 2 how the outer isothetic cover (OIC) of a digital object, having

more than one connected component, can be constructed. Each polygon of the OIC is

uniquely described, starting from a suitable vertex (start vertex), and the corresponding

higher level description of the polygons of the OIC is coded properly to generate a shape
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Figure 4.1: The isothetic polygons of an image are shown from left to right with increas-

ingly finer resolution. The original image is shown in extreme right.

code for the corresponding polygon. The shape code, thus obtained, would be always

different for different polygons, and more importantly, the proximity between shape codes

would depend on the degree of similarity between the two corresponding polygons. The

shape codes of the polygons being unique, and the set of polygons being different for

different images, the combined shape codes in a varying resolution environment turn out

to be powerful features for the subsequent image retrieval process.

Given a binary image S containing one or more connected components1, and a set of

uniformly spaced horizontal and vertical grid lines, G = (H,V) (Defn. 2.2.5), the corre-

sponding outer isothetic cover, P (S) = {Pi}ni=1, consists of n outer/outer hole polygons

(Defn. 2.2.8). Let Vi represent the ordered set of vertices of Pi.

It may be noted that, two polygons in P (S) do not have any edge intersection, although

one outer polygon may contain a outer hole polygon, such that the latter (hole polygon)

will lie completely inside the former (outer polygon), and the latter may again contain

some other polygon (outer polygon), and so on. For example, in Fig. 4.2, the outer polygon

P1 contains the outer hole polygons P2 and P3, such that P1 − (P2 + P3) is the minimum

isothetic region that contains the given object. It may be also noted that, if a connected

component in S is so small compared to the grid unit that the object does not intersect

any horizontal or vertical grid line, which occurs when a tiny fragment occurring in an

image is not perceivable in a coarse grid, then there would be no isothetic polygon in P (S)

that would contain the object.

1We have considered 8-connectivity in this work.
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P 2P

1P

3

Figure 4.2: Outer isothetic cover consisting of an outer polygon, P1, and two (outer) hole

polygons, P2 and P3.

4.2.2 Shape Code

Let Vri be the ordered set of vertices for the ith polygon Pri in P (Sr) corresponding to the

rth digital image Sr in a binary image database D = {Sr}Nr=1 containing N images. Now,

in Vri = ⟨v(1)ri , v
(2)
ri , . . . , v

(mri)
ri ⟩, consisting of mri vertices, each vertex v

(k)
ri will be either a

900 vertex or a 2700 vertex, depending on the object containments in the four unit grid

quadrants incident at v
(k)
ri . Further, in the set Vri, there will be always at least one 900

vertex that will have object containment in its bottom-right unit-grid-quadrant and the

other three quadrants free. One such vertex is selected as the “start vertex” to generate

the shape code of Pri. W.l.o.g., let v
(1)
ri be the start vertex in Vri.

It may observed that, any two consecutive vertices in Vri would form either a horizontal

edge or a vertical edge of Pri. Hence, if (x[v
(j)
ri ], y[v

(j)
ri ]) be the coordinates of the jth vertex

in Vri, then the distance (edge length) between two consecutive vertices v
(k)
ri and v

(k+1)
ri in

Vri is given by either
∣∣∣x[v(k)ri ]− x[v

(k+1)
ri ]

∣∣∣ or ∣∣∣y[v(k)ri ]− y[v
(k+1)
ri ]

∣∣∣, whichever is non-zero.
Now, in the counter-clockwise enumeration of the vertices of Pri, starting from the

start vertex v
(1)
ri , the length of each edge and the type of the destination vertex of the edge

are stored in eight-bit (one byte) representation, where the two most significant bits are

reserved for the two types of vertices (900 and 2700) and a false vertex (1800) which acts

as a continuity flag for a long edge whose length has to be represented in more than 6

bits. In general, if e(v
(k)
ri , v

(k+1)
ri ) denotes the edge from the vertex v

(k)
ri to the next vertex

v
(k+1)
ri , the latter being the destination vertex, then the two most significant bits are “01”

if type(v
(k+1)
ri ) = 900, or “11” if type(v

(k+1)
ri ) = 2700. Further, if |e(v(k)ri , v

(k+1)
ri )| denotes

the edge length between v
(k)
ri and v

(k+1)
ri , and |(v(k)ri , v

(k+1)
ri )| > 26 − 1 = 63 grid units,

then the problem of bit overflow is resolved by making the two most significant bits to be
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“10” (indicating 1800) and the overflowing bits are put to the next byte until the entire

length of the edge is stored in the corresponding bit representation. As an example, if

|e(v(k)ri , v
(k+1)
ri )| = 184 and type(v

(k+1)
ri ) = 2700, then the code for e(v

(k)
ri , v

(k+1)
ri ) needs 16

bits; and the 16-bit code for this edge would be “11000010 10111000”.

The shape code for the polygon Pri, having the ordered set of vertices Vri = ⟨v(1)ri , v
(2)
ri , . . . ,-

v
(mri)
ri ⟩, therefore, can be obtained as follows:

SC(Pri, g) = x[v
(1)
ri ]y[v

(1)
ri ] (b8b7)

(2)
ri |e(v

(1)
ri , v

(2)
ri )|

(b8b7)
(3)
ri |e(v

(2)
ri , v

(3)
ri )| · · ·

(b8b7)
(mri)
ri |e(v(mri−1)

ri , v
(mri)
ri )|,

(4.1)

where, (x[v
(1)
ri ], y[v

(1)
ri ]) gives the start (first) vertex, (b8b7)

(2)
ri denotes the two (most signif-

icant) bits representing the vertex type of the second vertex v
(2)
ri , |e(v

(1)
ri , v

(2)
ri )| the length

of the edge from the first vertex to the second vertex; and so on.

4.2.3 Multigrid Shape Code

The shape code of the outer isothetic cover for an object (connected component) in a

given uniform (square) grid G = (H,V) depends not only on the shape of the object

but also on the spacing of the grid lines. Higher the separation between the grid lines,

lower will be the complexity (number of vertices) of the outer isothetic cover (and its

shape code, there of) containing the object, and also lower will be the visual perception

about the underlying object from its isothetic polygon. On the contrary, as the grid lines

become denser, the corresponding OIC becomes more meaningful and expressive, thereby

facilitating the process of recognizing the underlying object.

In order to achieve a fast preliminary result on resemblance of object shapes, therefore,

sparsely separated grid lines with large unit grid squares are used to generate the shape

codes of objects. Shape codes for denser grid lines with smaller unit grid squares, on

the other hand, are required for finer and accurate checking between objects with similar

shapes as certified from grid boxes with higher sizes. Hence shape codes of the OIC are

generated for an image for different grid sizes. Outer isothetic cover, as interpreted and

realized from their shape codes, have been shown for a sample logo image in Fig. 4.3 for

illustration. It may be observed in Fig. 4.3 how the underlying objects become more and

more revealing as the grid size (separation of grid lines) goes on decreasing from 16 in

Fig. 4.3(a) to 4 in Fig. 4.3(c).

Now, theMultigrid ShapeCode (MuSC) for the image Sr is given by the concatenated
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ordered sequence of the shape codes (SC) of the objects (connected components) in the

image, where a byte with zero value (i.e., each of its eight bits is 0) marks the end of the

shape code of a single polygon, and two successive zero-valued bytes indicate the end of

the shape codes of all the polygons for a particular grid configuration. Hence, MuSC for

the image Ir is given by:

MuSC(Sr) = SC(Sr, g1) 0
16 SC(Sr, g2) 0

16 · · · 016 SC(Sr, gα), (4.2)

where, α numbers of different grid separations, ranging from g1 to gα, have been used

to generate the above MuSC. The shape code SC(Ir, g) of the image Ir for a grid size

g, g1 ≤ g ≤ gα, which has been used in the above equation to obtain MuSC(Ir), is as

follows:

SC(Sr, g) = SC(Pr1, g) 0
8 SC(Pr2, g) 0

8 · · · 08 SC(Prnr , g). (4.3)

It may be noted that, since images in a database D may have nonuniform sizes, all

images in D are normalized to the size of µ × µ before finding their MuSCs. In our

experiments, we have considered µ = 256 pixels.

4.2.4 Image Retrieval using MuSC

Let Q be the query image. At first the multigrid shape code MuSC(Q) of Q (for grid

sizes g from g1 to gα) is obtained as shown in Eqn. 4.2. It may be noted that, for any

image S, MuSC(S) represents the highest level description of all the OICs corresponding

to the object(s) present in the image S for increasing grid resolution from g1 to gα. Hence,

we resort to the next (lower) level description of each isothetic polygon in the process of

retrieval as follows.

For each database image Sr, an ordered list, namely L(Sr, g1), containing (pointers

to) the vertical edges of all its isothetic polygons corresponding to the grid size g1, is

prepared using SC(Pr, g1) (whose form being in accordance with Eqn. 4.1). It may be

noted that SC(Pr, g1), in turn, is extracted from its multigrid shape code, MuSC(Sr)

(given in Eqn. 4.2). The list L(Sr, g1) contains H1 = µ/g1 pointers corresponding to h = 1

to h = H1, since µ is the height of the normalized image. The salient points about the

structure of L(Sr, g1) are as follows:

– the pointer L(Sr, g1)[h] points to a linked list containing those edges of SC(Pr, g1),

each of whose upper vertex has y-coordinate = h.
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(a) g = 16 (b) g = 8 (c) g = 4 (d) original

MuSC:(5) (0) (11000001)(01000010)· · · (01000110)(08) ◃ end of 1st polygon

(7) (2) (01000010)(01000001)· · · (01000010)(08) ◃ end of 2nd polygon

(12)(7) (11000001)(01000001)· · · (01000001)(08)(08) ◃ end of g1 = 16

(13)(1) (11000001)(01000011)· · · (01000110)(08) ◃ end of 1st polygon

(11)(4) (11000001)(01000001)· · · (01000111)(08) ◃ end of 2nd polygon
...

(12)(22)(11000001)(01000001)· · · (01000001)(08)(08) ◃ end of g2 = 8
...

(25)(44)(11000001)(01000010)· · · (01000010)(08)(08) ◃ end of g3 = 4

Figure 4.3: A sample logo image and its OIC representing the corresponding MuSC. Each

byte (8 bits) has been shown in parentheses for clarity, and the coordinates of start vertex

of each polygon have been underlined. The +x-axis is considered from left to right, and

the +y-axis from top to bottom.

– each node in the linked list pointed from L(Sr, g1)[h] represents a vertical edge e(u, v)

(with h = y[u] < y[v] and x[u] = x[v]) of SC(Pr, g1), and contains (i) x[u], (ii) y[u],

and (iii) y[v], which are required in the subsequent steps of the retrieval process.

– in the linked list that L(Sr, g1)[h] points to, the edges (nodes) are sorted in ascending

order of their x-coordinates (of upper vertices).

A similar list, L(Q, g1), is also prepared for the query image Q to find out the similarity

between the isothetic polygon(s) of Q and those of Sr for grid size g1. In order to do this, we

construct a binary matrix M(Sr, g1), having size H1×H1, considering g = g1 and H = H1

in Eqn. 4.4. A similar matrix, namely M(Q, g1), is also being constructed for Q using

Eqn. 4.4, and these two matrices, M(Sr, g1) and M(Q, g1), are used to find the Hamming

distance L (M(Sr, g1),M(Q, g1)) between the isothetic polygons of database image Sr and
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those of the query image Q corresponding to grid size g1, considering g = g1 and H = H1

in Eqn. 4.5.

M(Sr, g)[w][h] =

{
1, if |{e(u, v) ∈ L(Sr, g) : y[u] ≤ h < y[v] AND x[u] ≤ w}| is odd ;

0, otherwise;

for 1 ≤ w, h ≤ H.

(4.4)

L (M(Sr, g),M(Q, g)) =
H∑

w=1

H∑
h=1

|M(Sr, g)[w][h]−M(Q, g)[w][h]| (4.5)

It is evident from Eqn. 4.4 and Eqn. 4.5, if the Hamming distance L (M(Sr, g1),M(Q, g1))

is small, then the image Sr is a probable candidate for a successful retrieval correspond-

ing to the query image Q. Hence the images with lower values of Hamming distance are

considered one by one for next grid size g2.

It may be noted here that the construction of isothetic polygons and the derivation of

the shape codes from them and their usage in image retrieval do not involve any floating

point computation (only comparisons and additions), thereby making the process very

fast.

4.3 Shape Complexity Measure

Shape complexity has been a very important measure in areas such as computer vision

[Siddiqi and Kimia (1993)], satellite imagery [Oddo (1992)], geographic information sys-

tems [Brinkhoff et al. (1995)], and medical imaging [Cesar and Costa (1997)]. A shape

complexity measure also plays a crucial role in designing computationally efficient shape

classification algorithms [Barutcuoglu and DeCoro (2006), Tsai et al. (2005)].

A number of prior works on shape complexity are present in the literature. G. Tous-

saint (1991) has proposed a method based on polygon triangulation. In another approach

[Chazelle and Incerpi (1984)], the sinuosity of the polygon boundary is measured to depict

the shape complexity. Shape complexity is also calculated in terms of entropy of the cur-

vature of the object contour [Page et al. (2003)]. In another approach, the shape context

of each selected point on the boundary is calculated [Belongie et al. (2002)]. In fact, a

large number of works has been done using either the boundary of the silhouette image,

disregarding the hole or internal boundaries, or with a set of points on the extracted edge

of the objects. Also, methods have been proposed based on Hausdorff distance [Huttenloc-
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aher et al. (1993)], eigenvector or modal-matching based approach [Sclaroff and Pentland

(1995)], Kolmogorov complexity [Chen and Sundaram (2005)]. Since these methods are

formulated in the Euclidean domain, they involve complex calculations involving floating

point operations, and are therefore, computationally expensive.

On the contrary, we propose a novel algorithm to capture the complexity of an image

in the digital plane using some digital geometric properties [Klette and Rosenfeld (2004a),

Yip and Klette (2003)] of an isothetic polygon. The algorithm uses outer isothetic cover

[Bhowmick et al. (2005b), Biswas et al. (2005a,b)], which uses only comparison and ad-

dition operations in the integer domain, and is therefore, very fast, efficient, and robust.

Shape complexity measure in this algorithm is derived using the properties of the tight

isothetic polygon that contains the object. Since a square shape is the simplest figure in

the realm of 2D digital geometry, our shape complexity technique considers a square as the

simplest possible object. That is, the shape complexity measure of an object (polygon)

is zero if it is a square. Further, in our method, the complexity measure also takes into

account the complexity due to the presence of internal contours in an object, which is not

considered in some of the existing works [Gdalyahu and Weinshall (1999), Sharvit et al.

(1998)].

4.3.1 Shape Complexity of Objects using Outer Isothetic Cover

Once the outer isothetic cover of an object S is extracted, it is encoded with a string, s,

which consists of the different types of grid points (including the vertices) depicting the

isothetic cover. There can be three types of such grid points on the polygonal envelope,

namely 1, 2, and 3. If i denotes the type of the grid point on the polygon, then it indicates

that the internal angle of the polygon at that grid point is given by i × π
2 . Clearly, type

1 and 3 denote the vertices with internal angles 900 and 2700 respectively, while type 2,

with internal angle 1800, indicates a simple edge point where the polygon edge propagates

in the same direction. The three types of grid points are illustrated in Fig. 4.4. Thus,

occurrence of 3 in s indicates a concavity, whereas 1 signifies a convex contour of the

polygon, and thereof, of the object. Also, 2 indicates a straight edge of the polygon,

thereby contributing no significant information regarding the shape complexity.

For an outer polygon, it can be shown that each concavity (3) on the polygon contour

matches with a convexity (1), leaving four 900 vertices [Sur-Kolay and Bhattacharya

(1988)], i.e. ⟨1111⟩. Thus each polygon, encoded in string s, can be reduced to ⟨1111⟩ in
case of an outer polygon, and to ⟨3333⟩ in case of an (outer) hole polygon by replacing the
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Figure 4.4: Grid point types 1, 2, and 3 on the outer ploygon (shown partially).

consecutive occurrences of 3 followed by 1. For example, a square will have the polygon

code s ≡ ⟨1111⟩.
The string s is reduced by applying the following reduction rules:

(1) Edge Reduction Rule: 2+ → ϵ

(2) Vertex Reduction Rule: (31)+ → ϵ

The edge reduction rule does not contribute to the complexity of the polygon, so

these reductions are not included in the total number of reductions. This is evident from

Fig. 4.4 in which the top edge of the isothetic polygon consists of several consecutive 2s

that indicates no significant variation on the contour of the object. On the contrary, in

the right side of the polygon, the number of consecutive 2s is less and also, the occurrence

of 31s is frequent, which indicates a complex nature of the associated part of the contour.

Let there be m polygons in P (S), and each polygon encoded in string si. Then each

si will be reduced to either ⟨1111⟩ or ⟨3333⟩, i.e. to a substring of length 4, say, in at

most n iterations. Then the shape complexity (SC), which is given by

SC =

n∑
k=1

m∑
i=1

r
(k)
i

n∑
k=1

m∑
i=1

l
(k)
i

,

is computed by the algorithm SCOPE as follows.

Algorithm SCOPE

1. Extract the OIC P (S)

2. Encode P (S) to string s ≡ ⟨si⟩mi=1
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Itn. String (s)

1 12(31)312(31)1(31)21(31)1232(31)32(31)3(31)123

2 1734(31)1

3 1733(31)

4 1632(31)

5 153(31)

6 14(31)

7 1111

Figure 4.5: The outer polygon is encoded by the string s ≡
12(31)312(31)1(31)21(31)1232(31)32(31)3(31)123 (itn. 1), after the application of the

edge reduction rule on s. The substring(s) is reduced at each subsequent iteration.

3. Apply rule (1) on s to remove all 2s from s

4. r ← 0, l← 0

5. Until each substring si has length 4

5.1. Apply rule (2) on si

5.2. r ← r +
∑

ri

5.3. l← l +
∑

li

6. SC = r
l

In Step 5.2, ri indicates the number of occurrences of 31 those are reduced in the

ith iteration, and li (Step 5.3) indicates the corresponding string length which has been

reduced. In the expression of the shape complexity SC, as each ri < li for i = 1 . . . n,

SC is always less than 1. It should also be mentioned here that for the hole polygons (if

any), the number of reductions and the corresponding string lengths also contribute to

the computation of the final shape complexity. It may be noted here that while merging

the concavities and convexities, the string s may be treated as circular.
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4.3.2 Demonstration

Fig. 4.5 shows an object, the corresponding OIC, and the way the string is reduced in

each iteration. For example, in iteration 1, r1=8 and l1=36. This is also clear from the

demonstration that, higher the complexity of an object, larger is the number of iterations

needed for the reduction.

4.4 Ranking of Optical Character Prototypes in a Large Database

Offline optical character recognition (OCR) is a well-researched problem as on now, and

over the last few years, handwritten character recognition (HCR) has spurred intense

research interest in the concerned group of researchers. However, due to comparatively

low performance of an automated HCR system caused by the inevitable cursive variations

in handwritten characters, it has been applied with restrictions to the size of lexicon,

restrictions on writing styles, etc. [Kang and Kim (2004)], [Plamondon and Srihari (2000)].

In order to achieve high-performance HCR, therefore, large databases have been grad-

ually developed throughout the years. Some of these are

1. AHDB made from 100 different writers, including words used for numbers and in

bank checks [Almáadeed et al. (2002)];

2. CEDAR database collected from handwritten postal addresses [Hull (1994)];

3. IFN/ENIT database consisting of 26,459 images of the 937 names of cities and towns

in Tunisia, written by 411 different writers [Märgner et al. (2005)];

4. ISI database of Bangla handwritten basic characters consisting of 20187 isolated basic

character images [Bhattacharya et al. (2005)];

5. KU-1 Hangul character image database [Kim and Lee (1998)];

6. MNIST of handwritten digits [LeCun et al. (1998)];

7. NIST special database 3 [Garris and Wilkinson (1992), Geist et al. (1994)];

8. PE92 handwritten Korean character Image Database [Kim et al. (1993)];

9. Reuters-21578 clean text database [Lewis (1992)];

10. UNIPEN online handwriting database [Guyon et al. (1994)]; etc.

Each of these databases contains a large number of prototypes for each character

in the corresponding alphabet. Recognizing a handwritten character, therefore, involves

matching the character with the prototypes or their features, which is associated with a
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large overhead. The process can be made faster if we can arrange the prototypes in some

order so that the recognition time may be reduced. For a given character, a subset of the

prototypes, which are almost similar in structure, may be replaced by a smaller subset

(ideally by a single prototype), if possible, depending on the tradeoff between speed and

precision. Similarly, to include a new prototype in the database, we can think of checking

its degree of dissimilarity with the existing prototypes corresponding to the concerned

character in the database, and take the decision of whether or not include that prototype,

accordingly. Further, to check the diversity of a database, we need to check how sparsely

the prototypes are located in their respective feature space.

The proposed work introduces the novel concept of ranking the prototypes based on a

single feature, namely the total isothetic chord length (Def. 4.4.2). For each character in

the database, we consider all the prototypes and find their OICs (Def. 4.4.1) to derive the

corresponding isothetic chord lengths. Using these chord lengths, we find the rank of each

prototype from the corresponding measure of dissimilarity (Eqn. 4.10), which, in turn, is

used to estimate the goodness/relevance of the existing set of prototypes of the concerned

character in the database, and the database as a whole, thereof.

The rest of this section is organized as follows. Characterization of an isothetic polygon

using the isothetic chord lengths is given in Sec. 4.4.1. The proposed method that includes

dissimilarity measure between two isothetic polygons, policy of ranking the prototypes,

database property, etc., are given in Sec. 4.4.2. To demonstrate the novelty and elegance

of the proposed method, some preliminary results have been given in Sec. 4.5.3.

4.4.1 Characterization of an Isothetic Polygon using Isothetic Chord Lengths

The following definitions are newly introduced in this work for characterization of an

optical character using the OIC that tightly encloses the character.

