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Chapter 1

Introduction and Scope of the Thesis

1.1 Introduction

The World Wide Web [12] (usually referred to as theh WWWor W3) is an enormous
collection of data available over theaternet which is a vast network of computers. It was
created in the year 1990 by Tim Berners-Lee, while he work&@ERN, Switzerland, and
was made available over the Internet in 1991. The World Widd \Wonsortium [136]
authoritatively defines the Web as “the universe of netwamrkessible information, the
embodiment of human knowledge”. The Web consists of ohjet$s called documents
or pages in a generic sense, that are identified using a UmiR@source ldentifier (URI),
or what has more popularly come to be known as the Uniform ResdLocator (URL),
and these objects are connected to each other by medrypeflinks This interlinked
nature of the Web distinguishes it from text corpora andrmglieh collections.

The Web is a rapidly changing and expanding resource, andtbegeyears, it has
seen a phenomenal growth in both its size and diversity. tifgafrom a single web
site ( nf 0. cern. ch) in 1990, it is now made up of millions of web sites. Currently,
the indexable Web itself consists of billions of heterogereedocuments — in the year
2005, Yahoo! [145] had announced to have indexeer 20 billiondocuments [146], and

Google [52] countered this statement by claiming to havexedat least thrice as many
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documents than that [53]. These are all under-estimatabeggdake into account only

what has been crawled, and the true size of the Webksown

There are a wide variety of data sources that contributestoithness of the Web. We

list a few of these so that one may gauge the root of the hedasmys nature of the Web:

e Content created for the Web, and published by the authors:iJhisually made up

of textual (in either text or HTML formats), image, audio,wdeo content, and is

generally created and distributed by professionals.

Content created for other purposes, and now made availalleedfteb: Examples

include music, movies, and printed books.

Public mailing lists and discussion forums: A lot of knowdedas well as entertain-

ing articles are shared in this form.

User generated content: This recent phenomenon is aboigntdreing generated
by end-users, as opposed to professionals, and is chamgvgty face of the web.

This includes images, audio and video submitted by usersbfsites and blogs.

The deep web: This refers to content that is generated oryitaantl is generally not
indexed by search engines. New content that is being getkenady be in response
to some user input (explicit inputs may be user’s identityqoery terms, while
implicit input could be geographic location of the user'oifbrowsing context), or
may depend on other factors (examples include time and elsangther parts of
the Web).

e Activity logs: While the earlier data sources were explicitreated by authors
and visitors of web sites, their activity itself, when reded and stored, constitutes
another type of web data. In a sense, every action on the veebylewing a web
page, writing a mail, or uploading an image, to name a feweggrs new content.
Of course, not all of this may be stored for a long period or kadenpublicly

available.
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The size and heterogeneity of the Web present immense obaBefor knowledge
discovery. Knowledge discovery in databases (KDD) [49]nseal at discovering natural
and interesting structures within such massive and ofteerbgeneous data. KDD stands
on the shoulders of the giant literatureRattern Recognitiofi[41,45,51,116], to name a
few) which predates the existence and availability of mesdatabases. However, KDD
is being visualized as not just being capable of knowledgeadiery using generalizations
and magnifications of existing and new pattern recognitlgorghms, but also the adap-
tation of these algorithms to enable them to process suel tihet storage and accessing
of the data, its preprocessing and cleaning, interpretatisualization and application of

the results, and the modeling and support of the overall Inamachine interaction.

Data mining [56, 114] is that part of knowledge discovery ethdeals with the pro-
cess of identifying valid, novel, potentially useful, arltdrately understandable patterns
in data, and excludes the knowledge interpretation part@DKData mining refers to
data in a general sense, and the basic techniques are &pplicavarious domains such
as text, web, or biological data, where one may make use dfiaal domain-specific
knowledge.Web minings data mining for the web domain, and is defined as the extrac-
tion of interesting and potentially useful patterns andwdeolge from objects or activity
on the Web.

Web mining tasks include page summarization, ranking,goaieation and cluster-
ing, user modeling, and personalization. Among these, pagidng is one of the most
important tasks, whereby each web page is assigned a sflexting something like the
popularity or authority of the page. Most present day pag&ing algorithms are vari-
ants/combinations of the earliest page ranking algorithii$S and PageRank, which
were both developed around 1998 and had adapted biblianaetd sociometric ideas to
the Web. Interestingly, both HITS and PageRank model the Webdirected graph, and
fall under the category of link analysis algorithms. Moregwoth HITS and PageRank
algorithms may be interpreted as surfer models which sthdydng term behavior of a

web surfer under various assumptions of traversing thefsatanlable web pages.
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The objective of this thesis is to present the results of siwestigations, both the-
oretical and experimental, addressing certain tasks #akér surfer modeling, page
ranking, and web mining, in general. Tasks considered decloreprocessing text and
links in web document collections, providing new and bettafer models, and compar-
ing ranking algorithms. Before we describe the scope of tksish we provide a brief
review of web mining, surfer models, and page ranking, audision on some challenges
involved, and possible solutions.

Section 1.2 presents a brief overview of web mining and pag&ing. Section 1.3
discusses the Web in a graph theoretic framework. We thely steb surfer models in
Section 1.4. Preprocessing web data and comparing rankgogtams are discussed in

Sections 1.5 and 1.6, respectively. The scope of the trepiesented in Section 1.7.

1.2 Web Mining and Page Ranking

Web miningdeals with the application of data mining techniques on dsgalable from
the Web. There are roughly three knowledge discovery dosithimt pertain to web min-
ing: Web Content Mining, Web Structure Mining, and Web Usagrii) [26, 76, 91].

Web content mining [76, 91] is the process of extracting Kieoge from the content
of documents or their descriptions. The heterogeneousemdsructured nature of the
ever expanding information sources on the Web makes autoihdatcovery, organization,
and management of Web-based information difficult. Contaning tasks include page
classification, clustering, summarization and relevameeputation.

Web structure mining [26, 76] is the process of inferring\kfezlge from the intercon-
nections of the Web documents induced by the hyperlinks detvwthem. The existence
of link-based information distinguishes Web documentemilbns from text corpora, as
hyperlinks induce relations between the linked documeRtsge ranking and detecting
communities are two of the most common structure miningsasieb content mining

and web structure mining, when used together, produce foWwaethods of analyzing
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Figure 1.1: Anatomy of a large-scale hypertext search en@a]

web data. Page ranking, classification and clustering &pgiale examples of tasks that
benefit from the marriage of web content and structure mining

Web usage mining [33,91] attempts to discover useful kndgégrom the secondary
data obtained from the interactions of the users with the.\WWelusers browse the Web,
foraging for information, they leave behind valuable imf@tion in terms of their online
behavior. This information may be utilized to improve theahility of the servers to
better satisfy their users. For example, understandinghedgavior may help in site re-
organization and personalization.

We now elaborate upon page ranking which is one of the mogtritapt and complex
web mining tasks. When a user searches the Web with a quetypfgdages may contain
or match the query, but only a few would be interesting anelaait to the user. Obtaining
scores to be used for ordering these web pages and placingpteelevant results at the
top, is known as page ranking. Fig. 1.1 shows where pagengtiis in the architecture
of search engines [22].

Ordering on keyword based relevance has been widely studtegt mining and may

be easily extended to the Web. However, new challenges appdlae web scenario,
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because unlike text collections, the Web may contain a Iapaim. Web page authors
may deliberately insert irrelevant or catchy keywords ititeir content, in an effort to
entice search engines to regard their pages as more relevagdrtain queries. Thus,
page ranking has to consider other measures such as popw@athority, trustetcalong
with relevance so that the “best” results appear at the top.

Several notions of popularity or authority are availabléhia literature, and are based
on the link structure of the Web, where a link is assumed to bete by the originating
page in favor of the destination page. The indegree algorjit84] rated a page highly if
several pages pointed to it. Again, this algorithm may béyasnipulated by creating
a network of pages, with each page pointing to all the restn Bnd Page [22] came
up with a normalized version of this algorithm whereby eaafgcould obtain a certain
number of votes from its predecessors, and redistributguidty into all its successors.
This simple algorithm, called PageRank, performs well ehdogoe used by the biggest

search engines.

1.3 The Web as a Graph

Both Web content mining and Web structure mining may be studiultaneously by
treating the Web as a directed graph, with the documentsirigrthe vertices and the
hyperlinks between them considered to be the arcs of thaplgrBroderet al [23] had
studied a huge set of web pages crawled by the AltaVista lseargine, and found some
surprising properties regarding the structure of the WebeifTcrawl had consisted of
about 200 million pages, and 1.5 billion links. The pagesendivided into roughly four

equal parts:

e A Strongly Connected Component (SCC), where all the pages arbaiel@ from

each other.

¢ IN, containing pages that lead to the SCC but cannot be redotradt.
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Figure 1.2: Bow-tie structure of the web digraph [23]

e OUT, containing pages that can be reached from the SCC buttdeatbback to it.

e Tendrils, which consists of pages that can neither be rebitbe the SCC nor lead

to the SCC.

Apart from these, there are some small disconnected componé&ig. 1.2 shows the
structure of the Web as depicted in [23], which eventualipedo be known as thisow
tie structure
Modeling the Web as a graph helps us utlize the abundant dhegaietic literature

for understanding various properties of the Web. Intemgspiroperties of the graph are
extracted by studying the access patterns of the nodes hysera. For example, if a page
is accessed more frequently than another page, the firstrpagée called more popular
than the second one. Often, instead of observing the ussstldirit is easier to create a

model of her surfing behavior. These models, known as surbelets, assist in educing
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useful information from the given web data. The next segbimvides a brief description

of surfer models, their theoretical background, some iexjshodels, and applications.

1.4 Web Surfer Models

Surfer models model a user who browses the Web by considdérengurfer's behavior
to be a random walk on the web graph. The surfer is assumeddtickang on links or
typing URLs to move on to new pages. With time, the state of tineskeeps changing,
and this behavior may be treated as a stochastic procesacltiene point{), a snapshot
of her behavior, which is the state she is intais available. This process is, generally,
assumed to satisfy the Markov property, which means thaptesent behavior of the
surfer does not depend on past history (i.e., beyond a ngrtant back in time). Also,
it is assumed that the behavior of the surfer is time-invdyiee., given her current state,
the same behavior would be expected irrespective of thedimanich this state has been
achieved.

A brief note about the notion of time is in order here. When nliadethe surfing
behavior of a user, the concept of tim ihay be considered in two different ways. One
way is to treat the total time since the surfer has startefihguas the time, resulting in
a continuous stochastic process. The other is to considertimber of pages (including
repetitions) the surfer has traversed before reachinguhemt page, and thus, the time
is discrete. Generally, it is the second one that is more &) psrhaps due to the ease of
observing it through the explicit actions (clicks) of thefsu

This discrete sequence of states being traversed by thersisrfa random walk on
the web graph, and gives rise to a stochastic pro¢as$ which denotes the state the
surfer is on at timg. The state of the user may be defined, as the situation demands
to be the web page she is currently browsing, her topic ofésteat that momengtc.
The objective is to study this model from various angles, firidresting properties, and

make appropriate interpretations about web users withmatiiing real users directly.
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This serves as an alternative to observing real surfershakia rather complex and time
consuming task, and involves issues like preserving pyighmdividual users. Moreover,
such information may turn out to be noisy or biased and maybeoapplicable to an
average or particular individual browsing the web.

These models make extensive use of Markov chain theoryhwhécbriefly describe

now.

1.4.1 Markov Chain Theory

In this section, we review some elementary properties ofkiwhachains which would
be useful from the point of view of surfer models. For a mor&ailied treatment of the
subject of Markov chains, one may refer to [67].

A Markov chain is a sequence of random variahlés X, X5, ..., satisfying the
Markov property, namely, given the present state, the éutund past states are indepen-
dent. The set of all states that the random variables mayres®ucalled thestate space
and is denoted by. In the whole of this thesis, the state space being congider-
nite. Also, the chain is assumed to be time-invariant, meathat the random variable
X,+1|X, is independent of. This is also known as the memorylessness property. Thus,
the probabilities for a transition from a stat state; may be specified without referring
to the time points. A matrix whosg, j)th entry corresponds to the probability of a tran-
sition from theith state tojth state is called the transition probability matrix. Thiatnix
determines the Markov chain, and thereby, all its propgrtie

A Markov chain is irreducible if any state is reachable frony ather state. A set
of states is called closed if no state outside it can be rehftben a state within it. For
an irreducible Markov chain, no proper subsetSos closed. A state is recurrent if the
chain would surely return to that state again in finite tim# sfates of a finite irreducible
Markov chain are recurrent.

A recurrent state is called periodic if it is impossible tdura to the state except

at regular intervals. A state is aperiodic if it is not per@dn which case, beyond a
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sufficiently long period of time, it is possible to be in thaéate for any time point. A
Markov chain is aperiodic if all its states are so. If oneestatt an irreducible Markov

chain is aperiodic, then so are all the other states, andieushain itself is aperiodic.

A finite, irreducible and aperiodic Markov chain has a unigtaionary distribution,
meaning that the probability of the chain being in a givemestanverges with time to a
unique number. The convergence is a consequence of ap#yqador the probabilities
would have been oscillating if a state were periodic), wasréhe uniqueness results from
irreducibility, and thereby, whichever state the chaimtstiiom, it would always converge
to the same distribution. The stationary distribution esents the long term behavior of

the chain and smooths out any initial biases or preferences.

We shall also describe Fuzzy Markov chains which have beaetiest in the present
thesis as a robust alternative to the classical Markov sha@ised on probabilistic transi-
tion matrices. Fuzzy Markov chains are similar to the clzddvlarkov chains but operate
on the fuzzy algebra instead of the classical algebra. Whaveahave the usual addition
and multiplication on the classical algebra, these opanatare changed taax andmin,
respectively, in the fuzzy algebra. That is why fuzzy algeisralso known asiax-min

algebra.

The fuzzy counterparts of transition matrix, stationargtrbution, etcare defined
similar to those in the classical case [4]. For example, enftlzzy case, the transition
matrix contains fuzzy numbers [4], instead of probabiti@he(i, j)th element of this
matrix denotes the belief (as opposed to the probabilitynaking a transition to state
j when on staté. It is known that minor changes in the probabilistic transitmatrices
may result in big differences in the limiting distributignghereas fuzzy Markov chains

are more robust to changes in the entries of the transitidrixijd].

While classical Markov chains have been in use since beingdated in 1906 by A.
A. Markov [10], Fuzzy Markov chains are relatively recentstfiappearing in [79]. While
there is arich literature dealing with the various progertf fuzzy Markov chains, a few

properties regarding counterparts of classical Markovrzhstill remain unknown. For
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example, the conditions for regularity of fuzzy Markov atastill remain elusive.

We now elaborate on how surfer models may be viewed as Matkaws.

1.4.2 Surfer Models as Markov Chains

In order to cast surfer models as Markov chains, we would needake the correspon-
dences between the two definitions. The state of the chaim@ysthe state of the user.
However, as mentioned earlier in Section 1.4, the definibibtihe state of the user may
be varied to accommodate whatever features of the user dryenig to study.

Once the state space is fixed, all that needs to be done is e @efransition matrix.
This is a crucial step where one tries to incorporate alllalske domain knowledge about
surfing patterns with the objective of providing a model velgse to reality. Thei, j)th
entry of the transition matrix is determined by what is deé@rteebe the probability or
belief value of moving on to thgth web page given that the surfer is presently on the
ith page. The computation of this probability may take intosideration several factors
like the content and link structure of these two and otheepatie total number of pages
available, topics of interest, preferences of users, agdtrer assumptions being made
on the movement of the surfer.

Now that one can cast the surfer model as a Markov chain, tiees¢o be a system
of interpreting the results obtained in terms of the prapsrof the chain. A visit of the
chain to a particular state may be thought of as a visit of tiifesonto the corresponding
web document. Similar interpretations may be made regaurttia frequency of visits,
especially, after the chain has run for a long time. The atatly distribution of the
chain assigns a probability value to each state, and thdeesvaan be thought of as
the (unconditional, time-independent) probability of afsubeing on the corresponding
states.

In the case where the surfing pattern is being modeled as sicadbMarkov chain,
for the stationary distribution to exist and be unique, oas to ensure irreducibility and

aperiodicity. Surfer models can achieve aperiodicitylga#ia surfer is allowed to stay
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on the same state (i.e., the transition does not change dtej,sthen the probability of
being on that state at any time point (after a sufficienthglame) is non-zero. Of course,
for the previous statement to hold regardless of the ingiate of the surfer, it is being
assumed that the chain is irreducible.

Guaranteeing irreducibility of the chain is not as strdigihward as ensuring aperiod-

icity. The questions that need to be taken care of are assilo
e What does a surfer do when she reaches a node with no outgosf®) ar

e How can she be sure of reaching each state in the state spao#ft words, how

can she be sure of not getting trapped in a closed subsete$?ta

Nodes with no outgoing arcs are called dangling nodes. Wharfersands on a dangling
node, she is allowed to move on to any of the available nodes means that artificial
arcs are added to dangling nodes (and they are no longerinignglinterestingly, if
the surfer is allowed to jump from any node to any other nogegducibility is assured.
Intuitively, this indicates that the surfer may always ahaosith some probability, to jump
to a new random URL instead of following one of the outlinks.

Thus, we see that, specifying a surfer model involves degidpon how the transi-
tions are allowed to take place, subject to the constraimtsealucibility and aperiodicity.

We now describe some such existing models.

1.4.3 Existing Models

Several surfer models have been introduced over the paatideof which the random
surfer model is widely used. In the random surfer model, tiiéesis assumed to be mov-
ing on to new pages at random by clicking on the links of theemirpage, occasionally
choosing to jump to a new page. This extremely simplistic @asly-to-interpret model
captures what is meant by the popularity of a page, and iseatdhe of the immensely

popular PageRank algorithm.
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Another surfer model that has spawned several varianteiditbcted surfer model
[123]. The random surfer model assumes that the surfer vgding web pages at random
by either following a link from the current page chosen umity at random or by typing
its URL. On the contrary, the directed surfer model assunaswhen the surfer is at any
page, she jumps to only one of those pages that are relevéra tontext, the probability
of which is proportional to the relevance of each outlink. Batodels guarantee the
convergence of this stochastic process to a stationanydison under mild assumptions
like the irreducibility of the transition probability matr In practice, these assumptions
are enforced by pruning or ignoring some links.

SALSA [86] presents a surfer model interpretation of the S@lgorithm [73], and
involves transforming the web graph into a bipartite grablere the(:, j)th element of
the transition matrix is defined to be the probability of f@ag ; from i by going, at
random, to one of the pages linkingt@nd then choosing one of the links available on

that page, again, at random.

1.5 Preprocessing Web Data

Preprocessing is an important step for mining tasks, wlyetble features of a data set
are modified so as to make information extraction reliabtk@mnvenient. Preprocessing

is necessitated due to one or more of the following reas@®]{1

e presence of noise in data: noise may disturb the informatitraction process by

making the data less than ideal.

e sparsity of data: this results in a lack of information refyjag certain portions of
the data space, and consequently, inference cannot beatjeeereasily to unseen

examples.

For web data, there are two aspects in this regard: text@repsing and link preprocess-

ing.
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1.5.1 Text based Preprocessing

Textual content may be noisy due to various reasons [138jesa them being:

e Words spelt wrongly or in an alternate way

Presence of synonyms, homonyres;.

Presence of stopwords or irrelevant words

Use of several related but different words

Presence of unexpected or foreign words

Improperly formed or unclosed tags

Each one needs to be treated in its own way as they would odemterfere in basic
tasks such as tokenizing, indexing, and retrieval. Migspetds and word variants may
be detected using a pre-defined dictionary, and corrected egher a table lookup, or
choosing valid words with a small edit distance from thesed®¢80]. Stopwords may
be removed by using an exclusion list [126], though in soméliss, they are retained
because of the value they provide in terms of context [8%il@rly, some studies (e.qg.,
[125]) ignore HTML tags for the sake of simplicity, while @tts (e.g., [87]) retain them
because of the richness they provide to the textual cont@éaksng care of related words
is probably the most difficult and challenging part of preg@ssing text data. Part of the
challenge lies in defining what “related” means, and the ropiaet is to find groups of

words which can be clubbed together.

1.5.2 Link based Preprocessing

Link preprocessing [91] is an extremely important step fiok Bnalysis algorithms. For
example, ignoring all links between pages in the same domairnd yield vastly different

results than what one would have obtained when all thoss lvdee included. Detecting
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and removing noise introduced by hyperlinks is a more coriplgk than the correspond-
ing operation for textual content. Apart from the preserfadead hyperlinkgthat is, links

to non-existent web pages), linksiteelevant contents a major cause of web page noise.
Judging which links lead to irrelevant content is a diffigolb because of the variety of
roles that hyperlinks play. Also, the very notion of relevamay change over time, one
of the reasons being that the target page has changed santiakthwas created. Apart
from noisy links, there are links which are deliberatelyaaiuced for spamming search

engines. Detecting and fighting link spam is a major field oflgton its own.

1.6 Quantitative Comparison of Score based Ranking

Schemes

Once we have competing surfer models or page rank algorithatgproduce score vec-
tors for the set of available documents, one may want to fimnddifierent the alternatives
are. For this particular case, there are two possible way®imwiparison, namely, score
based and rank based [122]. Score based methods compareltreying scores directly,
without considering the impact on ranking. Rank based maetlicgst compute the rank-
ings induced by the scores, and then compare only the raskivigle ignoring the scores

totally.

1.6.1 Score Based Comparison

Score based comparison is usually performed by computihgrehe dissimilarity or the
similarity between the two vectors. Measures such as th&dhiski distance of order
(popular choices op being 1, 2, ando, which result in the Manhattan, Euclidean and
Chebyshev distances, respectively) measure the dissiyilahereas, correlation and the

cosine of the two vectors measure similarity between them.
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1.6.2 Rank Based Comparison

Rank based comparison, on the other hand, is performed bgdimgerting the scores into
the corresponding rankings and then computing similantgissimilarity between the
rank vectors. Once again, the Minkowski distances or thalusurelation measures may
be computed on the rank vectors, resulting in measures suSpearman’s footrule and
Spearman’s correlation. Moreover, one may also make use afincepts of concordance
and discordance [32] to compute the Kendall distance (atovk as Kemeny distance
or bubble sort distance) between the two rank vectors.

As noted earlier, existing score based, as well as, rankdbe@@parison methods
work in isolation, and either neglect the ranking perspector ignore the additional

information contained in scores.

1.6.3 Rank Fusion and Score Fusion

Given multiple sets of ranks or scores for the web documendieiuconsideration, fu-
sion is the process of combining them to obtain a single seamifs or scores. Rank
fusion [100, 130], also known as rank aggregation [46, 18lifains a consensus ranking
from the available ranked lists. These lists need not belitif, making rank fusion a
very challenging problem. Score fusion, on the other haadhlines the scores directly,
in order to produce a consensus score vector, on which thlerfinking may be based
upon. Two of the standard score fusion techniques are Comb@\$hple average) and

CombMNZ (a weighted average) [83, 122].

1.7 Organization and Scope of the Thesis

The present thesis provides some new results of invesiigatioth theoretical and ex-
perimental, concerning certain tasks related to Web sunfetteling. The tasks include

text and link preprocessing, page ranking, page categmnizand quantitative evalua-
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tion. Methodologies developed are based on both classiobbpility theory and fuzzy
logic, to model surfing patterns, and they provide a strontheraatical framework for

comparing them on the basis of the resultant page ranks.

Our contribution to text preprocessing is the developmérd novel corpus-based
stemmer while, that for link-preprocessing involves detecrelevant sequences and cy-
cles of web pages in the web graph. Novelty in the two surfedetsodeveloped in the
thesis is as follows: A topic-continuity based web surfedelas mathematically formu-
lated to incorporate the tendency of users to continue bnga@n a particular topic. In
another model, the notion of fuzzy hyperlinks is introdutedevelop a fuzzy web surfer
model based on the theory of fuzzy Markov chains. Apart freuyang the properties of
surfer models, a new metric has been proposed for measurimglifferent the resultant
page rank vectors are. This metric computes distance bettmaerankings directly on
the basis of the underlying score values, and generalizagddledistance. Also, a top
k version of the metric is obtained which is particularly useh comparing page ranks
when the number of documents is very large. The effectiweiéshe methodologies
described in the present thesis is demonstrated on varadassdts used in the context of
text mining and web mining. Superiority of the models ovdated ones is established

statistically.

The thesis consists of five contributory chapters apart fiteerintroduction (Chapter
1) and the Conclusions, Discussion and Scope for Further \(@Rapter 7) chapters. A

chapter-wise summary of the thesis is provided below.
Chapter 2 STEMMING FOR TEXT PREPROCESSING ORMVEB DATA [14,103]

Preprocessing is an important step for mining tasks, wlyetkb features of a data set
are modified so as to make information extraction reliabk @nvenient. For web data,
there are two aspects in this regard: text preprocessingdirdngreprocessing. Among
the text preprocessing tasks, stemming, whereby sembysaailar words are grouped
together, is an important and often used technique. Steginais been generally observed

to improve recall in information retrieval. However, thésao agreement on the same for
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the case of classification. We describe a novel corpus-bsteetming technique which
models the given words as being generated from a multinadigaibution over the topics
available in the corpus. A sequential hypothesis testikg firocedure helps us group
together distributionally similar words. This stemmer mef a given stemmer and its
strength can be controlled with the help of two thresholds. have tested the proposed
methodology on three data sets and found that, despite aredgetion in dictionary
size, the classification accuracies and retrieval pretikave significantly improved in
most cases. It has also been found suitable for cross-cetposning. We also evaluated
this stemmer linguistically on the basis of error countingtinods and found that even
without any prior knowledge of the language specific prapsidf the words, the stemmer

performs remarkably well.
Chapter 3 SEQUENCEDETECTION FORLINK PREPROCESSING OMVEB DATA [102]

Link based preprocessing is necessitated by the fact te&tlustructural information
on the web is often accompanied by a large amount of noise asitdanner advertise-
ments, navigation bars, copyright and privacy notices, €ach items often hamper
automated information gathering and web data mining tagksweb page clustering,
classification, information retrieval and information r&dtion. Link cleaning leads to

performance improvement for the above mentioned tasks.

The same content on the web may be present in a single documerdy be split
into several parts. Since the problem of page ranking iskallacomparing documents
competing with each other in terms of their content and limkcture, this leads to the

guestion of fair comparison.

In order to deal with such discrimination, we develop effitiend scalable algorithms
to detect content that could have been merged but has bezadsprer several documents
just for the sake of convenience or presentation. This wasldetecting special graph
structures in the web graph, like sequences of web docurtemntgnating in a leaf node,
or a cycle of web pages. These algorithms are based on a simpiotion of finding

“next” and “previous” elements of a sequence by looking atrélations between them,
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as reflected by the position of the links, the amount of surding text, and other such
features. This kind of link preprocessing not only elimesaseveral mirror pages, which
would not have been detected by the existing algorithmsalsatleads to the novel idea

of returning sets of pages as results from search engines.
Chapter 4 Wes SURFERMODEL INCORPORATINGTOPIC CONTINUITY [101,115]

Web surfer models study various aspects of web mining bystezllly modeling web
users. Since the objective throughout is to maximize the ghthe end user (or supply
sufficient information to a service provider, who in turn,ymEass the benefit to the end
user), appropriate web surfer models for real users are wsejul. Once a model is
known to be reasonable, one does not need to track real sudied can simulate the
user’s behavior directly from the model, thus, saving valeaesources like time and

money, while maintaining privacy.

Surfer models simulate the behavior of web surfers by mndelie sequence of pages
visited as a stochastic process and extract useful ancegtileg information about the
web. In particular, they can be used to compute the ranks aflapage as the uncon-
ditional probability of a surfer being on that page underaBsumed model. It has been
observed that the use of context information improves pag&ing [123]. In particu-
lar, the continuity of topics that a surfer would maintainiletbrowsing the web would

provide valuable information about the transition probaés of the model.

In this chapter, we describe a web surfer model that incatpsrthe notion of topic
continuity. Therefore, unlike earlier models, it captuties inter-relationship between
categorization (context) and ranking of web documents kanaously. The model is
mathematically formulated. A scalable and convergenaiies procedure is provided for
its implementation. Its different characteristic featjras obtained from the joint prob-
ability matrix, and their significance in web intelligenae anentioned. Both theoretical
and experimental results confirm the superiority of the rhdéeperiments are performed

on web pages obtained from WebBase.

Chapter 5 WEB SURFERMODELS INCORPORATINGFUZZINESS[15, 104]
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In the previous chapter, surfer models were studied whezeutitertainty in the
surfer’s transition from one page to another was modelebghitistically. In some cases,
probabilistic models fail to capture the inherent varietyiocertainty. In this chapter, we
demonstrate the need for fuzzy web surfer models througle sxamples. In particular,
we deal with fuzziness in links between pages, especialigniinks that are intended to
point to particular sections of web pages do not do that eitiyli

A novel web surfer model is introduced where the transitioetsveen web pages are
fuzzy quantities, and FuzzRank is defined, similar to PageRaskhe principal fuzzy
eigenvector of the fuzzy transition matrix. Whereas, thealisteb surfer models are
based on the theory of Markov chains, the proposed modesedte on theory of fuzzy
Markov chains. In this manner, besides being able to modgeirtherent fuzziness in
links and contexts, the model inherits the advantages ayfiarkov chains, namely,
finite convergence, and robust computation. Also, a studgnslucted into the ergodicity
properties of fuzzy Markov chains, and the efficient compaoitaof FuzzRank. Experi-
ments performed on data sets from WebBase support the thegayding the stability of
fuzzy surfer models.