Definition 4.4.1 (isothetic chord). Let p and p′ be two grid points that lie on the isothetic

polygon P . Then the line segment L(p, p′), joining p and p′, is said to be an isothetic chord

of P , provided conditions (c1) and (c2) are simultaneously satisfied.

(c1) L(p, p′) is either horizontal or vertical;

(c2) either L(p, p′) is an edge of P or each point on L(p, p′) (excepting p and p′)

lies inside P .

Note that, for a vertical chord joining p and p′ having same x-coordinate, we use the

notation Lx(p, p
′), whereas, for a horizontal chord joining p and p′ with same y-coordinate,

we use Ly(p, p
′).



92
Chapter 4

Shape Analysis using Isothetic Covers

Definition 4.4.2 (total isothetic chord length).

Let Sx =
{
Lx

(
p(2i), p(2i+1)

)}kx−1

i=0
be the set of all vertical chords lying on the vertical grid

line with abscissa x, and Sy =
{
Ly

(
p(2j), p(2j+1)

)}ky−1

j=0
be the set of all horizontal chords

lying on the horizontal grid line with ordinate y, corresponding to the isothetic polygon

P . Then the total vertical chord length at abscissa x for P and the total horizontal chord

length at ordinate y for P are given by

Lx =

kx−1∑
i=0

Lx

(
p(2i), p(2i+1)

)
, (4.6)

Ly =

ky−1∑
j=0

Ly

(
p(2j), p(2j+1)

)
, (4.7)

respectively, where, Lx

(
p(2i), p(2i+1)

)
(or, simply L

(i)
x ) denotes the length of the ith vertical

chord, namely Lx

(
p(2i), p(2i+1)

)
, and Ly

(
p(2j), p(2j+1)

)
(or, simply L

(j)
y ) that of the jth

horizontal chord, namely Ly

(
p(2j), p(2j+1)

)
, corresponding to P .

4.4.2 Proposed Method

Let c be any digital (optical/handwritten) character, and P (c) be the OIC constructed

using the algorithm Make-OIC as mentioned in Chapter 2 (see Sec. 2.6.1). Note that,

P (c) is subject to change with changes in the grid parameters, especially the separation g

between the (equi-spaced — horizontal or vertical) grid lines. Let cvu be the uth prototype

of the vth optical character in an alphabet. Let P v
u be the isothetic polygon corresponding

to the prototype cvu. Let Xv
u =

⟨
Lv
u,x : 1 6 x 6 wv

u + 1
⟩
and Yv

u =
⟨
Lv
u,y : 1 6 y 6 hvu + 1

⟩
be the respective ordered list of the total vertical chord lengths and that of the total

horizontal chord lengths corresponding to the polygon P v
u , where wv

u and hvu denote the

width and height of the isothetic polygon P v
u , which has, therefore, intersections with

exactly wv
u+1 number of vertical grid lines and hvu+1 number of horizontal grid lines. Few

sample lists of total horizontal chord lengths corresponding to the prototype of a Bangla

numeral ‘8’ for different grid sizes have been shown in Fig. 4.6 as a ready reference.

4.4.3 Dissimilarity Measure

Let cvu and cv
′

u′ be two prototypes. Let they are normalized w.r.t. their sizes, such that the

widths and the heights of their respective isothetic polygons, namely P v
u and P v′

u′ , become

identical (i.e., wv
u = wv′

u′ = w and hvu = hv
′

u′ = h) for a given grid of a given size, g. Then
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(a)

a prototype of the Bangla nu-

meric character ‘8’.

(b)

g = 16.

Y = ⟨2, 4, 4, 2, 2⟩.

(c)

g = 8.

Y = ⟨2, 3, 8, 8, 8, 4, 4, 3⟩.

(d)

g = 4.

Y = ⟨2, 3, 4, 5, 5, 16, 15, 14, 9, 6,
7, 6, 5, 5, 2⟩.

(e)

g = 2.

Y = ⟨4, 5, 6, 8, 8, 8, 9, 9, 8, 9, 28,
27, 27, 28, 15, 12, 9, 10, 10, 11, 12,

11, 10, 10, 9, 8, 3⟩.

(f)

g = 1.

Y = ⟨4, 6, 7, 8, 10, 12, 14, 15, 15,
15, 16, 16, 17, 16, 16, 15, 14, 13, 13,

13, 44, 53, 53, 53, 53, 53, 53, 29, 20,

21, 17, 16, 16, 16, 17, 18, 16, 16, 18,

19, 21, 21, 20, 19, 19, 19, 18, 17, 16,

14, 11, 4⟩.

Figure 4.6: Outer polygons and their total horizontal chord lengths (elements of Y) for

a typical prototype of the Bangla numeral ‘8’ (813 object/black pixels) for different grid

sizes, g.

we define the dissimilarity measure between the two prototypes by considering the total

isothetic chord lengths of their corresponding OICs. The dissimilarity measure, dx(c
v
u, c

v′
u′),

between cvu and cv
′

u′ , w.r.t. their vertical chords, is given by the sum over the difference

of each element (total chord length) in Xv
u with the corresponding element (that has 1-1

correspondence owing to the normalized width) in Xv′
u′ , which is given in Eqn. 4.8. The

dissimilarity measure, dy(c
v
u, c

v′
u′), between cvu and cv

′
u′ , w.r.t. their horizontal chords can

be defined in a similar way by considering Yv
u and Yv′

u′ , as shown in Eqn. 4.9.
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dx(c
v
u, c

v′
u′) =

w+1∑
x=1

∣∣∣Lv
u,x − Lv′

u′,x

∣∣∣ . (4.8)

dy(c
v
u, c

v′
u′) =

h+1∑
y=1

∣∣∣Lv
u,y − Lv′

u′,y

∣∣∣ . (4.9)

Using dx and dy, the overall dissimilarity between P v
u and P v′

u′ (between cvu and cv
′

u′ ,

thereof) is given by

d(cvu, c
v′
u′) = dx(c

v
u, c

v′
u′) + dy(c

v
u, c

v′
u′). (4.10)

Thus, higher the value of d(cvu, c
v′
u′), lesser is the similarity between the prototypes cvu and

cv
′

u′ , and lesser the value of d(cvu, c
v′
u′), higher is the similarity between them.

4.4.4 Ranking of Prototypes

Using the overall dissimilarity, given in Eqn. 4.10, the prototypes available in a particular

database D for a given alphabet are ranked as follows.

Let Cv
u =

⟨
cv

′
u′ : cv

′
u′ ∈ D; cv

′
u′ ̸= cvu

⟩
be the (ordered) list in the nonincreasing order

of the dissimilarity measures (d(cvu, c
v′
u′)) of the prototypes in D as measured from the

prototype cvu. Let the database D contains nv number of vth prototype, out of which

mv
u(6 nv) prototypes are found to be among the first nv entries in Cv

u. It is evident that, if

mv
u = nv, then we may consider the prototype cvu as an obvious (and hence less mistakable)

representative of the vth character captured in D; whereas, if mv
u is (appreciably) less than

nv, then the prototype cvu is an offbeat (and hence less unmistakable) representative of the

concerned character. In other words, if mv
u1

corresponding to a prototype cvu1
is greater

than mv
u2

corresponding to a prototype cvu2
(both the prototypes being in representation

of the same (vth) character), then the former has more redundancy than the latter; and

we consider that cvu1
has a higher rank than cvu2

. That is, in this work, lower the rank,

better the prototype.

Further, if the prototypes cvu1
and cvu2

havemv
u1

= mv
u2

= mv
u (say), then we consider the

mean dissimilarity measures of their firstmv
u correct prototypes in Cv

u1
and Cv

u2
respectively.

Hence, if d
v
u1

and d
v
u2

be the respective means (of dissimilarity measures) of cvu1
and cvu2

,

and if, w.l.o.g., d
v
u1

< d
v
u2
, then cvu1

has a higher rank than cvu2
. In case of a tie (i.e.,

d
v
u1

= d
v
u2
), we consider that the two prototypes have same rank.

Using the above ranks of nv prototypes for the vth character, we get an ordering

of them (in nondecreasing order of their ranks), which is stored in the (ordered) set
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A =
⟨
cvu1

, cvu2
, . . . , cvunv

⟩
. Note that, in A, cvu occurs before cv

′
u′ if and only if either

mv
u < mv

u′ or d
v
u > d

v
u′ .

4.4.5 Goodness of the Database

It is evident from Sec. 4.4.4 that an ideal database of prototypes should be such that

for each prototype (cvu) corresponding to each (vth) character of the alphabet, each other

prototype cvu′ of that character class should have d(cvu, c
v
u′) greater than d(cvu, c

v′′
u′′) corre-

sponding to any prototype cv
′′

u′′ of any other class. That is, for an ideal database, we have

mv
u = 0,∀u, ∀v. For a non-ideal case, the goodness of the database is related with the

departure of the prototypes from the ideal situation. The goodness of the collection of all

the prototypes corresponding to the vth character is, therefore, given by

GIv =
1

nv

nv∑
u=1

(
1− mv

u

nv

)
= 1− 1

nv
2

nv∑
u=1

mv
u, (4.11)

since (nv−mv
u)/nv signifies the goodness of the uth prototype of the vth character present

in D.

Hence, the goodness index of a database D containing the prototypes of an alphabet

of N characters is defined by

GID = 1
N

N∑
v=1

(
1− 1

nv
2

nv∑
u=1

mv
u

)
= 1− 1

N

N∑
v=1

1
nv

2

nv∑
u=1

mv
u,

(4.12)

where, GID = 1 implies maximum/ideal goodness of D, and its goodness declines as GID
falls short of 1.

4.5 Experimental Results

4.5.1 Multigrid Shape Code

We have used two sets of binary images for our experiments: (i) database D1 of 1034 logo

images, received on request, from Prof. Anil K. Jain and Aditya Vailya of Michigan State

Univ., USA, and (ii) database D2 of 110 logo images collected from the Internet.

The proposed method is implemented in C on a Sun Ultra 5 10, Sparc, 233 MHz, the

OS being the SunOS Release 5.7 Generic. The results of the experiments done on the

above two sets of image database are shown in Table 4.1. All the images are normalized to
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Query image

(a) g = 16 (b) g = 8 (c) g = 4 (d) original

Figure 4.7: The results of querying the database with the query image are shown. The

images in each column are ordered from top to bottom in increasing hamming distance

while different columns correspond to different grid sizes.
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Table 4.1: Results (average storage and CPU time per image) for databases D1 and D2

D1 (1034 images) D2 (110 images)

Storage required CPU Time Storage required CPU Time

grid size bytes % millisecs. bytes % millisecs.

16 51363 0.60 22.10 456 0.05 25.17

8 126113 1.49 31.04 12338 1.37 34.79

4 298943 3.53 52.40 32038 3.55 64.85

2 677208 8.00 105.97 71532 7.93 123.32

1 1422700 16.80 227.70 151296 16.78 265.96

Total 2576327 30.41 439.21 267660 29.70 514.07

size 256× 256. The table shows the amount of storage (in bytes as well as in percentage)

required for the shape codes for different grid sizes. It also shows the average CPU time

(per image) required to construct the shape code. The storage requirement is remarkably

lower for coarse grids compared to finer grids, as in a finer grid the shape is captured in

detail. The shape codes for grid sizes 16, 8, and 4 are sufficient to produce good retrieval

results and the total storage required is approximately 15 percent. On the other hand,

for better visualization, the shape codes of grid size 2 or 1, depending upon the quality

requirement, will be sufficient, consuming only 8 or 16 percent of storage. It may also be

noted that the CPU time requirement decreases appreciably with the increasing grid size,

which demonstrates the speed and efficiency of the proposed technique.

In Fig. 4.7, the retrieved images on the basis of shape codes for different grid sizes are

shown. It may be noticed that the ranking of the retrieved images gets refined with the

denser grid. For object visualization, shape code of grid size 4 gives a fairly good idea

about the object. However, for better quality visualization, the shape code of grid size 2

or 1 may be required, as shown in Fig. 4.8.

4.5.2 Shape Complexity Measure

We have tested the algorithm SCOPE on two sets of images: 1) test images, which are

arbitrarily drawn objects, and 2) logo images, obtained from Prof A.K. Jain on request.

As shown in Fig. 4.9, the complexity of a square (a) is 0, whereas that of a convoluted

shape (f) is 0.74. It is evident from the shape of the isothetic polygon of the square

image that there are no 2700 vertices, so there are zero reductions, thereby assigning zero
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(a) g = 1. (b) g = 2.

Figure 4.8: Shape codes extracted at low grid sizes (i.e., 1 and 2) aid in object visualization.

(a) 0.00 (b) 0.07 (c) 0.08

(d) 0.15 (e) 0.22 (f) 0.74

Figure 4.9: The shape complexity values for a set of synthetic images.
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(a) 0.077 (b) 0.082 (c) 0.123

(d) 0.130 (e) 0.150 (f) 0.167

Figure 4.10: The shape complexity values for a set of logo images.

complexity to it. Also, for the logo images, as shown in Fig. 4.10, the shape complexity

increases with the increasing structural complexity. This method is robust as compared

to the methods where the shape contour is used, because the contour extraction is prone

to noise in the image. The complexity of the algorithm is output sensitive, and depends

upon the number of grid points lying on the OIC corresponding to the object.

4.5.3 Ranking of Optical Character Prototypes

We have implemented the algorithm for finding the isothetic chord lengths and hence

ranking the prototypes of a database in C in SunOS Release 5.7 Generic of Sun Ultra

5 10, Sparc, 233 MHz. We have experimented on the ISI database of isolated Bangla

characters [ISI (2002)], and a part of CEDAR database [Hull (1994)], and some results on

ISI Bangla database are presented here.

For a particular database, we consider the width and height of the bounding box (BB)

of all the prototypes of each (vth) character, and take their averages to get the average

width (wv) and average height (hv) of the BB corresponding to the vth character. The
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Figure 4.11: Instance of a prototype that needs two outer polygons to cover it completely

(for g = 2). The chord lengths associated with such a prototype is obtained by adding the

respective chord lengths of the two polygons.

BB of each prototype cvu has been normalized to width= wv and height= hv, and then

binarized to derive their chord lengths and subsequent ranking.

It should be mentioned here that, in the stage of finding the OIC, we get a single

outer polygon of a prototype in most of the cases due to the implicit property of an

isothetic polygon in covering small perturbations and spurious errors (that crept in during

acquisition of prototypes and subsequent processing, especially binarization) present in

a prototype. However, if there are multiple outer polygons (in case of too much noisy

distractions), then we add the corresponding chord lengths (Lx and Ly, Def. 4.4.2) of all

the polygons1 to get the total chord lengths corresponding to that character. Fig. 4.11

illustrates such an unusual case for g = 2.

We have executed our scheme for different possible values of grid size, from g = 1 to

g = 16, and have found that the ranking is dependent on g. Average width and height

of the BB of a prototype are the major parameters that decide a proper value of g, and

the ranking output thereof. From Fig. 4.6, it is evident that a small value of g picks up

too much details of a prototype, whereas a large value neglects/overlooks some essential

part (such as a loop/hole), thereby producing unexpected impression of its structural

information.

Few sample prototypes (normalized and binarized), their isothetic polygons, and their

ranked order based on total isothetic chord lengths have been shown in Fig. 4.12 for grid

size g = 4. We have also given their mean dissimilarity measures, namely d (Sec. 4.4.4), to

give an idea of the numerical values in the output of our experimentation. As explained in

Sec. 4.4.4, since for the vth character, we have considered only the other prototypes of vth

character which are within the first nv prototypes (of minimum dvu), the d’s in Fig. 4.12

are not increasing with the ranks. In Fig. 4.13, the best (unobvious/offbeat) prototypes

1Actually, a large polygon is there that represents the prototype and the small one(s) just cover(s) its

noisy part(s) (Fig. 4.11).
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rank= 1,

d =129

rank= 10,

d =135

rank= 20,

d =151

rank= 30,

d =137

rank= 40,

d =118

rank= 50,

d =111

rank= 1,

d =119

rank= 10,

d =146

rank= 20,

d =122

rank= 30,

d =117

rank= 40,

d =126

rank= 50,

d =132

Figure 4.12: Sample prototypes of Bangla numerals ‘8’ (top row) and ‘9’ (bottom row) [ISI

(2002)] shown with their ranks (for g = 4) in increasing order from left to right. For each

numeral, number of prototypes is 50. Note that, a prototype with lower rank carries more

significance in the database, since it is “uncommonly found” as evident in this enumeration.

(See text for further explanations.)

and the worst prototypes for some Bangla vowels [ISI (2002)] corresponding to g = 4 have

been given to illustrate the elegance and effectiveness of the proposed method.

The quantitative measures of our method, such as change of goodness index (GID)

(Sec. 4.4.5) of the database (ISI Bangla) and CPU times versus grid-size g, have been

given in Table 4.5.3. Note that, the total isothetic chord lengths (horizontal/vertical) of a

prototype are found during the construction stage of the corresponding isothetic polygon.

Hence the CPU time of construction of their lengths (Lx and Ly) is included in that of

finding the isothetic polygon (tP ). Further, to have a glance of the distribution of mean

dissimilarity measures and the number of prototypes, mv
u (of same character in first nv

ones, see Sec. 4.4.4), we have given a plot in Fig. 4.14 corresponding to few numeric

characters of ISI Bangla database, which justifies the goodness level of the database.

4.6 Conclusion

In this chapter, we have presented three different applications of outer isothetic cover

of a digital object for analysis of the shape information contained in it. The multigrid
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‘A’

rank = 1 rank = 50

‘AA’

rank = 1 rank = 50

‘I’

rank = 1 rank = 50

‘II’

rank = 1 rank = 50

‘U’

rank = 1 rank = 50

‘UU’

rank = 1 rank = 50

‘O’

rank = 1 rank = 50

‘AU’

rank = 1 rank = 50

Figure 4.13: Best offbeat prototypes (rank = 1) and worst offbeat prototypes (rank = 50)

corresponding to some vowels of Bangla alphabet [ISI (2002)].

shape code derived from the OIC captures the topological feature of an object. The shape

complexity measure based on the reduction rules applied on the OIC is a unique measure of

complexity of digital objects. It has also been shown that how the isothetic chord lengths

of an OIC describing an optical character can be used for ranking of optical character

prototypes.

In Sec. 4.2.1, we have introduced a novel technique for determining the varying reso-
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(a) Bangla numeric character ‘0’.
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(b) Bangla numeric character ‘1’.
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(c) Bangla numeric character ‘8’.
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(d) Bangla numeric character ‘9’.

Figure 4.14: Distribution of mean dissimilarity measure and mv
u (Sec. 4.4.4) for all proto-

types of vth character corresponding to four typical numeric figures of ISI Bangla database

(with g = 4).
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g GID Average CPU

time (millisecs.)

per prototype
tP td total

2 0.427 8 53 61

4 0.662 6 42 48

6 0.630 5 34 39

8 0.549 5 26 31

10 0.411 3 17 20

12 0.396 2 11 13

Table 4.2: Results on ISI Bangla database.

lution shape codes of a binary image using the classical properties of isothetic polygons.

An efficient retrieval scheme is designed and implemented to demonstrate the power and

versatility of such shape codes, irrespective of database size and diversity. The hierarchi-

cal definition of shape codes defined over grid configuration of increasing resolution has

an inherent property of capturing the topological features of an image in near-optimal

number of iterations, which shows the elegance and strength of the algorithm. The pro-

posed method produces a very effective indexing scheme for binary logo image databases,

as observed in our experiments on two different databases, and in particular, for object

type of images. It may not however produce good results for other databases like human

face, natural scenes, etc. For gray scale images, proper adaptation of this technique, such

as Euler Vector [Bishnu et al. (2006)], may yield desired results, but this area needs fur-

ther investigation. Experimentation on storing the shape codes for minimization of bits

is another area which is presently under research and would be reported in some future

publication.

In this chapter, we have also presented a shape complexity measure of objects in the

digital geometry domain without using any Euclidean measure. The computations being in

the integer domain, apart from one division operation1 in the shape complexity expression,

turn out to be very fast. As with the variation of the grid size the desired compactness of

the object is obtained, this readily lends itself to multiscale treatment. Also as a corollary

to this work, a number of questions arising in the emerging domain of digital geometry,

1The 0-1 scale of SCOPE needs the division, which can be avoided if we consider the upper limit of

the measure as max
∑

Lk for a given (normalized) background grid.
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such as, how many distinct isothetic polygons can be drawn on a given grid plane, how

difficult it is to generate the exhaustive set of isothetic polygons in the n × n grid, etc.

Another interesting problem may be to generate the string (s) that represent the isothetic

polygon(s) of a given complexity.

The idea of ranking the prototypes in a large database of optical/handwritten charac-

ters based on isothetic chord lengths has a novel and prospective potential in the domain

of OCR/HCR, which is exhibited by the results and the quantitative measures shown in

this chapter. Since deriving the structural information of a character by thinning or edge

detection is vulnerable to the impurity of the character, the feature of isothetic chord

length may serve as an alternative solution. However, instead of a single grid size, g,

multiple grid sizes may be considered at a time for a particular database to derive the

multi-valued features of chord lengths for subsequent ranking. Using the ranked proto-

types for recognition of handwritten characters is another interesting problem that needs

intense study and experimentation.





Chapter 5

Polygonal Approximation of Thick Digital Curves

5.1 Introduction

Exploration of properties, characterizations, and representations of digital curves (DC) has

been studied over the years since the debut of digitization of graphical objects and visual

imageries [Klette and Rosenfeld (2004a,b), Rosenfeld and Klette (2001)]. Nevertheless,

in the abundance of various problems and their algorithms related with digital objects,

polygonal approximation of a digital curve/object has received special attention for its

efficient representation and potential applications in connection with analysis of digital

images [Aken and Novak (1985), Attneave (1954), Imai and Iri (1986)]. The set of straight

edges of the polygons carries a strong geometric property of the underlying objects that

have been approximated. Such information can be used for efficient high-level description

of the objects and for finding the similarity among different objects in the digital plane.

Since an optimal solution of polygonal approximation targeted to minimize the number

of vertices, and space thereof, is computationally intensive, several heuristic and meta-

heuristic approaches based on certain optimality criteria have been proposed over the

last few decades, and some of these that have come up in recent times may be seen in

the literature [Bhowmick and Bhattacharya (2007), Perez and Vidal (1994), Schröder and

Laurent (1999), Schuster and Katsaggelos (1998), Tanigawa and Katoh (2006), Teh and

Chin (1989), Yin (2003)]. Further, there also exist various studies and comparisons of the

proposed techniques, e.g., [Bhowmick and Bhattacharya (2007), Rosin (1997), Teh and

Chin (1989), Yin (1998)], to cite a few. This entire collection of polygonal approximation

algorithms, however, consider the input digital curve to be strictly “irreducible”1 (and

1A digital curve C is said to be “irreducible” if and only if removal of any grid point p in C makes C

disconnected.
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connected thereof), failing which the algorithm may produce undesired results pertaining

to polygonal approximation.

In the case of a thick DC, thinning is required to ensure the property of “irreducibil-

ity” so that it can qualify for the subsequent process of polygonal approximation. A

thinning procedure, being plagued by asymmetric erosion in the thick regions and shifting

of junction/end points, and being liable to slow down the overall run time of the approx-

imation process, is susceptible to deteriorate the results of approximation. Furthermore,

the result goes on worsening if there occur some missing grid points (pixels) in the input

DC — which splits, therefore, into multiple DC’s — producing several approximate poly-

gons instead of a single polygon, thereby giving rise to misleading impression, and more

specifically, posing severe problems in the subsequent applications.

5.1.1 Existing Methods

Algorithms for approximating a given digital curve or contour, which is one-pixel thick,

had been proposed since the early period of digitization [Aken and Novak (1985), Attneave

(1954), Imai and Iri (1986)]. Efficient and suboptimal algorithms of several variants had

been proposed later [Bhowmick et al. (2005b, 2006), Biswas et al. (2005b), Perez and Vidal

(1994), Schröder and Laurent (1999), Schuster and Katsaggelos (1998)]. The problem of

polygonal approximation of a digital curve persists to be engrossing even today, and with

the emergence of new paradigms that open up new possibilities, a number of algorithms

have been proposed in recent times [Asano and Kawamura (2000), Asano et al. (2003),

Chen and Chung (2001), Climer and Bhatia (2003), Guru et al. (2004), Xie and Ji (2001)].

All these methods are meant for polygonal approximation of a strictly one-pixel thick

digital curve and mostly based on the conventional techniques, such as an appropriate

distance criteria, usage of masks, eigenvalue analysis, Hough transform, etc. In general, all

these algorithms can be broadly classified into two categories — one in which the number

of vertices of the approximate polygon(s) is specified, and the other where a distortion

criterion (e.g., maximum Euclidian distance) is used. The principles and salient features

of some of these algorithms are mentioned below.

Amongst the earlier algorithms, the scan-along algorithm proposed byWall and Daniels-

son (1984) needs a mention here for its high speed of execution owing to a simple yet ef-

fective concept of area deviation for each line segment. The algorithm outputs a new line

segment when the area deviation per unit length of the current approximating segment

exceeds a prescribed threshold. The provision for simplifying the associated computations
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is also available, e.g., by replacing
√

x2 + y2 with (|x| + |y|) or with max{|x|, |y|}. How-

ever, the algorithm lacks the scope of producing the desired result for (self-)intersecting

or branching curves when the input set of points constituting the curve-set is not given in

the order that defines the curve.

Another procedure proposed by Teh and Chin (1989) detects the dominant points

in a closed digital curve, given in the chain-coded representation as input. A dominant

point corresponds to curvature maxima in the local neighborhood of the concerned curve.

The procedure first determines the region of support for each point based on its local

properties, computes measures of relative significance (e.g., cosine curvature, k curvature,

1 curvature, etc.) of each point, and finally detects dominant points by non-maxima

suppression. However, since the procedure needs trigonometric functions for curvature

finding and performs non-maxima suppression in multiple iterations (4 passes), its runtime

is quite high.

Later, the concept of perceptual organization was introduced by Hu and Yan (1997),

which attempts to match the human performance. The approximation process is divided

into three stages. In the first stage, points are grouped together using a linking-merging

approach based on the principles of proximity, similarity, and symmetry. In the second

stage, the linked curve is smoothed so as to suppress noise and delete visually insignificant

points. Finally, a rule-based strategy is applied to preserve the feature points while re-

ducing the number of segments in the approximated polygon. The procedural complexity

and the runtime are high due to three stages, each using multiplications for the entire set

of points on the curve.

Another method of polygonal approximation using ant colony search technique is pro-

posed by Yin (2003). A directed graph is used to represent the problem with the objective

of finding the shortest closed circuit on the graph under the problem-specific constraints.

A number of artificial ants are distributed on the graph, which communicate with one an-

other through the pheromone trails as a long-term memory guiding the future exploration

of the graph through certain node transition rules and pheromone updating rules. The

procedural complexity is very high because of its inherent recursive nature and complex

calculations, one of which is exponentiation in selection problem of a node.

A comparative study of the above algorithms can be found in some of the recent pa-

pers [Bhowmick and Bhattacharya (2007), Yin (1998)]. Since most of these algorithms

require intensive floating-point operations in order to analyze the discrete curvature [An-

derson and Bezdek (1984), Fischler and Wolf (1994), Freeman and Davis (1977), Teh and

Chin (1989), Wuescher and Boyer (1991)], their runtime for a complex digital curve is
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Figure 5.1: Cellular envelope E(C,G) of a real-world (thick, rough, and reducible) curve-

shaped object C for cell size g = 8.

quite high. For other details, the related procedures in several other works [Bezdek and

Anderson (1985), Dunham (1986), Pavlidis (1980), Rosin (1997), Teh and Chin (1989),

Wall and Danielsson (1984), Wu (1984), Yin (2003, 2004)] may be looked at. Further, for

thick, rough, and weakly disconnected digital curves (which are usually representatives

of the corresponding real-world objects), the algorithms are susceptible to produce un-

expected results. On the contrary, the proposed algorithm can deal with such non-ideal

curves, and yields a suboptimal solution of polygonal approximation by using primitive

integer operations only.

5.1.2 Main Results

These above-mentioned problems have been investigated in this chapter, using the novel

concept of cellular envelope of an arbitrary digital curve whose thickness may vary non-

uniformly.

A brief outline of the work is as follows. In Sec. 5.2, we present the concept of cellular

envelope of an arbitrary DC1 using its inner and outer isothetic polygons [Bhattacharya

and Rosenfeld (1990), Biswas et al. (2005b), Yu and Thonnat (1992)]. Sec. 5.3 discusses

some digital geometric properties of cellular straight line segments (CSS), followed by

the motivation and underlying principle for their extraction (stage II) from the cellular

envelope of the input DC obtained in stage I. In Sec. 5.4, we present our method PACE

(Polygonal Approximation of Thick Digital Curves using Cellular Envelope) along with

1In this work, we use the term “DC” to denote a digital curve (reducible or irreducible) as well as a

curve-shaped object that may contain multiple disconnected segments producing the impression of a single

object.
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a brief analysis. Sec. 5.5 reports some test results on some objects with variable thickness

values. Finally in Sec. 5.6, we summarize the strength of our method, comment on its

future scope and further works, and point out the possibilities of polygonal approximation

in the cellular plane.

5.2 Cellular Envelope

Let C be a given DC, and G = (H,V) be the digital grid (Defn. 2.2.5). Then the cellular

envelope of C, corresponding to the cellular plane defined by G, is given by

E(C,G) = Eout(C,G)r Ein(C,G) (5.1)

where Eout(C,G) and Ein(C,G) represent the respective outer and inner envelopes corre-

sponding to C w.r.t. G. Please note that Eout(C,G) consists of one outer polygon and

Ein(C,G) may consist of zero or more outer (pseudo) hole polygon (see Defn. 2.2.8) de-

pending on the type of the curve C.

The cellular envelope of a DC (curve-shaped object) C, which is rough, not irreducible,

and disconnected (since it has uneven thickness and stray pixels) has been shown in

Fig. 5.1. Note that, the cellular envelope E(C,G) shown in this figure is for the cell

size g = 8, and the envelope “tightly encloses” all the points of C with no points lying

outside E(C,G). The cellular envelope E(C,G) can be computed with the help of the

algorithm Make-OIP which outputs the outer polygon and outer (pseudo) hole polygons,

as mentioned in Sec. 2.5.3. However, for the digital curve C we have computed the cellular

envelope, which is the set of cells that tightly enclose C, by the method mentioned in

Sec. 5.4.1.

5.3 Cellular Straight Segments

There exist several works on constructs, properties, and applications of cell complexes and

cellular straight segments (CSS) in which the primal as well as many alternative definitions

of CSS are found [Fam and Sklansky (1977), Geer and McLaughlin (2003), Kim (1982),

Klette (2000), Klette and Rosenfeld (2004b)]. For example, as indicated in [Klette and

Rosenfeld (2004b)], a CSS C can be defined as the minimal set of cells c specified by a

straight line segment L ∈ R2 such that

L ∩ c ̸= ∅, ∀ c ∈ C; (5.2)

and L ⊂ C, (5.3)
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which makes its primal definition.

Another definition of CSS involving the Euclidean metric space is given by Fam and

Sklansky (1977), in which it has been shown that a cellular curve C is a CSS if and only if

there exist a direction θ and a pair of (parallel) lines in R2 (tangential to and) containing

C, such that the distance between, and measured in the direction (say, θ⊥) perpendicular

to this pair of lines, does not exceed the distance (along θ⊥) between the closest pair of

parallel lines containing the square formed by (2× 2 =) 4 cells sharing a common vertex.

In a recent work [Geer and McLaughlin (2003)], an Euclidean-free definition of CSS

has been given in terms of “fully partitioned (finite) strings” (S(0)) and “higher order

derived strings” (S(j) : j ≥ 1), the latter being derived iteratively from the preceding

string (i.e., S(j−1)) by replacing the majority symbol substrings of S(j−1) by its length,

and by deleting the minority symbols of S(j−1). Subsequently, it has been shown that a

string S (= S(0)) represents a CSS, provided the jth order derived string of S exists for

all j ≥ 0.

Alternatively, in the perspective of digital straightness, if we consider the center points

of these edge-connected cells as grid points, then it follows that a family of cells is edge-

connected if and only if the set of center points of these cells is 4-connected. Thus CSS

provides a suitable option — apart from that provided by digital straight line segments

(DSS) [Rosenfeld (1974)] — for adjudging the straightness of a curve in the digital plane,

as indicated in a contemporary work [Klette and Rosenfeld (2004b)]. A linear off-line

algorithm for CSS recognition, based on convex hull construction, is briefly sketched in

an earlier work [Kim (1982)]. In this chapter, we have designed an online algorithm to

derive the set of CSS’s from the cellular envelope (Sec. 5.2) of a curve-shaped object,

which cannot be subjected to direct DSS extraction/polygonal approximation owing to its

inherent nature of possessing varying thickness, as mentioned in Sec. 6.1.

We have considered the center of each cell for extracting the longest line segment

iteratively in (a part of) a cellular envelope E(C,G) corresponding to the given curve C

and given cell size g imposed by the grid G. We have used some digital geometric properties

of DSS formulated by earlier authors [Klette and Rosenfeld (2004b), Rosenfeld (1974)].

Before explaining our algorithm, the DSS properties (defined w.r.t. chain codes [Freeman

(1961a,b)]) relevant to our work, which were established earlier [Rosenfeld (1974)], and

later (see [Klette and Rosenfeld (2004b)]) correlated with the other straightness options

such as cellular straightness, are mentioned below1.

1In our work, we have considered 4-connectivity of a DSS, i.e., having chain codes lying in the set

{0, 2, 4, 6}, since the cells in the cellular envelope E(C,G) obtained for the curve C (Sec. 5.2) are connected
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(a) (b) (c)

Figure 5.2: Examples of cellular curves explaining the significance of straightness proper-

ties (R1)–(R4). Note that the directed black path that traces the ordered set of centers

of the cells shows the digital curve (DC) corresponding to a cellular curve. The curves in

(a) and (b) are CSS’s (the corresponding real lines being shown in blue); but the curve

in (c) is not, since there does not exist any real line that can pass through the set of cells

defining this curve (see text for explanation).

(R1) The runs have at most two directions, differing by 900, and for one of these directions,

the run length must be 1.

(R2) The runs can have only two lengths, which are consecutive integers.

(R3) One of the run lengths can occur only once at a time.

(R4) For the run length that occurs in runs, these runs can themselves have only two

lengths, which are consecutive integers; and so on.

Few examples of cellular curves/envelopes are shown in Fig. 5.2 to explain the signifi-

cance of properties (R1)–(R4). For the curve in (a), if we consider the center of each cell as

a grid point, as mentioned earlier, then its chain code is 000200020002000 = 03203203203,

which consists of codes 0 and 2 only, and contains consecutive 0’s but no two consecutive

2’s, thereby satisfying property (R1). Regarding (R2), (R3), and (R4), since there is only

one run length (of 0’s), this curve trivially satisfies these three properties, and becomes a

CSS. Similarly, since the curve in (b) has chain code 03203203202, which obeys (R1)–(R4),

it is a CSS. On the contrary, the curve in (c) has chain code 03203205201, which satisfies

(R1), but violates (R2) as 0 has non-consecutive run lengths (3 and 5) — even if we do

not consider the leftmost and the rightmost run lengths (which are 3 and 1, respectively),

and so it is not a CSS.

In the proposed method for extraction of CSS from the cellular envelope E(C,G), we

have adhered to the properties (R1–R4). In addition, we have considered that also the

leftmost and the rightmost run lengths of a CSS should follow property (R2) (which is not

in 4-neighborhood. In a DSS with 8-connectivity, however, the runs would have directions differing by 450

as stated in [Rosenfeld (1974)].



114
Chapter 5

Polygonal Approximation of Thick Digital Curves

step 1. Initialize each entry in Ae and each entry in Ac with ‘0’.

step 2. DFS-Visit on C starting from p using 8-connectivity to reach the nearest cell edge ep of G.

step 3. DFS-Visit on Ae starting from the entry Ae(ep) corresponding to ep in Ae using 4-

connectivity (of ‘1’s in Ae) to assign:

‘1’ to the entry in Ae corresponding to each cell edge e intersected by C, and

‘1’ to the entry in Ac corresponding to each of the two cells with e as the common edge.
step 4. DFS-Visit on Ac starting from some cell (e.g., cp, the left adjacent cell of ep) of the cellular

envelope formed by the ‘1’s obtained in step 3 using 4-connectivity (of ‘1’s in Ac); and check

whether the entry Ac(c) corresponding to the cell c currently under DFS-Visit satisfies

at least one of the following two conditions:

(i) both the left and the right adjacent entries of Ac(c) are ‘1’s;

(ii) both the bottom and the top adjacent entries of Ac(c) are ‘1’s.

If (i) or/and (ii) is/are true, then terminate the DFS-Visit, since the current cell c lies either

on a horizontal edge/part (when (i) satisfies) or on a vertical edge/part (when (ii) satisfies)

of the cellular envelope of C; and declare c as the seed cell c0 for stage II.
step 5. If no seed cell c0 is found in step 4, then the cell size is not sufficiently large compared to the

(minimum) thickness of the input curve C. Hence the user may be asked to increase the cell

size (i.e., grid separation g); alternatively, an arbitrary cell of the envelope may be considered

to be the seed cell c0.

Figure 5.3: Algorithm Find-Cellular-Envelope (C,G, p) in stage I.

mandatory as suggested by Rosenfeld (1974)).

5.4 Polygonal Approximation Using Cellular Envelope

The method of finding the (cellular) polygonal approximation of a curve-shaped object C

consists of two stages, namely stage I and stage II. In stage I, we construct the cellular

envelope E(C,G) based on the novel concept of combinatorial arrangement of the cells

containing C. In stage II, we analyze the cells of E(C,G) to extract the straight pieces

from E(C,G), considering the center of each cell of E(C,G) as a grid point and using the

properties (R1)–(R4), as mentioned and explained in Sec. 5.3. We have designed and

implemented two algorithms, one for each stage, which are briefed up next.

5.4.1 Stage I: Finding the Cellular Envelope

We consider any point p ∈ C as the start point defining the object C. For the time being,

consider that C is connected in 8-neighborhood. Then using DFS-Visit (Depth First
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Search algorithm [Cormen et al. (2000)]), we can reach the nearest edge ep of a cell that

intersects C. Starting from ep, using DFS-Visit on the edges of the cells, we visit those

cell edges that are intersected by E; this procedure helps us in constructing the edge matrix

Ae and the cell matrix Ac (Sec. 5.2), which are finally used to obtain E(C,G). The major

steps of the algorithm Find-Cellular-Envelope (C,G, p) to find the cellular envelope

of a connected (and of uniform or non-uniform thickness) object C w.r.t. the cellular array

imposed by the grid G are given in Fig. 5.3.

In the case C has some missing points/pixels, i.e., if it suffers from disconnectedness,

then it may happen that none of the edges of a cell is intersected by C, although C is

contained in that cell. To circumvent this problem, we have to directly construct the cell

matrix Ac, without constructing Ae, which would, however, increase the time complexity

(and the run time, thereof) of stage I. It may be noted that, if the curve possesses too

much gap/disconnectedness, so that the gap is even larger than the cell size, then this gap

may result in creating a discontinuity (in the edge-connectivity) of the cells constituting

the envelope E(C,G), which is then fragmented into two or more pieces, thereby producing

faulty results. Choosing an appropriate cell size is, therefore, necessary to obtain the

desired cellular envelope of a disconnected DC in stage I.

5.4.2 Stage II: Finding the Cellular Straight Segments

In stage II, the algorithm Find-CSS (E, c0)
1, given in Fig. 5.4, extracts the ordered set

of CSS’s from the cellular envelope E, as follows. W.l.o.g., since in stage I, the seed cell

c0 lies on a horizontal part (or on a vertical part, or on a thick part) of E, we negotiate

two traversals (step 1) — one towards left and the other towards right of (center point

of) c0 — to obtain two CSS’s with complying (cellular) straightness such that the sum

of their lengths is maximal, and merge these two to get the first CSS, C1, to be included

in the ordered set T of terminal cells (step 2). The starting cell for extracting the next

CSS (step 3) from the cellular envelope is, therefore, considered to be the right terminal

cell c1 of C1. We use the algorithm DFS-Visit [Cormen et al. (2000)] to explore the

cells constituting the envelope and to extract the CSSs, whose terminal cells are finally

reported in T .

Time complexity. If N be the number of points defining the curve C, then its envelope

E consists of O(N/g) cells. As we have used DFS-Visits, the time complexity in stage I

1Now onwards, we denote the cellular envelope of C by E for simplicity.
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step 1. Traverse (cell-wise) towards left and towards right from c0 to extract all possible pairs of CSS

starting from c0, such that

(i) the chain code of each CSS, and

(ii) the combined chain code of the two CSS’s

in each pair are in conformity with properties (R1)–(R4);

step 2. Find a/the pair of CSS that has maximum sum of lengths;

merge this pair into a single CSS, namely C1;

declare c0 and c1 as the left and the right terminal cells of C1;

store (the centers of) c0 and c1 in the ordered set T .

step 3. Start from c1 to extract the next (longest) CSS, C2 := (c1, c2), with terminal cells c1 and c2;

store c2 in T; and mark the cells defining C2 as visited.
step 4. Repeat step 3 starting from the last entry (i.e., terminal cell) in T to get the CSS’s defining

E until all cells of E are visited (using DFS-Visit).

Note: (i) If a CSS has both its terminal cells in the 4-neighborhood of another (longer)

CSS, then the former (shorter) CSS is not included in T (Fig. 5.5(a)). (ii) For a

bifurcating/branching CSS, we store both its terminal cells in T (Fig. 5.5(b)).

step 5. Declare T as the polygonal approximation of the cellular envelope E.

Figure 5.4: Algorithm Find-CSS (E, c0) in stage II.

is bounded by O(N/g). In stage II, extraction of each CSS Ci takes O(|Ci|) time, where

|Ci| is the number of cells defining Ci. Hence, the time complexity to extract all CSS’s

in step II is O (
∑
|Ci|) = O(N/g), which gives the total time complexity of PACE as

O(N/g).

5.4.3 Efficiency of the Algorithm

The deviation of the approximate polygon(s) (or polychain(s)) from the input set of digital

curves determines the efficiency of a polygonal-approximation algorithm. Two such mea-

sures to assess the quality of approximation corresponding to a curve C are (i) compression

ratio CR = N/M and (ii) the integral square error (ISE) between C and P , N being the

number of points in the (thinned) curve C and M being the number of vertices in the

approximate polygon P . It may be noted that there is always a trade-off between CR and

ISE [Held et al. (1994), Rosin and West (1995), Sarkar (1993)].

The proposed algorithm is not constrained by the number of vertices of the output

polygon. Hence, we cannot use a measure of approximation withM as an input parameter.

Since the precision of the cellular envelope E corresponding to C depends on the cell
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c’

longer  CSS

shorter  CSS

c

(a) A short CSS with each of its ter-

minal cells lying at 4-N of a longer

CSS is not considered as a valid CSS

(Note (i) of step 4 in Fig. 5.4).

c’

c"

C ’CSS:

CSS: C "

c

(b) For a branching CSS, C ′′, each of

its terminal cells (one is c′′ and the

other not shown) is stored in T

(Note (ii) of step 4 in Fig. 5.4).

Figure 5.5: Inclusion and exclusion of terminal cell(s) of CSS in T .

size, namely g, which, in turn, decides the quality of approximation, the approximation

parameter of our algorithm is considered as g, depending on whichM would change. A high

value of g is likely to produce a slacked approximation, whereby M decreases accordingly,

whereas a low value of g is expected to output a tight approximation requiring a higher

number of vertices to constitute P . Thus, the number of vertices, M , is a measure of the

quality of approximation for a given grid size, g. Hence, we measure the efficiency of our

algorithm using the compression ratio (CR) versus g.