Chapter 6 QUANTITATIVE EVALUATION OF PAGE RANKING SCHEMES[13, 16]

In Chapters 4 and 5, we have described and studied variousrpakiag schemes.

While, it is clear that they produce different page rank vaJugo questions emerge

immediately:
e Which scheme is the best scheme? This involves comparing @leschemes.

e How distinct are the schemes in terms of the ranks they pestidee they signifi-

cantly different?

The former has been widely studied in the context of pageingnkvhere most of the
approaches are subjective comparisons made between tipetogischemes. The latter
is a relatively ignored problem, with the two page rank vectmmpared only in terms of

the rankings produced by them.
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This chapter is concerned with quantifying how much pag&irgnschemes differ
from each other. To this end, a generalized Kendall distawbé&ch can compare more
than just page ranking schemes, is defined. Metric propeitiethis newly introduced
measure are proved. The generalized Kendall distance &gl only the final ordering
that the two schemes produce, but also at the spacing befpasenof scores. We take
a fusion based approach, whereby, two rank vectors are the aa each other if they
produce the same ranking on fusing together with anothees@xtor (say, relevance to
a query).

A parametery in the definition of the metric, takes into consideration pgential
uses of the score vectors to be compared. It is shown thatdaksical Kendall distance
may be obtained as a limiting value of our metricpas> co.

A top k version of the metric is provided, which replaces the unkmaalues by
their expected values. The detailed computations are gedvin the Appendix. Several
mathematical properties of the newly introduced metricstaiged and proved.

Applications include comparing two page rank vectors, dieg on the stopping time
of the power iterations and measuring how well the ranksasgnt the scores. In partic-
ular, since the Kendall distance between a score vector amdsponding rank vector is
always zero, the last application sets our methodologyt &mem the usual rank compar-
ison methods. Experimental results on both small and laagg sets depict the utility of
this new metric.

Chapter 7 ConcLUSIONS DISCUSSION ANDSCOPE FORFURTHER WORK

The concluding remarks along with the scope for furtheragdeare made in Chapter

Afer Chapter 7, two appendices are included. Additionalltedtom Chapter 2 are
presented in Appendix A, and computational aspects of meagqurovided in Chapter
6 are discussed in Appendix B. These appendices would previgetter clarity of the

results presented in the main text of the thesis.






Chapter 2

Stemming for Text Preprocessing of

Web Documents

2.1 Introduction

Given a web page, one would find contents in the form of plait) tes well as, hypertext

markup like tags for formatting the text, hyperlinks leaglito other pages, or tags for
embedding multimedia content. This chapter is concerndlu pveprocessing the textual
content of web pages. The need for preprocessing textutdoarises as it may be noisy

due to various reasons, some of them being:

e Words spelt wrongly or in an alternate way
e Presence of stopwords or irrelevant words
e Use of several related but different words
e Presence of unexpected or foreign words

e Improperly formed or unclosed tags

Each one needs to be treated in its own way as they would ogemterfere in basic

tasks such as tokenizing, indexing, and retrieval. Migspetds and word variants may
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be detected using a pre-defined dictionary, and corrected egher a table lookup, or
choosing valid words with a small edit distance from theseds¢80]. Stopwords may
be removed by using an exclusion list [126], though in soméliss, they are retained
because of the value they provide in terms of context [8%il&rly, some studies (e.qg.,
[125]) ignore HTML tags for the sake of simplicity, while @is (e.g., [87]) retain them
because of the richness they provide to the textual cont@éaksng care of related words
is probably the most difficult and challenging part of pre@ssing text data. Part of
the challenge lies in defining what “related” means, and theropart is to find groups
of words which can be clubbed together. We shall study inildéts task, known as

stemming, in the remainder of this chapter.

2.2 Stemming

Stemming is the process of clubbing together words thatiaméas in nature. Generally,
morphologically similar words are grouped together untierassumption that they are
also semantically similar. Stemming is frequently usedafteld of information retrieval
[77,128], because it results in an increase in recall, agrdeats that do not contain the
exact query terms are also retrieved. In particular, aludoents containing words with
the same stem as the query term are considered relevant.m8tgralso reduces the
size of the feature set (when words are viewed as the featfirdscuments). For the
purpose of classification, this means that the models ieebbre far less complex than
what would have been if the original set of words were useds dlso means that it would
lead to better generalization, in the sense that a smatiimgerror would imply a small
test error too. It has been observed that the classificagdioqmance does not go down
much due to the application of some of the standard stemrA&ss, this would lead to a
reduction in the size of the index that needs to be stored.n@enote that stemming in
text mining may also be viewed as feature or prototype sel@ceduction or clustering

in pattern recognition, and as case selection in case baasdrming problems, where the
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basic objective is to select the most representative featar dimensions or cases of a

class or a concept based on some similarity measure or gi@upi

Several standard techniques are available in the literatdnich perform stemming
[50]. The strength of a stemmer is the amount of reductioménsize of the dictionary
obtained by it [50]. Strong (or aggressive) stemmers mayacedhe size of the index
for a given corpus drastically. However, stemming is aflictvith two kinds of errors:
under-stemming and over-stemming [147]. Under-stemménthé case where words
that should have been grouped into the same class are nobhddhe performance is
suboptimal. When too many unrelated words are merged tageiien it is the case of
over-stemming. This leads to a reduction in precision dyretrieval and an increase in
the error rate for classification. One may also note that thighincrease in the strength
of a stemmer, recall is increased but either retrieval precior classification accuracy
(or both) are degraded. This may be concluded by observeigrhrease in stemming
strength gradually leads to reduced number of stem clagsdsn the extreme case all
the words belong to a single stem class, which provides nbtieanformation required

for classification or retrieval.

Thus, the general objective in designing a stemmer is torertbat the classification
accuracy, as well as, the retrieval precision are maindkirie this article, we describe
the design of such a stemmer. We make use of the classifidafanmnation of the cor-
pus, and model words as arising from a multinomial distidu{69]. A segregation
method based on this can be employed on any existing rulellssemer to refine its
equivalence classes for improvement. The proposed methgpdas found to improve
both the classification accuracy and retrieval precisiormdépplied on the Porter [118]
and Truncate(3) [144] stemmers, and, compared with sonstimxiones, including the
co-occurrence based refinement [144], and a distributidoatering based stemmer [6].
The classification performance is measured on the 20 Newpgrand WebKB data sets,
both in terms of accuracy and precision-recall plots of Bd&ayes, Support Vector Ma-

chines and Maximum Entropy based classifiers. The retrigffi@iency has been tested
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on the Wall Street Journal (WSJ) data set, and precisioritkedaes have been displayed
graphically. All the results have been tested for staédliycsignificant improvement by
the proposed methodology over some of the related methods.

The article is organized as follows. The background on sterg@and related work is
provided in Section 2.3. Then, we describe the proposedmsiegtechnique in Sections
2.4 and 2.5 and present the experimental results in Seconezpectively. We draw our

conclusions in Section 2.7.

2.3 Stemming and Related Work

Documents are generally represented in terms of the woeyscibntain, as in the vector
space model [127]. Many of these words are similar to eadtr atlthe sense that they de-
note the same concept(s), i.e., they are semanticallyain@enerally, morphologically
similar words have similar semantic interpretations, titothere are several exceptions to
this, and may be considered as equivalent. The construatisnch equivalence classes
is known as stemming. A number of stemming algorithms, ansters, have been de-
veloped, which attempt to reduce a word to its stem or roahfof hus, the document
may now be represented by the stems rather than by the dngames. As the variants
of a term are now conflated to a single representative foredsdt reduces the dictionary
size, which is the number of distinct terms needed for repm@sg a set of documents. A
smaller dictionary size results in a saving of storage spadeprocessing time.
Stemming is often used in information retrieval becausénefarious advantages it
provides [77]. The literature is divided on this aspect witime authors finding stemming
helpful for retrieval tasks [77] while others did not find aagivantage [59]. However,
they are all unanimous regarding other advantages of stegarNiot only are the storage
space for the corpus and retrieval times reduced, recailtieased without much loss of
precision. Moreover, the system has the option of querymsipa to help a user refine

his/her query.
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2.3.1 Different Stemming Algorithms

Various stemmers are available for several languagesidimgd English. The most promi-
nent ones are those introduced by Lovins, Dawson, Portenefz, Paice/Husk and Xu

and Croft. We now provide a brief description of some of thdgergahms.

Truncate(n)

This is a trivial stemmer that stems any word to the firgetters. It is also referred to as
n-gram stemmer [144]. This is a very strong stemmer. Howevkeenn is small, say,
one or two, the number of over-stemming errors is huge. Herrdgason, it is mainly
of academic interest only. In the present work, we have dened the value of = 3,

which makes the stemming very aggressive and refer to it@ascBr.

Lovins Stemmer

The Lovins Stemmer [95] was developed by J. B. Lovins and isxglsipass, longest
match stemmer. It performs a lookup from a table of 294 erglinghich have been
arranged on a longest match principle. The Lovins Stemnrmaoves the longest suffix
from a word. Once the ending is removed, the word is recodedws different table
which makes various adjustments to convert these stemsatitbwords. However, it is
highly unreliable and frequently fails to form words frometetems, or match the stems

of like meaning words.

Dawson Stemmer

The Dawson stemmer [38], developed by J.L. Dawson, extdrel&dvins stemmer. It
uses a much more comprehensive list of around 1,200 sufforgenized as a set of
branched character trees for rapid access. This, too, isgéegpass and longest match

algorithm. In this case there is no recoding stage, whichidesh found to be unreliable.
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Porter Stemmer

Martin Porter proposed the Porter stemmer [118] which igbas the idea that the suf-
fixes in the English language (approximately 1200) are mosdde up of a combination
of smaller and simpler suffixes. It has five steps and withithestep rules are applied
until one of them passes the conditions. If a rule is acceptexsuffix is removed ac-
cordingly and the next step is performed. The resultant stietime end of the fifth step is
returned.

The Porter stemmer is very widely used and various impleatiemis are available
onlineathtt p: //www. tartarus. org/ ~martin/ PorterStenmer/. \Versions

of this stemmer are also available for non-English langaage

Paice/Husk Stemmer

The Paice/Husk stemmer [110] is a simple iterative stemared,uses just one table of
rules; each rule may specify either deletion or replaceroéan ending. The rules are
grouped into sections corresponding to the final letter efdihiffix making the access to
the rule table quicker. Within each section the orderinghefrules is significant. Some
rules are restricted to words from which no ending has yet besoved. After a rule has

been applied, processing may be allowed to continue itetgtior may be terminated.

Krovetz Stemmer

The Krovetz stemmer [78] was developed by R. Krovetz and makesof inflectional

linguistic morphology. It effectively and accurately revas inflectional suffixes in three
steps, the conversion of a plural to its singular form, theveesion of past to present
tense, and the removal of -ing’. The conversion proces#yfiremoves the suffix, and
then through a process of checking in a dictionary for angdex, returns the stem to a

word. Itis a light stemmer in comparison to the Porter andé&/alusk stemmers.
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Co-occurrence based stemmer by Xu and Croft

Xu and Croft [144] observed that most stemmers perform ustismiming or over-

stemming, or even both. Strong stemmers generally perfeemstemming only. Xu and
Croft came up with an algorithm that would refine the stemmieggmed by a strong

stemmer. To this end, they computed the co-occurrencesirsf gawords belonging to

the same equivalence class. For each pair, they also cothfheeexpected number of
co-occurrences, which would account for the words occgriiigether randomly. Thus,
they obtained a measure similar to the mutual informatioasuee defined as:

1) Bt o),

nﬁ—nj

em(w;,w;) = max (

where,n; andn; are the frequencies af; andw; andn(i, j) is the number of times
the two words co-occurE denotes the expected value. This measure ignores any co-
occurrences that may be attributed to pure chance. Ordyfw;, w;) is significantly
greater than zero, they conclude that, in the given corestvto words indeed appear
together and may be retained in the same equivalence class.

Splitting the equivalence classes in an optimal way howesseomputationally very
expensive. When the equivalence classes are large, Xu antddptdior a suboptimal
solution obtained by a connected component labeling alguorapplied after thresholding

theem scores.

Dictionary based stemmers

There also have been dictionary based stemmers [54, 71hi@hwnprove on an existing
stemmer by employing knowledge obtained from a dictiondfgrd co-occurrences in a

dictionary are considered to imply the relations betweerdso

Probabilistic stemmers

Given a word in a corpus, the most likely suffix-prefix pairttbanstitutes the word is

computed [5]. Each word is assumed to be made up of a stemxjsafiil a derivation
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(prefix), and the joint probability of the (stem, derivafjigmair is maximized over all
possible pairs constituting the word. The suffix and prefx @rosen to be non-empty
substrings of the given word, and it is not clear what sho@dlbne in the case when a

word should be stemmed to itself.

Refinement of an existing stemmer

In some cases, errors produced by a stemmer are manualfjecebly providing an ex-
ception list [78]. The stemmer would first look up the exceptiist and, if the word is
found there, returns the stem found there. Otherwise, & tise usual stemmer. The
co-occurrence based stemmer mentioned above is also ohealgarithm, where the

exceptions are obtained automatically.

Distributional clustering as stemming

Distributional clustering [6] joins similar words into aarp if the words have similar
probability distributions among the target features tlwabccur with them. In their work
on document classification, Baker and McCallum had choseridls [abels as the target
features. The root forms of the words are not taken into clemation while grouping
them. This algorithm described in [6] is as follows. The nalinformation of each word
in the corpus with the class variable is computed, and thelsvare sorted in descending
order. The number of desired clusters is fixed beforeharydtosa/. The first\M words
are initialized to form\/ singleton clusters. The two most similar (of thé) clusters are
merged. This similarity is measured in terms of the Kullbaekbler divergence of the
distributions of the two clusters. The next word in the sitst forms a new singleton
cluster. Thus, the number of clusters remaifisach time. In the present work, we refer
to this method abaker In our implementation, we have fixéd to the number of stems

obtained by refining the Truncate(3) stemmer using our model
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2.3.2 Stemming and Classification

There are several works on text classification (see, for pl@riL48]), where stemming
has been employed in a routine manner. However, there deeatites in opinions of re-
searchers regarding the effectiveness of stemming foruhmoge of classification. While
Riloff [124] and Spitters [131] had concluded that stemmirgymot help increase clas-
sification accuracy, Buseman had observed that morpholagiedysis increases the per-
formance for a series of classification algorithms applee@érman email classification.
In a recent work, Gaustad and Bouma [54] observed that stegdaies not consistently
improve classification accuracy. More recently, howevehe&y et al. [30] found stem-
ming advantageous while classifying medical documents.

Perhaps, the reasons for such varied observations lie iditeeent characteristics
of the document collections involved. On the one hand, stexgwould increase the
number of instances per feature (by reducing the numbegtdifes), which is a favorable
situation for classification. On the other hand, stemming marge words regardless of
the class information that they hold, thereby confusingaasifier which is presented with
such mixed instances.

In what follows, we propose a novel stemming technique, etngreven very strong

stemming does not reduce the classification accuracy.

2.4 Proposed Stemming Technique

2.4.1 Ciriteria

We try to improve upon the existing stemmers discussed abotie following aspects:

1. Substitute words: these words, though very similar inmregand/or usage, often
do not tend to appear with each other. These are often th# oésiarying author
styles, where a particular author uses just one of the sutestivords all the time.

Examples include words that have different spellings urigtérsh and American
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usage (e.g., colour and color). To infer that they shouldtemmied to the same
word, one would need to analyze their co-occurrence witkrotlords to find such

relations.

. Words with many senses: when a word has many senses, thggreb® words that

are semantically similar to it in just one sense. Mergingrttveould lead to loss of
information [78]. It is desirable that only those words whioatch in all the given

senses are merged.

. Creation of new words: rule based stemmers occasionagtenew words while

stripping suffixes. For example, the Porter stemmer stertisdimngeandchang-

ing to chang Note that this is inevitable, and if a rule were to modify fimal stem

by adding areto it, it would lead to yet other problems likmngandhangingboth
stemming tchange The creation of such words may also increase ambiguity when
dissimilar classes of words are merged. For example, theelPstemmer stems
range ranged ranges ranging andrang to rang, even thoughang is unrelated to

the rest.

. Simplicity and speed: rule based stemmers only need potsteugh a sequence

of predefined rules and are very efficient, albeit at the costemming errors.
Corpus-based refinements are computationally expensiveees in the case of
co-occurrence based stemmers, where the process of refirengiems involves
computing the co-occurrences of each pair of words that malpet same stem. If
an equivalence class (set of words mapping to the same seéfajge”, splitting it

optimally becomes an arduous task.

. Cross-corpus stemming: it is desirable to perform the stieigy operation only

once. Also, additional information like categories may betavailable for all cor-
pora. However, one would like the stemmer to perform reasignaell in that

situation too. The stemmer may be built based on a singleusapd the same set
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of stems is employed for other corpora, too. The challende me up with a

stemmer which does well even when the two corpora are veigrdiit in nature.

We now describe a stemming algorithm that incorporatealbbove desiderata.

2.4.2 Stemmer refinement by distribution based segregation

The objective at hand is that given an equivalence class oflsyat is to be split in
such a way that the resulting equivalence classes reflechroved stemming in terms
of classification and retrieval. The primary objective ig tgroup morphological or
semantically similar words, as a human linguist would doutfh, such a feature would be
added attraction. We utilize the information available classified text corpus to perform
the splitting. The primary assumption behind the proposethodology is that two words
may be stemmed to the same stem if they are extremely simitheir distribution across
various categories.

Each word is assumed to have a multinomial distribution {8@J the set of categories
of the given corpus. In a multinomial distribution,events are observed, each of which
hask possible outcomes, with thé€ outcome having a probability ¢f. The binomial
distribution is a special case whete= 2. Words deemed to be arising from the same
multinomial distribution are kept in the same equivaleness, whereas, those which are
significantly different from each other are separated outreHdifferences in the total
number of appearances of the words (denotedipgre ignored, just as in the vector
space (or the bag of words) model. The distribution of eachdvi®estimated from its
frequencies in the various categories. Formally, the pgedanethodology is as described
below.

Let {wy,ws,...,w,}, be the set of words belonging to an equivalence class, i.e.,
they all stem to the same stem. L&t be the number of categories of the given text
corpus. For each word;, we compute the occurrence vector, n;o, . . ., n;x, Wheren;,

is the number of occurrences of the under thekth category. We assume that each
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arises from a multinomial distribution whose parameteespar, p;s, . . . , pix, andn; =
Zle n;.. Here, eaclp;, denotes the probability af; appearing under theth category

and is estimated as the corresponding proportion of occcesein the corpusy. /n;.

The aim is to partition this set of words into non-empty siibsech that each subset
consists of words whose estimated distributions are noifgigntly different from each
other. Moreover, this task needs to be done without a priomkedge of the size of the

partition.

We employ a procedure similar to sequential hypothesisgegl37] for attaining this
goal. Two thresholds/cutoffs, say andi,, (t; <= t»), are chosen for this purpose. The
words are sorted in descending order of their frequenciggditt loss of generality, we
shall now denote this sorted list of words by, ws, . .., w,}. The most frequent word,
wy, is chosen and is considered to stem to itself. We denotasiigm(w,) = s;. Let.S
be the current set of stems. So, initialy= {s;}. We shall also denote the equivalence
class of stens; by S, defined as5; = {wy, : stem(wy) = s,}.

For each subsequent word, we compute a distance betweestiibution function
and that of each stem ifi, d;; = d(w;, s;). The distance function may be any of those
discussed in Section 2.4.3. If each of these distancesasegréhan the bigger cutoff, i.e.,
d;; > ty ¥j, we shall call the current word as a new stem and add it to the.sen the
other hand, if any of the distances, sgy, is smaller than the smaller cutaff, we shall

add the current word to the equivalence class;p$o thatstem(w;) = s;.

This procedure is iterated with the two thresholds modifiechshat the new lower
threshold is greater than and the larger one is smaller than It may be noted that,
since the proposed algorithm depends on the accurate é@stimoédword distributions, the

larger the number of words or documents per class, the libdexpected performance.

For the purpose of cross-corpus stemming, the stems aredinstructed based on
one corpus. Then, the words of the other corpus are stemnraglthe proposed method
whenever they are available in the first one. For all otherdsowe fall back upon a

standard stemmer like Porter or Trunc3.
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2.4.3 Choice of distance function and thresholds

The above mentioned description provides a general forrhetorpus based stemmer.
For implementation, one needs to have a proper choice @rdistfunction and thresh-
olds. These are described below. The term ‘distance’ abamebe defined in various
ways to produce a variety of (mostly similar) stemmers. Baneple, the distance be-

tween a candidate word; and a steny; may be defined in one of the following ways:
¢ the distance between; and a prototype (or a representative) of theset
¢ the minimum distance betweer and an element of;.
¢ the maximum distance betweenand an element of;.

For each of the above options, we can also have one or a cotiobirtd the following

kinds of distance functions:
e Euclidean distance between the distributions of the two

e Cosine distance (derived from the Cosine Similarity metriche distributions of

the two [126]
e Kullback-Leibler distance between the distributions @& tivo [81]

e A test statistic that would be used for testing the equalitthe two distributions
[85]

The distance function may also take into consideration e af the longest common
prefix, so that words with a longer common prefix would be mikely to be stemmed
to the same stem.

We deduce the computation time of our algorithm by lookinghat operations per-
formed for refining each of the initial equivalence classagppose a stem class consists
of n words andm concept groups. So, the objective is to split the given stixssanto

m concept classes. The words are sorted in descending ordaeioffrequencies in
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O(nlogn) time. Then each word would be compared with at masprototypes (one
for each concept class). Thus, splitting a stem group i©®@nn) operation (assuming
m < logn, otherwise, it would be&(nlogn)). It may be noted that, at this stage, co-
occurrence based refinement would need to compute co-ecoas between all pairs of

words, thereby becoming a»(n?) algorithm.

Now, if there arel/ stem classes initially, the complexity of our methodigV/ mn).
Also, n is expected to b%, whereN is the total number of words, i.el/n = N. Hence,
the average complexity of the proposed metho@ {s:V), with m being interpreted as
the average number of concept groups per initial stem chM&snote that, in the above
derivation,m depends on\/ because a8/ decreases the size of the initial equivalence

classes, and consequently are expected to be increase.

This is an added advantage for the proposed method over thectwrence based
method as it would not require a prior stemming result totstath for the refinement
process (equivalent to using the Truncate(0) stemmer).adevyfor the purpose of stem-
ming, this would necessitate the incorporation of the I@hgemmon prefix based modi-

fication during distance calculations.

There are no strict guidelines for choosingandt, except that a high, would result
in more words getting a stem class of their own (understemgniend a lowt, would
lead to large equivalence classes (overstemming). Shadie are doing by choosirig
andt, is to fix a level of permissible understemming and overstemgrerrors. However,
it is not possible to directly compute the exact number/propn of such errors (since
the exact distributions of the words are not known befordharif ¢t; = 5, then we
do not need multiple iterations in the given procedure. Tosild result in a reduction
in computing time. However, it may miss out on some simplegaes of equivalence
classes. This is so because, once a word is called a new steamnot be merged with
any of the existing stems at a later stage. Choosing t, allows us to do just that.
In this case, whenever one is sure of neither merging thecuword with an existing

stem nor assigning it to a new class of its own, this decisiay be put off for later. In
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a following iteration, due to the change in the structurehefe¢lasses or the values of the
chosen thresholds, the decision may become clearer. Téreg#trof the stemmer would

be proportional to the size of the threshotdsndi,.

2.5 Implementation

For the implementation of the proposed methodology, werpegss the given corpus
first and then refine a given stemmer by splitting the equnadeclasses generated by that
stemmer. We briefly describe these tasks here.

Any text corpus would contain several noisy terms. To claahsioise, some stan-
dard preprocessing tasks are performed on the given corpde headers of the docu-
ments are ignored altogether and only those words are eetawhich appear in at least
two documents. HTML tags and stopwords are removed befalditg the model. All
words are converted to lower case.

Then, to decide if a given word; may be merged with a stem class, we test
the difference between the estimated distributionsvpfind S;. The distributions are
estimated as the corresponding frequencies of words apgeaarder thei' topics of the
given corpus. For testing the difference between the twinibiigions, Pearson'’s statistic
[85] is computed as described below. Lét,;,n;,...,n;x) be the topic vector ofv;.
Definem;;, to be the sumzwiesj nix. Also, letm; denote the totaEkK:1 mji. Itis
assumed that the estimated distributiopis the actual one. To test(if;;, n;o, . . ., nik)

has arisen from the distribution 6f, Pearson statistic is computed as:

K 9
my N Mk
)
n; m;

i ik

where,n; andm; are the totals, as defined above. Whers large, this statistic is known
to approximately follow a¢? distribution with X' — 1 degrees of freedom.
Since some of the,; values may be zero, we replace them by

n; 1
n;k = 0.9, + O'lf =n; + 0.1 (E - nzk) . (2.1)
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This is done for each term in the dictionary. What we do heressentially, to perform a
smoothing operation. Now, none of the cells are empty andeawer, the total remains
the same. In the remainder of this article, we shall refex j@sn;;, itself. If w; is merged
with S;, them,,,’s are updated by adding,, (after modifying as in Eq. 2.1) for eagh

Since we have sorted the words in descending order of tregjuéncies, thQ%K_l)
assumption is satisfied initially. And, when the frequentg word is very low, it would
not matter too much as the word itself might not have much afyadsiring classification.

Splitting each equivalence class is performed in two iterst The values of, and
to are settoy ), anddxiyx ., respectively, during the first iteration. Hengy ),
is the uppewr cut-off of thex(?K_l) distribution, i.e., the value of thg%K_l) distribution
function at the chosen cut-off is — «. #¢; and¢, are both set '@X?K-n,a during the
second iteration. In our implementation, we had chasémbe0.05.

Though our methodology does not create any new words of it§ olring cross-
corpus stemming, when the words encountered are not in ¢hiertary, a standard stem-

mer is used, and that may introduce new words into the system.

2.6 Experimental Results and Comparison

2.6.1 Data Sets Used

We evaluated the performance of the proposed methodologyyamdata sets, namely, 20

Newsgroups and WebKB. They are described below.

20 Newsgroups [1]

The 20 newsgroups (also known as 20NG) collection is a poplala set for experiments
in text applications of machine learning techniques, sukeat classification and text
clustering. The 20NG data set is a collection of 19,997 nestggdocuments, partitioned

evenly across 20 different newsgroups. The categoriessaed in Table 2.1.
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Table 2.1: List of Categories in the 20NG Data Set
alt.atheism rec.sport.hockey

comp.graphics sci.crypt

comp.os.ms-windows.miscsci.electronics

comp.sys.ibm.pc.hardwaresci.med

comp.sys.mac.hardware | sci.space

comp.windows.x soc.religion.christian
misc.forsale talk.politics.guns
rec.autos talk.politics.mideast
rec.motorcycles talk.politics.misc
rec.sport.baseball talk.religion.misc

WebKB [138]

This data set consists of web pages collected from compcienee departments of vari-
ous universities in January 1997 by the World Wide Web KnagéeBase project of the
CMU text learning group. There are 8,282 pages and they weneiafig classified into

the following seven categories (the figures in parenthesestd the number of pages in

a particular category):

e student (1641)

faculty (1124)

staff (137)

department (182)

course (930)

project (504)
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e other (3764)

The class other is a collection of pages that were not deelmecdiain page” representing
an instance of the previous six classes.

For each class the data set contains pages from the foursitiee
e Cornell (867)

e Texas (827)

e Washington (1205)

e Wisconsin (1263)

and 4,120 miscellaneous pages collected from other uitiests

WSJ

The Wall Street Journal data set is a part of the TREC colle¢&8], and consists of more
than 170,000 records which appeared during 1987 to 1992wl Street Journal. The
queries (also called topics) and query relevance scoreth¢irfiorm of grels files) are
available ahttp://trec.nist.gov/data/tesoll.html.

2.6.2 Evaluation Procedure

The performance of distribution based stemmer refinemesitbean evaluated in two
ways. First, a direct evaluation in terms of linguistic 1388 has been performed. This
would reveal how similar the system is to a human who grougstter morphologi-
cally and semantically related words. The second evaluaian indirect evaluation that
observes the effects of stemming on classification accluaadyetrieval performance.
For performing the linguistic analysis, we followed the gedure described in [111].
A generalization of this procedure is provided in [39] andsgful for automatic evalua-

tion of stemmers, but this is not employed here due to laclesburces on the authors’
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part. There are 13,621 words in the intersection of the wdeaies of the webKB and
20NG data sets and a unix word list (generally, located atshigre/dict/words). Of these
words, we chose all the words starting with the alphabets @, i, g and r, which com-
prised a total of 5235 words. These words were manually grdupto 2069 classes, on
the basis that all and only those words which were judged tselpeantically and mor-
phologically related were kept in the same group. As in [1fbrds with at least the first
two letters in common were considered for grouping togetier words likean andrun
or buy andboughtwere not stemmed to each other, buing andbroughtwere kept in
the same group.