As stated earlier, only CR does not reflect the overall efficiency of approximation, since

a trade-off lies between CR and ISE. Hence, apart from CR, we also find the deviation,

d⊥(p → p′) := max{|x − x′|, |y − y′|}, of each point p(x, y) ∈ C to its corresponding

(nearest) point p′(x′, y′) ∈ P for the chosen grid size, g. For all points in C, the overall

error of approximation is measured by the frequency f(d⊥) of the number of points having

deviation d⊥ versus d⊥. Further, since d⊥ depends on g in our algorithm, the fraction of

the number of points in C with deviation d⊥ varies with g. Hence, for a given value of g,

the error frequency is estimated as

f(δ) =
1

N

∣∣{p ∈ C : d⊥(p→ p′) = δ}
∣∣ . (5.4)

The variation of f(d⊥) versus d⊥, considering the given value of g, acts as the second

measure that provides the error distribution for the polygonal approximation of C. The

plots on (i) CR versus g and (ii) f(d⊥) versus d⊥ on polygonal approximation of some

real-world digital curves are given in Sec. 5.5.
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(a) A curve-shaped digital object C of

nonuniform thickness representing the

edge map of “duck” image. Since the

curve is not one-pixel thick, the con-

ventional algorithms on polygonal ap-

proximation cannot be applied on it.

(b) Cellular envelope E(C,G) obtained in

stage I of the algorithm PACE. Note

that, the cells of the envelope are con-

nected in 4-neighborhood, which are,

therefore, 4-cells.

(c) The set of CSS’s extracted in stage II

from the envelope E(C,G) shown

in (b). The CSS’s have been alter-

nately colored in blue and green with

the terminal cell of each CSS in red.

(d) Final polygonal approximation (in

thin black lines) superimposed on the

(faded) cellular envelope E(C,G).

Figure 5.6: Results of algorithm PACE for cell size g = 4 on “duck”.
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5.5 Experimental Results

We have implemented the two algorithms, namely Find-Cellular-Envelope and Find-

CSS, that make the proposed methodPACE for polygonal approximation of an arbitrarily

thick DC, in C in SunOS Release 5.7 Generic of Sun Ultra 5 10, Sparc, 233 MHz. We have

tested the algorithms on various digital curves of arbitrary shape, changing thickness, and

irregular connectedness, some of which are presented in this thesis. It may be mentioned

that, no other earlier work on cellular polygon appears to exist, and hence, we could not

have performed a comparative study of our method with a thinning-free method. However,

to demonstrate the strength and efficiency of our algorithm, we have given the results of

polygonal approximation (on thinned curves) by a couple of existing methods [Teh and

Chin (1989), Wall and Danielsson (1984)]. In order to do this, we have first applied the

thinning procedure [Rosenfeld and Kak (1982)] on a thick curve (or a set of curves) so

that the thinned curve can be used as input in these existing algorithms (Fig. 5.9).

The result for an edge map (non-thinned) of “duck” is shown in Fig. 5.6, which testifies

the elegance of PACE in deriving the cellular polygon corresponding to a DC. It may be

noticed in this figure that, some of the cells in the envelope E have not been included

in any CSS; because in the algorithm Find-CSS, we have considered the (terminal cells

of) each locally longest CSS to be included in P (see the Note in step 4). But when

there is a bifurcation/self-intersection (e.g., in and around the root of its tail) or a sharp

bend (e.g., at the tip of its beak), the cellular envelope (Fig. 5.6(b)) contains several cells

across its thickness, which may cause error in the polygonal approximation as observed

in Fig. 5.6(d) in the part of the polygon corresponding to the region in and around the

tail root. Hence a proper value of the cell size, g, is mandatory to ensure a good cellular

envelope corresponding to a DC, and a good polygonal approximation thereof.

To illustrate the role and significance of g, few other results on the image “duck” have

been given in Fig. 5.7. It is evident from this figure that, for g = 8, the approximation

deteriorates relative to the one corresponding to g = 4 (Fig. 5.6), owing to the fact that

a larger value of g imparts a greater tolerance of approximation by slackening the cellular

envelope corresponding to the digital curve. A larger value of g is advantageous when fewer

vertices are desired in order to reduce the output complexity, by compromising with a lower

quality of approximation. For example, the number of output vertices corresponding to the

image “duck” for g = 8 is M(g = 8) = 19 (Fig. 5.7), which is significantly less than that

corresponding to g = 4, i.e., M(g = 4) = 34 (Fig. 5.6) — a fact that certifies the desired

behavior of a polygonal-approximation algorithm [Bhowmick and Bhattacharya (2007),
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Cellular envelopes of the set of thick curves (Fig. 5.9) representing the image “duck”.

Figure 5.7: Polygonal approximation of the image “duck” for few other grid sizes (g =

8, 2, 1 from left to right) shows how the quality of the output polygon goes on improving

with decreasing grid size, although at the cost of increasing number of vertices of the

polygon. Note that the vertices of a polygon are highlighted as a red square, the square-

size being g, and the edges are shown in blue.

Rosin (1997)]. For g = 2, the quality of approximation (measured in terms of the deviation

of an approximate polygon from the original curve) improves relative to that corresponding

to g = 4; and for g = 1, the quality of an approximate polygon improves further. However,

as evident from Fig. 5.7, the number of vertices (M(g = 2) = 45,M(g = 1) = 63) of the
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approximate polygon also increases with its improving quality.

Comparisons of the algorithm PACE with two well-known algorithms, namely AD

based on area deviation [Wall and Danielsson (1984)] and CM based on curvature max-

ima [Teh and Chin (1989)], are presented in Fig. 5.9 and in Table 5.1. Since these algo-

rithms need irreducible/thinned digital curves as input, a thinning algorithm [Rosenfeld

and Kak (1982)] is applied on the set of thick curves constituting the image “duck” as

shown in the figure. The set of thinned curves are then considered as input to these al-

gorithms. It is evident from this figure and Fig. 5.7 that for a high value of g (e.g., 4),

the approximate polygons produced by the algorithm PACE are qualitatively inferior to

those obtained by area deviation or by curvature maxima. However, the quality of the

approximate polygons by the proposed algorithm improves on lowering the value of g. In

particular, for g = 1 the resultant polygons are qualitatively comparable with the ones

produced by the two other algorithms, as evident from Fig. 5.9.

The efficiency of approximation is measured in terms of the compression ratio and the

error frequency as explained in Sec. 5.4.3. The related plots in the form of two sets of

histograms for the image “duck” and two other real-world thick curve sets, namely the

images “diver” and “boat”, are shown in Fig. 5.8. The respective results of polygonal

approximation on “diver” and “boat” are presented in Fig. 5.11 and Fig. 5.12 to demon-

strate the goodness and efficiency of the algorithm in the case of digital curves with varying

thickness values and arbitrary intersections. For each of the three curve sets, the trade-off

between the compression ratio (CR) and the approximation parameter (i.e., the grid size,

g) is evident from the set of plots on CR versus g. The set of histograms on the error fre-

quency f(d⊥) versus the error/deviation d⊥ corresponding to a digital curve C depicts that

majority of the erroneous points (with d⊥ > 0) have their errors/deviations in the lower

range of [0, g], indicating that the approximate polygon lies close to the original (thinned)

curve. A relatively much smaller fraction of these erroneous points have high deviations,

i.e., deviations nearing g. For example, the polygonal approximation of the image “duck”

for g = 1 produces f(d⊥ = 0) = 89% (no error), f(d⊥ = 1) = 11%, and f(d⊥ > 1) = 0%;

for g = 2, the corresponding error frequencies are f(d⊥ = 0) = 72%, f(d⊥ = 1) = 26%,

f(d⊥ = 2) = 2%, and f(d⊥ > 2) = 0%; and so forth (Fig. 5.8). More importantly, this is

true for each of the three images, which characterizes the non-dependence of the algorithm

on the structure and composition of the set of input curves.

One of the salient features of the algorithm PACE is its ability to produce effective

polygonal approximation even for a noisy digital curve, which, being affected by noise, is

likely to be disconnected. A noisy curve can be thought of as a pattern of points located
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Figure 5.8: Plots on quality of approximation for the images “duck”, “diver”, and “boat”.

The top set of plots shows three histogram profiles on the compression ratio, CR = N/M ,

versus the approximation parameter, i.e., cell size g. The bottom set is made of the

histograms on the error frequency f(d⊥) versus the error of approximation, d⊥, for g =

1, 2, 4.

densely along a curve, which are usually disconnected at irregular intervals, although giving

the impression of a curve-like pattern due to distribution of the constituting points on or

near the actual (noise-free) curve. The existing algorithms for polygonal approximation

do not have the provision of working with such noisy curves as input. The set of noisy
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curves corresponding to the image “duck” and the results of polygonal approximation on

it are shown in Fig. 5.5. Since, for a small value of g (e.g., g = 1 or 2), the resultant

polygonal envelopes are likely to possess small polygons, which contain the noisy/spurious

points of the curve as evident from the figure, a proper value of g is required for applying

the proposed algorithm. For example, for g = 4, the corresponding polygonal envelope

successfully covers all points of the noisy curve, including the spurious points, and this

property enables the algorithm to derive the polygonal approximation to the desired level

of precision.

Another feature of the proposed method is the inherent nature of Euclidean-free met-

rics and operations involved in both the stages. This leads to high execution speed to

the implementation of PACE, which is reflected in the respective CPU times shown in

Table 5.1. As evident from this table, the algorithms AD and CM are considerably

slower than PACE owing to the usage of only primitive integer operations (comparison,

addition, and increment) in the latter. On the contrary, the former algorithms use more

complex operations, e.g., multiplication and division, which need computation in the real

domain, for realization of certain geometric and trigonometric functions as explained in

Sec. 5.1.1. Further, with the increase in the cell size g, the number of output vertices of

PACE decreases significantly. As a result, the compression ratio (CR) improves consis-

tently, but the quality of approximation deteriorates, as evidenced by the quality measures

in Fig. 5.8. As stated earlier, this indicates that the cell size g should be suitably chosen

to get an acceptable trade-off in the approximation.

5.6 Conclusion

We have presented a novel concept of approximating a curve-shaped digital object by its

cellular envelope. The algorithm is marked by its (i) insensitivity with regard to thickness

variation of the input DC, (ii) use of a combinatorial approach to construct the optimum

cellular envelope for the given DC, (iii) use of straightness properties inherited from dig-

ital geometry, (iv) non-dependence on the Euclidean paradigm, and (v) implementation

without using any floating point operation, which collectively make it robust, speedy, and

efficient.

Although the cellular envelope does not remain entirely unaffected when a different

registration of the curve C w.r.t. the grid (translation) is chosen, the cellular polygon pro-

duced by the subsequent CSS extraction process remains almost invariant. Experimenting

on the nature of variation of the cellular envelope and the resulting polygon of a DC with
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Set of thick curves:

Usually a point has more

than two points in its 8-

neighborhood (8N).

Thinning algorithm:

Red points are retained

and black points are

dropped.

Set of thin curves: A

point having more than

two points in its 8N in-

dicates a branching.

Magnified views of thinning results corresponding to seven portions (colored yellow).

area deviation (Wall

and Danielsson (1984)):

M = 47.

curvature maxima

(Teh and Chin (1989)):

M = 64.

thinning-free

method (proposed):

M(g = 1) = 63.

Figure 5.9: Result-wise comparison of the proposed thinning-free method with the existing

thinning-based methods for “duck” image.
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g = 1 g = 2

g = 4 g = 4

Figure 5.10: Polygonal approximation of the image “duck” after being injected by salt-

and-pepper noise. For a small grid size (g = 1 or 2), the resultant cellular envelope cannot

cover the underlying object, which is no longer a single connected component. For an

appropriately large value of g, however, the object lies entirely in the cellular envelope,

thereby making it suitable for polygonal approximation by the proposed method.

its registration (both translation and rotation) w.r.t. the underlying grid, therefore, stands

as a possible extension of this work. Placement of a DC with proper orientation w.r.t.

the grid in order to obtain its optimal cellular envelope is really a challenging problem,

which is not yet addressed. The anisotropic nature of the digital plane, and the appar-

ently unpredictable behavior of the cellular envelope of a shifting/rotating object, calls for

innovative digital-geometric techniques to solve these problems.
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Figure 5.11: Results on “diver” for g = 4. See text and Fig. 5.6 for explanation.

Figure 5.12: Results on “boat” for g = 4. See text and Fig. 5.6 for explanation.





Chapter 6

From a Digital Object to its Pointillist Ensemble

6.1 Introduction

Object representation is an essential and crucial task required in many areas of scientific

analysis related with experimental psychology and computer vision. Proper representation

of an object aids and eases the subsequent application involving its shape and associated

information [Feldman (2000), Hyde et al. (1997), Zunic and Rosin (2003)]. Typical appli-

cations of description, analysis, and matching of objects of diversified nature and of various

shapes can be found in a wide range of literature that includes art, architecture, cartog-

raphy, cell biology, neuron morphology, psycholinguistics, qualitative reasoning, robotic

vision, satellite imagery, etc. [Irvin and McKeown (1989), Ling and Jacobs (2007), Liow

and Pavlidis (1990), Noronha and Nevatia (2001), Sonka et al. (1993), Willats (1997)].

Hence, for sampling a shape in general, and a (real/digital) curve in particular, and for

reconstruction of the shape from its sample, various general and application-specific al-

gorithms had been proposed over the last three decades for solving various scientific and

engineering problems. Apart from sampling and reconstruction algorithms for curves in

2D and for surfaces in 3D, several definitions, procedures, and methods have been also pro-

posed in recent times to describe, identify, and measure shape-related information present

in a digital image [Brimkov and Klette (2008), Dı́az-Baqez and Mesa (2001), Lachaud

et al. (2007), Latecki et al. (1995), Ling and Jacobs (2007), Rosin (1999), Zunic and Rosin

(2003)].

The work in this chapter addresses the problem of describing a 2-dimensional digital

object by an unordered set of points in the digital plane, in order to retain the underlying

shape information associated with the object from a visual perspective, and at the same

time, to enable an unambiguous process for reconstructing the original object. For a
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(a)Vertex set, P, of a

digital polygon.

(b)Ensemble for mini-

mum pointillist factor

(ϕ = 1).

(c) Ensemble for a

larger pointillist factor

(ϕ = 2).

(d)Actual polygon.

Figure 6.1: The vertices of a digital polygon, as a mere point set as in (a), cannot create

a definite impression of the underlying object/polygon (d). However, with the proposed

method, the (blue) pseudo-vertices along with the (red) polygon vertices (b) reflect the ac-

tual object, which becomes more prominent (c) when the pointillist factor, ϕ, is increased.

The method is more effective when the polygon is sufficiently large in size and complexity.

digital object, given as a set C of digital curves, each constituent digital curve C in the

input set C is first decomposed into its polygonal (closed curve) or poly-chain (open

curve) approximation, thereby obtaining an ordered set of vertices P corresponding to

the curve C. Without the order — which is not reflected when the vertices are shown as

mere points in Z2 — the set P, however, carries almost no information about the actual

object that it represents, as shown in Fig. 6.1. In particular, the shape information of

the object is out of the preceptive ability of a visionary mechanism — whether a human

or a computer — if the set P is sufficiently large in size. The underlying object and its

shape details are cognizable only if the definite order is imposed on these points/vertices

to define the polygon(s) corresponding to the digital curve(s) that constitute the object.

Thus, an unordered set of vertices of the polygon hardly begets any idea about its shape

and related geometric structure and topological orderliness, thereby making it unusable

for describing a curve-shaped digital object in a meaningful way.

In order to circumvent the above problem and to map a digital object to an optimal or

a suboptimal set of points in the digital plane, we explore the idea of representing a digital

polygon P not as an ordered set of vertices1, but as an unordered set of points, which is

called the pointillist ensemble of P and denoted by P̂. The ensemble P̂ contains points

selected appropriately from the set of digital edges of P using the pointillistic approach

1For sake of notational simplicity, we use P to denote a polygon as well as the (ordered) set of its

vertices, depending on the context.
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in an algorithmic way (Fig. 6.1). The pointillistic approach is newly introduced in this

thesis, which, when used scientifically and efficiently, is shown to produce the desired

impression of a digital object with the reduced set of object points. More importantly, the

ensemble P̂ is such that its points can be used to retrace the original polygon P using a

reconstruction algorithm. It may be mentioned here that, in the history of the visual art,

pointillism refers to the Neo-Impression genre of painting with points/dots with an aim

to achieve an artistic-cum-scientific way of conveying the desired visual impression. The

technique, accredited for its development to certain serious pointillists like Seurat and his

contemporaries late in the 19th century France [Gage (1987), Seurat (1966)], therefore,

relies on the perceptive ability of the eye and the subconscious analytical mind of the

viewer to perceive the collection of dots as a fuller form.

The proposed scheme of digital-object representation is based on the polygonal de-

composition of the object followed by the aforesaid pointillistic approach. It has several

advantages, some of which are as follows:

• Polygonal decomposition of an arbitrary digital curve C smoothens any unwanted

jaggedness of C as per the desired limit without losing its overall geometric order-

liness, and represents the curve as an ordered set, P, of its vertices. The set P is

used to find the pairwise nearest edge (and hence the geometric configuration of

the underlying curve (C)), which is required to find the corresponding pointillist

ensemble.

• The pointillist ensemble of C, as obtained from P, using the proposed algorithm,

consists of an optimal or suboptimal number of points judiciously selected from the

digital edges of P, which, when visualized, gives a correct impression about the

original curve.

• The algorithm for reconstruction of the curve from its ensemble finds the nearest

ensemble point corresponding to each ensemble point using an appropriate data

structure. The nearest neighbor rule has two-fold advantages: (i) it mimics our

psycho-visual mechanism; (ii) it picks an optimal or suboptimal number of points

for which the reconstructed curve resembles the original curve quite accurately.

• The algorithm is fast, robust, and efficient. It outputs the desired ensemble for an

arbitrary digital curve — whether open or closed — whether a synthetic curve or a

curve set representing a real-world digital object — as implemented and tested by

experiments, some of which are presented in Sec. 6.4.
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The rest of the chapter is organized as follows. In Sec. 6.2, we discuss briefly some of the

existing works related with curve sampling and reconstruction. We start with the problem

formulation and its physical interpretation in Sec. 6.3.1. In Sec. 6.3.2, we briefly explain

the proposed method to obtain a polygonal/poly-chain approximation of a digital curve, C,

constituting an object in the digital plane. Sec. 6.3.3 puts forth the algorithmic approach

of deriving the pointillist ensemble of the digital polygon P corresponding to C, driven

by its factor of pointillism and keeping in view a natural reconstruction procedure that

resembles the human psycho-visual aspect. To demonstrate the strength and effectiveness

of the algorithm, we have shown the results on some typical data sets of various sources

and with different shapes and complexities in Sec. 6.4. Finally, in Sec. 6.5, we summarize

the work and mention its future possibilities.

6.2 Related Works

Over the last three decades, several algorithms have been proposed on appropriate sam-

pling and efficient reconstruction of curves and surfaces, most of which are in two- and

three-dimensional Euclidean (real) paradigm. The algorithms have been mainly devel-

oped to serve diverse applications requiring optimal/suboptimal sampling/representation

of real/digital curves, subject to prescribed efficiency or reconstruction error. Hence, in

this section, the algorithms on curve sampling and reconstruction, and the applications

on sampled curve sets are discussed separately: the former in Sec. 6.2.1 and the latter in

Sec. 6.2.2.

6.2.1 Works Related with Sampling and Reconstruction

In order to design various curve sampling and reconstruction algorithms with theoretical

guarantees, a number of works have been proposed based on digital-geometric techniques

and geometric graphs. In [Latecki and Rosenfeld (2002)], a method has been presented

to recover an approximation of an unknown polygon from noisy digital data, which is ob-

tained by digitizing either an image of the polygon or a sequence of points on its boundary.

A digitization scheme based on scaling proposed by Brimkov (2009) scales an original con-

tinuous real object appropriately so that the resultant magnified object and its digitization

have analogous geometric properties. It has been shown that it allows faithful reconstruc-

tion of the plane figures from the considered general class. The work presented by Brimkov

and Klette (2008) defines digital manifolds of arbitrary dimension, provides the theoretical
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basis for curve or surface tracing in digital images. These theoretical foundations are fully

based on the concept of adjacency relation. The study is useful towards generalization of

digital curves in arbitrary dimension, skeletonization of digital objects, and determination

of object boundary. The work by Lachaud et al. (2007) deals with a new tangent estima-

tor to digitized curves based on digital line recognition. A tangent estimator is useful for

estimating many geometric quantities and useful for many applications.

Geometric graphs, meant for connecting a set of points in a way to capture the under-

lying pattern, have been proposed since 1980’s in several forms. In the domain of com-

putational (Euclidean) geometry, one such elementary graph is the nearest neighbor graph

(NNG) obtained by joining each point to its nearest neighbor(s) [Preparata and Shamos

(1985)]. A similar geometric graph is the relative neighborhood graph (RNG) [O’Rourke

(1982)], which is obtained by joining each pair of relative neighbors. Two points p and q

are said to be relative neighbors in a set S if and only if there is no other point (in S) closer

to both p and q than they are from each other. Interestingly, the RNG of a point set S

is a subgraph of the Delaunay triangulation (DT), and hence, can also be computed from

the DT of S [Jaromczyk and Kowaluk (1987)].

Another graph is the sphere-of-influence graph (SIG) [Avis and Horton (1985), Dwyer

(1995), Toussaint (1988)] defined for a set of points/sites, which is constructed by iden-

tifying the nearest neighbor of each site, centering a ball at each site so that its nearest

neighbor lies on the boundary, and joining two sites by an edge if and only if their balls

intersect. Toussaint (1988) proposed this graph as a good primal sketch of a dot pattern,

suitable for low-level vision tasks. The asymptotic behavior of the expected number of

edges of an SIG is investigated by Dwyer (1995), considering that the sites are independent

and uniformly distributed.