Paice has defined the following indices for quantifying e®mming and understem-
ming. LetWW be the size of the given word sample, and¥etand Ns denote the number
of concept groups (denoted lgy and stem classes (denoted &y respectively. Also,
let n, andn, denote the number of words inands, respectively. Now, suppose that
consists of words front, distinct stem classes, with,; instances from' such class,
and thats consists of words fronh, distinct concept groups, with,; instances fronj*"
such group, the understemming index (Ul) and the overstagnmidex (Ol) are defined

as follows.

lz Z 1u1( — u;) Zg 1 g Z 27, 1 gz

vl = 3 E 1 ng(ng — 1) B Zév:cl nZ—w (22)
(e — v Ns 2
O] — ZZ Z (U](_s )]) _ 251W2 _ZzNGZ; 1 9] (2_3)

Ul and Ol values were computed for all the stemmers based thrithe® 20NG and the
webKB data sets. These values are displayed graphicalligs B.1 and 2.2. A dashed
line is drawn from the UI-Ol values of Truncate(3) to thoseérafnc3_d its refinement to
show how the errors changed on refinement. It may appear tnenfigures that while
refining the Truncate(3) stemmer, too many understemmiraysare introduced at the
cost of reducing a few overstemming errors. However, thimtthe case. It looks so just

because the denominator in Eq. 2.3 is much larger than ti&d.i2.2. More insight may
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UI-OI plot for 20NG
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Figure 2.1: Plot of Ol vs. Ul for stemmers refined using 20N@&det: Ul and Ol values

raised to the powey for clarity

be gathered by looking at tresgexample provided below.

We provide some examples of the equivalence classes prdduceéhe proposed
methodology by refining the Porter and Truncate(3) stemm@&tse Porter stem class
containing &bort, aborts, aborted, abortignvas split into two classes, wherehaypor-
tion was separated from the rest. Similarlgir¢ularity) was segregated froncifcular,
circulars). The stem group corresponding ¢tbsewas split into three group<lpse,
closing, closeg (closed and glosely, closene¥sThe above splits resulted from the dif-

ferences in usages of the words in the collection. For exangpien though semantically
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UI-Ol plot for webKB
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and morphologicallygcircularity is related tocircular, this term (and its plural) have a
different meaning in general and arise in a different cant&milarly, though the verb
and adjective forms oflosehave been separated odlipsedwas made into a new group

of itself, resulting in an understemming error.

Next, we present an example of refining the Truncate(3) stemiihe stem clasang
is split into the following eight classes (the first word otthagroup is the stem)(an-
gel, angelic, anglican, anglo, angling, anguish, anglispr{angeles, angelo), (angelino),
(angels), (anger, angry, angola, angered, angelos, angrian angering), (angers), (an-
gle, angles, angular, angst, angus, angled, angulateds@o), (angmar). As may be
seen, despite some overstemming (eaggling mixed with ange) and understemming
(e.g.,angelsandangersare left out as singletons instead of being merged aitheland
anger, respectively) errors, the splitting is largely succekafumost of the related words
appear in the same group, especially because no lingursigsis is performed. In par-
ticular, it is interesting to note thangstronhas been retained in the same grouprage

perhaps, as a consequence of both appearing in similangsnte

The detailed analysis of the overstemming and understegenrirors after refining
the stem clasangis presented here. We treat this set of 29 words as the wholplsa
available to us. There are 8 stem classes, and 14 concegisgoonmsisting of these
words. 8 of the 29 words are proper nouns. The calculation6BMT, GUMT, GDNT
and GWMT are provided in Tables 2.2 and 2.3. Hence, we seelflia; 12 = 0.35 and

’ 37
54 __

For evaluating the performance of our system in refining thesification accuracy
of a stemmer we used the Bow Toolkit [96] and conducted theviatlg experiments for
each data set. The document collections are preprocessedrd®mned in Section 2.5,

and the equivalence classes are split accordingly.
For training and testing, the data set is split randomly into parts and the same split

is used for each stemmer. The proportion of documents cHoséraining is first taken

to be 60% and later the experiment was repeated with the shaosemw to be 40%. The



Table 2.2: The 14 concept groups for words starting \aitg

g ng | kg | (ui,...,ug,) | DMT, | UMT, | DNT,
ang 1 1|1 0 0 14
angel, angelic, angels 312 |21 3 2 39
angeles 1|1 |1 0 0 14
angelino 1 |1 |1 0 0 14
angelo, angelos 2 |2 |11 1 1 27
anger, angered, angering, angers, angrier,angr§ | 2 | 5,1 15 5 69
angle, angled, angles, angling, angular, angulatéd | 2 | 5,1 15 5 69
anglican, anglicans, anglo 3 /1 |1 3 0 39
angmar 1 /1 |1 0 0 14
angola 1 |1 |1 0 0 14
angst 1 /1 |1 0 0 14
angstrom 1 /1 |1 0 0 14
anguish 1 |1 |1 0 0 14
angus 1 /1 |1 0 0 14
Total: 29 37 13 369

uosuedwo) pue S)Nsay [eluswuadx3 9'g
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Table 2.3: The 8 stem classes for words starting aitp

S ns | ls | (v1,...,0.) | WMT;
angel, angelic — anglican, anglicans, anglo — angling — &igu 7 14123,1,1 17
angeles — angelo 2 1211 1
angelino 1 |11 0
angels 1 1|1 0
anger, angered, angering, angrier, angry — ang — angelosgetan |8 |4 |5,/1,1,1 18
angle, angled, angles, angular, angulated — angst — angstfr@angus| 8 |4 [ 5,1,1,1 18
angmar 1 (1)1 0
angus 1 /1)1 0
Total: 29 54
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training and testing phases are repeated five times for dambecof the proportion.

The text classification algorithms employed to compute tlassification accuracy
were Naive Bayes (NB) [88], Support Vector Machines (SVM) [685], and Maximum
Entropy Method (MaxEnt) [106]. Each document in the testvset given a classification
score for each of the available categories. If a single cayegas to be assigned to a doc-
ument, the one with the maximum score for that document wasezth We computed the
classification accuracy which is the proportion of test doents assigned to the correct
class. This value was computed for each of the individuagaies also.

Classification accuracy measures the total number of ctyreesssified documents.
However, when documents are misclassified, it does noindigsith between them on
the basis of their classification scores. To take this intmant, we have adopted the
following precision-recall method. The documents are §sted in descending order of
the classification scores. Only the largest score was cereidor each document. Now,
at any value of recall, the precision (or classification aacy) is computed. A higher
precision-recall curve is preferable. It may be noted thetsification accuracy can be
obtained from this curve as the precision when recall isss200%. Experiments are also
performed where the precision-recall curves are obtaioeddch individual category.

To evaluate the retrieval capabilities of our algorithm, eanducted the following
experiments on the Wall Street Journal data set using the FSMgystem. Topics 101
to 150 were chosen as the given queries. The word vector virgjgivas set to TFIDF.
For each query, documents are retrieved and the precisiootésl at recall values set
to 10%, 20%, ...,100%. These precision values are averaged over all queries &nd ar

presented in the form of precision-recall plots.

2.6.3 Comparison

As described in Section 2.4.2, the proposed distributisetaegregation methodology
can be employed to refine the equivalence classes genesatey lexisting stemmer. In

the present investigation, we used it to obtain new stemb@esd on the Porter and Trun-
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cate(3) stemming for both the corpora. Let these new stesibeedenoted gsorter.d_i
andtrunc3.d_i, wherei is 1 for the 20NG data set and 2 for the WebKB data set. Simgjlarl
the stemmers derived using Baker and McCallum'’s distribafictustering are denoted

asbhaker 1 andbaker 2.

The reason for choosing Porter and Truncate(3) stemmers tescribed below.
Porter's stemmer is one of the most standard stemmers asdisnéwby its use in the
literature. Truncate(3) is a stemmer that is used mosthaéademic purposes. We have
used that because it is a very strong stemmer and resultggresever-stemming errors,

thereby providing one a significant of scope for refinement.

The comparison process has four parts. In the first part, wgace the performance,
in terms of the classification accuracies, of the refined n@mmsersporter.d_: and
trunc3.d_i with that of the original ones (i.eporter andtrunc3), as well as, no stem-
ming andbakeri. The objective is to demonstrate both the effectivenesgfaiement
by our method, and improvement over the baseline performashere the original words

are used.

In the second part, we compare these new stemmers with tbeatorence based
modified Porter and Trunc3 stemming of Xu and Croft [144]. Ehemy be denoted, in
short, agorter_c_i andtrunc3.c_i, i being the same as in the first part. Here the objective
is to compare the performance of our distribution basedegfent process with the co-

occurrence based refinement process. These stemmerscaceralsared witlbaker .

The third part deals with comparison in terms of cross-cerperformance, where
a stemmer refined using the information from one data setgbeapto another data set.
The objective is to study the dependence of a stemming #igoon the data set based on
which it is derived, and its applicability to a dissimilartdaHere, we considérunc3.d_1
andtrunc3.c_1 applied to the WebKB data set, atrdnc3.d_2 andtrunc3.c_2 applied to
the 20NG data set.

The fourth part involves comparison with respect to retaigerformance, where the

objective is to study the effects of the stemmers on theenettiat various levels of recall.
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The stemmers being considered herepger c_1, porter.d_1, trunc3.d_1 andbaker1,
and they are applied to the WSJ data set. The stemmers refinde @ONG data set
are chosen for retrieval on the WSJ data set in order to eeah@awv the refinements

generalize to other data sets in the case of retrieval.

2.6.4 Results

Tables 2.5 and 2.6 report the classification accuraciesnautdpy different stemming al-
gorithms for the 20NG data set and the WebKB data set, rasphctAll abbreviations
used in the result tables are described in Subsection 2M&3nake the following obser-

vations from Tables 2.5 and 2.6:

e both porter.d andtrunc3d fare better thamporter andtrunc3 respectively, in all

cases for both the data sets.

e porter.d shows a better performance thaarter_c in all the cases, though the num-

ber of stems obtained kporter d_1 is slightly more than that bgorter_ c_1.

e trunc3.d provides a better classification accuracy comparedaestemmingand
baker, the case of SVM for the WebKB data set being the only excaptidhe

same observation holds whamnc3.d is compared tgorter_d.

e the number of words common to both the data sets is 20782 hviiabout 64%
and 37% of the dictionary sizes of the WebKB and 20NG datg setpectively
(see Table 2.4). The classification accuracy obtainetiunc3 d 1 is significantly
better thartrunc3.c_1 when applied to the WebKB data set. This confirms that the
refinement procedure performed by employing the classificabformation from

a different corpus works better when the number of commornsvis large.

e The statistical significance of the improvement gained bygighe proposed stem-
mers over that of existing stemmers is tested using a s#tatiTable 2.8 contains

thet—statistic values for the case of the Naive Bayes classifier applied tBAN&E>
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data set when the test set size is chosen té0be (Fig. 1). Table 2.9 shows the
corresponding values for the WebKB data set. We observe Tainte 2.8, which
corresponds to Fig. 1, that there is a significant improvene5% confidence
level, over existing stemmers whéminc3.d_1 is employed. Similarlytfrunc3.d_2
has significantly, at the 95% confidence level, outperforadting stemmers as

can be seen from Table 2.9, which corresponds to Fig. 5.

Apart from the classification accuracies, we also providgulis in the form of
precision-recall plots (Figs. 2.3 and 2.4). More plots,responding to different clas-
sification methods, are available but have been moved to gip& (Figs. A.1-A.6) to
avoid cluttering the present chapter. It may be noted theptbposed algorithm consis-
tently outperforms the rest, especially, when consideledgawith the number of stems
obtained (Table 2.4). When based tounc3 the proposed method (i.¢runc3.d) con-
sistently improves the classification precision for allued of recall. This effect is more
prominent when Naive Bayes is used for classification (Figs.R.1, 2.4 and A.4). This
is possibly because the stems obtainetrbgc3 d satisfy the Naive Bayes’ independence
assumption better than the original set of words. In thadees our methodology may be
considered as a “modification of feature sets to make them#ence assumption more
true” as mentioned in [88].

Note here that the time taken for stemming words is the samafpof the stemmers,
as the words and their stems can be stored in a hash tabl¢héttisne taken for creating
this hash table that may differ. While this is not significantdny of the rule based stem-
mers, it is comparatively quite high for the co-occurrenasdal stemmer, the proposed
one, as well adyaker(Table 2.7). The steep increase in the computation timedorc3.c
is a consequence of the large equivalence classes formiedrina.

For testing the retrieval efficiency of the proposed methagly we have chosen a
part of the WSJ data set consisting of Wall Street Journallestpublished between 1987
to 1992. The queries used were topics 101 to 150. The reteeyp@riments have been
performed using the SMART system with the word vector werghset to TFIDF [26].



Table 2.4: Stem counts and the largest equivalence clabsssed by various stemming algorithms

Stemming Data Set
Method 20NG WebKB

Stem Count  Largest Class Index || Stem Count  Largest Class Index

Compression Compression

no stemming 56436 32299
porter 40821 gener: 24 13.6% 23446 gener: 25 15.3%
trunc3 8158 con: 675 76.6% 5053 con: 432 81.6%
trunc4 21252 inte: 236 42.2% 13283 inte: 192 50.4%
trunc5 33187 inter: 174 24.4% 20051 inter: 147 31.6%
porterc 47441 generic: 18 11.0% 26249 general: 24 25.6%
trunc3c 30710| considered: 652 24.2% 14921 convex: 430 44.8%
porterd 48502 general: 13 10.7% 23971 general: 25 27.0%
trunc3d 22643| discussion: 212 41.2% 6163 | contents: 261 72.5%
trunc3c (cross) 13771 convex: 360 47.3% 11036 considered: 358 56.9%
trunc3d (cross) 10708 con: 314 52.2% 13857 int: 85 49.5%

uosuedwo) pue S)Nsay [eluswuadx3 9'g
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Table 2.5: Classification Accuracies for 20NG

Classification Method
Stemming Method NaiveBayes SVM | MaxEnt
no stemming 80.44 80.06| 77.08
porter 79.37 79.73| 77.40
trunc3 72.88 71.11| 68.24
trunc4 78.68 7741 73.64
truncb 79.73 78.15| 74.24
porterc_1 79.59 79.57| 77.46
trunc3c_1 74.28 74.13| 75.03
porterd_1 80.34 80.21| 77.53
trunc3d.1 81.98 81.19| 77.85
bakerl 81.38 81.19| 77.15
trunc3c.2 74.82 73.38| 71.01
trunc3d.2 74.73 73.51| 70.59




2.6 Experimental Results and Comparison

Table 2.6: Classification Accuracies for WebKB

Classification Method
Stemming Method NaiveBayes SVM | MaxEnt
no stemming 63.02 72.35| 64.09
porter 61.86 70.14| 62.76
trunc3 57.55 63.77| 58.07
trunc4 60.85 66.56| 50.67
trunc5 61.27 64.57| 51.13
porterc_2 62.00 70.16| 62.64
trunc3c.2 59.90 65.11| 58.11
porterd_2 63.08 71.38| 63.91
trunc3d._2 63.95 69.53| 64.21
baker2 61.19 69.51| 64.43
trunc3c.1 59.10 64.77| 58.60
trunc3d 1 61.39 69.51| 64.13

Table 2.7: Time (in secs) taken for creating the stem hadbgab
Data Set

Method | 20NG | WebKB

porterd | 3.2 2.6
trunc3d | 5.5 51

porterc 3.6 2.2

trunc3c 9.2 4.7

baker 11.2 9.4
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Figure 2.3: Data Set: 20NG, Test Set Size: 40%, Method: NB.



55

2.6 Experimental Results and Comparison

<9

09

qg

0S8

114

[[eosy
oy Ge 0c T4 0¢

Gl

I
--o--- |_p_gouni
——4-— | O gounj
—Aa— 2 IaMeq
—--v---- 2 P gouny
- --- 2 p Jauod
---@--- 2 D gouni
--o--- 2 0 Jauod
—-m-- gounj]
“““ - F#ounJl
--%--- gounJ)
——>-- Jauod
—+— Bulwwaels ou

0 SeABQaAleU Opjgem J0] puabe |

99

859

09

c9

9

99

89

0/

cl

122

9/

8/

uolsioald

Figure 2.4: Data Set: WebKB, Test Set Size: 40%, Method: NB.



56

Stemming for Text Preprocessing of Web Documents

Table 2.8: Statistical Significance values for 20NG using NB

Proposed Stemmers

Existing Stemmers porterd.1 | trunc3d.1l | trunc3d.2

no stemming 0.17 (0.43)| 2.45(0.02), 0.27 (0.40)
porter 1.73 (0.06)| 4.38 (0.00)| 2.53(0.02)
trunc3 11.43 (0.00)| 13.70 (0.00)| 10.40 (0.00)
trunc4 9.23(0.00)| 9.91 (0.00)| 8.89 (0.00)
truncs 7.17 (0.00)| 7.83(0.00)| 7.43(0.00)
porterc_1 2.53(0.02)| 4.21(0.00)| 2.29 (0.02)
trunc3c.1 4.91 (0.00)| 7.87(0.00)| 6.51 (0.00)
baker1 1.31(0.11)] 2.17(0.03)| 1.21(0.13)
trunc3c 2 7.72 (0.00)| 9.16 (0.00)| 6.28 (0.00)

Table 2.9: Statistical Significance values for WebKB usirig) N

Proposed Stemmers

Existing Stemmers porterd 2 | trunc3d. 2 | trunc3d.1
no stemming 0.87 (0.20)| 2.43(0.02)| -0.36 (0.64)
porter 4.13(0.00)| 5.70 (0.00)| -0.15 (0.56)
trunc3 13.21 (0.00)| 15.18 (0.00)| 5.64 (0.00)
trunc4 9.27 (0.00)| 12.91 (0.00)| 5.14 (0.00)
truncs 8.41 (0.00)| 11.58 (0.00) 4.73 (0.00)
porterc.2 3.93(0.02)| 5.81 (0.00)| -0.26 (0.60)
trunc3c 2 7.80 (0.00)| 9.37 (0.00)| 2.11 (0.03)
baker2 0.71(0.25)| 1.97 (0.04)| -0.61 (0.72)
trunc3c_1 9.45 (0.00)| 10.96 (0.00)| 2.97 (0.01)
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As mentioned earlier in Section 2.6.2, we have used the raénés obtained from the
20NG data set. We note thatinc3.d_1 outperformsbaker1, as well as the remaining
methods, as seen from Fig. 2.5, witbnc3 d providing more than 2% improvement over
baker 1 until the recall is above 90%. The improvement has been foaibe statistically

significant at a 95% confidence level.

2.7 Conclusions

We have described the design of a stemming algorithm whieb tige classification in-
formation of a corpus to refine a given stemmer. The main adganover other stem-
mers like co-occurrence based stemmers is its ability tstidadly reduce the dictionary
size while maintaining both the classification accuracy eetdeval precision. Experi-
ments conducted on 20NG and WebKB data sets confirm the supgeof the proposed
methodology for the task of text categorization when cfassi like Naive Bayes, Sup-
port Vector Machines and Maximum Entropy Method are usedks iBralso supported by
precision-recall based evaluation. Another set of expemtsperformed on WSJ data set
demonstrates the enhancement in retrieval precision wieerefined stemmers are em-
ployed instead of existing stemmers. The performance oferfent done by employing
the classification information from a different corpus g&ses as the number of common

words increases.
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Chapter 3

Sequence Detection for Link

Preprocessing of Web Documents

3.1 Introduction

In the previous chapter, we had concerned ourselves wittrgeressing the textual con-
tents of individual web pages. Web pages, apart from congiext, also have a mech-
anism for connecting with other web pages through the useg/périnks. The present
chapter deals with how web pages may be preprocessed bagbd orierconnections
between them.

The Web has a complex graph structure and is usually modsladiaraph [19, 22],
with the pages forming the vertices and the links betweemtheing the arcs. This graph
structure, as reflected by the hyperlinks between web pageses a lot of information
in addition to the contents of individual pages.

The author of a web page may want a visitor to move on to one wicdl set of pages.
On occasion, this set might be a singleton, implying thatvis#or is urged to directly
continue on to that page. Pages which are intended to bedisite after the other, in
a particular order, shall hereafter be referred to asguence A sequence is a path in

the graph theoretic sense, but it is not just any path, butwrexe there is a continuity



60 Sequence Detection for Link Preprocessing of Web Document

in the contents of the constituent pages. A formal definibtbsequencesalong with the
motivation for detecting them, is provided in Section 3.2.

A literature survey on sequence detection in graph theoigection 3.3, reveals that,
while there are a plethora of algorithms for detecting cy@ed paths (in the graph the-
oretic sense) in graphs, there is none that suits our speciffose. We provide a novel
algorithm that detects, not just any ordered set of disfyagfes, but sequences of pages
that were originally intended to be visited in that orderisTédgorithm involves detecting
continuity links and finding pieces of the sequence that nejpined together later. We
then make a few assumptions and produce a scalable butdelassaon of this algorithm.
These algorithms are described in Sections 3.4 and 3.5.

The true worth of detecting sequences lies in understaridegumerous tasks that it
helps in — document retrieval, web graph size reductiondampdicate detection, to name
a few. For all these tasks, the detected sequence may beedds a single web page
that includes the contents of all the pages in the sequencele Wik reduction of the
size of the web graph is an obvious consequence, and duptiedtction is fairly easy
to understand, the effects of merging documents on retriasks are more complicated.
We study thoroughly how theerm frequencyndinverse document frequenciiange as
documents in the corpus are merged together. This corstifdctions 3.6 and 3.7.

In Section 3.8, we provide results of experiments performediTML corpora that
confirm the efficacy and usefulness of the work presenteddrcthirent chapter. Sec-
tion 3.9 summarizes the contributions of the chapter andlodes it.

We now delve deeper into defining sequences of interest,udysguently, identifying

them from the vast web graph.

3.2 Sequences and Cycles of Web Pages

We use the following terminology related to graphs [57]. Ayrdiph or directed graph

G is an ordered pai(V, E), whereV is a set of vertices and’' is the set of arcs or
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directed edges between these vertices. We denote the amcvédexi to vertex; by
e;;. A path in a digraph is a sequence of vertiegszs, ..., x;, 11, . .., 2, such that
x; andx;,, are connected by an arc i, and the vertices are not repeated. A cycle is
a sequence of vertices, z, ..., T;, Tit1,. - ., Tn, Tnr1 SUCh thatr,,; = x; and ifz, 44
is removed, the remaining part is a path. We denote the patltysie defined here by
T1.Tg .. Tp Xy ... Ty @NA (21,29 ... 22541 . .. 1, ), FESPECtively. A digraph is strongly
connected if there exists a path from any vertgxo any other vertex,, in V. The in-
degree (out-degree) of a vertex is the number of arcs leddi(gping out of) the vertex.

The number of pages on the indexable Web is several billicth, Yahoo! claiming to
have indexed about 20 billion pages way back in the year 2086][ According to [2],
the average number of links on a web page ranges between 8awtiizh turns out to be
a humongous number of links for the whole web (note that, sammany, of these links
may point to pages outside the indexed set of pages). Linksiaalgorithms dealing
with the web graph assume that it is strongly connectedpatth, in practice, this is
ensured by adding artificial arcs to the graph [22].

In such massive digraphs, with several arcs between thieegrisequences and cy-
cles are a common phenomenon. We now present an examplestoate how huge the
number of cycles in the web graph could be, and why most okthrelvidual cycles are

not interesting.

3.2.1 Motivation

Consider the following statement.
A: There is a cycle of web documents consisting of

— http://ww. stanford. edu/i ndex. htm ,
— http://ww. yahoo. cont i ndex. ht m , and

— http://w -consortiumorg/index. htm
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One can easily be convinced that Statement A is true, priynaeicause of the high in-
and out-degrees of the chosen web pages. Moreover, Staté&mesuld hold true even

in conjunction with any of the following statements:
B: The three pages appear in a prespecified order
C: The length of the cycle is exactly 10
D: The cycle contains no web page fronc@. uk or a. net domain

The ease with which these statements have been made, an@ c@nifted to be true,
provides an idea of how huge the number of cycles involviegéthree web pages would
be. This in turn would imply that the total number of cyclegloaweb (without imposing
any conditions) would be extremely large. As mentionediearhe web has more than
20 billion documents, and an average out-degree of 20. Asguthis to be an Erdos-
Renyi (random) digrapt¥(n, p), with n being the total number of documents, araeing
the proportion of all possible links which actually exidtetexpected number of cycles
of length, say 10, turns out to be of the order26f’. Enumerating all such cycles (say,
by an algorithm as mentioned in [133] or [94]) would be tedi@nd computationally
expensive, and several individual cycles that have beenddijust by chance may not be
interesting at all.

Despite the huge number of cycles on the web, only a few oktlbgsles were con-
ceived at the time of their creation by the authors of the twent pages. While the
reason behind creating such special structures in the wagthgnay be Search Engine
Optimization or simply a matter of convenience, sometinhbsiiders on malicious intent
or spam [142]. Moreover, with web authoring styles varyinigely, the same kind of
content may be presented in a single page, or broken up imoagages. Such dissimi-
larities bring about large differences in link based anedysSo, for the sake of uniformity
and consistency during comparison of web pages, the detexftihese special structures

is essential. We now specify what exactly are the structofresir interest.
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3.2.2 Structures of Interest

We first take the help of an example (see Fig. 3.1), to chanaetthe kind of objects we

are interested in detecting from the web graph. Fig. 3.1 shedirected graph, say,

A

Figure 3.1: A strongly connected digraph

with the vertices labeled to I being web documents and arcs being the links between
them. This graph is strongly connected because any verteeeeached from any other
vertex.

We now look at the directed cycles of the gragphThere are two of them of length
greater than two, namely (B.C.D.E.F.G.B) and (A.l.H.F.G.B.@gch consisting of six
vertices. Although, technically, both the above cycles rhayeported by a cycle de-
tection algorithm, we observe that the former looks moreil@agcompared to the latter.
Also, the names of the web pages are quite suggestive thétsheycle was intended
right at the outset, while the second one was formed just bypod

We are interested only in cycles of the first kind which extrelriegular pattern. In the
present chapter, we study sequences and cycles of web pagémve been deliberately
so generated by their author(s). In other words, at the tihzeeation of these pages, it
was intended that a surfer would view them all in a specifieord

We note that although our examples involved cycles of a grapehcould have made

similar statements about paths of the same graph. As we stmliater, paths are what
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offer the most interesting applications in our context agdle detection provides no
additional advantages for the tasks being considered iprésent chapter.

We shall now formalize the definition of sequences of intenekich as we already
know, are not just any paths in the given graph. Mathemdficalsequencd X, } is
defined as a function with its domain being a subse{ the set of non-negative integers)
and taking values in some s&t In our case, each value is a web page. The kind of
sequences that we are interested in may be defined as andsgtref elements where
the relation between any two consecutive elements remheésame. In other words,
X,11 is related taX,, in exactly the same way as,, is related taX,, ;.

A sequenceof web pages is an ordered set of web pagess..... T, such that
consecutive pages of a sequence are connectedrjnuity links andzx; - is linked to
x;41 just the wayzx; 1 is to z;. To understand continuity links better, let us look at the
various relationships bestowed upon two pages connectedd typerlink. Hyperlinks

play a variety of roles like

e Reference: the user is expected to follow the hyperlinkt ifg reference and

return back to the present page. Such instances aboundstiké Wikipedia [141].

e Continuation: the link is to content which the author of thegant page would
recommend the user to access next. For example, a link fotrp: / / wwww.
mut t . or g/ doc/ manual / manual - 1. ht Ml tohttp://ww. mutt. org/

doc/ manual / manual - 2. ht il is a continuity link.

e Navigation: links of this kind are present to help the useilgaavigate between
portions of the site. Usually, the same set of such navigatiinks (possibly,
excluding a self-link) appears in each page of a section afea gesulting in a

cligue of web pages.

e Advertisement: these links lead the visitor of the curreajgto advertisements,

which may or may not result in a (financial) gain to the owneth&f web page.
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The past few years have seen increasingly contextuallyaetedvertisements be-
ing served, with the links being created dynamically at imetof page generation.
However, several studies (e.g., [150]) treat a link to areatisement as noise, as-

suming that it is forcibly imposed on the user.

The above mentioned categories are not necessarily mutalusive (and are not
meant to be exhaustive, either). In particular, it is diffito accurately determine if a link
is for the purpose of continuation or navigation. For exanpBharat and Mihaila treat
any link between two web pages in the same domain as nauigf/]. This definition
would include, to various extents, all four types of linksdebed above. In particular,
when continuity links connect pages in the same domain (drgps, within the same
directory of a server), they could be flagged as navigatitmnies.

We now make two important assumptions regarding contirlinis. Put otherwise,
these are assumptions regarding how an author would splitdréent across multiple

pages.

e Assumption 1Links for continuity occur only between pages in the sammaaio.
In other words, continuity of content occurs only throughigational links. This
assumption is usually reasonable as an author is most tislylit content between

pages on the same domain.

e Assumption 2Content is continued on pages at the same directory leved.ighn
extension of the previous assumption. Sequential conteatdrgenerally be split

(or organized) into files under the same directory.

An example of continued content that satisfies these assumspsht t p: / / www.
nmut t . or g/ doc/ manual / manual -[ 1- 7] . ht M . These assumptions go a long
way in reducing the computational complexity of sequendedm®n, because the search
space for finding any sequence containing a particular pagesiricted to the direc-
tory under which that page exists, as opposed to the whole iwebe unrestricted

case. In certain cases, content may be continued over seeretories, and under
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these restrictive assumptions, only parts of the contenildvbe identified as being
continued. Forexamplétt p: //ww. npt . i i f. hu/ pages/ 1/ pagel. ht Ml and
http://ww. npt.iif.hu/ pages/ 2/ pagel. ht M are part of continued con-
tent. However, we would not treat them as part of a single secgL In other words,
we would not necessarily be finding maximal subsequenceshvig a tradeoff for the
gain in speed.

A consequence of Assumptions 1 and 2 is that continuity larksnow a strict subset
of navigational links which have been widely studied in titer&ture. In the next section,

we review existing literature on detecting navigationak$ and graph theoretic cycles.

3.3 Related Work

Sequence detection algorithms described in this chaphgroreboth identification of
continuity links and detecting sequences and cycles froapltg. Here, we survey the
literature on both these topics.

The concept of continuity links has not been studied elsesyhend the closest re-
lated literature is regarding navigational links whichp@sntioned earlier, contain the set
of continuity links. Identification of navigational linksals been studied in many works
available in the literature [17, 20,37, 149]. Bharat and M&fL7] disregarded links be-
tween pages on affiliated hosts. Two hosts were called &ffilid they shared the first
three octets in their IP addresses, or the rightmost noefgetokens in their hostnames
was the same. Borodirt al. [20] identified and eliminated navigational links using a
very similar idea. However, not all navigational links argetted in this manner [20].
Moreover, this approach is quite severe, and some linksestiimg pages wholly on the
basis of their content would be wrongly classified as naiogat links. This would espe-
cially be the case where, say, a member of an organizatiksfincontent on a colleague’s
page.

Yi and Liu [150] detect navigational links along with banmels, decoration pictures,
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etc which were collectively termed web page noise, in a set gepay constructing a
compressed structure tree (CST). The diversity of tags inlement node of the CST

determines how noisy the corresponding block in the web gge

In the above mentioned studies, navigational links haven liesated as noise and
discarded. Also, in [150], they have not been separated fthrar kinds of web page

noise like banner ads, decoration pictuses,

Sequence or path detection in graphs has largely beerctedttd finding Hamiltonian
paths, shortest paths between a pair of vertices, or cauthim total number of paths
between two vertices. This conveys the impression thatesespidetection, by itself,
was not considered very interesting. On the other hande@etection has been widely
studied under two related areas, namely, pseudo-randorbengeneration [21,107] and
graph theory [94, 140]. In pseudo-random number generagidequence of numbers is
generated by applying the same function to the last gerteratmber. The objective is
to detect cycles in the sequences of random numbers beireggaied. By adding arcs
between consecutive elements of such sequences, thieprobdy be studied as a graph
cycle detection algorithm. Since, every element of sucluseges has out-degree one,

stack based algorithms are employed for cycle detectiori|[10

Detecting cycles in general graphs and digraphs is more loceigd, because the out-
degrees of the vertices may be more than one. There are lséigrepph cycle detection
algorithms, as evident from the opening statement of [94jictv was itself published
several years back. Some of them like the one by Read and Taepamd on depth-first
search while others like the Szwarcfiter-Lauer algorithnplema recursive backtracking
procedure which search strongly connected componentsdajrdph [94]. For the web
graph, a sizeable portion of which may form a single stroeglynected component, such

algorithms may only serve an academic purpose.

We now present algorithms that detect sequences of infeoasthe web graph.
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3.4 Proposed Sequence Detection Technique
We now describe two methodologies for detecting sequemncaseét of web documents.

e The first one relies directly on the hyperlink structure, adery much in line
with the definition of sequence mentioned above. In ordereteat a sequence,
its individual segments are detected first, whereby, eapletr(three consecutive
elements) of the sequence is found. Such triplets are foyrex&dmining the sim-
ilarity of the pairs of linkse 5 andegc, whereA, B andC' are three web pages
present in the web graph under consideration. Detectioheotlesired triplets of
the form (A, B, (') is performed in two steps. First, for each pagewe identify
the continuity links leading into and out @&f. Then, each pair of links consisting
of an inlink and an outlink are checked to see if they form & p&ra sequence.
All such triplets are stored and finally, they are merged t@iobsequences of web

pages.

e The second one, which does not directly rely as much on therhgk structure,
puts less emphasis on the accurate identification of catitioks, and is much
more scalable. Sequences are determined by looking at gisgke page, and the
positions of the continuity links in that page. This is fuattsimplified into looking
at consecutive URLs found in the crawl order, and residingeutide same direc-
tory. This assumes that the web crawling is performed in aditefirst manner. In
that case, when consecutive continuity links appear in at&ds” page that has
just been crawled, the corresponding pages would, ushalgrawled or traversed

in that order.

We now describe the first method for detecting sequences bfpages. As a first
step, we need to identify triplets of pages connected byimoity links. Since we do not
know which links are continuity links, this is not directhpgsible. So, we shall iden-

tify candidate triplets connected by navigational linkstead. However, given that our
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ultimate goal is to select only those candidate tripletsciwtare connected by continu-
ity links, we shall consider only those navigational linkksigh connect pages within the

same directory.

Our approach for detecting navigational links is relagngmple compared to several
other approaches mainly because we are not interestediousasther structures like
content blocks and templatetc We assume that navigational links mostly occur unac-
companied by text, the likely reason being that the anchdarisedescriptive enough for
the user to understand where the link leads to. Since mosinody links lead to neigh-
boring pages, which in turn, have a similar look and feeluber is generally expected to

be familiar with the navigational links and no further degtion is required.

Whereas Bharat and Mihaila [17] treated links between any tagep on affiliated
hosts as navigational, we shall consider navigationaklioRly if both the source and
target pages are at the same level, i.e., the two pages atedon the same directory
under the same domain. In this manner, we restrict the seqaea be detected to consist
of pages at the same level. This additional constraint irddfaition of continuity links
drastically reduces the complexity of the algorithm forrsaang sequences in the web
graph.

For a given web page, we look at the link elements (delimitgetidla href=... >

. </ a>"), and content elements which may either be a text token amage. We
ignore all other content types in this study. A typical sueljieence of text and links
looks like in Fig. 3.2 (this particular example sequenceegponds to the URbt t p:
[lclgiles.ist.psu.edu/index.htmnl). Here, 'L"and 'T' denote a link and

content element, respectively.

Note that the navigational links are clumped together, eagrthe other links in the
page are surrounded by text. We formalize this notion asv@| Let the string formed
as above be denoted BByand let its length be. Also, letk be such tha&[k] is L. Let
the set{ S[k — 5], S[k — 4], S[k — 3], S[k — 2], S[k — 1]} be called the left neighborhood
of S[k] and{S[k + 1], S[k + 2], S[k + 3], S[k + 4], S[k + 5]} be the right neighborhood
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Figure 3.2: String of links and content elements of a web page

(one of them may have less than five elements, toé, & 6 or &k > n — 6). Now, if
either the left or the right neighborhood 8fx] contains at most three 'T's, then we label
S[k] as a navigational link. Otherwise, the link is considerete¢a referential link and
is ignored. Basically, we are looking at the two neighboringdews (of size 5) to see if
it is predominantly text in that locality or not. The optin@loice of window size is not

obvious, but we find that our present choice is reasonablg fmoour experiments.

Among the navigational links found, we further classifyrthito two kinds: top and
bottom. We assume that a continuity link would appear at tidgsef a page (and not
at the middle). Ifk mentioned above is smaller (greater) tharwe label the link as top

(bottom). This is our third simplistic assumption about thauity links:

e Assumption 3Continuity links appear either at the top or the bottom of ggpand

not within running text.

This assumption is inspired from the standard practice dtiging a link to “next” and
“previous” pages at the top and/or bottom of each page. Natelty “top” we mean the
top portion in the HTML version of the page, and not necelsdre top portion of the
page when displayed in a browser. For example, the linkseanirthial portion of the

HTML content of a page may appear as a bar to the left.
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We now represent the features of the link by using a byte arimétion. The first
(second) bit denotes whether the link is a top (bottom) owritly link. The first (latter)
three of the remaining six bits keep the count of the link fricva top (bottom). So, for
example, the second navigational link from the top wouldeh&%¥001*** and the third
navigational link from the bottom would have *1***010 (theles at " are determined
by the position of the link at the other end of the page). Wevidanother example to
clarify this. A navigational link that appears as the fodnttk from the top, and appears
again as the last link in a page, would have the informatioe Hy1011000 associated
with it. Since we use only three bits to store the count of ithig lonly the top and bottom
eight navigational links are retained, and the rest are altéat navigational links and the

corresponding bits at the beginning are set to 0.

Now that the navigational links have been identified, ouk tago find the successor,
if any, of each such link. In the case, where we manage to fintteessor, we shall call
the navigational link as a continuity link. For each pagewe look at the navigational
links that lead intaB. For any such link 45, we look at its information byte and identify
the link on B with the same information byte. If there exists one such,lsdyez-, we
call it the successor @f, 3 and the triplet is noted a$. B.C, and indexed by3 for ease of
retrieval. What we are doing in terms of finding the succesbatliok is trying to identify
the link that appears in almost the same positioags Since, the user has reached page
B by clicking a link at that very position oA, it is very likely that the link on pagé#
at the same position would be followed. This is what we measdyyng that pagé€’ is

related toB in the same way aB is related toA.

In this manner, all links which are present in sequencesssig@ed a successor and
are stored as triplets. The relation between the conseceitwyments of the sequence might
not hold at the extreme ends of the sequences, but all sifrietn the interior would be
found. These form the basic building blocks of larger seqasn Our task is now to
concatenate these segments into the actual sequence..Let. . z,, be an existing sub-

sequence (initially, all of them are of length 3). A subsew®s),.- . ..y, IS prepended
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to itif y,,_1 = x; andy,, = x5, and the new subsequence becomes. . y,,,.x3. . . . Ty,.
Similarly, itis appended if; = x,,_; andy, = z,, and then the new subsequence becomes
T1.02 ... TnY3 - Ym-

We traverse these triplets, merging them into larger argklaubsequences to obtain
all the desired sequences. Finally, when we have all theesegs, we check if there
are any cycles to be found. Note that this scheme of cyclectietecorresponds to the
one used for detecting cycles in sequences of pseudo-randorhers. We do not need
the more general graph cycle finding algorithms because &a@w dealing with only a

sequence of web pages and not the whole web graph. We refes @gorithm as SC1.

Continuity links may sometimes be marked out in the HTML cahté the page. This
is all the more common nowadays with a number of pages beingrgeed automatically
or being converted from other formats such as MSWordTXL If we assume that the
appearance of the wordgavigationor navigin HTML comments or names of blocks gen-
uinely indicates that the block is a navigation panel, idgimig continuity links becomes
straightforward. This obviates the tokenization of thegsgnd counting the neighbors of
links, and hence, improves the speed of the algorithm. Soefepages may also provide
information about the relations with other pages by mears ok elements. This again
makes the task of detecting sequences of pages trivial aglttens between them are
specified beforehand. However, authenticity of these fipdaielations is not guaranteed,

and an algorithm may be easily misled onto a wrong path.

The information about a continuity link that we store may ootvey the exact posi-
tion where it would be displayed due to a variety of reasonsioke accurate way would
be to locate the actual position in the page where the linklavba placed by analyzing
the HTML structure. This information may require more thabyse of storage space.
It may be noted that these storage requirements are far ibliweeded for the actual

index itself.

The next section describes the second of the above mentioattbds for sequence

detection.
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3.5 Trading Accuracy for Scalability

Often the ideal definition of a sequence, which tries to gathgepositions of the links,
might not be scalable as a wide variety of documents entecdhgus, and especially, if
there are several documents under the same directory. fhersee detection algorithm
would be sent on a wild goose chase more and more frequently.

This section aims at efficiently detecting a majority of tegences, the occasional
omission being traded in favor of scalability. Of coursessta improvements in efficiency
would be garnered an additional assumption on the kinds qpieseces we shall try to
find.

e Assumption 4 Names of the files (the last part of the URLSs) are named so as to

reflect the continuity in content.

Usually, this is achieved by using a numerical or alphabésaffix before the file exten-
sion, with the suffix increasing one at a time.

This assumption enables us to identify sequences withoking inside the HTML
contents of the indexed web pages. Only the list of URLs is eggdhich may then be
sorted. Note that sorting the URLs would automatically groagether those that share
a common directory. We also note that a simple unix sort wowoldalways suffice for
sorting when there are numeric suffixes. For example, agst@mparison of page9.html
with pagel0.html would place the former after the latter. Méke a simple change to
the string comparison algorithm to take care of these cdtbsth file names have only
numerals from the first position (from the left) where the tstongs differ to the end of
the strings, then the result of the string comparison woelthle same as the comparison
of these numeric suffixes. Otherwise, usual string comeaiis performed.

Next, we run through all the sorted URLSs, and whenever two@ous/e URLS have
the same directory name, we compute the distance betweéndtitenames. As earlier,
if the differing portions are both numeric, we compute thi¢hametic difference as the

distance. Otherwise, we use the standard string distancédn, namely, the Levenshtein
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edit distance. If this distance is less than or equal to 2, lvedl sall the two URLSs to be
part of a sequence, and tag the second one with the same tag fast one. Each URL
in the list would thus be assigned a number correspondinchiohnwsequence it belongs
to, with some of these sequences being of length one. Sieckrsh sequence detection
algorithm, SC1, does not detect sequences of length 2, in¢isept case also, we forcibly
ensure that sequences are of length at least three. Fronetecar@oint of view, and to
be on the safer side, we also impose an upper bound of 25 oenfgénlof permissible

sequences. We call this algorithm SC2.

3.6 Characteristics and Uses

We now discuss some characteristics of the proposed segjdetection technique. SC1
and SC2 detect sequences, but do not report paths that havéoeed just by chance.
For example, these algorithms would surely not report aecifcht satisfies Statement A
(of Section 3.2.1). Thus, despite the existence of numespeiss in the web graph, these
algorithms would report only a handful of sequences andesycl

This methodology does not incorporate finding second lealisnces and cycles, i.e.,
sequences of sequences and cyaés, This may be required for the sake of uniformity
in the case where a page is split into not just a single seguauintdnto multiple sequences
at different levels.

Note that we have taken care of only decimal suffixes in the S@&ighm. If the
numeric prefixes are non-decimal, SC2 might not be able tatietene of the sequences.
For example, if two consecutive filenames are partl2.htrdl @ert20.html, where the
numeric suffixes are ternary numbers, SC2 would not recoghez@ as part of a single
sequence. However, there are instances where conseclgivergs with non-decimal
suffixes may be detected. For example, page9.html and pageawhere the 'a’ has
been used as the hexadecimal equivalent of 10, by virtuevahdpan edit distance of 1,

these are tagged as being part of the same sequence. Swuoitassare usually found
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when authors try to maintain a constant length for the file @&mnThe condition on the
minimum length of sequences rules out cases where contgplitinto exactly two parts
(say, partl.html and part2.html). While, technically, saakes may be easily detected by
relaxing this condition, we retain the minimum length cdiwh because there is too little

information to infer about the “next in sequence” property.

We now come to the utility of detecting sequences and cydegeb pages. One
apparent use of detecting sequences is to merge the pades order. What were indi-
vidual pages prior to merging, will now become sections dhgle page. In this manner,
the number of vertices in the web graph may be reduced, wkichmputationally ad-

vantageous.

The proposed methodology may also be employed for bringo@naistency into the
computation of page ranks despite the varying authoringstysome web page authors
may prefer to split their content into a sequence of pagesewthers may like to keep it
all in a single page. These differences have an impact ondfe m@anks of the pages. To
see this, we revisit our example in Fig. 3.1, where, our cyelection algorithm would
detect only the cycle (B.C.D.E.F.G). Now, consider a page BBtiaa the union of the
contents of all these individual six pages. We look at howatheve mentioned cycle of
pages would fare against the page BB with respect to pagen@nko this end, we create
a new example (Fig. 3.3), made of two strongly connected co@pts and connect them.
We note that the two components of this directed graph, onsisting of the vertices AA,
BB, HH and II, and the other with the remaining vertices, haveraespondence between
them, with BB corresponding to the cycle (B.C.D.E.F.G). Thegdris treated as the web
graph and the (unnormalized) PageRanks [22] of these nodeshawn below (Table
3.1). Although, content-wise, the pages B to G, put togetlrer equivalent to the page
BB, their ranks are different. In general, for the case of thaalaveb graph, it would be
much more difficult to ascertain the effect of merging a segeef pages, but, as evident
from this example, it is not necessary that the ranks of tmstitnient pages remain the

same. Thus, in the case of web search, the results returnetdeanafluenced by whether
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Figure 3.3: One component of the graph has a cycle, the o#tseit merged

all the content has been kept in a single page or has beemsplé number of pages. In
this respect, our algorithm may be utilized to maintain amfity among various portions
of the web, so that comparisons between web pages beconuelemsdent on authoring
styles.

There is yet another and more important advantage of megich sequences of
web pages. Consider two pag&sandY which form part of a sequence. Suppose that
the pagesX andY contain termg; andi,, respectively, and are the most authoritative,
individually, for the respective terms. L&tbe a page containing bothandt,, but which
is not as authoritative on eitheror ¢, asX andY’, respectively.Z may be returned ahead
of both X andY” as the most authoritative page containing bgtlnd¢,. Note thatX
may not even contain the termg, and even if it does, may not be authoritative for it.
However, when bothX andY form part of a merged sequence, they would correctly be
returned ahead of Z for the query consisting p0éndt,. In reality, pages likeZ behave
like pages containing spam words. They are not at all autitme for the terms they
contain, but nevertheless have terms which co-occur veghraSuch pages permeate
the initial portion of the search results when a user entecth & combination of terms,
primarily because of the lack of better pages containinthallquery terms together.

It may be noted that the pagéSandY need not be physically merged together. A

search engine may perform the analysis as if their conteoeimdined together and output
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Table 3.1: PageRanks for the pages in Fig 3.3

Page| Rank

1.172
1.542
0.805
0.834
0.859
1.290
1.247
0.482
1.295
0.956
0.517

IW;IO'HITIUOW:D
I | @

both the pages in response to a query. In this manner, setslopages may be output by
a search engine in response to a (multiple term) query, assapito the current trend of

providing single pages as search results.

Merging documents has a major impact on the retrieval peocé&e dig deeper into

how the frequencies of the terms change as a result of medgicigments.

3.7 Impact of Merging Documents on TFIDF Scores

A TFIDF based score is a normalized measure of the importafrecéermt to a document
d in the corpus. TF refers to Term Frequency, and is the coutiteobccurrences of the
term in the document. Since, longer documents are likelyat@hmore instances of the

termt¢, TF is normalized in order to be able to compare across doetenéd common
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method of normalizing TF is to divide by the total number ddgns in the document [26].

n(t,d)
2, (7, d)

That some words occur more frequently in the corpus thanrethas to be taken into

tf(t,d) = (3.1)

consideration while combining the importance scores oibousrwords for a document.
This is done by weighting the TF scores by the Inverse of theubwent Frequency (IDF).
IDF is inversely proportional to the number of documentshi& torpus containing term
t, and is generally defined as [26]:

1+ |D|)
| Dy

idf (t) = log( (3.2)

The TFIDF score of for documentd is simply taken as the product of the corresponding
TF and IDF values.

Now, suppose that the given corpus(isand we have detected some sequences of
documents and merged them together resulting in the carpw/e study how the TFIDF
scores for the various terms and documents are changed asegocence of merging the
documents. Heré,is a term in a documenmtwhich is contained in the original corpag
andd’ is a documentirC’. Let N and N’ denote the number of documentstinandC’,

respectively. By definitionV? < N.

e If d € C (that is, document is unchanged as it is not part of any detected se-
guence), the TF aof in d is unchanged. However, the IDF bimay change aQ#

need not equals ™. This is because

IDF(t) 1 DF(t) |« 2 fv(t) 5D Z;,(t) o % > g];((:)) |

In words, the IDF oft increases if a higher proportion of documents contairing
are merged together, as compared to the proportion of datisnmeerged in the
original corpus. So, the overall importancetdior the document, as reflected
by ¢ fidf (t,d), increases in such a case, as a consequence of the rewbeing

expected to appear in fewer documents as compared to othes ted. Similar
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statements hold for the decrease, and no change, in impertdithe ternt for the

document.

e If d € C' (thatis, document has been merged together with some other documents
to form d'), the term frequency of a termthat occurs frequently in many of the
documents merged together to forinis higher than that of a term which appears
rarely in all the documents put together. For example, &nd¢, both have equal
term frequency ini, butt; appears in no other documents constitutifigvhereas
t, appears in all of those documents, the term frequency iof ' would be lower
than that oft, in d’. Also, it is clear that, would benefit more than, in terms
of increase inf DF' (with or without normalization). Thusfidf(¢,d’) would be
more for terms appearing more in the whole sequence of datismehich seems
reasonable, as it means that the term that is contained @nedenf the documents

is deemed to have higher importance for the collection as@ewvh

e The previous points were concerned with comparison betieens. Now, we
shall study the effect of merging different documents omalsiterm. If a termt
appears once in each of the documehtsi, andds, and say, andds; are merged
together, whereas, is kept separate, then the (normalized) TF a$ still very
similar to the unmerged situation. To elaborate, let usrassthatn,, n,, andns

are the number of words in the three documents respectidgw, the TF oft in

d; remains%, whereas the TF ofin d, merged withd; is —2—. It may be noted

no+ng’

that the quantityﬁ is the inverse of the arithmetic mean.(\/.) of n, andns,

1 1

and@ is the inverse of the harmonic meaH.(\/.) of n, andns, and hence,

the following set of inequalities hold:

(101 2 4+ L
min — S 2 3 ,
Ng N3 N9 + N3 2

where the second inequality follows from M. > H.M., and the first inequality

IN
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may be seen as follows:

ng +n 1
2 B 5 Smax{ng,ng}:ﬁ.
mln{a, n—s}

Thus, the TF oft may not increase or decrease much when the documents con-

tainingt are merged together. However, even if the absolute THtinchanged,
as noted earlier, the TF ofwould be relatively higher than the TF of some other
terms. This is a consequence of there being more distincistan d, andds put

together, than individually.

3.8 Experimental Results

We now present the results of experiments. We have testeprtdp®sed algorithm on
three different data sets. First we test our algorithms @nRiithon data set, a small
collection of web pages, so that a manual verification of #sults is feasible. All
files under the websitet t p: / / docs. pyt hon. or g were obtained (available online
as a tar bzipped file fromt t p: / / pyt hon. f yxm net/ f t p/ pyt hon/ doc/ 2. 4/
htm - 2. 4. tar. bz2). There were a total of 1412 HTML files. Of these, 1408 HTML
files were under 10 subdirectories. Under each subdiredtogyHTML pages form cy-
cles. A quick inspection at the pages contained in this dteseals that there are at least
thousands of possible (not necessarily disjoint) cyclésytoch only ten are interesting
(because they were so generated and placed in subdiregtorie

We apply our SC1 and SC2 algorithms to the Python data set arsktprences are
detected by both of them. The lengths of the cycles are 9,1,82, 64, 83, 99, 116, 120
and 836. The output sequences were manually verified to beletaty accurate. Thus,
we also know that SC2, which is an approximate version of SCésfaqually well when
the data sets are simple. The Python data set indeed hasithesumeric suffixes, which
is exactly the additional assumption that SC2 makes.

Next, we detected sequences in the WB1 and WB13 data sets usingn8GEIC2.
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Table 3.2: Number of sequences detected by S€I({'1) and SC2 (VSC2), and per-

centage of their intersection

SC
Data Setf NSC1 | NSC2 | £52

WB13 | 1368 | 1338 | 97.8%
WB1 3376 | 3293 | 97.5%

Table 3.3: Number of pages included in sequences detect&Chy(SC1) and SC2

(PSC?2), their percentages, and the percentage of their intéosect
Data Set| No. of pages®) | PSC1 | £3€1 | pso2 | £5€2 | BSC2

N N PSC1
WB13 | 34343 9590 | 27.9%| 9423 | 27.4% | 98.3%
WB1 106025 41443 | 39.1%| 40936 | 38.6% | 98.8%

The number of sequences detected by SC1 and SC2, and the mopdthe sequences
detected by SC1 also detected by SC2 are mentioned in Table 3.2.

We observe from Table 3.2 that SC2 detects close to 98% of theesees detected by
SC1, which uses the original definition of a sequence, on Ihetkdata sets. This confirms
thatAssumption 4s not too restrictive in practice, the reason being that pede authors
do name consecutive pages of a sequence using numeric abalphsuffixes.

Table 3.8 lists the number of pages covered by the detecte@sees. The remaining
pages, i.e., 70.1% and 61.4% of WB13 and WB1, respectively, arsitigleton pages,
which are not considered part of any sequences. We do natysassert that they are not

part of any sequences because of two subtle reasons:

e We have decided not to detect any sequences of size two, ndyirnacause SC1

lacks this ability by the very definition.

e The caution being exercised in not allowing abnormally lseguences results in

wrapping Our threshold being chosen as 25, if there is a sequencagthl6,
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it would result in our algorithm finding a sequence of lengs @nd the last page

would be called a singleton.

Next, we examine the lengths of the detected sequencesogrhshs of the lengths
of detected sequences are plotted in Figs. 3.4-3.7. A kbgai¢ scale has been used
for the Y-axis because, otherwise, the excessively huge numbengiesbns and small
sequences would dominate the plot. Comparing Fig. 3.4 and3t we find that the
sequences not detected by SC2, but detected by SC1, on WB13 &t gedominantly
small ones. The case of WBL is similar, too. Again, this revdas sequences without

suggestive root and suffix combinations are rare as thelesfghe sequences increase.

Histogram of Sequence Lengths for SC1 on WB13
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Figure 3.4: Histogram of the length of the sequences detdnte&SC1 on the WB13 data

set

We measure the impact of merging sequences of documentsofFtiand IDF of

terms in the WB1 and WB13 data sets, the exact methodology beidgsasibed here.
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Histogram of Sequence Lengths for SC2 on WB13
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Figure 3.5: Histogram of the length of the sequences detdnte&SC2 on the WB13 data

set

For a given corpus, we retain only words that are present mxadictionary (available in

[ usr/ shar e/ di ct/wor ds of most unix (especially, Linux) machines. Interestingly,
this set of words includes frequently used proper nounsSiteanford and Berkeley, too.
All words are folded to lower case, and are run through théePatemmer. Now, each
document is represented as a bag of words, with the wordg libenaforementioned
stems. Also, an inverted index is created, whereby, for e, the documents and the
corresponding frequencies are listed. The above procespésted for the corpus with

merged sequences of documents.

Now, for each stem in the corpus (note that the set of the stethe same in both the
merged and unmerged set of documents), we compute the fdkie tOF in the merged

and the original corpus. The top gainers, in terms of IDFpiath WB13 and WB1 data
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Histogram of Sequence Lengths for SC1 on WB1
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Figure 3.6: Histogram of the length of the sequences detduteSC1 on the WB1 data

set

sets are shown in Figs. 3.8 and 3.9.

It is interesting to note that the words with maximum IDF gare those that appear
across several different pages of a sequence, and in a seeseepresentative of the
sequences they appear in. Also, interesting is the facstbptwords and other commonly
used words are all pushed to the end of the list as they galedisein terms of IDF owing

to their being omnipresent in the corpora.

3.9 Conclusions

In this chapter, we have introduced a novel methodology Hertask of detecting se-

guences of web pages. Also, the importance of sequencetidatbas been highlighted
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Histogram of Sequence Lengths for SC2 on WB1
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Figure 3.7: Histogram of the length of the sequences detduteSC2 on the WB1 data

set

extensively. With the help of some examples, we have exgtawhy detectingll possi-
ble sequences and cycles of web pages is neither feasiblatagesting. Consequently,
we described the sequences of interest, and then presentethadology for detecting
only the few interesting sequences which were created tocalersed in that order. The
proposed algorithms SC1 and SC2 use varying levels of domawlkdge, coded in
terms of assumptions on the sequences of interest, buttedlyecapture the same no-
tion that consecutive elements of a sequence have a consli@itn between them. SC1
identifies continuity links in web pages, as well as, thesiponal information, and tracks
sequences by traversing pages through links with the sasiggual information. SC2,
on the other hand, operates directly on the URL list itselnitfying consecutive pages

based on the URL strings. Experiments conducted on the Py\w&43 and WB1 cor-
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pora demonstrate the effectiveness of SC1 and SC2 in detsetipnggnces, and also depict
how merging the obtained sequences affects the term fregggeand inverse document
frequences for various terms present in the corpora.

Apart from studying the problem of web page sequence detectind providing so-
lutions for the same, a major contribution of this chaptes waintroduce novel ideas
that can take advantage of sequence detection. Identifygrgup of pages as being con-
stituents of a single document reduces both the number &fsaad the number of edges
in the Web graph. This, in turn, results in a reduction in tbmputational time and re-
sources required for operations like page ranking on the kah. Given the importance
that duplicate detection has received in literature, th@iegtion of sequence detection to
identifying duplicates is also quite interesting. In agtdit matching queries to content
across multiple web pages, and thereby, returning setsgefisoas web results, is a novel
concept in itself.

This chapter, along with the previous one, presented wakgtepares web data sets
before the task of surfer modeling is taken up. In the follmyviwo chapters, we delve
into the modeling process itself. In Chapter 4, we employsitas probabilistic approach

while Chapter 5 incorporates the concept of fuzziness iresunbdeling.
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Stems in WB1 with maximum increase in IDF after grouping
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Figure 3.9: Bar plot showing the top 25 gainers in terms of IDE th merging sequences

of documents in the WB1 data set



Chapter 4

Web Surfer Model Incorporating Topic
Continuity

4.1 Introduction

The present chapter deals with a methodology based on th@pda of surfer models that
simultaneously performs page ranking and context extracti

Surfer models involve modeling the behavior of a user wheovees the Internet. The
sequence of pages that the user visits is modeled as a diogirasess{ X, }, where X,
denotes the page the surfer is on at timeThe state space for this process consists of
all web documents, each page being a state that the procesattag. The transition
probabilitiesP(X;.; = v|X; = u), 1 < u,v < N (N is the number of pages), are
defined as the probability of reaching paga one step, given that the user is currently
on pageu. This transition may happen by either clicking on a linkitavailable inu or
by typing the URL ofv.