Kirkpatrick and Radke (1985) introduced the notion of β-skeleton, which can be ob-

tained by joining pairs of points whose β-neighborhoods are empty. The neighborhood can

be circle-based or lune-based (for β ∈ [0, 1], the lune-based neighborhood is identical with

the circle-based), and for the former, the β-skeleton can also be computed from the corre-

sponding DT [Kirkpatrick and Radke (1985)]. Algorithms to construct the β-skeleton can

be seen in [Mukhopadhyay and Rao (1998), Preparata and Shamos (1985)]. A continuous

spectrum of β-skeletons can be obtained by varying the (real) parameter β. This can be

used to extract the boundary of an object [Amenta et al. (1998)].

Veltkamp proposed another geometric graph, named as γ-skeleton, that captures the

external as well as the internal shape of a point set [Veltkamp (1992, 1995)]. It is defined

in terms of two parameters, namely c0 ∈ [−1, 1] and c1 ∈ [−1, 1], where |c0| ≤ |c1|. The γ-
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Figure 6.2: A sample/set of points (left) representing a “fork” [Althaus and Mehlhorn

(2002), Althaus et al. (2000)]. The Traveling Salesman tour of the points produce the

desired output (middle), whereas, the reconstruction algorithm of [Amenta et al. (1998)]

deviates at some portions from the actual object.

neighborhood of a pair of points p and q is defined by two circles of radii d(p, q)/2(1−|c0|)
and d(p, q)/2(1 − |c0|) passing through p and q. Different possible domains of c0 and c1

result in two γ-neighborhoods of p and q, which define p and q as γ-neighbors if and only

if at least one of their γ-neighborhoods is empty. This is used to obtain the γ-skeleton by

joining all the γ-neighbors of the point set.

There also exist several other geometric graphs, such as α-shapes [Edelsbrunner et al.

(1983)], minimum spanning tree [de Figueiredo and Gomes (1995)], r-regular shapes [Attali

(1997)], Gabriel graph [Matula and Sokal (1984)], etc. The earlier methods [Attali (1997),

Bernardini and Bajaj (1997), de Figueiredo and Gomes (1995), Kirkpatrick and Radke

(1985)] consider the curve to be closed, smooth, and uniformly sampled. Surveys on these

techniques appear in some of the contemporary works [Althaus and Mehlhorn (2002),

Althaus et al. (2000), Dey (2007), Edelsbrunner (1998)]. Algorithms on reconstructing

non-uniformly sampled open/closed smooth/non-smooth curves have been suggested in

the later period [Althaus and Mehlhorn (2002), Amenta et al. (1998), Dey and Kumar

(1999), Dey et al. (1999, 2000), Giesen (2000), Gold and Snoeyink (2001)].

6.2.2 Applications Based on Curve Sampling

Shape analysis and shape coding based on curve samples find a wide range of applications

in today’s digital world. Some of these in the context of our work are briefly discussed

below to show the significance of sampling of digital curves.
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6.2.2.1 Video coding

One state-of-the-art technology dealing with digital curves/shapes is object-oriented video

coding, which has received a lot of attention in recent times, since it facilitates retrieval,

interactive editing, and manipulation of videos [Wang et al. (2003)]. In line with the

MPEG-4 standardization [Katsaggelos et al. (1998)], several contour-based shape coding

methods have been proposed of late pertaining to a video sequence, represented through

the evolution of video object planes. Some of these use vertex-based polygonal approxi-

mations for lossy shape coding [Gerken (1994), Hotter (1990), O’Connell (1997)]. In [Lee

et al. (1999)], a baseline shape coder places the shape into a 2D coordinate system such

that the projection of the shape onto the x-axis (baseline) is the longest. From the base-

line, y-distances of points (sampled clockwise) on the shape boundary are measured. The

boundary points at which the direction changes are called turning points. The boundary

is represented by one-dimensional distance data with turning points, followed by entropy

coding. In another work [Schuster and Katsaggelos (1997, 1998)], a framework for the op-

erational rate-distortion (ORD) optimal encoding of shape information in the intra- and

inter-modes was discussed. First order (polygons) and higher order (splines) approxima-

tion techniques are adopted to represent the boundary, and the control points of these

curves are encoded to achieve the optimal result.

Apart from the above methods that operate directly on the boundary vertices, alter-

native approaches, which first analyze the shape information before processing, have also

been proposed. The shape description algorithms can be classified into external and in-

ternal [Pavlidis (1978)]. The former ones deal with the description of the shape boundary,

e.g., Fourier descriptor [Persoon and Fu (1977), Zahn and Roskies (1972)], time series

[Kartikeyan and Sarkar (1989)], and shape matrices [Goshtasby (1985)]. The latter ones

are mainly area-descriptor algorithms, e.g., moment-based approaches [Prokop and Reeves

(1992)], skeletons or medial axis transform [Blum (1967), Maragos and Schafer (1986),

Serra (1982)], and shape decomposition [Pitas and Venetsanopoulos (1990)].

To achieve a flexible tradeoff between the approximation error and the bit budget, the

idea of decoupling the shape information into two independent signal data sets, namely

the skeleton and distances of the boundary-sampled points from the skeleton, has been

proposed [Wang et al. (2003)]. A given bit budget for a video frame decides the number

and location of sample points for all skeletons and distance signals of all boundaries within

a frame, so that the overall distortion is minimized. An ORD-optimal approach based on

the Lagrangian multiplier and a shortest path algorithm in a directed acyclic graph are
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used for solving the problem.

6.2.2.2 Biometrics

In biometric authentication based on fingerprints and face images, there exist various

works based on sampling of digital points. Broadly stated, a set of (higher-level) feature

points, extracted meaningfully and judiciously from a set of (lower-level) digital curves, is

used to find the approximate similarity with another set. For example, in fronto-parallel

images, chin contour can be considered as a stable feature to preserve more details in face

recognition, since from the physiological point of view, the part beneath the mouth of

chin contour remains almost unaffected by a facial expression. The possible points of chin

contour are obtained by using an algorithm based on prior distribution and local decision

[Wang and Su (2003)]. Then the false points are removed by filtering and the other points

are joined to get the chin contour by curve approximation. Classification by analyzing

the features of contours are likely to improve the recognition rate and speed on huge face

database. There also exist other approaches based on snake model involving geometric

active contour model [Huang and Su (2002)], active contour model [Sun et al. (2002)], etc.

In fingerprint analysis, the salient features are ridges and minutiae (termination and

bifurcation) [ANSI (1986)]. A ridge in a fingerprint is a digital curve, and a minutia is

the point of termination of a ridge or the point from where a ridge bifurcates. There exist

several applications related with fingerprint image analysis, which require both the minu-

tiae and points sampled from ridge lines constituting a fingerprint topography [Bazen and

Gerez (2003), Bhowmick and Bhattacharya (2008), Bhowmick et al. (2005a), Ceguerra and

Koprinska (2002), Jain et al. (1997, 2001), Maltoni et al. (2003)]. Large legacy databases

are in use today, which require huge space for storage and retrieval, and hence can be

stored in a compact and efficient way using feature points and ridge points sampled in an

appropriate manner.

6.2.2.3 Deformation analysis

Deformation or skewness of shape data arise in many practical applications such as medical

image analysis. With a conventional statistical approach (e.g., Gaussian), the formulation

of a shape model, therefore, cannot produce the desired result [Baloch and Krim (2007)].

Hence, several new techniques have come up in recent times to accommodate a departure

of the shape data from a familiar distribution [Baloch and Krim (2007), Younes (1999),

Zhu (1999)]. Region-based features such as linelets and rib lengths, whose histograms are
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computed and averaged to yield a Gibbs-like distribution for shape sampling, have been

used in [Zhu (1999)]. A point correspondence-based object recognition, which requires

additional transformations to compute shape distance metrics, has been proposed [Be-

longie et al. (2002)]. Sampling a shape by learning an angle distribution, with an aim to

capture landmarks, present in a non-Gaussian shape data, has been proposed [Baloch and

Krim (2007)]. This approach takes care of shape deformation caused by a patient’s mo-

tion and improper alignment in medical imaging (e.g., X-ray or MRI). A similar model is

diffeomorphisms of the unit circle via conformal mappings [Sharon and Mumford (2004)].

The model of active contours, or snakes [Kass et al. (1998)], has been used as a com-

putational bridge between the low-level image data and the high-level shape information

in the domain of cartoon face recognition [Hsu and Jain (2003)]. Human faces are repre-

sented semantically via facial components, such as eyes, mouth, face outline, and the hair

outline, in the form of a semantic face graph. The facial components are encoded by closed

(or open) snakes in parametric form, which interact among themselves to align the general

facial topology onto the sensed face images. For mimicking facial expressions, the vertices

of the mesh model are considered as sample points, which are hierarchically decomposed

into three levels: 1) boundaries of facial components, 2) interiors of facial components,

and 3) facial skin regions. Facial caricatures are generated based on an individual’s facial

distinctiveness from the average facial topology of the training set, and an exaggeration

coefficient.

6.2.2.4 Shape-based segmentation

One of the most important image processing tools is segmentation, which has poten-

tial applications in medical visualization and diagnostics. Image noise, inhomogeneities,

and lack of strong edges are some of the hardships that make this process a challenging

one. Hence, in today’s segmentation, shape knowledge and structural properties are used.

Starting from an initial position inside the structure/region of interest, the model evolves

to hit the boundaries of the object [Chesnaud et al. (1999), Munim and Farag (2007),

Pardo et al. (2001), Zhu and Yuille (1996)]. In many cases, an energy formulation is given

to describe the problem, requiring a minimization through the front evolution. Deformable

models have been proposed to evolve a contour (front), minimizing an energy function that

characterizes the evolution depending on the intrinsic properties of the contour, sampled

appropriately [Kass et al. (1998)].
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6.3 Proposed Work

6.3.1 Problem Formulation

A digital curve C is represented either by a sequence of chain codes (Sec. 6.1) in a list

or by a pattern of ‘1’s (curve points) and ‘0’s (background points) in a 2D array. It is

easy to observe that some dropped/missing curve points (‘1’s) (which are replaced by ‘0’s,

thereof) in the 2D array might entirely disorder or upset the actual curve, C. However,

if we drop some curves points keeping the invariance of some underlying criterion, then

the corresponding curve can be restored/reconstructed without any appreciable change

w.r.t. the original one. Thus, selecting an optimal number of points to represent C,

is the concerned problem. Further, if we take into account the human/robot visionary

mechanism, we should have the provision to increase the selected points so that the actual

curve becomes clearer and easier to visualize. Thus, we have the following two perspectives

to define the pointillist ensemble of a set of digital curves, C, that correspond to the digital

object(s) embedded in a binary image:

Algorithmic Perspective: Given a set of planar digital curves, C, the (sub)optimal set

of points, namely Ĉ, is called the minimum pointillist ensemble of C, provided the original

set C can be reconstructed from Ĉ using an appropriate algorithm.

Visual Perspective: The (general) pointillist ensemble Ĉϕ of C should be specified by the

pointillist factor, ϕ(> 1), such that a viewer can easily perceive/recognize the actual object

from the ensemble Ĉϕ (and also, C can be reconstructed from Ĉϕ using an appropriate

algorithm).

Evidently, ϕ = 1 corresponds to the minimum pointillist ensemble of C. The small in-

stances in Fig. 6.1 illustrate the above two perspectives of the problem (from the ensemble

with ϕ = 2, the actual object is more prominent than that with ϕ = 1).

Difficulty of the Problem: Finding the pointillist ensemble directly from a (digital)

curve C (or a set of curves) poses serious reconstruction problems. During the reconstruc-

tion (or visually guessing the actual curve), for a particular point p in the ensemble Ĉ

corresponding to C, if the point q ∈ Ĉ lies nearest to p, then q seems to lie nearer to p

“along the curve” than any other point q′ ∈ Ĉ. That is, after traversing p, q will be tra-

versed (along the reconstructed curve) before traversing any other point q′ ∈ Ĉ. However,

since the occurrence of q in the original curve is unknown (from the ensemble), it might

lead to a wrong traversal and a faulty output, thereof. Few examples illustrated in Fig. 6.3
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p
q

(a) Uniform distribution of ensemble points (blue) over

the curve (gray) is liable to disfigure the output after

the reconstruction. From the ensemble point p, the

nearest ensemble point q correctly aids the reconstruc-

tion; however, the next nearest point (dotted direction)

incorrectly directs the reconstruction (direction in solid

line), thereby producing a wrong output.

p q
(b) Increasing the (uniform) distribution of ensemble

points usually does not produce the required result

(due to interference with an undesirable sample), as

the curve may possess arbitrary flow pattern.

p

(c) Even if an algorithm produces an ensemble in which

the points are sensibly selected from the curve points

(i.e., during the reconstruction, the ensemble points are

traversed in order of their occurrences along the actual

curve), the resultant output (in the form of a digital

polygon) may deviate quite alarmingly from the actual

curve.

Figure 6.3: Some instances of pointillist ensembles of a digital curve, showing the difficulty

of solving the problem.

explain the possible eventualities that are very likely to produce entirely wrong output

(Fig. 6.3(a, b)) or a largely deviated output (Fig. 6.3(c)).

In order to maintain the original topological structure of the digital curve, therefore,

we first decompose the set of digital curves into a set of shape-preserving digital polygons.

The edges of these polygons are used, in turn, to induce the pseudo-vertices for constituting

the pointillist ensemble that can be reconstructed to get back the original curve with a

certain precision.
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Figure 6.4: Chain codes for defining various digital curves.

6.3.2 Polygonal Decomposition of a Digital Object

Decomposition of a digital curve C into a digital polygon is performed by analyzing the

chain code [Freeman (1961a,b)] of C. In the 8-neighborhood (8N) connectivity1, two grid

points (i, j) ∈ C and (i′, j′) ∈ C are neighbors of each other, provided max(|i − i′|, |j −
j′|) = 1. Thus, the possible chain codes defining a digital curve connected in 8N are in

{0, 1, 2, . . . , 7}, as shown in Fig. 6.4(a). The chain code enumeration of a digital curve

C, therefore, describes an ordered sequence of grid points such that each point in C is a

neighbor of its predecessor in the sequence. To be precise, if each point in C has exactly

two neighbor points in C, then C is said to be a closed curve (Fig. 6.4(b)). Otherwise, C

has two points with one neighbor each, and the remaining points with two neighbors each,

whence C becomes an open curve (Fig. 6.4(c)). Self-intersecting curves, of course, would

have points with more than two neighbors; in such a curve, we split the curves into a set

of open or/and closed curves only (Fig. 6.4(d)).

The polygonal decomposition adopted by us is based on extraction of approximate

straight line segments from a digital curve using the recently published digital-geometric

algorithm [Bhowmick and Bhattacharya (2007)]. Certain chain code properties of digital

straightness [Klette and Rosenfeld (2004a), Rosenfeld and Klette (2001)] have been used

in this algorithm with some relaxations to achieve the desired result. Shown in Fig. 6.5

are results on polygonal decomposition on a set of digital curves representing the contour

of a real-world logo image, which show how the polygonal decomposition of a digital curve

1The definitions and discussions in this paper are with respect to 8-neighbor connectivity [Klette and

Rosenfeld (2004a)] of the object, and are valid as well in 4-neighborhood with appropriate modifications.
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(a) (b) (c)

Figure 6.5: An example of polygonal decomposition of a digital curve set (polygon vertices

in red): (a) original curve; (b) a tight polygonal decomposition; (c) a relatively slacker

decomposition.

preserves its geometric orderliness. Although a slacked decomposition might digress from

the original curve (Fig. 6.5(c)), a tighter decomposition almost traces the actual curve

(Fig. 6.5(b)) with a higher complexity (i.e., a larger number of vertices) of the output

polygon.

6.3.3 Pointillistic Object Representation

Let C := {C(k) : k = 1, 2, . . . ,K} denote the set of K digital curves constituting a

digital object. Let the digital polygon/poly-chain corresponding to the kth (closed/open)

digital curve C(k), be specified by the ordered set of vertices, namely P(k) := ⟨p(k)i : i =

1, 2, . . . , nk⟩, so that corresponding to the set C, we have the set of digital polygons,

denoted by P := {P(k) : 1, 2, . . . ,K}.
An edge of the digital polygon P(k) is, therefore, given by e

(k)
i = (p

(k)
i , p

(k)
i+1), where

i = 1, 2, . . . , nk − 1, whether C(k) is open or closed; and e
(k)
nk = (p

(k)
nk , p

(k)
1 ) in addition if

C(k) is closed. In order to obtain the pseudo-vertices as a pointillist ensemble of the digital

polygons in P (and of C, thereof), we find the edge(s) (over all the polygons in P ) having

the minimum (Euclidean) distance from each edge of each polygon in P . To be precise,

for each edge e
(k)
i of each polygon P(k) ∈ P , we find the nearest edge point on each other

edge of all the polygons in P (including P (k)), as explained next.

Let ei := (pi, pi+1) and ej := (pj , pj+1) be two edges of two (same or different) poly-

gons (Fig. 6.6). Let the real straight lines containing the edges ei and ej be Li and Lj ,

respectively. Let the projection of ei on Lj be e′i := (qi, qi+1), and that of ej on Li be
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(c) e′j ∩ ei ̸= ∅ & ej ∩ e′i ̸= ∅. (d) e′j ∩ ei = ∅ & ej ∩ e′i = ∅.

Figure 6.6: Different cases for finding the minimum distance between two edges of (same

or different) polygon(s). The concerned edges are ei := (pi, pi+1) and ej := (pj , pj+1), and

their respective projections on the lines Lj (containing ej) and Li (containing ei) are e′i
and e′j .

e′j := (qj , qj+1), where qi denotes the foot of the perpendicular from ei to Lj , and so forth.

Then, depending on the containment relation of e′j in ei and of e′i in ej , the nearest point

of ej from ei is obtained, in accordance with the following possibilities:

Case 1: e′j is contained in ei, and ej is contained in e′i. Then, the minimum distance

between ei and ej is given by dij = min{pjqj , pj+1qj+1} (Fig. 6.6(a)). [Note: ei and ej

contain each other’s projections, i.e., e′j = ei and e′i = ej , if and only if ei and ej are

equal in both length and direction.]

Case 2: e′j is contained in ei, and let, w.l.o.g., qi is contained in ej , whereas qi+1 lies

outside ej . Hence, dij = min{pjqj , pj+1qj+1, piqi} (Fig. 6.6(b)).
Case 3: e′j has partial overlap with ei, and if, w.l.o.g., qi and qj are contained in ej and
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ei respectively, then dij = min{pjqj , piqi} (Fig. 6.6(c)).
Case 4: Neither e′j has partial overlap with ei, nor e

′
i with ej . This implies

dij = min{pipj , pipj+1, pi+1pj , pi+1pj+1} (Fig. 6.6(c)).

In order to induce the pseudo-vertices in an edge e
(k)
i of the polygon P(k), we consider

each edge in the set E
(k)
i := {e(k

′)
j : e

(k′)
j ∈ P(k′) ∧ e(k

′)
j ̸= e

(k)
i }Kk′=1. Using the relation (one

out of the four relations on projective containment as mentioned above) of the edge e
(k′)
j

with e
(k)
i , we compute the distance of e

(k′)
j from e

(k)
i . Based on the distances of all the

edges of E
(k)
i , we find the edge, say, e

(k′)
j , that has the minimum distance, say d

(kk′)
ij , from

e
(k)
i .

Using the nearest edge e
(k′)
j from the edge e

(k)
i and the corresponding minimum distance

(d
(kk′)
ij ), we induce the first pseudo-vertex, namely p

′(k)
i(+1), on e

(k)
i , from the end of its start

vertex (p
(k)
i ). The pseudo-vertex p

′(k)
i(+1) is induced on e

(k)
i such that the distance of p

′(k)
i(+1)

from p
(k)
i satisfies the following equation.

d(p
′(k)
i(+1), p

(k)
i ) = max

p∈e(k)i

{
d(p, p

(k)
i ) : ϕ · d(kk

′)
ij > d(p, p

(k)
i )

}
(6.1)

where, ϕ(> 1) is called the pointillist factor. The minimum possible value of ϕ is unity,

which ensures the generation of a suboptimal set of pseudo-vertices in order that the

original polygon can be reconstructed from the pointillist ensemble (given by all polygon

vertices in union with the pseudo-vertices). Increasing the value of ϕ induces a larger

number of pseudo-vertices, thereby increasing the size of the ensemble and creating a

better impression of the actual object.

Once the pseudo-vertex p
′(k)
i(+1) is inserted on the edge e

(k)
i , the vertex p

(k)
i and p

′(k)
i(+1)

become the nearest pair of vertices (whether of the original polygon or pseudo), which

implies that the distance of no other vertex or point on any other edge of E
(k)
i from p

(k)
i or

p
′(k)
i(+1) is less than the distance between p

(k)
i and p

′(k)
i(+1). Thus, during reconstruction from

the pointillist ensemble, p
(k)
i and p

′(k)
i(+1) would be nearest to each other, and so one will be

always visited after the other, thereby preserving their order and recreating the edge e
(k)
i

as required.

Insertion of p
(k)
i(+1) may change the status of the nearest edge (in E

(k)
i ) of the part of e

(k)
i

from p
′(k)
i(+1) to p

(k)
i+1, denoted by the sub-edge e

(k)
i(+1) := (p

′(k)
i(+1), p

(k)
i+1). Hence, we recompute

the distances of the edges in E
(k)
i from e

(k)
i(+1) and depending on the four possible cases, we

find the nearest edge of e
(k)
i(+1). Based on the distance (say di(+1)) of the nearest edge of
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e
(k)
i(+1) from e

(k)
i(+1), and the specified value of ϕ, the next pseudo-vertex p

(k)
i(+2) is inserted in

e
(k)
i(+1) from the end of p

(k)
i(+1), so that the distance d(p

(k)
i(+1), p

(k)
i(+2)) does not exceed ϕ ·di(+1)

(as in the case of inducing the first pseudo-vertex: Eqn. 6.1).