In general, one would be interested in knowing some of thpgntees of the process
{X:}. One such property of interest is the convergence of thisge®to a stationary
distribution. In other words, we would like to know if, for&aweb page, the probability

of the surfer being on that specific page converges to sore @& — oco. We may also
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be interested in knowing if the above property holds regaslbf the starting point of the
surfer and whether it is the same value each time. These piepmay be used to draw

inferences about, among others, the ranks and categonesboflocuments.

Traditional information retrieval methods and text minmgthods for the above tasks

are not directly applicable to the web due to the followingsens.

The World Wide Web (WWW or the Web) is a vast network of interédkveb pages
which are mostly in HyperText Markup Language (HTML) form@ither types of doc-
uments on the web are text, pdf, ps, imaggs, HTML documents are semistructured
and contain links to other documents on the Internet. Thaplysstructure, along with the

content of all the pages, adds a new dimension to web miniegtext mining.

Another distinguishing feature of the Internet is its easyess to all sorts of people.
A web page may be published by anybody regardless of hergwmiofg nationality, age,
educationetc. Moreover, the content is not reviewed before it is made alé&l This
leads to a severe degradation of the quality in terms of tberacy, authenticity, integrity

and consistency of the content available on the web.

Traditionally, documents were ranked on the basis of themtents. With the avail-
abiilty of link information in web documents, and its beireg$ prone to malicious ma-
nipulation, this information has been employed for rankages. The final ranking of
results produced in response to a query take into considetabth the link-based ranks
and the content-based ranks. It has been shown in [123]rtblatsion of context in the

ranking scheme greatly enhances the performance.

If the process{X;} has a stationary distribution, then one can actually loothat
time-independent probability value( X = z), and this may be considered to be the rank
of the pager. Itis the unconditional probability that a surfer would bepager.

The Random Surfer Model assumes that the surfer is browsibgoages at random
by either following a link from the current page chosen ad@n or by typing its URL.
On the contrary, the Directed Surfer Model assumes thatnwine surfer is at any page,

she jumps to only one of those pages that are relevant to titextpthe probability of
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which is proportional to the relevance of each such outliBeth models guarantee the
convergence of this stochastic process to a stationanmytdison under mild assumptions
like the irreducibility of the transition probability matr In practice, these assumptions
are enforced by pruning or ignoring some links.

The present chapter is an attempt in demonstrating thefis@nce of incorporating
the information derived from another aspect, namely, tehy of a user for ascertaining
the transition probabilities in the surfer model for rarkia page. Here, the surfer is
assumed to follow, more often than not, links on topics coeth on the pages that she
had visited earlier, thus maintaining a continuity of tapic

In this chapter, it is shown to be possible to simultaneoeslymate both the rank
and categorization of the available pages, unlike the examiodels. As a result, both
categorization and ranking improve. A mathematical fraorvef the model is provided
here along with its convergence and scalable propertidger@ipplications of the model,
as obtained from the joint probability matrix, are alsoddst The superiority of the model
over some related ones is demonstrated both theoreticallgx@erimentally on a dataset
obtained from WebBase [65].

The chapter is organized as follows: the surfer models aserited in detail in Sec-
tion 4.2. In Section 4.3, we describe our model that incafes the information derived
from the history of a user (or, the continuity of topics) ajomith the motivation behind
it. These are followed by the different characteristic dea$ of the methodology and
its complexity. Experimental results are given in Sectiof, 4vhile the conclusions are

drawn in Section 4.5.

4.2 Surfer Models

A variety of surfer models, such aandom surfef{22], HITS (Hypertext Induced Topic
Selection[73], PHITS (Probabilistic HIT§31], SALSA (Stochastic Approach to Link

Structure Analysis)86], directed surfer[123], topic-sensitive pageranfel], etc, are
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available in the literature. More recently, another mo@dled WPSS (Web Page Scoring
Systemshas been proposed in [42]. This model is very general and efttte above
mentioned models becomes a special case of WPSS.

All the above models consider random walks on the web andahk of a page is
computed as the probability of being on that page during éinelem walk. The model
considered by WPSS [42] allows for random walks where theesisfallowed to do one
of the following: follow a forward link, go to a backward linkump to another URL
or stay in the present page. It thereby encompasses all ioms@allowed by the other
models. Among these models, HITS, PHITS and SALSA incorgorandom walks in
both forward and the backward directions. In that sense, doenot model a realistic
surfer who would not know all the pages that lead to the pagecsirently is on. On
the other hand, random surfer model, directed surfer mattt@pic-sensitive pagerank
incorporate following only forward links, and not backwadiriks. In the present chapter,
since we are concerned about incorporating the informatommained in the history of a

surfer, we explain only the latter ones in some detail.

4.2.1 Random Surfer Model

The random surfer model models a user who keeps visiting reeyepby clicking, at
random, the links available on the current page. Thus, dgivahthe surfer is on page
at timet, the probability of her being on pageat timet + 1, P(X;1; = u|X; = v), is
assumed to b% whereF, is the set of forward links from. Therefore, the probability
of the surfer being on pageat timet + 1 is computed as

N
P(Xp1 =u) = ZP(Xt—H = ulX; = v)P(X; =), (4.1)

v=1
whereN is the total number of pages. Counting only those pades which P(X,.; =

u| Xy = v) > 0 (i.e., those pages which have a linkith we have

P(Xe11 = u) (4.2)
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= Y P(Xip1 = ulX, = 0)P(X, =) (4.3)
VE By,

B P(X; =v)

_ UgB:u v - 4.4)

whereB, denotes the set of backlinks of Here, the second equality is a consequence of
assuming that an outgoing link would be chosen at random.

Let the transition matrix for the stochastic procé3as} be denoted by

M = ((muv))u,ve{l,z ..... N}- (4.5)
We then have,
l
muv et Lj 4_6
St oo 9

wherel,, denotes théu, v)th element of the link matrix of the web graph, and is de-
fined as being equal to if and only if v has a link tou, for uv,v € {1,2,... N}.
Let B! denote P(X; = u). Then, the probability distribution of;,,;, R =

(R REYE . RNYHT, may be recursively defined as,
R*D = MRW, 4.7)

If this stochastic process has a stationary distributiornpuld satisfyR = MR.. The
uth element of the vectdR is the unconditional probability of the surfer being on page
u, and may be considered to be the rank of pagendR may be called the rank vector.
To computeR, which is nothing but the dominant (or principal) eigenegaif M, the
power method is employed, whereRy converges t®R ast — oco. This is the basic idea
behind the PageRank algorithm suggested by Brin and Page [22].

This manner of page ranking is quite similar to employing oameviewers. In the
case of manual reviewing, a few selected/qualified peopieweweb pages or sites sub-
mitted for reviewing. PageRank, on the other hand, consalktise authors of web pages
as its reviewers and a reviewer rates a web page highly byidangva link to that page

from her own page.
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Now, the proces$.X, }, defined in the above manner, may have certain absorbing sets
of states (which make the process reducible). In terms of pages, this means that
certain sets of web pages may not have links to pages outsde tThese are known as
rank sinks (or leaks when the sets are singletons). Understhemed model, the surfer is
bound to be stuck in one of these sets of pagesrageases. In practice, however, this is
not reasonable, as the surfer can visit a page outside arbatgset of pages, by typing
its URL. To reflect this, the model is modified slightly. It issasned that when the surfer
is on a page, he may either decide to type the URL of a new page, the pratabfi
which is taken to bé (d > 0),or follow one of the links available on the page. That is,

d 1-d

m’ = P(Xt+1 :u|Xt:v) = N—FW

uv

(4.8)

This makes the stochastic process irreducible and thespmneling web graph strongly
connected. The PageRank vector can now be computed as tlegalieigenvector of
M = ((m],)). In practice, pages having no outlinks are kept out of theeRagk
computation, and are plugged in later.

The order of the matrid/’ may be very large, sometimes running into several billion,
and the computation of PageRank needs enormous effort. Qoersthyg efficient schemes

considering both time and space requirements have beeriedp[60, 70].

4.2.2 Directed surfer model

Richardson and Domingos [123] have modeled a more intelligigrfier, who probabilis-
tically chooses the next page to be visited depending ondhtent of the pages and the
guery terms the surfer is looking for. The transition prahigés are calculated in terms
of a relevance functioi®?,(u) that computes the relevance of page queryq. This is
an extension of the one-level influence propagation modeddaced in [119].

The probability of reaching pagefrom v, m!  , is computed as

uv?

My, = (1= B)Py(u) + 8P (v — u), (4.9)
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where, P, (u) and P, (v — u) are arbitrary distributionsP; (u) is the probability that the
surfer reaches page(without following a link) in the context of and corresponds to the
bias vector in the PageRank computatidh(v — u), on the other hand, is the probability
of choosingu in the context of; from among the links provided on page In practice,

P;(u) and P, (v — u) may be derived from a relevance measure as

Ry(u)

Py(u) = SV R) (4.10)
and
Pyv — u) = S RO }i:](%)q(z)’ (4.11)

where, R,(u) is the relevance of, to q. The rank vector computed in this manner is
termedQuery Dependent PageRarik QD-PageRank, in short.

The choice of the relevance function is arbitraryRJf{u) = 1,V g, u, it is the random
surfer model. Other suggestions #y(«) provided in [123] include an indicator function
for the presence of in © and TFIDF-like scores fog in w. (TFIDF stands for Term
Frequency-Inverse Document Frequency). The latter on&e tha model more efficient.
In the experiments reported in [123},(u) was chosen to be the fraction of words equal
to ¢ in the pageu.

Even though it is not explicitly stated in [123], the biasta@nd the transition proba-
bilities may be obtained from different relevance meas(sag I, and R, respectively).

In this connection, Haveliwala’s recent work on topic-séves ranking [61, 62] of web
pages may be mentioned, where a PageRank vector is computeaicto distinct topic.
For each topic, a different bias vector is used during theprdation of PageRank, where
the bias vector contains non-zero entries correspondinglyothose pages which appear
under that particular category in ODP directory. The topidécided on the basis of the
context of the query.

This investigation [61, 62] may, therefore, be treated gsexigl case of the directed
surfer model where the values assumed;tare from the set of categories listed under

the Open Directory (dit t p: / / dmoz. or g). In this case, the choice éf, and R, is as
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follows:

R, (u) = Z[u appears under categayyn ODP], (4.12)

where,Z is the indicator function and
R,(u) =1V q,u. (4.13)

Note that although this algorithm does not make use of theecwim the individual pages
for deciding upon the transition probabilities for cho@sone of the outlinks, this aspect
can be incorporated, as in [123].

The improvement of performance in page ranking due to irmaon of the said

content can be explained through an example in Fig. 4.1.

uC><CX

\

C Cy
S
7

w| S
S | z

Figure 4.1: Example 1: showing the significance of page ctinte

In Fig. 4.1, we have a set of web pages on two topics, eagnputergC) andsports
(S). Let us assume that pagesandy have similar content on topi€ but = is more
relevant to a query on topicC' thany. Let us also assume that the content on t¢pis
not relevant tay.

In response to the query the directed surfer model computes the query dependent
ranks as follows: is more relevant thap for ¢ and, so,P,(v — x) > FP,(u — y) and
P,(v — z) > P,(v — y). Since,S is not relevant ta;, P,(- — w), the probabilty of

reachingw from any of its backlinks, is zero and consequenlynk,(w) = 0. Now,

Rank,(z) = P(u — ) * Rank,(u) + P(v — x) * Rank,(v) (4.14)
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and,

Rank,(y) = P(u — y) * Rank,(u) + P(v — y) * Rank,(v). (4.15)

Thus,Rank,(x) > Rank,(y), andz will appear beforey in the results for;, as desired.
Haveliwala’s algorithm, on the other hand, computes th&gamthe following man-
ner: At first, the topic of; is determined based on text analysis. In the present case, it
C. SoC'-sensitive PageRanlznk), where the bias vector consists of non-zero entries

for only pages that appear under the categdryf Open Directory [109], is used for the

purpose of ranking the results. Thesensitive ranks for. andy are computed as
Rankc(xz) = 0.5 % Rankc(u) 4+ 0.5 % Rankc(v) (4.16)
and,
Rankc(y) = 0.5 % Ranke(u) + 0.5 % Rankc(v) + 0.5 % Ranke(w). (4.17)

Now, even thougho has content only o%, Rankc(w) need not be zero due topic

drift [27, 28], where a sequence of links followed by the surfer read him onto a
completely different topic than what she started with. Thieénk-(y) turns out to be
greater thanRankq(z), which is not appropriate. Therefore, despite creatingpécto
sensitive bias vector, it seems reasonable also to incagtine content information for

computing the transition probabilities, thereby redudimgvalue ofRank:(y).

4.3 Surfer Model Incorporating History

4.3.1 Motivation

We illustrate here the need for a surfer model which can pm@te the history of the
surfer. Let us consider Fig. 4.2 and let pagée the page currently being browsed by
a user. This page contains content on two distinct topiasietg C' and.S. It is desired

to compute the probabilities with which the user moves or, ¥pandz, respectively by
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clicking on a link on pagev. According to the random surfer model, each of the above
probabilities equals.

The directed surfer model uses the similarity of the comst¢otx, y and z with w)
for computing the transition probabilities. In this casg,irtue of their contents, the
similarities ofx, y andz with w are approximately equal, thereby making the transition
probabilities again to be approximatey)each.

It may be noted that, under both the random and directedrsudédels, these transi-
tion probabilities remain the same irrespective of whethersurfer was at or v prior to
reachingw. In case the surfer was af intuitively, it is more likely that she would move
on tox instead ofy or z. In other words, the notion of the surfer’s history affegtime

choice of outlink may be useful in determining the link tha tser follows.

Per | p| Perl nmodules Per

codes codes |x
sour ce codes

CPAN

Foot bal

—p
pl ayers \L Foot bal |
T~

pl ayers
Basebal | Basebal
v t eans

Foot bal

Basebal | | ,
t eans

Figure 4.2: Example 2 showing the significance of surferonyst

4.3.2 Theory

As seen in the above example, it is evident that the tramsjtfobabilities depend on the
pages visited prior to reaching the current page. In orderdorporate this dependency,
we propose a new surfer model, where a surfer moves on to plagesatch his topic

of interest. We assume that every page may have content ooranere topics and the

user chooses one of them as her topic of interest. Usuadlysuhfer moves on to a new
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page in keeping with her topic of interest. However, ocaaaliy she may also visit other
pages, say, out of curiosity.

Even though one might be tempted to conclude that the topictefest may be es-
timated from the page’s contents itself, Example 4.2 prdliescontrary. The topic of
interest is guessed by looking at the pages from which the pagder consideration is
reached. The knowledge of pages visited previously may ibeeadat by an online algo-
rithm that computes the transition probabilities each tiheeuser visits a new page.

Our primary interest being in offline applications, we gygs®babilistically, the
history of the surfer, and thereby estimate the topic ofrege We compute a set
of transition probabilities under the assumption that ar wgmerally browses with a
particular topic of interest and is more likely to browse @a@n similar topics rather

than dissimilar ones. We formally introduce our model abios:

Topic Continuity Model

Let X; and/; denote the page the surfer is on and her topic of interegtectisely, at time

t. We assume that any surfer is interested in org distinct topics. We also assume that
the probability of the surfer changing her topic of inter&tsany given time is (¢ < 0.5),
ie.,

P (It-i-l 7é ]’C|It = k,Xt = U) = E,Vt, k andv. (418)

Note that this implies that

P (Iis1 # 1)
= > P # Kl = k) P(I = k)
k

= ZZP([tH %k’]tzk’,Xt:U)P(It:k?>Xt:U)
k v

= €

Further, we assume that any of tl€ { 1) remaining topics are equally likely to be
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chosen when a change does happen, that is,

(1—e) ifk=1I
P(]t+1 = k?|]t =1,X;= U) = (4.19)

€
7 0.w.

We can expand the probability of the state at time- (1) in terms of the probability
conditioned on the knowledge of the state at tim&o, the joint probability of the surfer
being on a page and her topic of interest being at time ¢ + 1) may be written as

follows:
Pl =k, X1 = 2)

Z ZP<L€+1 =k X = Z|[t =1,X; = U)P(Xt =1l = l)

veB;

Z ZP(Xt+1 =zl =k, I =1, Xy = v) *

veB,

P(It-i-l = k|[t = laXt = U)P([t = l,Xt = ’U). (420)

Now, substituting: or 1 — ¢, as the case may be, and rearranging the terms, we have

Pl =k, Xp1 = 2)

= Z (1 — E)P(Xt+1 = Z|-[t+1 = k,Xt = U)P(It = ]’C,Xt = U)

vEB,
€
+ Z T_1 Z {P(Xip1 = 2|l =k, Xy =0)P(L; = |, Xy = v)}
vEB. Ik
= Z (1=€)P( X1 = 2[lyy1 =k, Xy =0)P(Iy = k, X; = v)
UEBZ
Xt+1 = Z|[t+1 = ]{Z Xt = U)
’UGBZ

{ZP(It =1, X, =v)— P(I, =k, X, :v)}

= Z P(Xip1 = 2|l =k, Xy = v) %

UGBZ

er
{<I—T_1)P(] k:Xt—v)—F—ZPIt—lXt—v)}.(4.21)

From Eq. 4.21 itis clear that the proposed surfer modelfgegithe Markov property,

in the sense that given the state at tityghe surfer’s behavior at time 1) is independent
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of that at time { — 1) (and anything prior to that). It may be noted that the histfrthe
surfer has already been implicitly taken into account tgiothe probabilities of each
achievable state of the surfer at time

Now, as in the Directed Surfer Model, we assume that

P(I, = k| X, = 2)
> yer, P = k| X, =y)’

the difference being that these probabilities are now tilegendent, whereas in the Di-

P(Xp1 = 2[li1 =k, Xy =v) =

(4.22)

rected Surfer Model [123], they are not. Plugging this intp .21, we have

Pl =k, X1 = 2)
P([t = let = Z) {(1 €T
=y ZyEFv P([t = k‘Xt = y) T—-1

+L_1P(Xt - u)}

) P(I, =k, X, = v)

T
(4.23)

Note that, in Eq. 4.23, if we substitufe(l, = k, X, = z) by zP(X; = 2), (i.e., any
topic is equally likely on any given page), the equation Sifigs to

1 1 1
P X =2)=7 > PXi=v),

UGBZ
which is the same as the equation for the random surfer model.
Similarly, if we had set to be 0, choosing
P(I() = IC|X0 = Z)
> yer, Plo = k[Xo =y)

Eq. 4.21 is similar to the Directed Surfer Model, with thedam jump factor excluded.

P(Xip1 =2l =k, Xy =v) =

Ve,

Although, the present work generalizes existing surfer etgdhe topic continuity
model is non-linear, and therefore, theoretically provihgt P(/, = k, X; = v) con-
verges witht for all values ofv andk has not been possible. In practice, however, the
method has been experimentally observed to converge)sletavhich are provided in
Section 4.4.3.
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4.3.3 Obtaining initial estimates

For faster convergence of the above iterative procedureyoa gnitial estimate of the
joint probability distribution is necessary. The joint pebility P(1y, X,) is estimated

as P(Iy|Xo)P(Xo), where P(X,) is obtained using an existing version of PageRank.
The quantitiesP(/y| Xy) have been estimated using the Naive Bayes algorithm [88], a
standard method for text classification, &, = C}|X,) oc P(C;) [[X, P(x|C;) (the
denominator,P(Xy), is common), where the documef, is treated as the term vector

(21, 29,...,2x), andC; is the jth topic listed under the Open Directory. The topic-

ODP
Training Data

Web page

Collection

PageRank Estimate Page Classificatiq

/

Initial estimate

=}

of joint
Link probabilities Page
v )
Structure \/ context
estimates
—

Final estimate
of joint

probabilities

~

PageRanks,

Topic-specific
page ranks

Topic categories

Figure 4.3: Flowchart for the Topic Continuity Model
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conditional probabilities for each term®(z;|C;), and the prior probabilities of the topics
P(C;), are estimated as the corresponding frequencies obtainadthe pages listed
under the Open Directory.

The vector(P(ly = C}|Xo))j=1.2.. .k IS then normalized and itgth element is the

probability of the page having content gth topic. It may be noted that this need not
be the desired conditional probability value that we intémestimate ultimately. For
example, a page may appear quite relevant to the topic, sasirtBss”, however, its
primary topic may be something different, say “News”, degirg on the context (or
neighborhood) of the web page. Nevertheless, this claagdit suffices to serve our
purpose of finding an initial estimate of the matéix

These initial estimates are then plugged into the itergiigeedure. For ease of under-
standing, we provide a (simplified) flowchart depicting tteps involved in the proposed

algorithm.

4.3.4 Page Ranking, Categorization, and Other Uses

As described above, we have obtained the stationary (jdist)ibution of (/, X'). The

probability matrix may be written as:

g1 G122 - 9IN
- 9?1 9.22 T 92.N (4.24)
Idx1 92 - JKN

The rows and columns stand for topics and web pages, resglgctEach element
of this matrix, gx,,, represents the joint probability of a topic of interest andeb page,
P(I = k, X = v). We note the following properties of this matrix, along witieir

utilities.

e The sum of thesth column,

K
> gk =go=P(X =), (4.25)
k=1
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is the rank of page. So the quantity;, may be used founconditionally ranking

web pages.

e The sum of thé:th row,

N
> gk =gr. =PI =k), (4.26)
v=1

is the unconditional probability of a surfer’'s topic of inést beingk. This has

significance in obtainingppic representations on the web

e The(v, k)th element divided by its row total,

gkv_P([:kvX:U)_ _ _
=T PI=h = P(X = o[l = k), (4.27)

is thetopic specific page ranéf pageuv (for topic k). In other wordsgy, is propor-

tional to the rank ot for topic k.

e The(k,v)th element divided by its column total,

g PU=KX=0) . .
0 Px—o  PU=EX =), (4.28)

is the probability of the topic of interest beikgwhen the surfer is on pageand

hence, theith column provides theelevance of a web pagm each of thes topics.

e The parametet, as mentioned in Section 4.3.2, controls the curiosityoiact the
surfer. The higher the the more curious she is. In other words, the lowerthke
more focused is the surfer and less frequently tends to eduegtopics of interest.

This can be applied tpersonalizatiorwhere the behaviour of users is quite varied.

Note that the proposed algorithm modifies PageRank exactthansame way as
PHITS [31] modifies HITS (Hypertext Induced Topic Selecji¢n3]. HITS like algo-
rithms are prone to link spamming, where, to improve the @utha new page, all that

one needs to do is create several pages that link to existthgigtative pages as well as
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the new one. On the other hand, the proposed algorithm isherirobustness from the
PageRank algorithm.

Earlier investigations had generally, focused on eithgepanking or page catego-
rization. What the current investigation does is to perfomthithese inter-dependent
tasks simultaneously. This notion had been mentioned g6 had also been indepen-
dently reported in a preliminary form in [101].

It is interesting to note that the proposed algorithm dogsntually categorize, in its
true sense, a web page’s contents. It just estimates whatex swuld be interested in
when she reaches a page. This means that even though thepgreasing in a document
are suggestive of some particular category, the topics amkkrof the pages linking to it
play a major role in determining if it indeed is relevant fbat category. The scores that
we compute for each page can be considered equivalent focaiation in the sense that
this is what a user visiting this page would think about.

We mention here that though both Haveliwala’s topic-seresifageRank algorithm
and the proposed one make use of the topic information dkailander the ODP direc-
tory, there is a difference in the manner in which it is emplby While the former one
needs information about which topics a URL is listed undeg, [titer needs some text
categorization mechanism, which in this particular cas@plens to be derived from the
ODP data. Since Haveliwala’s algorithm does not need t@oaitee each available page,
itis computationally more efficient compared to our algorit However, by virtue of this
extra effort, the proposed methodology counters topia dyifcontrolling the transfer of

rank between dissimilar pages.

4.3.5 Complexity and scalability

We now discuss the complexities involved in the proposedrélgn. Let K be the num-
ber of topics under consideration. Then the disk space medjis /' times that required
for ordinary PageRank and is the same as that for topic-senBageRank [61]. As noted

in [123], despite being higher than the requirements foréimelom surfer model, it is far
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smaller than that for the index (of the original page corggitself. The time complexity
for the computation of the matri& is as follows: From Eq. 4.23, it is obvious that, in
each iteration and for ea¢handz, the computation of;, needsO(|B.|) computations
(corresponding to each backlinkof 2). Thus, for all theK' N entries inG, letting B
denote the average number of backlinks of a p&yey K B) computations are required
during each iteration. This is about the same as that focisgnsitive PageRank, al-
though our algorithm involves some additional overheadctomputingP(X = v) and

> yer, P(I = k|X = y) at the end of each iteration. Note that we do not count the
preprocessing steps like stemming, stopword removal agation of an inverted index

as they are the same for any such algorithm.

4.4 Experimental Results

The performance of the proposed methodology has been ésdlabong with compar-
isons with some of the existing algorithms. Here we dischesdata sets used, and the

methods of implementation and evaluation.

4.4.1 Data Sets Used

A training data set is obtained from the Open Directory Ripj@hich is the largest, most
comprehensive human-edited directory of the Web. It is tanted and maintained by a
vast, global community of volunteer editors [109]. A file in RDResource Description
Framework) format has been downloaded from the Open Ding¢1@9]. This file con-
sists of URLs and their description organized into seventBsimct topics (Table 4.1).
The words available in the description are assumed to reptg® some extent, the topics
under which they appear.

The test data set, consisting of approximately five milli@ygs was obtained from
WebBase [65] (more could not be obtained due to local comésran disk space). These

pages form a connected neighborhood of the web. We have usteglaan based access
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Table 4.1: Top level categories available in the RDF file atadifrom ODP

Adult Recreation
Arts Reference
Business Regional
Computers Science
Games Shopping
Health Society
Home Sports
Kids_And_Teens| World
News

to download pages, whereby pages are retrieved in the dregmtere crawled [65]. The
original pages contained raw HTML along with a header thasied of the page’s URL,
timestampetc. Only the URL information was used in our experiments. Words tere

obtained from the above mentioned RDF file were the only oregsibre retained and the
rest were discarded. The links were normalized and s&k&limere removed. The links
were stored separately and an inverted index was createdeaiownloaded collection.

Only the counts of the words were stored, as is done in th@rspace model.

Note that the ODP data set has information on the categofipages, but no link
information. On the other hand, the WebBase data set hasrfokmation but no cat-
egorization. That is why we used ODP data for training basedhe categorization

information, while the text and link information in the Weldgadata is used for testing.

For estimating the value ef we have used thesnbc.com anonymous web data
(available athtt p://kdd.ics. uci.edu/ dat abases/ nsnbc/ nsnbc. htm ),
which has transition information between categories @nlile ODP and WebBase data
sets. This data describes the page visits of users whod/isismbc.com on September

28, 1999. Visits are recorded in time order and only the aategf the page requested is
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stored. There are seventeen categories (Table 4.2).

Table 4.2: Categories in the MSNBC data set
frontpage| living

news business
tech sports
local summary
opinion bbs
on-air travel

misc msn-news

weather msn-sports

health

4.4.2 Implementation

During training, initial page categorizations were ob¢girusing the Naive Bayes algo-
rithm, as already mentioned.

For estimating the value ef it is observed that of a total of 3708976 transitions during
4698820 visits in the msnbc data, over 65% transitions wet&den pages on the same
category, i.e., there were about 35% cross-topic tramsiticAccordingly, we chose the
value ofe to be 0.35. Note that, this data set did not capture any res)tiest would have
been served from the user’s cache. Had these requests lohgateinh in the data set, the
number of within-transitions would have been higher, t®alue would have been lower.
In order to reflect this, we also conducted experiment forveelovalue ofe = 0.2, to
reflect a more focused surfer.

For an efficient implementation of the page rank computatia@rewrite Eq. 4.23 as:

Pl =k, X1 = 2)
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P =k, X, = 2) Z{ 75) P(I = k, Xy = v) + 75 P(X, = v)}
PXt—z oD, Zyepv P(It—let_y)
(4.29)
At the end of each iteration, we compute the following forfepagev:
P(X,=v) =Y P, =kX =v), (4.30)
k
and
_ N P, =k X, =vy)
Y P =kX,=y) =) P =g (4.31)
yeF, yeFy,
While traversing the adjacency matrix of the web graph,
(I, =k, X, = < P(X, =
3 {1 - 77) PUL e =)+ 5 PN =) (4.32)
veB. ZyEFv P(l; = k| X; = y)

is computed separately. At the end of the iteration, we lyltihe above quantity by

P(li=k,X,=2)
P(Xi==z)

1 <z<N.

, thus obtaining the value faP(/,,, = k, X;,1 = 2), foreachl < k < K,

The iterations were allowed to run until convergence in geohthe L., norm. For

improved precision during computations, we had scaled apathole joint probability

be 1, on the average). In other words, the procedure wasedcggsoon as

mkaxmaX(N*P(ItH = k’,Xt+1 = Z) — N*P(It = k7Xt — z))

was less than a threshold. In our experiments, this thrdska$ chosen to be 0.001.

4.4.3 Evaluation

The process of evaluation consists of two parts: the firgtqesals with comparison of the
ranks of the pages and the second with their contexts.
The ranks obtained by our method were compared againstthtas@ed by PageRank

[22] and QD-PageRank [123]. Five volunteers were choserhfemurpose. Ten queries
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Figure 4.4: Page Rank Comparison

were chosen from those used in [61] (some queries were mibdidiesidering the size of

the collection available with us).

The queries used for evaluation are provided in Table 4.3e ©p ten pages ob-
tained in response to the queries by the four algorithmsghamandom surfer model (or
PageRank), directed surfer model (or QD-PageRank), propggawach withe = 0.35
and proposed approach with= 0.2, were studied by the five volunteers. They provided
a rating (or score) between 0 and 10, a rating of 10 being tbg tmeeach algorithm for
each query. The average values obtained for each query esented in Fig. 4.4. We
have performed pairwise comparisons testing for diffeeenicthe means using a t-test
with 9 degrees of freedom. The null hypothesis was taken tthaethe means were
equal, while the alternate hypothesis was that the secotiibahéthe one appearing later

in the bar-plot) fared better. The tests gave the followiegpits:
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e The proposed method (for both the above mentioned valuesanfd the directed
surfer model significantly outperform the random surfer el@d a confidence level
of 95%.

e The scores obtained by the proposed method with 0.2 show a significant im-
provement over those obtained by the directed surfer madetanfidence level of
95%.

e The improvement in scores over the directed surfer modelioéd by the proposed
method withe = 0.35 is significant at a confidence level of 90%, but not at a

confidence level of 95%.

¢ No significant difference was observed (that is, the nulldtgpsis was accepted)

between the scores of the proposed algorithm for the twacekmfe.

These findings further strengthen the theoretical obsengias mentioned in Section

4.3.4.

Table 4.3: Queries used for comparing page ranks

1 | architecture

bicycling

computer vision

gardening

gulf war

java

rock climbing

table tennis

Ol N OO 0|l TwW|DN

vintage wine

=
o

volcano
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In the second part of our evaluation, we compared the caggan of web pages by
our method with those of Naive Bayes [88] and SVMLight [68].

All these methods including the proposed one were then wseltain the topic cat-
egorization of ten randomly chosen pages (Table 4.4) iredifteen topics under con-
sideration, and the earlier volunteers were asked to rat®.thA score of 10 to a page
denotes that the volunteer viewed the page categorizasidotally appropriate, while a
score of 0 denotes a complete mismatch with the volunteaté&gorization. The results
are shown in Fig. 4.5 only for = 0.2, as an example. Both the proposed algorithm and
SVMLight produced significantly better categorizationrttibe Naive Bayes algorithm at
95% confidence level. Since our algorithm has used the Naiye€Balgorithm for initial
estimates, this indicates that our method has improveddtegaorization, as expected.
However, it is seen that both ours and SVMLight are at par etesn 90% confidence

level.

It may be noted that we had already obtained the joint prdibabiatrix during our
experiments on page ranking. Therefore, the categorizatiperiment only needed to
implement the computations mentioned in Equations 4.284a2isl which are very inex-

pensive, for each of the ten pages.

The number of iterations needed for the convergence of thggged topic continuity
model was 19 wheawas set td).35 and14 whene was chosen to be.2. For checking
the scalability of the proposed algorithm, we measuredithe taken by it and compared
against the same for each of PageRank, QD-PageRank, andtsitive PageRank (Ta-
ble 4.5). The times mentioned are only those for the actualpetation of the ranks and
not for the preprocessing steps which are common to all. Mdrike above computa-
tions employed the extrapolation methods [70] mentionexv@b It is worth mentioning
that both the number of iterations and the time taken redat®ve do not include the

corresponding figures for obtaining the intial estimatethefjoint probability matrix.
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Figure 4.5: Comparison of categorization

4.5 Conclusions and Discussion

The problem of modeling the inter-relationship betweenepeategorization and ranking
in terms of topic continuity has been addressed in this @rapn offline algorithm devel-
oped for this purpose probabilistically estimates theestghistory, and thus, his/her cur-
rent topic of interest. The incorporation of surfer hist¢oy topic continuity) is a unique
feature of this methodology. This resulted in a scalablecamstergent iterative procedure
that provides page categorizations as well as ranking samebusly. The merits of the
methodology have been established both theoretically apergnentally. Although we
have presented experimental results only for page rankidgategorization, the method
can be made applicable for topic-sensitive page rankinmic t@presentation on the web

and personalization.

While the simultaneous estimation of page ranking and categmn is an advantage
of the proposed method, a theoretical proof of convergevages us for the same reason.
Also, the topic continuity model presented in this chaptelr bt include the random

jump factor. More recently, Niet al [105], introduced another topic continuity model
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Table 4.4: URLs of pages used for evaluating categorization

www.journalism.org/ccj/resources/symington.htmi

www.hcu.ox.ac.uk/TElI/P4beta/SA.htm

WWW.cruiseopinion.com/majesty-royal6.htm

www.icna.org/tm/febOGcover5.htm

www.ashbrook.org/publicat/onprin/v8n4/hayward.html

www.osha.gov/oshstats/bls/txts/ostb0521.txt

www.pueblo.gsa.gov/citext/state/tipscanada.html

www.heritage.org/issues/chap5.html

O | oI N0 | WIN|PF

www.skypub.com/news/news.shtml/spc/contact/newsgrmnt. html

[EY
o

www.state.mn.us/courts/library/archive/supct/970962124.htm

that incorporates the random jump factor, too.

In this chapter, we have dealt with web surfer models usiogability theory where
the performance depends on estimates of various paramétiesweb graph, such as the
probabilities of transition from one web page to anothesolkeach surfer model makes
some simplistic assumptions about the behavior of a hygioteurfer. Acknowledging
that the assumptions and estimates may be slightly off, caelike to have a method-
ology that serves a similar purpose as the aforementionder suodels and, simultane-
ously, is fairly robust. Chapter 5 deals with one such attemgtnely, fuzzy web surfer

models.
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Table 4.5: Running time

Method Time taken (in secs
PageRank 60
QD-PageRank (for all 10 queries) 150
Topic-sensitive PageRank 1000
Proposedd = 0.35) 1300

Proposedd = 0.2) 1200







Chapter 5

Web Surfer Models Incorporating

Fuzziness

5.1 Introduction

As the web consists of pages created by millions of indiMsluilere is a wide variety
of authoring styles. Most present day content and link aiglglgorithms are robust
against differences in fonts, coloestc, which are mostly ornamental. Some others can
withstand, to some extent, malicious manipulation of congand links. However, they
are sensitive to whether the information is contained imgleidocument or is spread out
in a collection of documents. For the sake of uniformity imgaarison during content and
link analysis, information present in a single web page mattificially divided into a
collection of web pages. This division introduces an uraety in the page boundaries
as well as the targets of hyperlinks.

A variety of web surfer models exist which model the sequariceeb pages a surfer
follows as a Markov process. The transition probabilities@btained by considering the
number of links in each page. Here, it is assumed that there isicertainty in the given
web pages or the transition probabilities. In practices ihnot the case. This imprecision

may be modeled with the help of fuzzy sets, or in particulgrfuzzy numbers. This
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forms the basis for the present investigation, where weneixéxisting surfer models to
fuzzy surfer models. Fuzzy web surfer models were first duoed in [104], and were
studied in further detail in [15]. Since we now deal with fyuzumbers, Markov chain
theory is replaced by fuzzy Markov chain theory, which emgplthe max-min (or fuzzy)
algebra instead of the classical algebra with multiplmaand addition operations. These
models may be employed, among other things, to compute Eniksb pages, which we
call FuzzRanks. We believe that these models add to the sebts heeded for the
development of intelligent information technologies [15® be applied in the areas of

web intelligence [92].

Fuzzy web surfer models described in this chapter, apant fseing able to handle
fuzziness in various aspects, inherit the advantages af/fitarkov models, namely, ro-
bustness and finite convergence. Robustness is a very impasgjgect because it implies
that small changes in the transition matrix would not chatfigeresults drastically. Its
significance arises from the fact that the transition mesriare not known beforehand
and are estimated during the analysis phase, and so, [gidifferent methods of esti-
mation, may lead to immensely dissimilar results. As a cqQusace, FuzzRank is more
stable as compared to PageRank. FuzzRank reflects the badistidier being on a page,

and cannot fluctuate to extreme cases as in the case of piisti@biodels.

The theory of fuzzy Markov chains is based on fuzzy algebisy Bnown as the
max-min algebra, which has been fairly well studied in literatured avell compared
against classical algebra. Naturally, the question aasde how models relying on these
different algebras would compare against each other. Aftgthese models would inherit
the advantages, as well as, the disadvantages of the uimgealgebras, and it is worth
a performance comparison. So, in addition to the lucratrepgrties of robustness and
finite convergence, surfer models based on fuzzy Markownshraerit undertaking a study

for purely academic reasons, too.

This chapter is organized as follows. Section 5.2 discusegpreliminaries such

as fuzzy sets, Markov chains, fuzzy Markov chains and wefesunodels. We make
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use of these components to describe fuzzy web surfer mau&edtion 5.3, which we
begin with a few motivational examples, and also define FurkRahich is the fuzzy-
equivalent of PageRank. Section 5.4 consists of an illlesiraxample, and several exper-
imental results, which convincingly demonstrate the atbges of FuzzRank over PageR-
ank. Section 5.5, concludes the chapter and mentions sdnme firections of research

on this topic.

5.2 Preliminaries and Background

We now provide the background as well as the notation on feetsy, Markov chains, and

fuzzy Markov chains.

5.2.1 Fuzzy Sets

Conventional sets consist of a group of elements. An elentetiteouniverse ) may
or may not belong to a given set, and only one of these two lpdiiss may happen.
However, for the sake of situations where it is not clear ifeé@ment belongs to a set
or not, the concept of fuzzy sets was proposed [152]. A fuetyssa generalization of
the conventional set, where there is some measure of uimtgred membership in the
set. For a fuzzy set S, there is a membership function agedaadth it which provides a

membership value for each elementin
ps 1 Q — [0,1] (5.1)

Generally, is so chosen thahax,cq ps(x) = 1, in which case, it is said to be normal-
ized.

The union and intersection operations of the classicalisetgtended to the fuzzy
sets, by taking the max and min, respectively, of the comedimg membership values of

each element.
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5.2.2 Markov Chains

A (first order) Markov chain [67] is a sequen{&,, },.c v of random variables where each

random variableX;, takes a value from a state space S, and the sequence satisfies
P (X1 X0, Xy, ..., X)) = P(X11|X0) (5.2)

{X.,} is called homogeneous P (X,.1|X,) is independent of.. In this chapter,

we shall deal with only discrete, homogeneous Markov chainth finite state space
S =1{1,2,...,N}. Letp,;; denoteP (X, =i|X,, = j), which is the one step transi-
tion probability from state to statej. P = ((pi;))i jes is called the (one-step) transition

probability matrix. The probability of’,, . ; assuming a statgis given by
N
i=1
N
= D pyP(Xu=1) (5.3)
=1

Now, them-step transition probability fromto j, denoted bypgn) may be expressed

in terms ofp;; (which is the same as') as:
Py = P (Xuim = ilX, = j) (5.4)

- Z H P (Xosk = ok Xnh-1 = Tnan-1)

k=1

- > | JE—— (5.5)

LTn415e-y Tpim—1€5 k=1

From this expression, it may be observed thatsthstep transition probability matrix
P is the same a®™, them-th power ofP.

A state: is called aperiodic ifged{n : pgf) > 0} is 1. A Markov chain is called
aperiodic if all the states iy are aperiodic. It is called irreducible if every pair of st
in S are reachable from each other. A finite, aperiodic, irrdaledilarkov chain is called

regular, and”™ > 0 for somen > 1 for regular Markov chains.
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For a regular Markov chairpgl) — m; Vi, j € S. m= (m,m,...,my) iS called the
stationary distribution of the Markov chain. This propagyermed ergodicity, and means
that, regardless of its initial stat€(X,, = j) converges to a uniqug. The convergence
and uniqueness of the chain are guaranteed only if the chaipariodic and irreducible,

respectively.

5.2.3 Fuzzy Markov Chains

The probabilities in the previous Subsection are real nusmbed are all assumed to be
known. In practice, they are estimated, and there are eassisciated with the estimation
procedure, which in turn, may again be estimated undertdaitsssumptions. The uncer-
tainty in the transition probabilities may sometimes badyanhodeled in terms of fuzzy
numbers.

In order to define a fuzzy Markov chain, we first define a fuzztribution and a
fuzzy transition matrix.

A fuzzy distribution onS is defined by a mapping,. : S — [0, 1], and is represented
by a vectorx = (p,(1),. .., p(N)).

A fuzzy transition matrixP is defined as a fuzzy distribution on the Cartesian product
S x S. P is represented by a matriXp;;)): jes [4]. With this notation, a fuzzy Markov
chain is defined as a sequence of random variables, whereatigtions are determined

by the fuzzy relation” and satisfy

Py (J) = fgle%x{ﬂxw) (1) Apij},j €S (5.6)

Equation 5.6 is the fuzzy algebraic equivalent of the ti@msiaw of classical Markov
chains provided in Eq. 5.3. The multiplication and additagerations in Eq. 5.3 have
been replaced by thmin and max operations, respectively. Naturally, the powers of
the matrix P may be defined in the same manner as earlier. The interessudt ris
that, unlike the case of classical Markov chains, whendweisequence of matrices”

converges, it does so in finitely many steps to a maktix If it does not converge, it
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oscillates with a finite period starting from some finite power. The above statements are
proved rather easily [4].

When the powers of converge to a non-periodic solutid?r, the associated fuzzy
Markov chain is called aperiodic and" is called a limiting fuzzy transition matrix. A
fuzzy Markov chain is called ergodic if the rows 6f are identical. This definition is
again similar to that of classical Markov chains, but theassary and sufficient conditions
for ergodicity are not known in this case [4].

We now propose a web surfer model that relies on the theonyzaf/fMarkov chains.
Since web surfer models and fuzzy Markov chains have beearied in detail already,
to avoid duplication, we describe the proposed methodalogyconcise manner, making

use of the notations and notions of this section.

5.3 Fuzzy Web Surfer

5.3.1 Motivation

We look at a few examples which demonstrate the need for nersuodels to deal with
various kinds of uncertainty on the web. Authoring stylestenweb vary widely and this
results in the same kind of content being displayed in varfoumats. For example, the
same content may be packed in one (possibly, big) documemiayp be spread out across
several linked list of documents. The process of retriemdlranking are sensitive to such

differences, which are usually a simple consequence ofa&stimig tastes or conveniences.

With most search engines indexing an increasing number aidents in PDF, PS
and other formats, this situation is encountered all theeroften. Fig. 5.1 shows a set of
HTML pages, and a PDF document, both containing equivaldotmation. However,
when the web is treated as consisting of individual atomizudeents, it results in unfair
comparison, as the PDF document has more content compaeaathioof the individual

pages. One way to improve the level of fairness during suchpewisons is to detect
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(@) (b)

Figure 5.2: Which section is being pointed to? Actual targdtizzy.

equivalent information, even if it is split across docunsantone place and not the other,
as performed in [102].

Fig. 5.2 shows a link from a source document S to a target denti. Now, T
contains a lot of information, but the link is just for a padiar portion of the page T.
The question is which is the portion of T being implicitly eefed to by this link. The
relevance of this question lies in the fact that the link poto the web page T as a whole
and so the weight being transferred through this link spitisr to all of T instead of being

restricted to the intended portion only.

To strengthen this argument, we provide a real life exanfpilg. 5.3 shows a portion
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Google hasn't stopped with just those two. It has
continued around the net. identifying topic specific
directories and flagging them as authority hubs.

Professor Jon Kleinberg's page on Algorithms for
Information Networks at Cornell University that is the
defacto authority resource on Hubs and Hub theory:
http://www.cs.cornell.edu/home/kleinber/

So while waiting for your ODP and Yahoo listings
come through, seek out those topic specific
directories and try to get your site listed. Often those
hubs/directories will want or require some sort of link
back to their site - just do it.

Figure 5.3: A portion of a web page at Webmasterworld withn& to Jon Kleinberg's

home page

of the web page located atw. webnast er wor | d. com which contains a link to Jon
Kleinberg’s home pagé The link that leads to Kleinberg’s home page provides ncemor
information than its URL. The home page under consideratamtivo named sections,
namelyPapersandLinks and there is an introduction above it. Itis clear from thetemt
that the above mentioned link indeed refers toRapersportion of the page. In addition,
the Paperssection is further subdivided according to the topics of plapers, but the
subsections are not named. Had they been named, we can ainecagclude that the
link in question actually leads to th&/eb Analysis and Search: Hubs and Authorities
subsection.

The above examples demonstrate that:

e alink to a web page may in reality be referring to just one oremmagelets, and
not the whole page itself. Resolving which pagelet is retetoeby a link needs

contextual information, and yet this may not be precise.

e a page may have to be artifically divided into pagelets oricest to avoid the

weight attributed by a link to one pagelet spilling over thatpagelets. As men-

Thtt p: / / www. webnast er wor | d. cont f or unft0003/ 428. ht m

2http://vwwv. cs. cornel | . edu/ hone/ kl ei nber/i ndex. ht m



5.3 Fuzzy Web Surfer 125

tioned earlier, this is required for fair comparison duniatrieval because, although
this particular link is for a small portion of the page, thentants of the rest of the
page benefit from it, thus enjoying a better status as cordparsimilar content

elsewhere.

It may be noted that it is not claimed that one or the othercessarily better, because
some systems may assign more weight to more content, wheteass may penalize it.
All that is being argued for is that such disparities may leadiverse results, and need
to be addressed at an early stage of link and content anal{si;iow formulate a basic

methodology for fuzzy web surfer models.

5.3.2 FuzzRank: Fuzzy Page Ranking

In what follows, we assume that the web pages have been pexs®d with the goal of
increasing uniformity among them. By uniformity, we meantttie differences due to
authoring styles, as explained earlier are reduced. Thiersva approaches for that. One
approach is that big pages are split into pagelets [29, B2@] each of them can be called
a new page. The other option is to merge related pages, mekicty of them a section
(or pagelet) of one large page [101,115]. The second apbrisarell suited for retrieval
tasks by virtue of providing a larger coverage. However, tfax purpose of link and
content based analysis, we believe the first approach wetksrpbbecause it generates a
large number of small and coherent pages, thus avoiding tiit.

As in existing surfer models, we label the available web pa@géter preprocessing)
from {1,2,..., N}. We propose the methodology for fuzzy web surfer models by im
itating that of existing surfer models. Similar to the cqapicef PageRank, we define
the concept of FuzzRank, where the objective is to computegdoh given web page,
a value which reflects the belief that a web surfer would behan page. This value is
proportional to the belief that the surfer would be on ondbacklinks. Similarly, asso-

ciated with each link in a page, there is a fuzzy number thditates the belief that this
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link would be followed, given that the surfer is on that pagéese constitute the fuzzy
transition matrix.

Formally, we are interested in computipgi) for each page, which is the uncondi-
tional belief that a surfer would be an In other words, given a fuzzy transition matrix
P, we want to obtain the eigen fuzzy set [4] Bfwhich satisfies. o P = u. Here, the
operatiore is the fuzzy max-min operation, as described in Eq. 5.6.

FuzzRank, the fuzzy counterpart of PageRank is now definedheagreatest fuzzy
eigen set of the fuzzy transition matrix, the existence oicinas been proved in [129].

It is also known that this greatest fuzzy eigen set lies betwé® andx™, where

l'g)) =minmax FP;; Vk =1,2,... N

J 7

and
2V = max Py Vk=1,2,...,N.

x(9 is always an eigen fuzzy set, whereas, whenewét,is an eigen fuzzy set, it is the
greatest. Now, it is also known [4] that the greatest eigenzyiset is of the form of
x() o P*, for some positive intege.

Thus, computing FuzzRank makes use of the power method inmmia&lgebra, and
is similar to computing PageRank, the difference being that@nnot start with an ar-
bitrary vector. One may note that{!) itself equalsl o P, and hence FuzzRank is of the
form 1 o P*. Thus the initial vector for the power iterations for comipgtFuzzRank is
alwaysl.

So, the task at hand is to obtain accurate values of the etsrakte fuzzy transition
matrix, because, once that is done, Eq. 5.6 is all that ismedjto compute the FuzzRanks
of the web pages.

Whenever a page has a single link to another page, it is asstimethere is no
fuzziness present there. This is usually the case when gmalipage sayl has been
split into pagelets which were originally its named sediamd a link from a page, say

B had specifically pointed to a named section, g4¢’. Then, after splitting, the page
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B points to just a single page representififf”. Had the link just pointed te!l without
referring to the intended section, the splitting would ineosome fuzziness as to which
section is being referred to. In that case, the membershigsaf the target of the link
from B are non-zero for multiple pages representing the origieatiesns of A. The
membership values may be determined by considering sityilair the context around
the anchor of the link and the potential target regions. Tthesfuzzy transition matrix

may be obtained.

5.3.3 Advantages and Limitations

We now discuss some features of the proposed class of fuzZzyswéer models. A list
of advantages are listed first, following which we delve itite shortcomings of such a
model.

We observe that theoretically, and intuitively, fuzzy welsfer models have the fol-

lowing merits:

1. Capture fuzziness in page contents: page boundaries niderapparent all the
time, especially when a single large page consists of skpagelets. Moreover,
noise in web pages also affects the precise identificatidghetontent of interest

to the user.

2. Capture fuzziness in links: a page may contain severah&atbut not all of them
may be intended for the same purpose. The reason for thaiepee may be ease
of navigation, leading to advertisements, references,oomtipg to authoritative
resources. Similarly, a link to a particular page may initgdde actually for just
one or two sections or pagelets of a page. These kinds oftantigrmay be better

modeled by the proposed methodology.

3. Can take into account fuzzy contexts: context sensitigerdhms depend a lot on
the modeling assumptions. For example, the context of ayanay not be precisely

clear, but the system may have a broad idea about it.
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4. Robust computations: this is perhaps, the most emphatsonefor choosing fuzzy
web surfer models. The computations in max-min algebra ane mobust to per-
turbations as compared to usual addition and multiplicadiperations. There is an
example in [4] that demonstrates the robustness of fuzzkdlesystems in com-
parison to regular Markov chains. When the entries of thesttiam matrix are
perturbed by small quantities, the effects on the statipdaatribution of the regu-
lar Markov chains are drastic, whereas, for fuzzy Markovithiathe changes are

comparable to the perturbations.

5. Finite convergence: the stationary distribution of fukfarkov chains can be com-
puted in finite number of steps, whereas, for regular Markumairts, only an ap-
proximation may be found as the convergence may not be ahiavinitely many
steps. Existing web surfer models assume that, even thooiglergence is not

attained, the order of the probabilities in the obtainedrithstion suffices.

We now study the possible limitations of the proposed mathanyy. It is well known
that a Markov chain is ergodic if it is regular. However, iretbase of fuzzy Markov
chains, no such results are known. So, it is not clear whemRaizk would actually exist,
and even if it does, if it would be independent of the inititete of the process. There
is an example in [4] where the rows of the limiting fuzzy triéios matrix are distinct,

thereby demonstrating the existence of non-ergodic fuzaykbV chains.

This, however, need not be a limitation as all that it implgshat the final fuzzy
distribution of the surfer being on a particular page mayb®independent of his initial
state. In practice, this may indeed be the case as a surféngtitom one set of pages
may, in the long run, behave differently from another one watiaots from a different set of
web pages. Thus, that the fuzzy Markov chain of web pageghesited is not ergodic
may be a blessing in disguise, which may be useful in comgubpic sensitive page

ranks or for detecting web communities.
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5.4 Experimental Results

The objective of this section is to demonstrate the purpodeuaefulness of fuzzy surfer
models and to study the properties of FuzzRank. We begin detsom with an example
that serves as a preview of the experiments performed. Thieoehalogy is described as
we present the details of the example.

The first step is to choose a (web) graph whose nodes are tonkedra For this
example, we choose a randomly generated directed graphre Bine many generative

graph models, as mentioned below:
e Erdos-Renyi model [47]: Given the number of vertices, edgesdded randomly.

e Power-law models [97]: Here the in-degrees and out-degreeassumed to arise
from a power distribution of the fornp = z*. The R-MAT model [25] engulfs

these and the Erdos-Renyi model.

e Lognormal models [18, 97]: These models have been shown teetter than the

power-law models for modeling the web graph and are fastisaalable.

We choose the exponential distribution, which is similathe lognormal distribution,
and is easier to simulate. In our case, to make sure that #rerao orphans (that is,
nodes with no in-links), for each node, we draw a random nurnbm a (zero truncated)
exponential distribution, and choose that many nodes aorarfrom which in-links to
the present node are created. Note that the out-degreerfae sodes may be zero. A
sample random graph with 10 nodes is presented in Fig. 5.4.

The in-degrees, in-links, out-degrees and out-links far sample graph are listed in
Table 5.1. In this case, none of the out-degrees are zero.

Next, the PageRank vector is computed for this graph, and ¢boeow at different
iterations 1, 2, 3, and 31 (when it converged) are shown iteTal2. For the purpose of
presenting consistently, all the vectors arex-min normalized, that is, they are linearly

transformed so that their minimum is 0 and maximum is 1. Theevaf d (the probability
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Figure 5.4: A sample graph with 10 nodes and 28 links

for a random jump) is set to 0.15 during the computation ofefRemk throughout our
experiments.

We provide the FuzzRank vectors, too, as they evolve oveatiters, in Table 5.3.
Throughout our experiments, we set the fuzzy transitionrisné&d be the same as that
used by the random surfer model. Again, we note that, althowgnormalization is
performed during the actual computation of FuzzRank, theynatx-min normalized
while reporting them here.

We make the following observations by comparing Tables Bd?%a3. We use Kendall
discordance to measure the amount of disagreement betivedwd rank vectors. This
discordance is defined as the proportion of discordant paieng the total o@ pairs.
A pair (i, 7) is called discordant with respect to two rank vectors,i ranked ahead of
j by one, and ranked behindoy the other. In the case of a tie, it is assumed that there is

no discernible disagreement.

e The ordering of pages according to FuzzRank is achievedtatdirst iteration it-

self, and the actual convergence requires one more itardtmr the case of PageR-
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Table 5.1: In-Links and Out-Links of the Sample Graph in FEigt

Node | Out-Degree| Out-Links | In-Degree In-Links
0 2 2,4 5 1,2,4,5,7
1 3 0,3,9 3 3,4,8

2 2 0,3 2 0,8

3 3 1,57 7 1,2,4,6,7,8,9
4 5 0,1,3,6,8 1 0

5 1 0 1 3

6 2 3,9 4 4,7,8,9
7 3 0,3,6 1 3

8 5 1,2,3,6,9 1 4

9 2 3,6 3 1,6,8

Table 5.2: PageRank computations for the Sample Graph irbHg.

Node | Initial | Iter1 | Iter 2 | Iter 3 Iter 31
0 1.000| 0.915| 0.618| 0.935| ... | 0.879
1 1.000| 0.225| 0.430| 0.326| ... | 0.365
2 1.000| 0.211] 0.527| 0.225| ... | 0.390
3 1.000| 1.000| 1.000| 1.000| ... | 1.000
4 1.000| 0.126| 0.494| 0.201 0.359
5 1.000| 0.056| 0.339| 0.200| ... | 0.242
6 1.000| 0.436| 0.370| 0.374| ... | 0.367
7 1.000| 0.056| 0.339| 0.200| ... | 0.242
8 1.000| 0.000| 0.000| 0.000| ... | 0.000
9 1.000| 0.352| 0.412| 0.279| ... | 0.327
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Table 5.3: FuzzRank computations for the Sample Graph ing=4y.
Node | Initial | Iter 1 | Iter 2 | Iter 3

1.000| 1.000| 1.000| 1.000
1.000| 0.166| 0.444 | 0.444
1.000| 0.375| 1.000| 1.000
1.000| 0.375| 1.000| 1.000
1.000| 0.375| 1.000| 1.000
1.000 | 0.166| 0.444| 0.444
1.000| 0.375| 1.000| 1.000
1.000 | 0.166| 0.444| 0.444
1.000 | 0.000| 0.000| 0.000
1.000| 0.375| 1.000| 1.000

O | oI N|O || W|IDN|F—|O

ank, the final ordering is achieved after the twelfth itevati

e FuzzRank has clumped several nodes together. The numbestioictiranks are 3
for FuzzRank and 9 for PageRank. This indicates that FuzzRamknigre conser-
vative way of ranking (compared to PageRank) where it coreduldat the given in-
formation in the form of the structure of the graph is insudiind for strictly putting
one node ahead of the other, and encourages the use of attsfauch as query

relevance, to make this decision.

e The discordance between PageRank and FuzzRafik iBhe disagreement is due
to a single node (Node 1), which has a PageRank of 0.365. HahtheRank value
been 0.326 or less (with the PageRank values remaining the fesitihhe remaining

nodes), there would have been no discordance between thramkeectors.