The above process is continued until the distance of the last induced vertex on e
(k)
i ,

namely p
(k)
i(+m), from p

(k)
i+1 is less than ϕ times the distance of the nearest edge from the

corresponding sub-edge, e
(k)
i(+m) := (p

(k)
i(+m), p

(k)
i+1). For each edge of all the K polygons, this

is repeated to derive the complete pointillist ensemble corresponding to the given object

and the specified value of the pointillist factor.

A Note on Minimality: The process of inducing pseudo-vertices starts from the first edge

e
(1)
1 of the first polygon P(1) in P , and covers all the edges of all the K polygons in

P in succession. The first pseudo-vertex p
′(1)
1(+1) inserted on e

(1)
1 — in accordance with

Eqn. 6.1 — is obviously at the maximum possible distance from the start vertex p
(1)
1 . For,

if we consider p
′(1)
1(+1) to be the next possible point on e

(1)
1 , then the distance d(p

′(1)
1(+1), p

(1)
1 )

exceeds the distance of the nearest vertex from p
(1)
1 , whereby p

′(1)
1(+1) fails to be the nearest

point of p
(1)
1 and giving rise to wrong results during reconstruction, there of. Hence, the

iterative process of inserting pseudo-vertices produces an ensemble of minimal size for

ϕ = 1 subject to the choice of start vertex. With a different start vertex, the resultant

ensemble may, however, reduce in size, but finding a start vertex for which the ensemble

is of minimum size irrespective of the underlying digital curve is really a very hard and

complex problem, which may be investigated in the future for a theoretical solution.

6.3.4 Curve Reconstruction from its Ensemble

As the first step of reconstructing the digital curve C from its ensemble Ĉ, the points

constituting Ĉ are lexicographically sorted with their x-coordinates (primary key) and y-

coordinates (secondary key) in a 2-dimensional link list. If the ensemble Ĉ consists of m

points, then the sorted link list is given by

Ĉxy =
⟨
p̂i := (x̂i, ŷi) ∈ Z2 | (x̂i < x̂i+1) or (x̂i = x̂i+1 and ŷi < ŷi+1)

⟩m

i=1
. (6.2)

Next, for the reconstruction, we use two important properties related with the Delau-

nay triangulation DT (S) of any point set S [Berg et al. (2000)], which are as follows:

P1. The closest pair of points in S are neighbors in DT (S).
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P2. For the Euclidean graph1 EG(S) of S, the minimum spanning tree MST (EG(S)) is

a subgraph of DT (S).

Hence, we compute the Delaunay triangulation DT (Ĉ) of Ĉ by applying Fortune’s

algorithm [Berg et al. (2000)] on Ĉxy, since there is an edge from each point p̂i ∈ Ĉ to

its nearest point in DT (Ĉ) [Property P1]. However, there are other edges also from p̂i to

other (second nearest, third nearest, and so forth) points in DT (Ĉ), which depends on the

Voronoi diagram V or(Ĉ) of Ĉ. In order to find the nearest point of p̂i from DT (Ĉ), we

apply Kruskal’s algorithm of minimum spanning tree [Cormen et al. (2000)] on DT (Ĉ) to

obtain MST (DT (Ĉ)) [Property P2]. The reconstructed digital curve is, therefore, given

by joining the ordered sequence of vertices of MST (DT (Ĉ)).

Reconstruction Time: To compute the Delaunay triangulation of m points constituting

the ensemble Ĉ, we need TDT = O(m logm) time [Berg et al. (2000)]. Now, the number

of edges in V or(Ĉ) being at most 3m − 6 = O(m) [Berg et al. (2000)] and the Delaunay

triangulation being a dual structure of the corresponding Voronoi diagram, the number of

edges in DT (Ĉ) is O(m). Kruskal’s algorithm takes O(e log v) time for a weighted graph

with v vertices and e edges. Hence, the time-complexity for construction of MST (DT (Ĉ))

from DT (Ĉ) is TMST = O(m logm), wherefore the total time-complexity of reconstructing

the digital curve from its ensemble is given by TDT + TMST = O(m logm).

6.3.5 Reconstruction Error

During reconstruction, the nearest point-pairs of the ensemble Ĉ are connected by digital

straight line segments (DSS) [Klette and Rosenfeld (2004a)]. As a result, there may

occur erroneous points. An erroneous point or error point is a digital point p ∈ Z2 in a

reconstructed DSS for which the nearest point of the original curve C does not coincide

with p.

Hence, a measure of error incurred during reconstruction from the pointillist ensemble,

is given by how much a particular point (x, y) ∈ Ck has deviated in the corresponding

reconstructed polygon, namely P̂k. If p̃ := (x̃, ỹ) be the point in P̂k corresponding to

p := (x, y) in Ck, then for all points in the curve set C := {Ck : k = 1, 2, . . . ,K}, this
measure is captured by the variation of the number of error points with their deviations,

1If S consists of m points, then the vertices of EG(S) are the points in S and the edges are all
(
n
2

)
undirected pairs of distinct points, the weight of each edge being given by the Euclidean distance between

the corresponding points.
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where the deviation from p to p̃ can be measured by

dev∞(p→ p̃) = min{|x− x̃|, |y − ỹ|}. (6.3)

Clearly, dev∞(p → p̃) depends on how tight was the polygonal decomposition of the

curves in C (Sec. 6.3.2). Hence, the fraction of the number of points in C with a given

deviation d∞ varies with the precision of the polygonal decomposition. If we adopt the

tightest decomposition where no point of a decomposed polygon deviates at all from

the corresponding curve point, then the polygons consist of a large number of vertices,

thereby reporting a large pointillist ensemble. On the contrary, a slackened decomposition

produces polygons with lesser number of vertices, and reducing the ensemble in size, which,

of course, introduces appreciable reconstruction errors. A trade-off with the polygonal

decomposition is, therefore, necessary to achieve the desired results on pointillist ensemble

of C and the resultant reconstruction. A study on the nature of the error distribution for

a sufficiently large population of arbitrary digital curves may be, therefore, a promising

area of theoretical analysis on pointillist representation of digital curves.

6.3.6 Sampling Quality

The quality of sampling/approximation is quantified, in general, by the amount of dis-

crepancy between the reconstructed set of curves and the original set. There are several

measures to assess the approximation of a curve Ck, such as

(i) compression ratio CR = Nk/Mk, where Nk is the number of points in Ck and Mk is

the number of vertices in the approximate polygon Pk;

(ii) the integral square error (ISE) between Ck and Pk.

Since there is always a trade-off between CR and ISE, other measures may also be used

[Held et al. (1994), Rosin and West (1995), Sarkar (1993)]. These measures, however, may

not always be suitable for some intricate approximation criterion. For example, the figure

of merit [Sarkar (1993)], given by FOM = CR/ISE, may not be suitable for comparing

approximations for some common cases, as shown by [Rosin (1997)]. In a work [Ventura

and Chen (1992)], the percentage relative difference, given by ((Eapprox−Eopt)/Eopt)×100,
has been used, where Eapprox is the error incurred by a suboptimal algorithm under con-

sideration, and Eopt the error incurred by the optimal algorithm, under the assumption

that same number of vertices are produced by both the algorithms. Similarly, one may

use two components, namely fidelity and efficiency, given by (Eopt/Eapprox) × 100 and

(Mopt/Mapprox)× 100 respectively, where Mapprox is the number of vertices in the approx-
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imating polygon produced by the suboptimal algorithm and Mopt is the same produced

by the optimal algorithm subject to same Eapprox as the suboptimal one [Rosin (1997)].

The algorithm proposed here is not constrained by the number of vertices Mk of the

output polygon Pk, and therefore, the measures of approximation where Mk acts as an

invariant, are not applicable. Instead, we have considered the error of approximation,

namely τ , as the sole parameter in our algorithm, depending on which the number of

vertices Mk corresponding to Pk will change. A high value of τ indicates a loose or slacked

approximation, whence the number of vertices Mk decreases automatically, whereas a low

value of τ implies a tight approximation, thereby increasing the number of vertices in the

approximate polygon. Hence, in accordance to the usage of τ in both of our proposed

methods, one based on criterion C∑ and the other on Cmax, the total number of vertices

M := M1 + M2 + . . . + MK in set of approximate polygons {Pk}Kk=1 corresponding to

the input set of DC, namely I := {Ck}Kk=1, versus τ , provides the necessary quality of

approximation. Since the total number of points lying on all the points in I characterizes

(to some extent) the complexity of I, we consider the compression ratio (CR) as a possible

measure of approximation.

Another measure of approximation is given by how much a particular point (x, y) ∈
Ck ∈ I has deviated in the corresponding polygon Pk. If p̃ := (x̃, ỹ) be the point in Pk

corresponding to p := (x, y) in I, then for all points in I, this measure is captured by

the variation of the number of points with isothetic deviation d⊥ w.r.t. d⊥, where the

(isothetic) deviation from p to p̃ is given by

dev⊥(p→ p̃) = min{|x− x̃|, |y − ỹ|}. (6.4)

Further, since dev⊥(p→ p̃) depends on the chosen value of τ in our algorithm, the fraction

of the number of points in I with deviation d⊥ varies plausibly with τ . So, the isothetic

error frequency (IEF) (or, simply error frequency), given by

f(τ, d⊥) =
1

N
|{p ∈ I : dev⊥(p→ p̃) = d⊥}| , (6.5)

versus τ and d⊥, acts as the second measure that provides the error distribution for the

polygonal approximation of I.

It may be observed that, the error frequency distribution in Eqn. 6.5 is equivalent to

the probability density function, and satisfies the criterion∑
d⊥

f(τ, d⊥) = 1, for τ = 0, 1, 2, . . . .
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In fact, the error frequency distribution function in our measure is a bivariate distribution

of (finite-size) samples of size N , depending on the two variables, namely τ and d⊥. A

study on the nature of the error frequency distribution for a sufficiently large population

of arbitrary digital curves may be, therefore, a promising area of theoretical analysis of

polygonal approximation of digital curves.

6.4 Experimental Results

We have implemented the algorithm in C (in SunOS Release 5.7 Generic of Sun Ultra 5 10,

Sparc, 233 MHz). The algorithm takes a set of digital curves, C := {Ck : k = 1, 2, . . . ,K}
(Sec. 6.3.2), as input, and using the specified value of the pointillist factor ϕ, derives

the optimal/sub-optimal pointillist ensemble (i.e., the unordered set of sample points:

Sec. 6.3.3). In order to verify the quality and efficiency (Sec. 6.3.6) of the algorithm, we

have also implemented the procedure to reconstruct a curve set from the corresponding

ensemble (Sec. 6.3.4).

We have tested the algorithm on several classified image databases of diverse nature

and of varied interests pertaining to pattern recognition and computer vision, which are

as follows:

(i) Natural image database: 120 images [Martin et al. (2001)];

(ii) Logo image database: 1034 images (received on request, from Prof. Anil K. Jain and Aditya

Vailya of Michigan State Univ., USA);

(iii) Selected database of optical and handwritten characters: 550 images [Hull (1994),

ISI (2002)];

(iv) Fingerprint databases FVC2000 db1 and db2: 160 images [FVC2000 (2000)];

(v) Sports video sequences on “pitcher-1” and “pitcher-2”: 320 frames;

(vi) Test curve database: 100 irreducible, random, and closed digital curves.

Sets (i), (ii), (iii), and (v) are 8-bit gray-scale images, which have been first passed

through an edge-detection stage, followed by thinning [Gonzalez and Woods (1993)]. The

procedure of reconstructing a curve from its ensemble has been demonstrated in Fig. 6.7

on a small logo image. Shown in Fig. 6.8 are results on “drummers” (Set (i)) when the

pointillist ensemble is minimally defined (i.e., with the pointillist factor ϕ = 1). The input

binary image is first processed to get its polygonal decomposition, from which its pointillist
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(a) (b)

(c) (d)

Figure 6.7: Step-by-step demonstration of the reconstruction from the pointillist ensem-

ble Ĉ (original curve “logo 411” shown in Fig. 6.11). (a) Voronoi diagram, V or(Ĉ). (b)

Delaunay triangulation (in red), DT (Ĉ), as obtained from V or(Ĉ). (c) DT (Ĉ) as a sub-

graph of the Euclidean graph EG(Ĉ). (d) The reconstructed curve (in green) given by

MST (DT (Ĉ)). Note that coordinates of the points in the ensemble have been scaled here

by a factor of 3 for a better visibility of the underlying geometric data structures.
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Table 6.1: Results of the proposed algorithm (ϕ = 1) on different images

Image name
Image

size
|C| |P| |P̂|

Point-

illism

time

Recons-

truction

time
“drummers” 340× 244 4084 207 796 0.547 0.720

“logo355” 256× 256 3513 193 1598 0.482 1.285

“logo416” 256× 256 2054 127 628 0.436 0.539

“logo417” 256× 256 3138 273 982 0.843 1.100

“test001” 256× 256 1624 142 425 0.552 0.726

Time to form the ensemble and reconstruction time shown in seconds

|C| = number of curve points in the image

|P| = number of vertices after polygonal decomposition

|P̂| = number of points in the pointillist ensemble

ensemble is derived. To demonstrate the efficiency and robustness of the method, we have

also shown a part of the reconstruction and the original curve set superimposed on the

ensemble. Denser ensembles with ϕ = 2 and ϕ = 4, shown in Fig. 6.9, demonstrate

the strength of the method in capturing the actual shape in a manner that imitates our

psycho-visual sensory reflex.

The ensembles corresponding to the digital contours of some logo images (Set (ii)) for

ϕ = 1 and ϕ = 2 are shown in Fig. 6.10 and Fig. 6.11. In Table 6.1, we have furnished

some other significant parameters for a few images to show the results of the algorithm in

finding the pointillist ensembles of the corresponding set of curves.

As mentioned in Sec. 6.2.2.2, points sampled from fingerprint ridge lines constituting a

fingerprint topography are used in various biometric applications related with fingerprint

image analysis [Bazen and Gerez (2003), Bhowmick and Bhattacharya (2008), Bhowmick

et al. (2005a), Ceguerra and Koprinska (2002), Jain et al. (1997, 2001), Maltoni et al.

(2003)]. Hence, to demonstrate the results of the algorithm on fingerprint images, we have

shown the pointillist ensembles of a fingerprint image (Set (iii)) corresponding to a few

values of ϕ in Fig. 6.121. Similar results on three other fingerprint images — selected in

a way so that they possess appreciable differences among themselves apropos their ridge

topographies — for ϕ = 1, 2, and 8, are shown in Fig. 6.13. It may be noticed from

1The procedures of obtaining the thinned ridge topography (input to the proposed algorithm) from a

gray-scale fingerprint image have been discussed in [Bhowmick et al. (2005a)].
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Figure 6.8: Results on “drummers” for minimum pointillism (ϕ = 1): top left shows the
input set; top right shows the polygonal description; middle row shows the pointillist
ensemble; bottom left shows a part of the reconstructed set from the pointillist ensemble;
bottom right shows the original object superimposed on the ensemble.
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Figure 6.9: Pointillist ensembles of “drummers” for higher pointillist factor: left with

ϕ = 2; right with ϕ = 4.

Figure 6.10: Results on “logo355”: left image shows the ensemble for ϕ = 1; right top is

for ϕ = 2; right bottom shows the original object.
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Figure 6.11: Results on some other polygons corresponding to logo images: left image

shows the ensemble for ϕ = 1; middle one is for ϕ = 2; right one shows the original object.

their pointillist ensembles that density of points is high in and around a region where the

ridges possess bifurcations or crossovers. Further, as the pointillist factor ϕ is gradually

increased, the pointillist ensemble tends to the original/input ridge set, which justifies the

convergence and robustness of the algorithm.

As another potential application where the algorithm may be used, we have also pre-

sented here a portion of the results on a small video sequence in Figs. 6.14 and Fig. 6.15.

Since vertex- or point-based representation is usually followed for shape coding in the video

object plane (Sec. 6.2.2.1), a (optimal or suboptimal) pointillist ensemble may be used in

an appropriate way. Such an ensemble, without any ordering (unlike the ordered set of

vertices of a polygon), captures the shape with a nearly-lossless reconstructive quality.



154
Chapter 6

From a Digital Object to its Pointillist Ensemble

ϕ = 1 ϕ = 2 ϕ = 3

ϕ = 8 ϕ = 16 thinned ridge-lines

original gray-scale
fingerprint image

enhanced image extracted (non-thinned)
ridge-lines

Figure 6.12: Results of the proposed algorithm on a fingerprint image.
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Figure 6.13: Results on three other fingerprint images for ϕ = 1 (left column), ϕ = 2
(middle column) and ϕ = 8 (right column).
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The pointillist ensembles for ϕ = 1 (Fig. 6.14) corresponding to 16 frames, which repre-

sent a part of the “pitcher” video sequence, depict how the ensembles gradually change

over these frames, though without suffering any appreciable loss (when subject to recon-

struction). Visually, the underlying objects are, of course, more pronounced when the

pointillist factor ϕ is increased, say, to ϕ = 2 (Fig. 6.15), which is a suboptimal solution.

6.5 Conclusion

We have shown how a set of digital curves, after being decomposed into a set of shape-

preserving digital polygons, can be represented by an appropriate pointillist ensemble.

The size of the ensemble can be controlled by the pointillist factor, ϕ, which, when set

to unity, produces a minimally defined ensemble, and when gradually increased, produces

larger ensembles depicting clearer impression about the underlying object set. The pro-

posed algorithm used to find the ensemble imitates the human visual mechanism, and the

subsequent reconstruction using the nearest neighbor rule reproduces a digital curve that

almost preserves its original shape, provided the polygonal decomposition of the original

curve is reasonably good. Thus, the pointillist ensemble is likely to serve a useful and

efficient representation of an object for an application dealing with computer or robot

vision system.

The concept of pointillism ensures a freedom from ordering of the points in the resul-

tant ensemble. The school of art on pointillism [Gage (1987), Seurat (1966)] initiated the

Neo-impressionist style of painting by point-dabbing in the 19th century, an idea, which

is deployed here to obtain an elegant representation of a digital object in the form of a

reduced order-free point set. As mentioned in Sec. 6.3.3, a challenging problem is to find

the minimum pointillist ensemble corresponding to any digital curve for ϕ = 1 so that

a reconstruction of the ensemble based on the nearest-neighbor rule is able to recreate

the original curve without fail. Further possibilities involving pointillist ensembles lie in

(i) shape analysis of digital objects using their pointillist ensembles; (ii) color image rep-

resentation and subsequent analysis using ensembles in the color spectrum; and (iii) other

image processing and computer vision applications.
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Figure 6.14: Results of the algorithm on the “pitcher” video sequence (in row-major order)
for ϕ = 1. Note that points (shown in yellow) in each ensemble have been enlarged nine
time just for sake of clarity.
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Figure 6.15: Results (enlarged points, as in Fig. 6.14) on the “pitcher” video sequence (in
row-major order) for ϕ = 2.
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Chapter 7

Archival Image Indexing with Connectivity Features

using Randomized Masks

7.1 Introduction

With the advent of emerging digital libraries and multimedia, construction, maintenance,

and efficient usage of several archives consisting of very large image databases, pose a

great challenge in information technology. These databases are frequently searched for

locating references, or for serving various kinds of indexing or retrieval queries. In archival

image indexing, the emphasis is specially given on deciding whether a particular image

exists in the database, rather than on finding the similarity matches of the given image.

In most of the existing image indexing and retrieval systems, determination of feature

vectors requires computationally intensive floating point operations. In this work, we have

designed a novel fuzzy technique for indexing a large archive of binary images based on

simple connectivity features such as the number of connected components and the number

of holes. To ensure a unique index for each image, an iterative technique is employed on the

bit-plane of the image using a pseudo-random spatial masking scheme. A data structure

called discrimination tree, consisting of a hierarchical arrangement of kd-trees [Berg et al.

(2000)] is also proposed for efficient indexing of images.

There are two principal approaches to image indexing: (i) those based on the features

extracted from raw image data [Chang and Lee (1991), Faloutsos et al. (1994), Hirata and

Kato (1992), Idris and Panchanathan (1995), Smith and Chang (1996), Swain and Ballard

(1991)], and (ii) those based on the coefficients in the compressed or transformed domain

[Jacobs et al. (1995), Liang and Kuo (1997), Ma and Manjunath (1994), Pentland et al.

(1994), Wang et al. (1997)]. A majority of the techniques proposed in the image indexing

literature extract robust features, meant for high similarity matches. There also exist
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some fuzzy-neural techniques [Verma and Kulkarni (2004)], techniques based on fuzzy sets

[Gesù (1999), Gesù and Maccarone (1998)] and soft image distances [Gesù and Roy (2000,

2002)], and those based on genetic algorithms [Gesù and Bosco (2005), Steji et al. (2003)].

However, inexplicit organization of the feature space often raises various scalability issues.

In particular, the query response time increases significantly with the database size. In

this work, only the topological properties of an image are used, based on a new idea of

randomized masking, to address the issue of feature space organization.

Topological properties of a digital image [Brimkov and Barneva (2004), Klette and

Rosenfeld (2004a)] typically represent the underlying geometric shape of the image. These

properties are resistant to the common spatial changes made to the image, such as stretch-

ing, rotation, scaling, translation, and other rubber-sheet transformations. One such im-

portant topological feature of a binary image is its Euler Number, which is defined as

the number of connected components minus the number of holes present in the image

[Gonzalez and Woods (1993), Pratt (1978)]. It is also used as one of the major features

for image classification or indexing.