Often, one would be interested in finding the discordancevdsen the top: ranked

nodes. Generally, this is to indicate that a discordant @aiong the top ranked pages
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of a ranked list is more significant as compared to the sambeabottom of the list.
Comparing top k lists [48] involves obtaining the tépelements of both the lists and
looking for discordant pairs among the union of those eldmetf ¢ is the number of
elements in common to the two tagists, the total number of elements in the unienis
k—c+k—c+c= 2k —c. Unlike in [48], where it is assumed that the ranks of the 1sode
outside the togk lists are not known, we shall make use of the available in&tiom to
compute the actual discordance, thereby avoiding the astimof discordance suggested
in [48]. To handle ties consistently, we shall keep all tleel telements together. So, for
the FuzzRank vector, the sets tbgo top 6 are all the same, consisting of the nodes
0,2,3,4,6, and9, whereas the tof to top9 lists have the nodek 5, and7, in addition

to the aforementioned nodes. As we vary: from 1 (we note that, fok = 1, the top
elements of both lists may be the same, and hence a pair nogherpossible at all, in
which case the discordance would be defined to be zero) tdhvé@ ®tmber of discordant
pairs between PageRank and FuzzRank is Olfet £ < 5, 1 for k = 6, and 2 for

7 < k < 10. Fig. 5.5 plots the normalized discordance values, wherfebgachk > 1,
the number of discordant pairs is divided ﬂ?{—l)

We now look at the effects of mutating the given graph on tin&iregs of the nodes.
This is important because, often, a link to a page (or a secifdhe page), might not
exist explicitly. The ranking algorithm would need to beusbto gracefully handle noise
in links. It has been shown theoretically in [4] that the slaal Markov chains may be
severely impacted by small changes in the transition matdnereas, that is not the case
for fuzzy Markov chains.

We perform a simple mutation on the sample graph, such as@éddiode or removing

a node. Each of the following three graphs is produced asudt idone such mutation.
M1: The link4 — 3 is removed.

M2: The link5 — 0 is removed. Note that, this means that there are no out-fioks

node 5, making it aank leak
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Discordance for top k ranked nodes
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Figure 5.5: Discordance between the PageRank and FuzzRawoks/&x the top k ranked

nodes of the sample graph

M3: Anew link5 — 2 is added to the graph.

The PageRank and FuzzRank vectors are computed for each ofitagethcases, and
are presented alongside those for the original graph. Ntk there is no discordance
between the FuzzRank vectors for the various graphs, althdhg scores have changed
for some of the nodes. For the case of PageRank, however, astetion produces a
different change. This demonstrates the robustness ofRfeudz The significance of
this robust computation is that the creation of the tramsitnatrix is based on several
(simplistic) assumptions, and when these deviate fromtyg#le resultant ranking may
be well away from the ideal one. The robustness of FuzzRank&laged to the great
number of ties in this case. By not committing itself to a $tramking, it absorbs the
effects of slight changes in the transition matrix.

We now describe the data sets that we have used in our expesinWe have gener-
ated 100 graphs each of sizes 10, 100, and 1000, randomlyh@¢e ¢wo real life data
sets from Stanford’s WebBase [65] and hamed them WB40 and WB47060, after the

host and port numbers from which they are available. The éolisia crawl! of a part of
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Table 5.4: PageRank and FuzzRank for the nodes in the Sampsé Brkig. 5.4, and its

mutated versions, with the nodes ordered in descending ofdRageRank

Node | PageRank FuzzRankl PRM1| FRM1 | PRM2| FRM2 | PR M3 | FR M3
3 1.000 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
0 0.879 1.000 0.950 | 1.000 | 0.475 | 1.000 | 0.726 | 1.000
2 0.390 1.000 0.412 | 1.000 | 0.256 | 1.000 | 0.505 | 1.000
6 0.367 1.000 0.412 | 1.000 | 0.403 | 1.000 | 0.349 | 1.000
1 0.365 0.444 0.386 | 0.333 | 0.369 | 0.444 | 0.358 | 0.444
4 0.359 1.000 0.373 | 1.000 | 0.213 | 1.000 | 0.300 | 1.000
9 0.327 1.000 0.356 | 1.000 | 0.374 | 1.000 | 0.316 | 1.000
5 0.242 0.444 0.220 | 0.333 | 0.268 | 0.444 | 0.251 | 0.444
7 0.242 0.444 0.220 | 0.333 | 0.268 | 0.444 | 0.251 | 0.444
8 0.000 0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
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D(PageRank, FuzzRank) for random graphs with 10 nodes
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Figure 5.6: Discordance values between PageRank and FuzzRatdts for 100 ran-

domly generated graphs with 10 nodes

the berkeley.edu domain, and there are about 140 thous@ss path over 1.6 million
links to pages within the same data set. WB360, which is a crawl of a part of the
stanford.edu domain, consists of about 40 thousand pagesvan 260 thousand links to

pages within itself.

Having earlier detailed the methodology of the experimentan example, the results
are now quickly presented. Figs. 5.6, 5.7, and 5.8 presendidgtordance values be-
tween the PageRank and FuzzRank vectors for 100 randomlyajedegraphs with 10,
100, and 1000 nodes, respectively. As in the earlier exantipdediscordance values are
generally low. Moreover, these values decrease as the nurhibedes increases. The
corresponding discordance values for the WBHM0 and WB47060 data sets are 0.08
and 0.1, respectively, implying that PageRank and FuzzRankotlolisagree much on

even large real life data sets.
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D(PageRank, FuzzRank) for random graphs with 100 nodes
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Figure 5.7: Discordance values between PageRank and FuzzRatdts for 100 ran-

domly generated graphs with 100 nodes

D(PageRank, FuzzRank) for random graphs with 1000 nodes
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Figure 5.8: Discordance values between PageRank and FuzzRatdts for 100 ran-

domly generated graphs with 1000 nodes
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5.5 Conclusions and Discussion

The novel theoretical formulation of fuzzy web surfer madbly integrating existing
works on web surfer models and fuzzy Markov chains is vergraggting. The defini-
tion of FuzzRank as the fuzzy surfer models counterpart o€Ragk, which is based on
the random surfer model is both simple and elegant. Expatmheesults confirm that
FuzzRank has very similar ranking properties, and yet is mavast to noise. This ro-
bustness is a consequence of FuzzRank to avoid a strict gaimkthe absence of strong
evidence to that effect. While this may result in a large nundfdies if this were the
sole criterion for ranking web pages, given that severadofdctors, like query relevance,
would be considered during the ranking process, the aldigonsistently rank the pages
in the presence of noise is an advantage. The walk-througjramiexample clearly shows
how stable FuzzRank is over PageRank. Future directions $eareh on this topic in-
volve stability analysis for various other kinds of noisedabtaining an accurate fuzzy
transition matrix based on both the links and the contextdaimation.

The present chapter, along with the previous one, dealt raitking web pages. In
the next chapter, we discuss how to compare page rank veotonsore generally, any

pair of ranking schemes.



Chapter 6

Quantitative Evaluation of Page

Ranking Schemes

6.1 Introduction

Ranking a set of items is a fairly frequent task, and involhasvwise comparison of the
given items. This comparison may be performed by inquiringeacle for each pair of
items, in which case, the ranking procedure is known as casgrabased ranking. On
the other hand, one may assign scores to each item, thusgimmgdutotal ordering on the
set of items. Each item is assigned a score which denotes &dytbe item appears in
the list, and thus, comparing each pair is now performed bypasing the corresponding
scores. The present work is concerned with score basechgm&nly, and each ranking
is assumed to be induced byeoring schemer function

Several scoring schemes may compete with each other fomiatike same set of
items, and the items may be ranked differently by each of th@iven two such scoring

schemes, two questions arise:
e Which scheme is better?

e How different are the two schemes?
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In the present chapter, we are concerned with the answers setond question. One
may note that it is not sufficient to ask the first question alas, instead of just declaring
one of them to be better than the other, it is imperative tosmeahow much better one

scoring is over the other.

Comparing such scoring schemes is generally performed byaony the induced
ranking on the set of items. However, several differentisgosystems may lead to the
same ranking of the items, and a rank based comparison cdiswoiminate between
such schemes. In the present chapter, we propose a moralggnemach, whereby, the

scoring schemes may be perceived to be different even ifittteice identical rankings.

Our approach is based on the idea that similar scoring schdiseriminate between
two items in a similar manner. If the scores assigned to itérsd ; by one scoring
scheme are far apart, while those by another are very closacto other, it indicates that
the two schemes are dissimilar. It is interesting to note tiia also corresponds to a
fusion based approach for measuring similarity/dissintylaf scoring schemes. Often,
these scoring schemes are used in combination with somesaitveng method, say, to
produce the final ranking [34, 44,108, 122]. This processoafilining scores is referred
to asscore fusion44, 108]. If two sets of scores are exactly the same, theikings
remain the same even after score fusion. Also, different#ise scores assigned by two
methods may lead to different rankings, depending on theesaased for fusion. If we
know T" beforehand, then we may rank the items after fusing theiresc@and compute a

dissimilarity value on the basis of the induced rankings.

In the present chapter, we look at the case whéremains unknown. Based on cer-
tain simple assumptions about this unknown scoring schiémes compare two scoring
schemes on the basis of how likely they are to produce a diaocbpair. We provide
a metric in this regard, which relies on the margins sepagdtie scores. Even if two
items receive almost equal scores, they might be rankeerdritly depending ofi. The
present investigation is about studying how likely it is foem to be ranked differently

upon score fusion.



6.2 Comparing Scoring Functions: Background 141

The manuscript is organized as follows. We introduce thatiwi and background
for comparing scores and rankings, and rank fusion in Seéti®. The proposed method-
ology is described in Section 6.3, which includes motivagicexamples and a discussion
on the characteristics of our method. Section 6.4 dealsextinding the proposed met-
ric for comparing topk scorings, and applications of the metric are discussed ctidde
6.5. We report some preliminary experimental results inise®.6, before drawing our

conclusions and mentioning future work in Section 6.7.

6.2 Comparing Scoring Functions: Background

6.2.1 Notation

Our universe consists of a set of objects or items indexef by {1,2,3,...,n}, and
each of them shall be referred to by its index. Unless otrssstated; and ; refer to
two elements of?, andi < j. These objects or items may be documents in corpus, states
in a country, students in a university, and so on. A scorirfgeste or function assigns
a real number; € |0, 1], called a score, te, for eachi € Q. In the present work,
only normalized scoring schemes shall be considerednwgx; s; = 1 andmin; s; =
0. The k' scoring scheme, or equivalently, th& score vector is denoted by, =
(Sk1, Sk2, - - - » Skn ). We useR(s;) to denote the rank of andR(S) is an abbreviation for
(R(s1), R(s2),...,R(s,)). Objects with larger scores appear earlier in the rankédbslis
thats;, > s; = R(s;) < R(s;).

Let S; andS; be two scoring schemes. A pdir, ) is called discordant w.r.t5; and
So, if (515 — s15)(s2; — s25) < 0, i.e., the two schemes ordéand in different ways.
If (s1; — s1;)(s2: — s2;) > 0, theni andj are said to be concordant. The comparison is
called a tie if(s1; — s1;)(s2; — s25) = 0. A tie may occur in one of three ways;; = s,
so; = g5, OF both, and it is called &-tie, a2-tie or a double tie, respectively. Without loss

of generality, we assume that the first set of scores aredsorte
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Assumption 1 (Monotonicity of S7) 1 =s1; > 12 > ... > 51, = 0,

for, otherwise, we may sof; and.S; in descending order with; as the primary key.

LetS andT = (t1,1,...,t,) be two score vectorsS + 57 means the score vectors
S andT arefused togetherwith the fusing proportions < o« < 1 andg =1 — a. So,
the:!" element of the fused vectordss; + 5t;. Whena = 3 = 0.5, we shall simply write
S+ T, instead of the technically correeHS + 0.57, noting that the ranking remains the
same in both cases.

We now provide some background on comparing rankings andrfus

6.2.2 Background on Rank Comparison

Comparison of rankings is a fairly well studied problem, arelmention the most pop-

ular rank comparison methods here. Comparing two differ@mkings has been studied
in various fields. In each case, a measure has been providethkies into account how

much the positions of each item differ in the two orderedli§the measure is zero when
the two rankings are exactly the same, whereas it is maximbemthe rankings are com-
pletely opposite to each other. Some very useful and widedgluneasures for comparing
two rankings are Spearman’s footrule, Spearman’s ranklation and Kendall's.

Spearman’s footrule is defined as:
pri= Y _|R(s1;) = R(s)] . (6.1)
=1

Spearman’s rank correlation [32] is defined as:

p2 = (Z (R(s1:) — R(S2i))2> : (6.2)

=1
Both p; and p, are 0O if both the rankings are the same, and attain their marim
values whem?(Sy;) =n+ 1 — R(Sy), Vi € Q.

Kendall's Tau (orr) [32] is defined as the difference of the proportions of codaat
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and discordant pairs according$p and.S,:

2

T(Sl,s2) = m

Z sign(s1; — 515) (52 — Sa25) (6.3)

1<j
and may be rewritten in terms of only the number of discorgants as
4
T(Sla SQ) =1- m ; I[(Su—slj)(s%—sgj)<0] (64)
The summation in Eq. (6.4) is the number of discordant pairg.w5; and S, and is
referred to as the Kendall distance between them [46]. Ftynthe Kendall distance

between each palr, j} w.r.t. S; andS; is defined as:

1 if i and;j are discordant
K(S1,84,5) =4 4+ if i and;j have a single tie
0 o.w., ie.,ifiandj are concordant or have a double tie

(6.5)

When this quantity is summed over all the pairs of items, tlies called the Kendall
distance betweef; andS,, or equivalently, betweeR(S;) and R(S:), and is denoted
by K(S51,S2) or D(R(S1), R(S2)). This is also referred to as Kendall (Tau) distance,
Kemeny distance, or bubblesort distance betwRés ) and R(S,) when interpreted as
the number of pairwise adjacent transpositions neede@mnsfiorm from one ranked list
to the other.

More recently, Bar-llan, et al. proposed that differencesaimking in the initial part
of the lists should be given more weightage than those tesvérel end of the lists [9].
The dissimilarity between the two rankings is computed as:

=y
=1

1

1
RS:() ~ R(S:0)) (6.6)

6.2.3 Background on Fusion

Fusion is the process of combining multiple sets of ranksores available for the given

items. Rank fusion [100, 130], also known as rank aggreg§i6nl51], obtains a con-
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sensus ranking from the available ranked lists. Theserestsl not be full lists, making
rank fusion a very challenging problem.

Score fusion, on the other hand, combines the scores dgir@cibrder to produce a
consensus score vector, on which the final ranking may bedhgsan. Such fusion may
be performed by taking an average of the scores assignedtenanTwo of the standard
score fusion techniques are CombSUM (a simple average) andKabizi (a weighted
average) [83,122,143].

Several studies have compared the effectiveness of ranlseoreé fusion. Scores
contain more information than ranks, but may be prone toendisis suggested in [46]
that only the induced ranks should be considered for fusitwereas, in [99], it is found
that score fusion is advantageous, provided that nornmalizés performed properly. A

detailed discussion on ranks versus scores is availab83in [

6.3 Comparing Underlying Scores Directly

One may compare two score vectors directly using a mead@dkarson’s correlation
coefficient. However, the interpretation of the coefficienterms of the resultant ranking
is lost. Also, the correlation coefficient is not a metricddrence cannot be interpreted
directly as a distance between two scoring systems. Thelation coefficient may be
transformed into a metric, but it still does not reflect thekrgpecific differences between
two scorings, and is not always useful for comparing ramuaing scoring functions.

An alternative is to compare the scores assigned to thead@ibbjects on the basis

of the rankings they produce.

6.3.1 Motivation

We shall now emphasize upon the significance of comparingrggodirectly. We start by
asking the following question: “Is it sufficient to use ority.S;) and R(.S;) for comparing

S; andS;,?” We look at the following examples to gain some insight iis tiegard.
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0.9r

0.8

0.7r

0.6 1

0.5F

Score

0.41

0.3F

0.2F

0.1r

Item

Figure 6.1: Same ranks, different scores

Example 1 Suppose that itemsand; receive identical scores in each scoring scheme,
l.e.,s1; = s1; andsy; = sy;. By definition, there is a double tie betweeandj w.r.t. S;
and.S,. Now, if there is a measurement error, due to which the scareslightly per-
turbed,; and; would be declared to be either concordant or discordanh(aribbability
1), though, in reality, they are neither of the two. This isoagequence of the fact that
discordance is a hard concept, and a pair may be either deabor not, but nothing in

between.

Example 2Letn = 10. The objectd, 2, ..., 10 are scored in three different ways as

i—1)2 (n—i)2

shown in Fig. 6.1. Heresg;; = 2=, 59, = 1 — ((71_—1)2 $3i = (2 It may be noted that,

n—1"7
while the ranks are identical in all three cases, the scoffes dignificantly. For example,
items1, 2 and3 have barely distinguishable scores w.§4, whereas, the scores are quite
varied in the cases of; and .S;. If ranking by themselves is the sole objective of the
three scoring functions, then they may be deemed identitherwise, that the resolving
power of the three scoring functions is different impliesngoamount of dissimilarity

between them.

Example 3 Let (811', 815, S2i5 S25, S3i5 83j) = (04, 0.5,0.5,0.4,0.9, 01) So, the items

1 andj are discordant w.r.tS; andS,, as well as, w.r.t.5; and.S;. However, are they
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“more” discordant in the second case? Again, this quesi@omat be answered without

the notion of a degree of discordance.

Example 4Lets;s = 0.7, 513 = 0.4, s90 = 0.6 andsss = 0.5. ASSUMES 1, = Sop, VK €
2\ {2,3}. Note that item& and3 are concordant w.r.t5; andS,, and also that botly;
andS; induce the same rankings, i.&(5,) = R(S2). Now, suppose that the objects are
to be ranked after fusing their scores withSo, the two rankings obtained aR¢S; +7')
andR(S, + T'). The question we are concerned with is whether these twangslare
identical. It is obvious that the answer depends on the gadfie andt;. For example, if
to = 0.3 andts = 0.5, then the fused scores are givenddy+ to, = 1.0 > s13+t3 = 0.9
andssy + to = 0.9 < s93 + t3 = 1.0, and hencég2, 3) forms a discordant pair according
to S; + 7" andS, + T'. One may easily observe th@ 3) would form a discordant pair
whenever; — t, € (0.1,0.3).

Example 5Now, if s;5 = 0.9, ands;3 = 0.1, while sy andssz remain the same as in
Example 42 and3 again form a concordant pair w.r§; andsS,. However,(2, 3) forms
a discordant pair w.r.tS; + 7" andS, + T whenever; — t, € (0.1,0.8). In a sense, itis

more likely for (2, 3) to be discordant in this case, than in the earlier one.

The essence of these examples was to demonstrate that evgih i and.S; may
appear identical or similar on the basis of the rankings hregluce by themselves, the
likelihood of a discordant pair being produced after scargidn depends both on the
distribution oft; — ¢; (for all pairs: < j) and the spacing between the scores assigned to

the objects of the universe.

Another compelling reason for comparing scores directltha given justS; and
Sy, rank comparison methods have no way of distinguishing eéetwthe cases when the
fusing parametely, is big (say, 0.9) or small (say, 0.1). In isolation, as losdath the
vectors are multiplied by the same scalar, rank compariseasores come up with the
same value each time. Of course, if all one needs to do is tothentems on the basis of
just S; andS,, thenR(S;) and R(S;) should suffice for comparing the scores, i.e., score

comparison methods provide no additional advantage.
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6.3.2 Comparing Scores Directly

The objective in the present investigation is to discerrwbeh two scoring functions
directly without performing the additional task of commgithe induced ranks. Taking
a cue from Examples 1 and 3, we propose the concept of a defjdéscordance for a
pair of items, which subsumes the usual definition of disancg as a special case. As
discussed in Example 2, the dissimilarity of two scoringctions w.r.t. a paifi, j} may
be inferred from the differences in the separation @ind ; by the scoring functions.
Thus, a measure of dissimilarity betwesp and S; may be based on the separations
dg.) = Sy — 515 anddg) — §9i — 59;. The moredE;) and dﬁf) are apart, the higher the
dissimilarity.

We now look at an alternative approach, which leads to theesation of discordance
once again. In particular, we would like to study how likelysi for a discordant pair to
appear during score fusion.

In this regard, let us formalize our observations in Examgland 5 of Section 6.3.1.
The fused scores afw.r.t. S; + T andS; + T aresy; + t; andssy; + t;, respectively, for
eachl < i < n. The pair(i, j) forms a discordant pair w.r.t5; + 7" and S, + 7, if and
only if,

((s1 + 1) = (s15+ 85)) (520 + 8) — (s2; +15)) <O,
or equivalently, if and only if,
((t; — 1) = (s1i = s15)) (£ — i) — (520 — 525)) <O. (6.7)
That the quantity (6.7) is negative is equivalent to having- ¢;) in the interval
(min {dﬁﬁ, dg§>} max {dﬁ}), d? }) ,

where,dl(.;) anddg) denote the differences; — s;; ands,; — s4;, respectively. Thus, once
again, the dissimilarity is proportional to the differerafed|;’ andd.;’. Note thatd_} is

positive, by Assumption 1, in Section 6.2.1.
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Similarly, it may be easily seen that the pgirj) forms a discordant pair w.r.&.S; +

BT andaS, + ST, if and only ift; — ¢; belongs to the interval

n o (2)} {Of o) (2)})
min d;.’, =d;;’ ¢, max dl ,—d
< {B Vg 37708
Let~y denote the rati(%, and let, for each pair< 7,

S1,82 :
a;; = mln{sli — 815,52 — ng} , and

s (6.8)

= max {Sh‘ — 815, S2i — ng} .

We note that, for each pat, j), there are associated real numbefs® andb;**,
such that:, j) is a discordant pair according ¢, + 47" anda.S, + 51 whenever,; —t;
is in the |nterval<m51 2 ybol SZ) For ease of notation, we drop the superscrijtand
S when they are clear from the context. As seen earlier, theial|a;;, b;;] holds the

key to the likelihood of a discordant pair being produced. this reason, we propose

L (Sh, ) Z Z D,(S1, Sa;1, ), (6.9)

i=1 j=i+1
as a measure of discordance betwgeandsS,, whereD. (51, S; 4, j) is a suitably chosen
measure on the intervad;;, b;;). We shall writeD as a shorthand fab,. In the present

chapter, we make the choice bt (S;, S2;4, ) as
vbij

Dy (S, 8234, ) = f(x)de =

Yaijz

, (6.10)

~(s2i—52;5)
/ f(z)dz
.

(s1:—515)

where, f(z) is a continuous probability density function with-1, 1) as its support. As a

particular case, in the present work, we chogge be the triangular density function:

1+az if —1<x<0
flo)=9 1—a if 0<z<1 (6.11)
0 o.w.

D, (51, 52;14,7) ranges betweefi and1 and shall be called the degree of discordance

betweeni andj w.rt. S; andS;. A value of 0 denotes either a double tie or perfect
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concordance (i. ed(1 =d, 2)) whereasl implies perfect (or extreme) discordance (i.e,
dd? = -1).

The significance of choosing this particular functipns as explained below. The
relevance scores lie in the intervidl 1], and therebyt; — ¢; € [—1,1]. We make a
simplistic assumption that andt; areiid U(0,1), in which case the density of — ¢; is
f. Another reason for choosing the uniform distribution igttit is the least biased prior
distribution, and corresponds to the fact that nothing slé@own abouf’” (that is, there

is no particularl” on the basis of whicly; and.S; are being compared).

I(a,7) :/ (1— 2)d

fol(l —x)dxr  if ya > 1

{ S —x)dr ow.

o

N
=
2
vV
SHL

(6.12)

Also, one may note that

/ (14 x)dx = I,(—a,”).

ThusD,(S1, S2; 4, 7) may be evaluated as

S (1 = w)de — [ (1= 2)dz if 0 < a; < by

flx)dz = fOwa( z)dx + f (1+x)dx if a;; <0< by

Yaij 0

\ f'Yaij(l + z)dx — ffbij(l +z)dr ifa;; <b; <0
Li(bij, ) — Liag, ) 10 < ay; < by

= Li(bij, ) + Li(—ay, ) if ai; <0< b (6.13)
| [i(=ag, ) = Li(=biy, 7)) if ay; < by <0

It may be noted that we do not need to consider the egsec b;; < 0, since,b =

max {d d@)} > d}) > 0, by Assumption 1.

ij 0 g



150 Quantitative Evaluation of Page Ranking Schemes

6.3.3 Characteristics and Discussion

It may be easily verified that the proposed measure for comgp&no scoring systems,
D, (54, 5>) is a pseudometric. Itis a metric whern< 1. The following theorem provides
a more general proof, whelfeis chosen to be any continuous probability density function
on (—1,1) (i.e., taking strictly positive values ofi-1, 1), and0 elsewhere), and is not

restricted to the triangular density function.

Theorem 2 (Metric properties of D.,(S;, 5>)) LetS; and S, be two normalized score
vectors of lengtm, and lety be a positive real number. Let the discordance for the pair
(i,7) w.rt. Sy and Sy, D.(S1,S2;1,7), be defined as in Eq. 6.10. whetg andb;; are

as defined in Eq. 6.8 and I, (5, S2) be defined as in Eq. 6.9. Theh, (S;, 5) is a

metric ify < 1 and a pseudometric otherwise.

Proof: To prove the theorem, it needs to be shown hatS,, S;) satisfies the following

properties:
D.(S1,5) > 0VYS5,S5 (6.14)
D.,(S1,5) = 0 (6.15)
If v <1,D,(5,5)=0 = S5 =25 (6.16)
D,(51,52) = D,(Ss,5) (6.17)
D.(S1,S52) + D+(S2,53) > D,(S1,55) (6.18)

Properties (6.14)-(6.17) may be easily verified from therdtédins (6.9)—(6.11). Prop-
erty (6.14) (non-negativity) follows immediately from tfect that eachD., (Sy, S2; 1, j)
is the probability that a random variable with densjtytakes a value in a subinterval
(a;j,b;;) of (—1,1). The proof of Property (6.15) is trivial, as each of the stdivals
(a;;, b;j) are now of length.

To prove Property (6.16), we note that< 1 = (vya;;,vb;;) € (—1,1) Vi < j. Since

f(z) > 0if x € (—1,1), we have

D, (51,821, 7) = 0 < a;; = bi;.
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So,D, (57, S2) = 0 implies that
Sli—SleSQi—ngVi<j€Q.
Note thats;; = 1. Also,

521 — Son

= E $2; — 52,i+1
i=1

n—1

= g S1i — S1,i4+1

i=1
= 511 — Sin

Thus,ss; — s2, = 1, and so the normalization constraint implies that= 1 ands,,, = 0.
Settings = ¢ + 1, and varying from 1 ton — 1, we observe that;; = s5; V2 < j <mn,
and henceS; = S,. Thus Property (6.16) is proved. This property need not laid
~v > 1 because the integration interval may have no intersectithn (a1, 1), in which
case,f would be0 throughout the interval.

From the definition in Eq. 6.8, and the symmetrynofx andmin,
;% = ol andb = b2 Vi< jeQ,

L) v v

and hence,

D'y(Sla S2a27]) = D’y(827 Slalaj)7

thereby confirming Property (6.17).

To prove Property (6.18) we make use of the following factsudimax andmin:
min{a, b} < max{b,c}, (6.19)

min{a, c} > min {min{a, b}, min{b, c}} (6.20)
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and
max{a, c} < max{max{a,b}, max{b,c}}. (6.21)

The fact (6.19) implies that

51,52 52,53 52,53 51,52
a7 < by, andag 7t < bt (6.22)

and hence, the following inequalities hold:

S1,92 1.91,8 52,53 1.592,5
(aijh 2 poL 2) U (aijz, 3 P2 3)

» Yig ) Yig

_ : 51,52 52,53 51,52 152,53
= <m1n{aij s g },max{bij , by })

> (ais b5.1753> . (6.23)

Y

Here, the first equality is a consequence of Eg. 6.22 whicliressthat the union of
the given intervals is indeed an interval. The second inlggus a consequence of Eqs.
(6.20) and (6.21). It may be noted that the same inequalibé&even when the;;’'s and
b;;'s are multiplied by a positive constamt

Integrating the non-negative functigrover the above intervals (scaled by the constant

v), we have the following set of inequalities:

S1,S92

’ybu *ybi?‘sii
/WSLS2 f(w)dx+/7a52v53 f(z)dx
(%] v
S1,S So,Ss
152 bij2 5}

/7 e f(z)dz

min{as-l’SQ, a$2’s3}
71)1_57_1,53

> / " fla)de, (6.24)
Y

S1,53
(ZZ]

which is the same as the triangular inequality
D’y(‘gh 527 Z?J) + D’Y(527 537 27]) Z D’Y(Sl7 537 Z?J)

Summing over all pair§; < j), we have Property (6.18).

Thus,D. (54, S;) is a metric ify < 1, and a pseudometric otherwise.
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Kendall distance corresponds to a special case of the pedpuostric by choosing
to have equal mass gn-1,0) and(0, 1) (a weaker condition than symmetry), afdo
be very close to zero, or equivalentlyyvery large. Intuitively, this means that there is no
fusion, andS; andsS; are being compared directly to each other. It may be obsehatgd
in such a case, the intervala,;, vb;;) either contains the whole ¢f1, 1) (whenga;; < 0)
or does not have any intersection with1, 1) (whena;; > 0), which is the support of,
and thus, the degree of discordance is either 0, respectively. When there is a tie (and
it is not a double tie), one limit of the integral in Eq. 6.10cbees zero, and the other
limit is either larger thari or smaller than-1, and hence, the degree of discordanck is
For a double tie, the degree of discordandefsr any~ (indicating perfect concordance).
Thus, wheny is very large,D, (51, Ss; i, j) assumes the value afwhenever(i, j) is a
discordant pair w.r.t.S; andSs, 0 when it is a concordant pai%, in case of a single tie,
and0 for a double tie, and hencé),(5;, ;) is the Kendall distance betweeh and.S;.