Euler number has numerous applications in various domains, e.g., medical diagnosis

[Chen and Yan (1988), Pogue et al. (2000)], optical character recognition [Matas and Zim-

mermann (2005)], shadow detection [Rosin and West (1995)], document image processing

[Srihari (1986)], and for constructing feature vectors [Stavrianopoulou and Anastassopou-

los (2000)]. The strength and elegance of Euler number lie in its simplicity, ability to

capture the overall structural property of a binary image, and in easy implementability.

Furthermore, the availability of low-cost on-chip computation of Euler number [Bishnu

et al. (2001)] makes it a very convenient feature for image indexing. Recently, several at-

tempts have been made to exploit the strength and usefulness of Euler number for handling

a gray-scale image with the help of “Euler vector” [Bishnu et al. (2005, 2006)], which is

constructed from the Euler numbers corresponding to the four most significant bit-planes

of a gray-scale image.

Although Euler number has certain discriminating ability, it alone cannot serve the

purpose of uniquely identifying or indexing all the images in even a small or moderately-

sized database. Hence, a few additional features, if judiciously selected along with the

Euler number, may perform the desired task of discriminating all the images in a database.

In this work, we use Euler number, as well as the two basic spatial features from which

it is derived, namely, the number of connected components, C, and the number of holes, H,

along with a masking technique for characterizing an image uniquely. The striking feature

of this simple, yet novel approach, lies in extracting these dual characteristics (i.e., C and
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Figure 7.1: The scheme of the proposed method.

H) iteratively from a few derived images obtained by Boolean xor-ing the given image with

a few synthetic pseudo-random masks. In each iteration, when C and H are obtained,

a membership value for each image is assigned using a fuzzy membership function that

captures the number of connected components and the number of holes of a given image.

The fuzzy membership function is designed in such a way that the membership value of

an image represents its topological characteristics with respect to the given database. The

ultimate objective of the procedure is to generate a unique index (feature vector) for each

binary image in the database. The overall scheme of the proposed method is shown in

Fig. 7.1.

The proposed algorithm converges within a small number of iterations, and is easy to

implement. The algorithm has been tested on three different image databases, and the

results are found to be very encouraging. For example, when applied on a logo database

of 1034 binary images, the algorithm converges within 3 iterations, thereby requiring

only 3 randomized masks to uniquely characterize all of them. Only the seeds for the

randomized masks are required to be saved as they are produced by a pseudo-random

number generator. For this database, the length of the feature vector is at most 9, and

on the average, it turns out to be 5. We have proposed an extended scheme to ensure

rotational invariance, but it requires computation of the principal axes of an image.

7.2 Proposed Work

In a database consisting of N binary images, there should be N distinct feature vectors so

that there is a one-to-one correspondence between each image and its representative vector.
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Here, we demonstrate that simply the number of connected components and the number

of holes of the original image, along with those computed iteratively for a few derived

masked images, are sufficient to generate the desired feature vector of the original image.

The membership values of the Euler number, the connected components and the holes,

obtained over all the iterations, constitute the feature vector. It should be mentioned here

that the images of the database are median-filtered before running the proposed indexing

algorithm. The median filtering is required to eliminate the noisy components in a binary

image, if any.

7.2.1 Euler Number and its Primary Features

As mentioned earlier, the image features that are used in our algorithm are connected

components, holes, and the Euler number [Gonzalez and Woods (1993)], which are defined

as follows:

Connected component: A connected component of a set is a subset of maximal size

such that any two of its points can be joined by a connected curve (in 8-neighborhood)

lying entirely in the subset.

Hole: A hole in a set is a region of the background, which is a connected component (in

4-neighborhood) and is completely enclosed by the object.

Euler number: The Euler number (genus) of an image is defined as the number of

connected components minus the number of holes in the image.

Thus, if C and H denote the number of connected components and the number of

holes in a digital image respectively, then its Euler number E is given by:

E = C −H (7.1)

An efficient and easily implementable algorithm for computing the Euler number of a

binary image is based on the exhaustive study of the local patterns [Pratt (1978)], which

form the following three sets of 2×2 bit patterns, called bit quads:

Q1 =

{[
1 0

0 0

]
,

[
0 1

0 0

]
,

[
0 0

1 0

]
,

[
0 0

0 1

]}

Q2 =

{[
0 1

1 1

]
,

[
1 0

1 1

]
,

[
1 1

0 1

]
,

[
1 1

1 0

]}

Q3 =

{[
0 1

1 0

]
,

[
1 0

0 1

]}
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If q1, q2, q3 represent the respective number of patterns from the sets Q1, Q2, Q3 in a

binary image I, then its Euler number in 8-neighborhood, is given by:

E(I) =
1

4
(q1 − q2 − 2q3) (7.2)

It may be noted that, all the 10 bit quads in the sets Q1, Q2, and Q3 are distinct.

Hence, each of the 10 bit quads, when enumerated in row major order, yields a unique

4-bit number, thereby enabling the formation of a Look Up Table (LUT) containing the

10 unique elements of the following modified sets:

Q1 = {1, 2, 4, 8}
Q2 = {14, 13, 11, 7}
Q3 = {6, 9}

There exist several efficient algorithms for computation of the Euler number [Bishnu

et al. (2001), Chen and Yan (1988), Pratt (1978)]. We have implemented the algorithm

[Pratt (1978)] for computing the Euler number in 8-neighborhood, using the above LUT.

7.2.2 The Fuzzy Model and Membership Function

A fuzzy-based technique is proposed here in accordance to the fuzzy model for the objects

of the universe. The topological features of an image, namely the Euler number (E), the

number of connected components (C), and the number of holes (H), are the objects of

the universe taken individually. In this model, it is assumed that the set of values of each

of the three topological features is a fuzzy set. The membership function µXi : U→ [0, 1],

where X assumes E, C, or H; Xi, the feature value of the ith image, indicates the degree

of resemblance of the ith image to the overall trend of the database. In other words, if

the majority of the images in a database D possess low (resp. high) values of X, then

an image with a low (resp. high) value of X in D will have a high membership value,

whereas, an image with a high (resp. low) value of X in the same database D will have

a low membership value. In general, the membership function corresponding to the ith

image for the topological feature X, is defined as:

µXi =
fXMo

FXi

(7.3)

where, X can assume E, C, or H, fXMo
is the modal (highest) frequency of the frequency

distribution of X, and FXi denotes the cumulative frequency corresponding to Xi derived

from the distribution of X sorted in the non-increasing order of frequency. As the modal

frequency [Vertan and Boujemma (2000)] embodies the central tendency of the database,
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and as the cumulative frequency, FXi , is derived from the sorted frequency distribution,

their ratio signifies the degree of membership of the ith image (having the feature value

Xi) to the database. It may be noted that µX maps the set X into the interval [0, 1], and

thus, X is a fuzzy set [Bezdek (1993), Zadeh (1965)].

Given a binary image database D = {Ik}Nk=1, there may exist several images having

identical values of Euler number. Let there be η distinct Euler numbers, ϵ1, ϵ2, . . . , ϵη,

sorted in the non-increasing order of their frequencies, for all the images in D. Let fϵMo

be the modal frequency, and let the cumulative frequency distribution be Fϵ1 , Fϵ2 , . . . , Fϵη .

Now, by replacing X with ϵ in Eqn. 7.3, the membership value of an image, having Euler

number ϵi and cumulative frequency Fϵi , is derived as:

µϵi =
fϵMo

Fϵi

(7.4)

Let Et be the subset of D, which contains the images with the same membership value.

Since the membership values decided by the Euler numbers of different images are not

enough to classify the images further, the number of connected components, C, and the

number of holes, H, are chosen as the features to derive the corresponding membership

values, which will further (partially or completely) segregate the images in each subset Et

of D. We have adopted the algorithm given in [Gonzalez and Woods (1993)] for finding

the number of connected components, CIk , of each image Ik. The membership values, µCk

and µHk
, corresponding to Ck and Hk of each image Ik are calculated in a similar way as

done for computation of the Euler number by using Eqn. 7.3.

The tuple ⟨µCk
, µHk

⟩ is used to classify D further. Using this tuple, we have devised a

scheme that can be employed to index all the N images distinctly in the database D. The

membership degree of C for one of the databases we have used, is shown in Fig. 7.2. It is

evident from this figure that the images having their values of C close to the modal value

possess a higher degree of membership, whereas those with their C values away from the

modal value possess a low degree of membership.

7.2.3 Generation of Randomized Mask

In order to differentiate two or more binary images with identical membership values,

⟨µϵ⟩ and ⟨µC , µH⟩, an artificial binary mask is generated pseudo-randomly. When this

mask is Boolean xor-ed, pixel by pixel, with an image Ik having the membership tuple

⟨µCIk
, µHIk

⟩, a new image Jk will be produced with CJk and HJk , as the number of con-

nected components and the number of holes respectively. The corresponding membership
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Figure 7.2: Membership degree for C corresponding to a given database.

tuple would be ⟨µCJk
, µHJk

⟩, which is possibly different from ⟨µCIk
, µHIk

⟩. In spite of its

random characterization, a particular mask, however, may not be able to segregate all

images in a particular set {Ik} having sufficiently different membership values, and there-

fore, more randomized masks may be required to resolve the residual ambiguity. Hence,

the randomized masks are generated a few more times iteratively, so that after the final

iteration, each of the N images in the database D is distinctly indexed.

It may be observed that the images in the database D may have nonuniform sizes.

Hence, in order to have the compatibility of xor-operation between an image of D and

a mask of predefined size, all the images in D are normalized to the size of the mask.

Further, at each iteration, a single mask is produced for all images in D, and the masks

over all iterations have identical predefined size, µ×µ pixels. In our experiments, we have

considered µ = 256.

Let Aα be a square matrix of size α×α (such that α divides µ), where, Aα(x, y) ∈ {0, 1}
for 1 ≤ x, y ≤ α. The matrix Aα is constructed based on an eight-bit positive integer r,

which is generated randomly each time for deciding each element of Aα. Let r(x, y) be the

random number that decides the entry Aα(x, y). Then the decision for Aα(x, y) is taken

as follows:
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Aα(x, y) =

{
1 if r(x, y) > ρ

0 otherwise
(7.5)

In Eqn. 7.5, the parameter ρ, which is an integer, plays a crucial role in determining

the ratio of the number of 0s to that of 1s in Aα. Below it is shown that, assuming the

uniform distribution of r in the integer range [0, 255], the probability that the number of

0s is the same (or, differs by at most unity, if α is odd) as that of 1s in Aα, would be

maximum for ρ = 127 [Roberts (1984)].

Let p be the probability that Aα(x, y) is 1. Then the probability that Aα contains i

1s and (n− i) 0s, denoted by P (1i), where n = α2, is given by

P (1i) =

(
n

i

)
pi(1− p)n−i (7.6)

Hence, from Eqn. 7.6, the probability of having equal number of 0s and 1s in Aα, i.e.,

i = n
2 , n being assumed to be even, is given by

P (1
n
2 ) =

(
n
n
2

)
p

n
2 (1− p)

n
2 ,

and this probability is maximized when p = 1
2 . The same can also be proved if n is odd.

Now, in Eqn. 7.5, since ρ varies from 0 to 255, we have p = 255−ρ
256 . Thus, if p = 1

2 ,

then ρ = 127. Hence, the probability of having equal number of 0s and 1s in Aα, and in

the mask generated thereof, is maximum for ρ = 127.

We assume that no a priori information is available about the images in the database.

It is, therefore, important to set the parameter ρ to 127 in order to have equal number of

1s and 0s in the mask. In our experiments also, we have found that the algorithm requires

minimum number of iterations for ρ = 127.

Further, a departure in the value of ρ from 127 will reduce the probability that the

number of 0s is same as that of 1s in Aα. The generation of the synthetic mask depends on

the generation of the corresponding Aα in the concerned iteration, and therefore, changing

the value of ρ will play a significant role in designing the masking scheme, if desired. In

Fig. 7.3, different synthetic masks are shown, as obtained for different values of ρ.

Let A
(i)
α be the matrix generated at the ith iteration, such that, the Hamming distance

L
(
A

(i)
α ,A

(i−1)
α

)
between A

(i)
α and A

(i−1)
α , i ≥ 1, A

(0)
α = 0, satisfies the criterion stated in

Eqn. 7.7.

L
(
A

(i)
α ,A

(i−1)
α

)
=

α∑
x=1

α∑
y=1

A
(i)
α (x, y) ∼ A

(i−1)
α (x, y)≥ τ (7.7)
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ρ = 25 ρ = 62 ρ = 127 ρ = 183 ρ = 230

Figure 7.3: Instances of randomized masks for different values of ρ, given α = 8.

where, A
(i)
α (x, y) ∼ A

(i−1)
α (x, y)= 0, if A

(i)
α (x, y) = A

(i−1)
α (x, y);

= 1, otherwise.

LetM
(i)
α be the randomized binary mask of size µ×µ generated in the ith iteration from

A
(i)
α as follows. Let β(= µ/α) be the length of the square block that acts as the “building

block” of M
(i)
α . That is, M

(i)
α consists of α2 building blocks, where, each building block

is made of β2 pixels (all of which are either 0 or 1 for a particular building block). Then

M
(i)
α is constructed as shown in the following equation:

M(i)
α (x, y) = A(i)

α (p, q) (7.8)

where, p =
⌈
x
β

⌉
, q =

⌈
y
β

⌉
,∀x,∀y, 1 ≤ x ≤ µ, 1 ≤ y ≤ µ, such that, the mask M

(i)
α

differs from the mask M
(i−1)
α in the preceding iteration by at least τβ2 pixels, in con-

formity with Eqn. 7.7.

From Eqn. 7.7, it is evident that the size of the square blocks constituting the random

synthetic mask is decided by α. This fact is illustrated in Fig. 7.4. It may be interesting

to note that along with the value of ρ, the value of α may be also be tuned to obtain

better resolving power of the synthetic mask. It is true that a smaller size of the blocks

gives the mask more resolving power, but it may be less reliable from the point of view

of robustness. We have found that α = 8 gives the optimal solution for the logo and the

stamp images used in our experiments.
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α = 4 α = 8 α = 16 α = 32

Figure 7.4: Different masks produced by changing the values of α for ρ = 127.

I253 M
(1)
8 I253 ⊕M

(1)
8 J

(1)
253

Figure 7.5: A randomized mask (M
(1)
8 ) overlaid on a sample image I253 to obtain the

masked image J
(1)
253.

7.2.4 Iterative XOR-ing with Randomized Masks

Let J
(i)
k be the image obtained when xor-operation (represented by ‘⊕’) is performed

between the image Ik and the mask M
(i)
α in the ith iteration. In other words, J

(i)
k =

Ik ⊕M
(i)
α . An example of xor-operation between a sample image with a randomized mask

is shown in Fig. 7.5.

Let {Ik} be a subset of images in a database D with all of its xor-ed images {J(i−1)
k }

having identical ⟨µC , µH⟩ in the (i − 1)th iteration. When each image Ik in this subset

is xor-ed with M
(i)
α in ith iteration to get a set of images, namely, {J(i)k } = {Ik ⊕M

(i)
α },

there would be possibly different membership degree tuples, ⟨µC , µH⟩, in the set {J(i)k },
thereby requiring further masking of the images in the (i+1)th iteration of the algorithm.

The iterations are carried on until all images with the same ⟨µE⟩ have distinct ordered

set of tuples,
⟨
⟨µC , µH⟩

⟩
, considered over all the iterations. In effect, all N images in the

database D have N distinct feature vectors (of possibly unequal sizes), each of which is of

the form
⟨
⟨µEk

⟩
⟨
⟨µ(i)

Ck
, µ

(i)
Hk
⟩
⟩i≤j

i=0

⟩
corresponding to a unique image Ik ∈ D, where, j is the

total number of iterations required for D, and ⟨µ(0)
Ck

, µ
(0)
Hk
⟩ is derived from ⟨C,H⟩ values

of {Ik} without any xor-ing. A schematic representation of the entire algorithm has been
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⟨1.00, 0.51⟩
I109 :

⟨1.00, 0.51⟩
I259 :

⟨1.00, 0.51⟩
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⟨1.00, 0.51⟩
I300 :

⟨1.00, 0.51⟩
I244 :

⟨1.00, 0.51⟩
I418 :

⟨0.42, 0.41⟩
I260 :

⟨0.31, 0.51⟩

J
(1)
2 :

⟨1.00, 0.29⟩
J
(1)
109 :

⟨0.40, 1.00⟩
J
(1)
259 :

⟨0.40, 0.29⟩
J
(1)
274 :

⟨0.40, 0.29⟩
J
(1)
300 :

⟨0.20, 0.29⟩
J
(1)
244 :

⟨0.20, 0.29⟩
Mask:

M
(1)
8

J
(2)
300 :

⟨0.66, 1.00⟩
J
(2)
244 :

⟨0.33, 1.00⟩
Mask:

M
(2)
8

Figure 7.6: Demonstration of the proposed algorithm on a representative set of 8 images

for generation of feature vectors of varying sizes by iterative xor-ing with randomized

masks.

shown earlier in Fig. 7.1.

Fig. 7.6 demonstrates the iterative xor-ing procedure and generation of requisite fea-

ture vectors on a small representative set of 8 images. The xor-ing procedure converges just

in 2 iterations; this indicates the speed and efficiency of the proposed method. In the 1st

row, the membership tuple, ⟨µ(0)
C , µ

(0)
H ⟩ for all eight images are shown. It is evident that the

images I418 and I260 are segregated at this level and the other six images are still having the

similar membership tuple. Hence, these six images with ⟨µ(0)
C , µ

(0)
H ⟩ = ⟨1.00, 0.51⟩ are se-

lected for xor-ing in iteration (1). The 2nd row shows the xor-ed images in iteration (1) and

the resultant tuples, ⟨µ(1)
C , µ

(1)
H ⟩. In the 2nd row, excepting the two images, J

(1)
244 and J

(1)
300,

all other images have distinct ⟨µ(1)
C , µ

(1)
H ⟩, and the formation of their feature vectors, there-

fore, ends here. Since the images J
(1)
244 and J

(1)
300 have identical ⟨µ(1)

C , µ
(1)
H ⟩ = ⟨0.20, 0.29⟩,

their parent images, I244 and I300, are considered in the 2nd iteration, where they are

xor-ed with the corresponding randomized mask, and their ⟨µ(2)
C , µ

(2)
H ⟩ values become dif-

ferent, as shown in the 3rd row. Thus, the process terminates after iteration (2). The two

randomized masks, M
(1)
8 and M

(2)
8 , which are used for xor-ing in the above two iterations,

are shown in the respective rows.

Thus, out of the 8 images comprising the exemplary set in Fig. 7.6, the length of the
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feature vector for image I260 (for unique µϵ = 0.1842) is just 1, that for I418 (no xor-ing

required) is 1 + 2 = 3, whereas, the same for images I244 and I300 (xor-ed up to 2nd

iteration) is 1 + 2 × 3 = 7 each, and for the remaining 4 images (xor-ed in 1st iteration

only), the length of the feature vector for each, becomes 1 + 2× 2 = 5. Thus, the length

of the feature vector in the proposed algorithm may vary from image to image. Similar

images are more likely to have longer feature vectors, since they cannot be distinguished

among themselves with a small number of features, whereas, an image, possessing lesser

similarity with the rest of the images in the database, is likely to have a shorter feature

vector.

7.2.5 Variable Feature Vector

As evident from Sec. 7.2.4, the feature vectors obtained for various images are charac-

terized by variable feature length, depending on their structural behavior apropos the

iterative xor-ing with the randomized masks used in our algorithm. In most of the con-

ventional procedures, the length of a feature vector (sometimes the feature vector itself)

is predefined. In contrast, an adaptive construction of feature vectors, depending on the

need and the topological properties of an image, is done here based on the output of

each iteration of the randomized masking procedure. This greedy algorithm provides an

effective and near-optimal choice of feature vectors. Furthermore, the dimensionality of

the feature vector that has maximal length in the concerned space, would increase auto-

matically with the execution of the algorithm on a database of larger size and diversity.

The number of iterations in the randomized masking procedure increases only with an

appreciable increase in the size and diversity of the image database.

7.2.6 Algorithm for Computing the Feature Vector

Compute Feature Vector

Input : Image database D consisting of N images

Output : Feature vectors of each image

Steps:

1. set parameters α, ρ, µ, τ (default: 8, 127, 256, 8)

2. for k = 1 to N

3. normalize the image Ik and find its Euler number Ek
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4. find the frequency distribution of the Euler nos. obtained in steps (2)-(3)

to get the distinct Euler nos., say η in number; hence obtain η (disjoint)

subsets of D, namely Et, such that
n∪

t=1
Et = D

5. for t = 1 to η

6. for each image Ik ∈ Et

7. find ⟨C(0)
k and H

(0)
k ⟩, and calculate

their membership values to get
⟨
⟨µ(0)

Ck
, µ

(0)
Hk
⟩
⟩

8. for t = 1 to η

9. construct the subsets of Et, s.t. each St,u (uth sub-subset of Et)

contains the images having identical ⟨µC , µH⟩
10. if St,u has only one image

11. then add this to the final solution of feature vectors [step 22]

12. initialize i = 1

13. generate a randomized mask M
(i)
α conforming to Eqns. 7.7 and 7.8 and

put the corresponding A
(i)
α in the final solution [step 22]

14. for all t

15. for all u

16. Masked Vector(St,u, M
(i)
α , i)

17. remove all subsets St,u used in steps 14-16 and (re)name the new subsets as St,u

18. if at least one St,u contains at least two images

19. then i = i+ 1 and go to step 13

20. else

21. assign n = i, and go to step 22

22. return the final solution:

(i) the number of masks (iterations), n

(ii) ⟨A(i)
α ⟩i=n

i=1

(iii) ⟨µEk
⟩
⟨
⟨µ(i)

Ck
, µ

(i)
Hk
⟩
⟩i≤j

i=0
, 1 ≤ k ≤ N

Procedure Masked Vector(St,u, M
(i)
α , i)

1. for each image Ik ∈ St,u

2. evaluate J
(i)
k = Ik ⊕M

(i)
α

3. find C
(i)
k and H

(i)
k of Jk

4. compute the frequency distributions of C and H

5. determine the mode frequencies of C and H
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6. for each image Ik ∈ St,u

7. calculate the membership tuple ⟨µCk
, µHk

⟩
8. append the tuple ⟨µ(i)

Ck
, µ

(i)
Hk
⟩ to

⟨
⟨µ(j)

Ck
, µ

(j)
Hk
⟩
⟩i−1

j=0
to get

⟨
⟨µ(j)

Ck
, µ

(j)
Hk
⟩
⟩i
j=0

9. return the subsets of St,u, with identical ⟨µ(i)
Ck

, µ
(i)
Hk
⟩

7.2.7 Data Structure for Storing Image Features

In order to store and retrieve the images using the proposed algorithm, a data structure

called discrimination tree, consisting of a sequence of nested kd-trees [Berg et al. (2000)],

is used here. It may be noted that the quad-tree, which is commonly used in many of

the existing image indexing methodologies [Ahmad and Grosky (1997)], is not suitable

for storing the feature vectors (the images, thereof) derived in this algorithm, since the

quadtree would become very unbalanced because of the uneven distribution of the mem-

bership value tuples ⟨µC , µH⟩. A kd-tree, on the other hand, would be always balanced

and would ensure searching of an image in logarithmic time, since it splits a 2-dimensional

plane alternately about the median w.r.t. the x-coordinate and about the median w.r.t.

the y-coordinate, such that at each level of the kd-tree, the points stored at any two nodes

differ in number at most by unity.

Let there be n(i) distinct tuples of ⟨µ(i)
C , µ

(i)
H ⟩ produced in the ith (i = 0, 1, 2, . . . , n)

iteration of the algorithm for a database D containing N images. At the ith iteration, the

corresponding feature tuples, ⟨µ(i)
C , µ

(i)
H ⟩, on a 2-dimensional plane, namely the µCH plane,

constitute a planar set of points, which may be stored in a 2-dimensional kd-tree. Let T(i)

represent the kd-tree that is constructed at the ith iteration. Then T(i) contains n(i) leaf

nodes and has O(logn(i)) height, where, each leaf node contains a unique ⟨µC , µH⟩ tuple
that may be the ⟨µC , µH⟩ tuple for more than one image (after xor-ing with mask M

(i)
α , if

i ≥ 1, and original, if i = 0) in D, as shown in Fig. 7.7.

It is quite evident that, if at least one of the leaf nodes of T(i) has more than one image

of D associated with it, only then the algorithm proceeds for the (i+ 1)th iteration. For

each such leaf node ν, having more than one associated image in T(i), another kd-tree

T
(i+1)
ν would be created in the(i + 1)th iteration. The kd-tree T

(i+1)
ν contains all distinct

⟨µ(i+1)
C , µ

(i+1)
H ⟩ tuples of only those images associated with the same node ν of T(i). The

process is repeated until each leaf node in the kd-tree has exactly one image associated

with it, as stated in the algorithm of Sec. 7.2.6. The tree, thus created with a number
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(1)

τ(0)root[      ]

τ(2)root[      ] 

root[      ]τ

 0.5000

 0.5398  0.5398
 0.6443  0.5148
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 0.2940
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 0.2294
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 0.3000
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 0.3000
 0.7000

 1.0000
 0.5833

 0.2727
 0.7000

 0.3750
 1.0000

 1.0000
 1.0000

 0.2500
 0.5000

 0.2142
 0.4666

 0.6000
 0.4375

 0.1875
 0.7000

 0.4300
 1.0000

 0.4300
 0.4117

 0.6000
 0.5000

 0.2000
 1.0000

 0.1764
 1.0000

 1.0000
 1.0000

 0.5000

 [66]  [41]  [23]  [63]  [1]  [1]  [1]  [1] [41]  [16]  [23]  [15]

 [1]  [1]  [1]  [1]  [1]  [2]  [1]  [1]  [1]  [1]  [1]  [1]  [1]  [1]

 [1]  [1]

 [1]

 0.4551
 1.0000

 1.0000
 1.0000

 0.6443
 1.0000 1.0000

 0.5148
 0.5398
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Figure 7.7: Discrimination tree for database D1 (refer Sec. 7.2.7). The ⟨µC , µH⟩ tuples are
mentioned in the leaf nodes indicated by the square boxes. The numbers written inside the

square braces ([ ]) below the leaf nodes show the numbers of images having the identical

⟨µC , µH⟩ tuple. This figure indicates that, at level one, there are 247 distinct ⟨µC , µH⟩
tuples, and corresponding to ⟨1.0000, 0.4551⟩, 16 images are associated. The next level

kd-tree, only one shown here for ⟨µC , µH⟩ = ⟨1.0000, 0.4551⟩, has 15 distinct leaf nodes.

Finally, at the third level, the two images with ⟨µC , µH⟩ = ⟨1.0000, 1.0000⟩ are resolved.
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of kd-trees organized in a hierarchical manner, is termed as the discrimination tree, as

it discriminates the images having the same membership degree, ⟨µC , µH⟩. The root of

each kd-tree at each level contains the iteration number, the seed of the randomized mask

used for that iteration, the modal frequencies, and the frequency distributions of C and

H. The root of the discrimination tree, being the root of a kd-tree at level zero, does not

store any seed for the randomized mask, since no xor-ing is done at this iteration. It may

be noted that the maximum length of the feature vector is bounded by the depth of the

discrimination tree.

7.2.8 Image Retrieval

The query image, Iq, is median-filtered and normalized. The C and H values of this

preprocessed image are then computed. Now, the membership tuple ⟨µCq , µHq⟩ of Iq,

corresponding to the given database D, is determined using the mode values, MoC and

MoH stored at the root of the discrimination tree. Note that (as stated in Sec. 7.2.7) the

root of each kd-tree will contain the modes of C and H of the images associated with it.

Searching in the discrimination tree for this ⟨µCq , µHq⟩ tuple begins at the root (T(0)), as

shown in Fig. 7.7. When the search results in a leaf node having more than one image

associated with it, it proceeds to the root of the next level kd-tree (T(1)). The root contains

the seed of the mask at this level, as well as the MoC and the MoH of T(1). The query

image is xor-ed with this mask, its membership tuple ⟨µCq , µHq⟩ is calculated, and T(1) is

searched with this tuple. This process is repeated until a leaf node with a single image is

found. If a leaf node is not found at any level of the search, then it is concluded that the

query image does not exist in the database.

The major steps of the retrieval algorithm is as follows.

1. preprocess the query image to Iq

2. set root = root(T(0)) and i = 0

3. while (true)

4. if i = 0

5. then set J
(i)
q = Iq

6. else

7. compute J
(i)
q = Iq ⊕M

(i)
α

8. find C
(i)
q and H

(i)
q of I

(i)
q

9. compute ⟨µ(i)
Cq
, µ

(i)
Hq
⟩ using the modal frequencies stored

at the root of the kd-tree T(i)
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Figure 7.8: Two images and the corresponding rotated images

10. search the kd-tree T(i) with ⟨µ(i)
Cq
, µ

(i)
Hq
⟩

11. if search returns null

12. then declare that the image is not in the database and return

13. else

14. if the resultant leaf node points to the next level kd-tree

15. then set i = i+ 1 and root = root(T(i))

16. else

17. report the details of the image

7.2.9 Translation, Scaling, and Rotation Invariance

The rotation invariance is achieved by rotating the image to make its principal axis vertical

using principal component analysis. The discrimination tree is constructed by xor-ing

these rotationally invariant images with the randomized mask(s). In order to achieve

translation and scaling invariance, the foreground is extracted from the background and

normalized to the size µ× µ. The scheme is shown for two example images in Fig. 7.8.

Following are the preprocessing steps in brief, applied on each image of the database

before indexing, to make it invariant to any kind of affine transformation:

(i) compute the principal axis;

(ii) rotate the image to make the principal axis vertical;

(iii) extract the foreground from the background;

(iv)median-filter and normalize the image to size µ× µ.

7.2.9.1 Insertion and Deletion of an Image

A new image can be indexed easily by inserting the image at an appropriate place in the

discrimination tree. At first, C and H values of the new image are computed, and the
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frequency distributions of C and H are updated to (re)compute MoC and MoH . Then,

the membership tuple ⟨µC , µH⟩ is determined. Next, the ⟨µC , µH⟩ tuple is dynamically

inserted [Overmars (1983)] into the kd-tree T(0). If this tuple is a distinct (new) ⟨µC , µH⟩
tuple, then it is added as a new node in this kd-tree. Otherwise, it has a kd-tree at the

next level associated with it. In such a case, the image is xor-ed with the corresponding

mask stored at the root of the kd-tree at the next level, and the C⊕ and H⊕ values are

calculated for the xor-ed image. The modes of this kd-tree are iteratively modified if

required, depending on the previous distribution. The membership tuple ⟨µC⊕, µH⊕⟩ of
the new xor-ed image is calculated, and ⟨µC⊕, µH⊕⟩ is inserted into the next level kd-tree.

Thus, the procedure for inserting a new node is followed for the kd-tree at the root

(T(i)) iteratively until this new node is inserted as a single node. However, a threshold, for

the number of images associated with a leaf node, may be imposed (say, a maximum of

5), below which the next-level kd-tree is not constructed. Rather, the images are inserted

in a lateral linked-list and discriminated by the ⟨C,H⟩ tuple of the corresponding xor-ed

images with a local randomized mask. In such a case, the leaf node stores the seed for the

local randomized mask.

The deletion of an image from the discrimination tree is performed in a similar way,

since a deleted image implies deletion or modification of the associated leaf node. However,

the mode values stored at the roots of the kd-trees have to be reassessed and have to

be replaced with the new values, if changed. Further, if the leaf node indicates a next

iteration, then the number of images associated with this node is decremented, ⟨µC , µH⟩
of the xor-ed image is computed for the next iteration, and the corresponding leaf node

is associated with the next level kd-tree. The process is repeated until the final leaf node

representing the image is located and deleted. The mode frequencies stored at the roots

of the kd-trees are updated accordingly.

7.3 Experimental Results

We have implemented the proposed method in C on a Sun Ultra 5 10, Sparc, 233MHz, the

OS being the SunOS Release 5.7 Generic. A tool called CONFERM (Connectivity Features

with Randomized Masks) [Biswas et al. (2004)] has been developed for this purpose. The

method has been tested on 3 sets of binary images for our experiments: (i) database D1

of 1034 logo images; (ii) database D2 of 106 logo images; and (iii) database D3 of 2598

stamp images. The average execution time and average query time for each of these three

sets of images are given in Table 7.1 and in Table 7.2 respectively. The summary of results
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Table 7.1: Average CPU time in seconds per image for indexing databases D1, D2, and

D3

D1 D2 D3

µE , ⟨µ(0)
C , µ

(0)
H ⟩ 0.476 0.508 0.510

⟨µ(i)
C , µ

(i)
H ⟩

i=j
i=1 0.422 0.120 0.080

Total 0.898 0.628 0.588

obtained for databases D1, D2 and D3, is presented in Table 7.3. The results vary with the

databases and also with the different values of α. This observation reflects the randomized

and adaptive nature of the proposed algorithm.

In Table 7.3, λ denotes the average length of feature vector for the database D, which

is given in Eqn. 7.9, where, λk denotes the feature vector length of the image Ik ∈ D.

λ =
1

N

k=N∑
k=1

λk (7.9)

Table 7.2: Average query time in seconds per image for databases D1, D2 and D3

D1 D2 D3

No. of Images 1034 106 2598

Avg. Query Time 0.0584 0.0595 0.0635

Fig. 7.9 shows the reduction in frequency of occurrences of identical ⟨µC , µH⟩ tuples
with the progress of iterations in the algorithm, and demonstrates the segregation power

of the indexing scheme. To cite a few examples, four sample images from D1 and another

four from D2 have been shown in Fig. 7.10 and Fig. 7.11 respectively. These images have

been selected so as to represent the possible output vectors of the proposed algorithm.

Similarly, a representative set of images from the stamp image database D3 are shown in

Fig. 7.12. For instance, in Fig. 7.10, I761 is the only image in D1 with distinct µE = 0.1842

and therefore, no other feature is required to uniquely index this image. The next image

shown, on the other hand, needs the tuple ⟨µC(0) , µH(0)⟩ = ⟨0.3642, 0.3131⟩ along with its

µE = 0.2235 since there are some more images in D1 having µE = 0.2235; there is, however,

no other image in D1 with µE = 0.2235 and ⟨µC(0) , µH(0)⟩ = ⟨0.3642, 0.3131⟩. Hence, the
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Frequency distribution of ⟨C(0),H(0)⟩

Frequency distribution of ⟨C(1),H(1)⟩ for 63 images in D1

with same membership degree, ⟨µ(0)
C , µ

(0)
H ⟩

Figure 7.9: Distribution of ⟨C,H⟩ for Database D1.
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Table 7.3: Results for databases D1, D2, and D3

D1 D2 D3

α 8 16 32 8 16 32 8 16 32

⟨µE⟩ 62 62 62 53 53 53 162 162 162

#⟨µC , µH⟩(0) 247 247 247 79 79 79 1281 1281 1281

#⟨µC , µH⟩(1) 710 948 1007 106 106 106 1742 1887 2035

#⟨µC , µH⟩(2) 967 1034 1034 – – – 2334 2402 2476

#⟨µC , µH⟩(3) 1034 – – – – – 2598 2598 2598

λ 5.16 4.57 4.45 2.51 2.51 2.51 4.63 4.47 4.46

#⟨µC , µH⟩(i)= No. of distinct vectors after ith iteration.

Each feature vector after ith iteration is given by:

⟨µE⟩⟨µ(0)
C , µ

(0)
H ⟩⟨µ

(1)
C , µ

(1)
H ⟩ · · · ⟨µ

(i)
C , µ

(i)
H ⟩.

I761 I174 I162 I261

I761 : ⟨0.1842⟩
I174 : ⟨0.2235⟩

⟨
⟨0.3642, 0.3131⟩

⟩
I162 : ⟨0.1786⟩

⟨
⟨0.3642, 0.3100⟩, ⟨0.8641, 1.0000⟩

⟩
I261 : ⟨0.2111⟩

⟨
⟨0.3642, 0.4220⟩, ⟨1.0000, 0.7325⟩, ⟨1.0000, 0.5000⟩

⟩
Figure 7.10: Four sample images of database D1 with their ⟨µE⟩

⟨
⟨µC , µH⟩

⟩
.

vector ⟨0.2235⟩
⟨
⟨0.3642, 0.3131⟩

⟩
is a distinct vector with one-to-one correspondence with

image I174, in the feature space of D1. Similar justifications hold for the vectors shown

corresponding to the other two images in Fig. 7.10. The four images and their respective

vectors, shown in Fig. 7.11, also obey the same one-to-one correspondence in the feature

space of D2. It may be mentioned here that the height of the discrimination tree is at

most three for all the three databases, the root being at height zero.
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I69 I53 I26 I63

I69 : ⟨0.1388⟩
I53 : ⟨0.2128⟩

⟨
⟨1.0000, 0.3830⟩

⟩
I26 : ⟨0.1785⟩

⟨
⟨1.0000, 0.3272⟩, ⟨1.0000, 1.0000⟩

⟩
I63 : ⟨0.5263⟩

⟨
⟨1.0000, 1.0000⟩, ⟨0.6781, 0.8000⟩, ⟨1.0000, 0.5850⟩

⟩
Figure 7.11: Four sample images of database D2 with their ⟨µE⟩

⟨
⟨µC , µH⟩

⟩
.

Iaun Iafk Iasn Iaaf
Iaun : ⟨0.1185⟩
Iafk : ⟨0.1760⟩

⟨
⟨0.2344, 0.1313⟩

⟩
Iasn : ⟨0.4534⟩

⟨
⟨0.2238, 0.2216⟩, ⟨0.4328, 0.6822⟩

⟩
Iaaf : ⟨0.7604⟩

⟨
⟨0.1320, 0.1465⟩, ⟨0.6128, 0.7422⟩, ⟨0.8129, 1.0000⟩

⟩
Figure 7.12: Four sample images of database D3 with their ⟨µE⟩

⟨
⟨µC , µH⟩

⟩
.

7.4 Conclusion

This work proposes a novel indexing technique for archival binary images by employing

a connectivity-based algorithm that extracts certain topological features of each binary

image and their membership degrees with respect to the database. The algorithm uses

a set of randomized spatial masks to change an image until the feature vector becomes

unique for each image in the database. The method automatically adapts to the database
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size and diversity. A simple iterative xor-ing procedure on the bit-plane of an image is

used, and this adds speed, elegance and strength to the proposed algorithm.

The algorithm offers a very effective indexing scheme for archival and object-type of

images, as observed in our experiments. For other general types of databases consisting of

human face images, natural scenes, or those with diverse texture, the performance of this

algorithm may not be satisfactory, unless additional features are considered and augmented

appropriately. For indexing a gray scale image, proper adaptation of this technique, such

as usage of Euler Vector [Bishnu et al. (2002)] may be explored in the light of similar

randomized spatial masking.
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http://www.mcgees.org/stampalbums.html, respectively.





Chapter 8

Summary and Open Problems

In this thesis, we have developed several new algorithms based on digital geometry for

representations and characterizations of digital contours and objects, and exploited their

applications to shape description and image indexing. The proposed algorithms and their

performance on various problems have been analyzed in the perspective of other exist-

ing approaches. The techniques have been tested rigorously on several databases and

experimental experience reveals encouraging results.

In Chapter 2, we have shown how the minimum-(maximum-)-area outer (inner) iso-

thetic cover of a digital object can be constructed against a background grid. The al-

gorithm, based on a combinatorial technique, outputs the isothetic cover in terms of a

sequence of vertices (grid points). The proof of correctness of the algorithm has also been

provided. As the algorithm does not involve any floating point computation, and requires

only integer addition and comparison, it terminates very fast. Several open problems may

arise in the context of determining an isothetic cover, for example, that of finding the

specific object-grid registration such that the complexity of the cover is optimum in terms

of the number of vertices, perimeter, or area. Also, it would be a challenging task to

reconstruct the digital object if a collection of isothetic covers at different positions and

orientations are given. The algorithm for the non-uniform grid can be extended to higher

dimensions for possible computation of outer or inner approximation in rough sets.

In Chapter 3, we have described how the orthogonal hull of a digital object can be

computed while traversing the object contour orthogonally (following the principle men-

tioned in Chapter 2). The algorithm uses a similar combinatorial technique based on the

chain code of the isothetic cover, and modifies the boundary of the outer isothetic cover

to produce the orthogonal hull. This is a single pass algorithm with worst-case time com-

plexity being linear in the length of the contour of the object. As a future work, it may
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be useful in devising a procedure to represent the regions that give rise to non-convexity

in terms of convex deficiency tree for shape analysis. Also, the usage of orthogonal hull in

digital tomography may be explored.

Chapter 4 elaborates three applications of isothetic covers with different flavors. The

multigrid shape code exploits the fact that the accuracy of the object description, captured

by the isothetic cover, can be controlled by varying the grid size. An efficient retrieval

scheme has been designed and implemented to demonstrate the power and versatility of

such shape codes. The shape complexity measure based on isothetic covers provides useful

information about the complexity of a digital object without using any Euclidean measure.

A few open problems emerge in this context, for example, enumeration of distinct isothetic

polygons that can be drawn on a given grid and formulating their generation procedure.

In this chapter, we have also shown how a handwritten character prototype can be ranked

using the isothetic chord lengths. This has potential applications to automatic handwritten

character recognition. The document image analysis is another potential area for exploring

applications, where isothetic covers can be used to segment document images. Some

preliminary results in this regard have been shown in Chapter 2.

In Chapter 5, we have presented a novel concept of approximating a digital curve (DC)

by a cellular envelope. The salient features of the algorithm are (i) non-dependence on

thickness variation of the input DC, (ii) use of a combinatorial approach for constructing

the optimum cellular envelope for the given DC, (iii) use of straightness properties inher-

ited from digital geometry, and (iv) implementation without requiring any floating point

operation, which collectively make it robust, fast, and efficient.

In Chapter 6, we have shown how a set of digital curves, after being decomposed into

a set of shape preserving digital straight edges, can be represented by an appropriate

pointillist ensemble. The size of the ensemble can be controlled by the pointillist factor.

The proposed algorithm for finding the ensemble imitates the human visual mechanism,

and the reconstruction method using the nearest neighbor rule, reproduces the digital

curve that almost preserves its original shape, provided the polygonal decomposition of

the original curve is reasonably good. Further possibilities involving pointillist ensembles

include (i) shape analysis of digital objects using their pointillist ensembles, (ii) color

image representation and subsequent analysis using ensembles in the color spectrum, and

(iii) exploring other image processing and computer vision related applications.

Chapter 7 describes a novel indexing technique for archival binary images by employing

a greedy algorithm defined over certain connectivity features of binary images and their

fuzzy membership degrees to the database. An efficient randomization technique is used
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in the algorithm to expedite the procedure and to make it adaptive to the database size

and diversity. The iterative xor-ing procedure has an inherent property of capturing the

characteristic topological features of an image within a few iterations, thereby adding

elegance and strength to the algorithm.

The chapters described in the thesis, present various algorithms targeting to derive

the geometric characteristics of a digital object for potential applications. All the algo-

rithms reported in this thesis involve only integer-domain arithmetic operations, (except

the computation of fuzzy membership value required in Chapter 7), and hence, are very

efficient computationally. We have also demonstrated the usage of these characteristics

and representations of digital objects in several applications. These representations can

further be extended to several diverse areas, some of them being digital tomography, rough

sets, and document image analysis.
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Almáadeed, S., Elliman, D. and Higgins, C.A. (2002). A database for Arabic hand-

written text recognition research. In Proc. 8th Intl. Workshop Frontiers in Handwriting

Recognition, 485–489.

Althaus, E. and Mehlhorn, K. (2002). Traveling salesman-based curve reconstruction

in polynomial time. SIAM J. Comput., 31, 27–66.
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