Formally, this may be defined as:
K(Sl,SQ;i,j) = lim D,Y<Sl,8272,j)v2 <7 (625)
Y—00

For each pair{i, j}, as~ increases, the value @b, (S, S2; ¢, ) monotonically de-
creases to if {7, j} is concordant, and increasesltotherwise. However, this does not
imply that D., (51, S2) either monotonically increases or decreases wijtthe reason be-
ing that some of the individual components may increaseendgtihers decrease, and the
rates may not balance each other. It may be easily verifieddarcase o, = 3, that
D, (S1, S2) may first increase and then decrease with

D, (51, 52) is bounded above b?@. This is obvious becausB., (5;, Ss; 4, j) is
bounded above byfor each paii, j}. Also, D., (51, S2) andK (S;, S2) do not dominate

(n—1)

each other. For example, whén(S;, S;) = =5—, D,(51,S;) may be smaller (say,

wheny = 1), andD, (S, S2) may be positive whei (5;, S2) is zero (wherS; # S, but
R(S1) = R(S2)). Thus,D,(S1,52) — K(S1,S2) may be positive for certain choices of

Sp andS; and negative for some others.
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Though the Kendall distance may be computeielg in O(n?) time, Knight's algo-
rithm [74] based on mergesort, achieves the sani(inlog n) time by taking advantage
of the redundancy involved in computidg(S;, S»). No such algorithm is known, as yet,
for computingD., (51, S2). Preliminary ongoing research in this direction is promgsi
and suggests the existence of linear time algorithms to aterg “reasonable” approxi-
mation toD., (51, S2). Alternatively, when the number of items, is large, one may resort
to a method like the one suggested by Fagin, et al. [48], wbasethek top ranked items
of both lists are considered for comparison. A “tgpversion of the proposed metric is

presented in the next section.

6.4 Comparing Topk Scores

A top k list is the set of items with the largest scores. Tojists differ from full lists
because two lists need not have the same set of itemsislthe set of items common to

both the lists, then there are a totakéf-|C'| items in the two lists combined together, and

thus, there are a total §#:-DEZIC-1) pairs. To compute the degree of discordance of
apair{i, j}, the four score values, viz,;, s, so; ands,; need to be known. However, all
four scores are known for onk!SI=Y pairs, and for the remaining pairs, either one or
two of the scores are unknown, and hence, some sort of egimraeds to be performed

for determining their degree of discordance.

We extend our procedure to comparing the kogcores of two scoring functions by
mimicking the work of Fagin, et al. [48]. Fagin, et al. comgathe topt lists obtained
by two different rankings [48]. When dealing with items whigppear in only one list,
the definitions of ranks and discordance are appropriatelgified, resulting in, among

many others, a Kendall distance for tbjists.
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6.4.1 Comparing Topk Lists

We first study the approach of Fagin, et al. [48] for genenradizhe definition of dis-
cordance to the case of tapists. We reproduce the text from [48] and, simultaneously,
make a note of how the same extension for the computing thrededdiscordance would
differ in each case. Let, andm, be two topk lists. The generalized discordance between

i andj, w.r.t. two lists; and, is denoteds P) (1, 7;:1, 7).

Case 1 {andj appear in both tog lists): If i andj are in the same order (suchiaseing
ahead ofj in both top k lists), then lei ") (,, 75; 7, j) = 0; this corresponds to “no
penalty” for{s, j}. If i andj are in the opposite order (suchaeing ahead of

in 7, and; being ahead of in 7»), then let the penaltyk ) (r, 7; 4, ) = 1.

In this case, the usual definitions of discordance and degdmdiscordance are applicable.

Case 2 { andj both appear in one top list (say 1), and exactly one of or j, sayq,
appears in the other toplist (r3)): If 7 is ahead of;j in 7, then let the penalty
K® (1, 7m9;4,7) = 0, and otherwise lek ") (1, 7; i, j) = 1. Intuitively, we know

that: is ahead ofj as far as is concerned, sinceappears ir but ;7 does not.

Here, there is no confusion regarding what the discordamaeld be as it is clear thaiis
ahead ofj in 7. However, the degree of discordance needs the informatigarding the
separation betweehandj. If : appears higher imy, then,; is far below: as compared
to wheni is towards the bottom of,. Also, since Fagin, et al. [48] consider only lists of

items, there are no ties, whereas in our case, the scoresensgdb

Case 3 {, but notj, appears in one top list (say), andj, but noti, appears in the other
top k list (12)): Then let the penalty®) (1, 7; 14, j) = 1. Intuitively, we know that

1 is ahead ofj as far asr is concerned anglis ahead of as far as is concerned.

Again, though one is sure of discordance in this case, theedegf discordance may be

partially inferred from the positions @fand; in their respective lists.
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Case 4 {andj both appear in one taoplist (sayr;), but neither nor j appears in the other
top £ list (72)): This is the interesting case (the only case where thereaily an
option as to what the penalty should be). Such pgirg} are called special pairs.

In this case, we let the penalty?) (1, 72; 1, j) = p.

This is the most difficult case, since the ordet ahd; in 7, is not known. However, the
positions ofi andj in 7; carries some information regarding what the degree of disco

dance may now be.

6.4.2 Degree of Discordance for Top Scores

We shall now extend the definition of the degree of discorddndhe case of the top
scores by making the maximum use of the available informadiod averaging out the
unknown part. To compute the average over the unknown s@uves, we assume (as
in Section 6.3.2) that they are uniformly distributed, anel imdependent of each other,
and take the expectation. We assume that thektepores of two scoring functionS;
andS,, saySt andS%, are given, along with the corresponding lists of itemsand,.
By Assumption 1,1 = {1,2,...,k}. Let D¥(S},S5;4, ;) denote the degree of discor-
dance betweehand; w.r.t. S} andS} (though not mentioned explicithp)* (ST, S5;4, j)

involvest; andr, also).

Casel {,j € 1 Nm):
Since, sq;, 515, 52i, S2; are all known, the earlier definition is applied straightawa
ande];(Sfa Séca Za]) = D'Y(Sla 527 Zaj)

Case 2 {,j € 7, buti € m, andj & m):
S0, 514, 515, S2; @are known buts,; is unknown. All that is known about = s,; is

that0 < sy; < 595 < 59;. Leta denotes;; — s;;. Therefore, we have

~vmax{a,s2; —y}

D7<51752;i7j) :/ f(l’)d.l’

~ymin{a,s2;—y}
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Since,y is unknown, we average the degree of discordance over ailpevalues

of y by taking the expectation as follows:

D’“(Sf,Sé”,z,j E[D,(S1, S, )]

vy max{a,s2;— y}
/ / (x)dx dy (6.26)
S2k ~ymin{a,s2;—y}

It may be noted that, as it is already given that y < s,, the above is a con-
ditional expectation, wherg is assumed to be frorfi (0, so) distribution. Also,
Eq. 6.26 corresponds to the definitionfof?) (r;, 7»; i, j) in Case 2 in Section 6.4.1.
This may be seen by noting that wheris large, the integral in Eq. 6.26 is 9,or

1 accordingaa > 0,a=00ra < 0.

Case3 {€m,jEmn andi €, j & n):
Lettingy = s;; andz = sy;, and noting that — s5; < 0 < sy; — y, the expected

value of the degree of discordance may once again be comasted

Dk(Sf,S;Za]. 51752727j)[

512 y)
= / / / x)dx dz dy (6.27)
S1kS2k z 52])

Cased {,j € 1,1,j & 1):

Let us denote;; — s1;, s2; ands,; by a, y andz, respectively, and without loss of

generality, assume that> 0. Thereby, the expected degree of discordance is given

by:

Dk(Sf,Sg,z,j 51752,%])[
max{waw y—=z)
/ / / Flx)de d= dy (6.28)
Sak in{ya,y(y—2)

6.5 Applications

Scores contain more information than ranks, especiallgimethe ranks may themselves

be derived from the scores. So, comparing scorings findscapipins in any field where
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rankings need to be compared. We describe two such applicateas related to page
ranking. In addition, we elaborate on how the scores maylasosed to measure how

representative the ranks are.

6.5.1 Comparing Web Page Rankings

Ranking web pages has attracted the attention of severarobsgs, mainly due to the
challenges it poses in terms of scalability and the impesaisd subjective nature of the
task. Given the wide variety of ranking methods availatiles hatural to compare them
to decide which one is better. A more fundamental task is tad@evhether the two given

rankings are indeed different, and if so, how well-sepat#tey are.

Though the task is teank web documents, page ranking algorithms assign scores to
pages. These scores are called page ranks. Existing wd¥kedepare the rankings by
converting the scores into ranks and then computing thartistbetween these ranks. As
discussed earlier in this chapter, and also, as is evident the literature, these scores
are seldom used in isolation for producing the final rankimgsuch a case, the proposed
methodology is more appropriate for comparing the pagesiaak it takes maximum
advantage of the available information regarding the idéehuse of the page ranks. For
example, if the fusing proportions (and thereby,are known beforehand, the distance
D, (54, S2) may be computed appropriately. On the other hand, if theritifigos produce
the final ranking without fusing the scores, themmay be set to a very high value, which

results in the computation of the Kendall distance.

It is common in the case of ranking web pages that the numhbézros is very large,
and under such circumstancé(.St, S3) should be used to compafg andS, in terms

of their topk scores, witht set to a few hundred or thousand.
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6.5.2 Stopping Criterion for the Power Method

Another application of the proposed metric is in decidingewho stop the iterations in
thepower method121]. The power method is used to obtain the dominant (arqpal)
eigenvector of matrix4, starting with an arbitrary vectat(®). It is an iterative proce-
dure, whereby successive vectatst!) are produced by multiplyingl with x®, and is
guaranteed to converge as the number of iterations tendfinay.

In several studies like [11,82], the page rank vectors spoad to the principal eigen-
vectors of some transition probability matrix, and are cated iteratively by the power
method. Once again, as in Section 6.5.1, the size of the daxcuenllection under consid-
eration may be huge, in which case, each iteration is vejycgesmetimes taking several
hours to a few days [70], and hence, early stopping is ddsirdthe page rank vectors
produced by consecutive iterations are compared to seaifamgvergence is attained.

In some instances, the computation is performed for a fixedbau of iterations, say
50 or 100 iterations [11]. Though convergence may not be attaineth@i., or L, sense)
by the time the computation is stopped, the resultant vastdeclared to be the final
page rank vector. The justification provided for such a bamas that this vector serves
its purpose in terms of ranking the documents, which is thad @ibjective. In other words,
even if the iterations are allowed to run for longer, the ragkvould not change by much,
as determined by the Kendall distance. Alternatively, olag base the stopping criterion
in terms of thel; distance between the consecutive page rank vectors. Hovgewee the
ultimate objective is to rank the pages, it is preferablege a rank comparison method
for determining the stopping time [11].

While such a justification is acceptable if ranking is the sugective, there might
be other objectives too. In most cases, the page rank vectwonsidered as a set of
importance scores and is combined with other entities, asatelevance scores, before
the final ranking is produced [123]. Thus, it is natural to #skis sufficient to stop the
computation after a certain number of iterations. The psepalistance measure may be

used to check if (near) convergence has been attained. dhw&igence would be in a
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sense that considers the purpose of computing the eigemvect

6.5.3 Quantitative Measurement of the Representation of Scores by

Ranks

A system ranking items on the basis of scores assigned to, ity choose to reveal
only the ranks of those items, usually, by returning them pagicular order. While it

is true that the items would be ordered in exactly the samensraon the basis of their
scores too, the scores are only partially revealed. For pkarntet there be four items
(1,2, 3,4), each of which is assigned a scate: = 1,2, 3, 4, and the items are ordered in
descending order of scores. If it is known that the ordergddil, 2, 3, 4, then all that is

revealed about the scores is that s; > s, > s3 > s, = 0. However, there is a general

(human) tendency to perceive that the scores are uniforistyiltited. So, the scores

21
373

are implicitly assumed to be ando0, respectively (or something similar). This also
corresponds to the average case, where one may observeahgiht; may be either less
than or greater tha@—u, it is expected (under the assumption of uniformity) to keselto

%. Such uniform scores, implicitly assumed on the basis ofainé&s, shall be called the
uniformly perceived scoreand the uniformly perceived score vector shall be denoged b
R(S) (or simply by R if S'is clear from the context). For the sake of notational sinify

we shall sometimes refer to uniformly perceived scoresstgjerceived scores in the rest
of this paper.

In reality, the underlying scores may not be reflected pigg®r the rankings avail-
able. For instance, in the above example, the actual scotdd bave beeiil, 0,0, 0), or
(1,1,1,0) or (1,0.5,0.5,0), or any suchi-tuple satisfying the ordering criterion. So, the
perceived scores may or may not reflect the underlying scdresreby, one should be

able to measure if at all the perceived scores are simildret@cttual scores.

The present work provides a methodology to quantify the redjom between the ac-

tual scores and the perceived scores. Let there iblems1,2,...,n, and let their per-
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ceived and actual scores be denoted-hy-, ..., r, andsy, sq, ..., s,, respectively. So,

H : H H H _ i—1 _ n—i
the perceived score of th® item is given byr; = 1 — — = "= . It may be noted that

Kendall distance between the scores and the perceivedsssarero, which is due to the
fact that both of them result in the same rankings.

The degree of discordance of a pgi j) is thereby given by

max(siij,%)

D,(R,S;i,j) = / (1 —x)dx,

min(s;—s;,2=7)

since, it is already known that > s;, andr; —r; = =% > 0. If s, — s5; = L=,

then the degree of discordance is zero. The other extrerhe saise when the degree of
discordance for the paf¥, j) is maximum. This happens, whep— s; is either0 or 1 —
which of the two is determined by— i. If j — i is close ton — 1, then,D, (R, S;1,7) is
maximized ats; = s;, whereas ifj — i is nearl, s; = 1 ands; = 0 maximizes the value
of D,(R, S;1,j).

As earlier, we would also be concerned with the total scosethdiscordance between
the two scorings. This is obtained by summing the degreesabdilance over all possible

pairs, and is given by

Dy(R.S) =S 3 Dy(R,S54,)

i=0 j=i+1

Again, if s; = 1 — =%, for eachi = 1,2,. .., n, thes,’s coincide with ther;’s and hence,

D, (R, S) turns out to be zero.

Since eachD, (R, S;t,j) is bounded above bg, it may be trivially seen that
D.(R,S) < @ However, findingRk and S such thatD, (R, S) attains a maximum
is not as simple as maximizin, (R, S; 1, j) for each pair(i, j), the reason being that
the pairs are not independent of each other, due to the muintyoand normalization
constraints. For example, if = 5, D, (R, S;1,2) is maximized whers, = 0 whereas
D, (R, S;1,3) is maximized whers; = 1, however, both cannot happen simultaneously
(because, > s3).

How well R represents a particular score vectgimay be measured by the notion of

the p-value ofD., (R, Sy). Consider the sety, of all S vectors such thaR(S) = R(Sy).
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The p-value is the probability of having ahvector (S € Sp) such thatD,(R,S) >
D.(R, Sp). In other words, the p-value db. (R, S) is the proportion ofS vectors inS,
which are at an equal or higher distance fréhthan.S, is from R. So, when most of the
S vectors are such thdd, (R, S) > D. (R, Sy), thenD. (R, Sy) may be considered to be
small, andvice versa Thus, when the p-value corresponding2Q(R, S) is very small,

it may be declared thak(.S) does not represerst well enough.

6.6 Experimental Results

To understand the significance of the present work and tdataithe claims made in this

chapter, several experiments of the following kinds wemsdcted.
e Study of the behavior ab, (S, S>) for various values of;.

e Study of the behavior oD’;(Sl, Sy) for various values of. andk, and testing the

dependence on the assumption of uniformity.
e Determining the number of iterations for eigenvector cotapan.
e Predicting the discordance in a pair of vectors after saos@h.
e Computing the distance between uniformly perceived anchhstiores.

We now describe each of these experiments and their re$oittg with our observations

and analysis.

6.6.1 Behavior ofD. (5, S2)

It is theoretically assured thd, (S, S») < ", and also thalim., .., D,(Si, Ss) =
K(S1,S2). Moreover, our remarks on Page 153 make it amply clearfh&b, S) is

not a monotone function of although eactD., (S5, S2; 4, j) is so.
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The aforementioned properties are graphically depicteligs. 6.2(a), 6.2(b) and
6.2(c). Herepn is set to3, 4 and5, respectively, and tefi;, S, pairs are randomly gener-
ated, andD, (51, S2) is computed for values of varying from1 to 30. The Kendall dis-
tance,K (5, ;) may take values only frorf0, 1, . .. @}, and theD. (S5, S2) values
are seen to be converging to the respective Kendall dissaridee rates of convergence,
however, are different in each case. Also, in some of thesc@sg.S;, S») varies mono-
tonely with~, whereas, in the remaining cases, it is not so. Howeverteaty (beyond

some value ofy), monotonicity is restored in each of the cases.

6.6.2 Behavior ofD’;(Sl, )

We now study the properties db%(Sy, S») ask varies from1 to n. A pair of score
vectors is generated randomly and min-max normalizati@h I8 applied. The topg:
items (according to the scores) are selected from eachryathile the scores of the
remaining items are assumed to be unknown, m’;dsl, Ss) is computed as described
in Section 6.4.2. Sinc@’;’(Sl, Ss) is an expected value, with the expectation being taken
over all the unknown score values, it is imperative to know lgood this approximation
is. In the present case, all the score values are known, amdftine, the exact value
Ej(Sl, Sy) may also be computed by summing up the (exact) degree ofrdescce of all
the pairs appearing in the union of the two tofists.

The computed values ab% (S, 5,), EX(S1,5,) and D5(S1,S;) — EF(S:, S,) are
shown graphically in Fig. 6.3, from which it may be seen tmm!tlD’;(Sl, Sy) approxi-
matesE” (S, S;) very well. It may be noted that the computation/off(S;, S;) is based
on the assumption th&t; and.S; arise from the Uniform{{ (0, 1)) distribution. In or-
der to test the dependence of the approximation on the lmistvhal assumptions, two
more experiments were conducted, withand S, arising from the GaussianV((0, 1))
distribution in one and the Exponential(1)) distribution in the other. The results are
presented in Figs. 6.4 and 6.5, respectively, and it may bergbd that there is a consis-

tent over-estimation in the case of the Gaussian distohutvhereas, the approximation
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is very good in the case of the Exponential distribution.

6.6.3 Determining the number of iterations for computing page

ranks

As discussed in Section 6.5.2, one would like to know wheretminate the power it-
erations based on the amount of change in the rankings inahgecutive iterations.
We chose two data sets from Stanford’s WebBase [65] and nameed WB17440 and
WB4_7060, after the host and port numbers from which they ardadlai The formeris a
crawl of a part of the berkeley.edu domain, and there aretdigtilthousand (140K) pages
with over 1.6 million (1.6M) links to pages within the samdalaet. WB47060, which
is a crawl of a part of the stanford.edu domain, consists ofia#0 thousand (40K) pages
and over 260 thousand (260K) links to pages within itselfe PageRank [60] algorithm
was run for 100 iterations on both the chosen data sets. Wetnaputeds (%) (S;, S;, 1)
and D%(S;, S;,1) (v set to 1), which are the top versions of Kendall distance and the
proposed distance, respectively. Héés the page rank vector at the end of iHeitera-
tion, andk was chosen to be 100, 1000 and 5000. We have also compiit&cb;, S1go)
and D¥(S;, S100), though these quantities would not be availatieing the page rank

computation. These values are presented in the plots in €i§sand 6.7.

It may be noted from Figs. 6.6 and 6.7 thatl¥(S;, S;.1) is to be used instead of
K©35)(8;,S;,1), (near) convergence is declared much earlier. For exarimpkig. 6.6a,
D*(S;, S;4+1) would have recommended the termination of the procedues af itera-
tions, whereask (*°)(S;, S;1) would have led to at least 26 iterations. This indicates
that once it is decided that the obtained ranks would be ftsgether with some other
score vector (in equal proportions, since we haveygetbe 1), there would be no signif-

icant improvement by continuing beyond 20 iterations.
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6.6.4 Predicting discordance after score fusion

This set of experiments is aimed at predicting the discardafter score fusion, without
actually performing the fusion. Such requirements arisemin the Web domain, say,
for comparing page rank vectors. The traditional methodatfgaring page rank vectors
is to use each of them to retrieve the top pages for a set ofeuand computing the
discordance between them (see, for example, [123]). Thavas doing the following
for each query. The set of documents matching (or contajtimegquery is identified, and
the query relevance scores for each document are computede Televance scores are
combined with the ranks of the documents, and the documeatsrdered according to
the fused scores. A rank comparison measure is then compateeen the top lists
arising from each of the page rank vectors fused with thevaglee vectors.

Ideally, the set of queries should be very large so that a celngmsive comparison
between the page rank vectors may be made. In addition, thbenwof documents in the
corpus may be huge, too. Under such circumstances, it is a@tignally prohibitive to
compare the page rank vectors for various choices of thehtge(gr fusing parameters).
To this end, the proposed measure may be employed to cireurtive actual compu-
tation of discordance measures between the fused scorervdut having a reasonable
approximation as demonstrated by the following experiment

We consider the WBX440 and WB47060 corpora once more. Two page rank vec-
tors, labeleds; andS,, over these data sets are obtained by considering the seadter
3 and 50 iterations, respectively, of the eigenvector cdatmn mentioned earlier. Note
that the exact method of obtaining these vectors is notaelew the present experiment.
The fusing proportiors (= 1 — «) is varied over the valuds25, 0.50, and0.75.

We first compare the two vectors in the following naive manki¢ég choose each word
in the corpus as a single-term query, and stem them usingriRoalgorithm [118]. An
inverted index is created for each data set. Now, for eaah sterd w in the corpus,
the list of documents containing that stem is extracted,thadl'FIDF [127] vector/,,

is computed. Let the corresponding page rank vectors, okémee length a¥,,, be
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called Sy, and S,,,, respectively. There are over 44 thousand (44K) and 35 #wals
(35K) distinct stems in WB17440 and WB47060 data sets, respectively. When only the
5000 top ranked documents are considered in these dathsztsare over 14K and 16K
distinct stems, respectively.

Now for each word, we comput& (%) (S,,,, S5,,) and K5 (aSy,, + BT, Sy +
G8T,), which are the topg: discordance values betweéh,, and S,,,, and between the
fused vectorsvS,,, + 8T, anda.Sy,, + BT, respectively.

These quantities are averaged over all the words by divithieig sum by the sum of all
possible pairs for each word, and the averages are dehateg S;, Ss) andDrj(Sl, Sa)
(where, as earliery = %), respectively, reflecting the quantities they estimatathd-

matically, if df,, is the number of documents in whiahappears, the average is computed

as
23, KO (S1w, Saw)
k o w wH w
K7E.(S1,Ss) = S e —1) (6.29)
and
(0.5)
D7F(S1, 8,) = 22 K77 (@St & T, 0w + 1) (6.30)

Zw dfw(dfw - 1)

The above procedure is repeated using just the top 5000 dodsnm each data set. These
averages, which would have been the measurements fronatligdnal rank comparison
technique described earlier, are tabulated in Table 6.1.

Next, we employ the proposed metric to obtain an approxonatif the values in
Table 6.1. The discordance measukes;;(S;, Ss) andDrj(Sl, Sy) are shown in Table
6.2. Here,K7t.(S1,5,) is the topk Kendall distancek (%) (S, S,) normalized by all
possible pairs of pages in the union. Similarjyd“(sl, Ss) is the normalized version
of D(Sy,5;). These computations are repeated for the top 5000 pageshotiasa set,
and are also tabulated in Table 6.2. Note that the valueshie &2 are independent
of the content of the web pages, or to rephrase, the relev@neages to queries is not
considered during ranking.

We observe from Tables 6.1 and 6.2 that the correspondingsah Tables 6.1 and

6.2 are very similar and show similar patterns and trendsekample, on the WB¥440
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Table 6.1: Kendall and degree of discordance values aveags all words

WB1. 7440 WB4_7060
Pages selected) | K7j; | v | D7l | Pages Selected) | K7j, | v | D7}
All (140K) 0.0160| 3 | 0.0049 All (40K) 0.0222| 3 | 0.0096
All (140K) 0.0160| 1 | 0.0023 All (40K) 0.0222| 1 | 0.0049
All (140K) 0.0160 % 0.0012 All (40K) 0.0222 % 0.0020
Top 5000 0.1220| 3 | 0.0279 Top 5000 0.1130| 3 | 0.0409
Top 5000 0.1220| 1 | 0.0137 Top 5000 0.1130| 1 | 0.0200
Top 5000 0.1220 % 0.0067 Top 5000 0.1130 % 0.0081
Table 6.2: Normalized Kendall and degree of discordanagegal
WB1. 7440 WB4_7060
Pages selected) | K7j; | v | D7l | Pages Selected) | K7j, | v | D7}
All (140K) 0.0189| 3 | 0.0032 All (40K) 0.0253| 3 | 0.0067
All (140K) 0.0189| 1 | 0.0017 All (40K) 0.0253| 1 | 0.0029
All (140K) | 0.0189| ! | 0.0006 All (40K) 0.0253| 1 | 0.0011
Top 5000 0.1214| 3 | 0.0133 Top 5000 0.1090| 3 | 0.0323
Top 5000 0.1214| 1 | 0.0078 Top 5000 0.1090| 1 | 0.0110
Top 5000 0.1214 % 0.0045 Top 5000 0.1090 % 0.0054
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data set, when is set to 1, the discordance value as found from the naiverempst

is 0.0023, and its estimate turns out to be 0.0017. When th&lplity of fusion is not
taken into consideration, the corresponding estimate avbal/e been 0.0189, which is
well away from 0.0023. Thé)¢$ values in Table 6.2, however, are all underestimates
of the corresponding values in Table 6.1, possibly due toTHREDF scores not being
uniformly distributed. Nevertheless, these values, digignificantly from Kendall’'sr
values, and shrink as is increased. Moreover, it may be seen from Figs. 6.8 and 6.9
that as( increases, the shrinking happens for each word (and nobjustverage), as
the green (lightly shaded) histograms are squeezed tofthdhe blue (densely shaded)
histograms remain stationary. The plots for the full docobsets are similar, but are less
informative by virtue of a much larger proportion of zerdse(teftmost bars).

In conclusion, the proposed metric helps us directly piatie discordance between
the two page rank vectors instead of taking recourse to #ubtimnal rank based com-
parisons which involve comparing fused vectors for a largmiper of queries which,
in the present case, run into several thousands. In case® wiwe relevance factors
are involved (for example, search engines like Yahoo! andgBoweight hundreds of
factors to compute relevance [43]), for comparing two vasaof a particular factor, all
that is needed to be known is the fusion parametgfdr the factor under consideration.
That way, without knowing the weights for the remaining @astinvolved, or even what
the exact factors are, one may estimate the amount of dsgoedthat could result from

differences in the two variants of this single factor.

6.6.5 Uniformly Perceived versus Actual Scores

This experiment is aimed at measuring the similarity betwine uniformly perceived
and actual scores by computing the distande?, S). In other words, this is an attempt
to quantify how much information is lost by converting theoisgs to ranks. For this
purpose, the Economic Freedom Index (EFI) data set is chasemhich 20 states of

India were assigned a set of composite scores, and weredaakerdingly [40]. The
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Table 6.3: Economic Freedom Index for 20 States of India

Rank State EFI || Rank State EFI
1 Gujarat 0.40| 11 Orissa 0.32
2 Andhra Pradesh | 0.38| 12 Karnataka 0.31
3 Kerala 0.37| 13 Uttar Pradesh | 0.30
4 Chhattisgarh | 0.37| 14 West Bengal | 0.30
5 Tamil Nadu 0.37| 15 | Himachal Pradesh 0.30
6 Maharashtra | 0.37| 16 Jharkhand 0.29
7 Rajasthan 0.35| 17 Punjab 0.29
8 Haryana 0.35| 18 Uttaranchal 0.28
9 Madhya Pradesh| 0.33| 19 Bihar 0.26
10 | Jammu & Kashmir 0.33|| 20 Assam 0.22

data set is presented in Table 6.3.

For the EFI dataset, the distance between ranks and scotés3. In order to be
able to judge how good or how bad it is, we generated seveoat sectors (of size 20)
uniformly, and counted the number of times, a score vectdrahdistance of 11.36 or
more from the perceived score vector. The p-value turnsmhet0.12, which indicates
that only about 12% of score vectors are more separated freiperceived score vectors.
This, in turn, signifies that the scores in the EFI data senhatevery well represented
by the corresponding ranks (through the perceived scoiids).authors of [40] had ex-
pressed their opinion that the ranks did not represent thiesavell. The results of our

experiments now provide a quantitative evidence for theesam

The individual degrees of discordance for each pair of state displayed in Table
6.4. We have also computed the p-values for each of the shavicells. For each pair
of states, we count the number of randomly generated scotergewith a higher degree

of discordance for the same pair of states. All entries withdorresponding p-value less
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than0.05 are shown in bold, and there are 31 such values, which is a9t of the
total of 190 entries. It may be noted that the 31 entries il laoé not the largest entries
of Table 6.4. For example, the entry at positiéng) (0.12) is larger than that &8, 19)

(0.06), however, the former is more likely to occur than tuiéelr.

6.7 Conclusions and Future Work

The present chapter dealt with generalizing measures obiiance for the case when
the underlying scores are known. A metric has been providexmpare score vectors
directly. This metric turns out to be the Kendall distanceewla parametey, denoting
the ratio of fusing proportions, is large. Experiments ofimas kinds demonstrate the
wide range of theory and applications of the metric intragtlim the present work.
There is a tremendous scope for future work, including shglthe cases wherE is
assumed to arise from specific distributions, obtainingpitogerties such as maximum
and minimum ofD., (51, Ss) andD’;(Sl, Sy) for particular values ofy, and speeding up

the computation of the proposed metric.



Table 6.4: Degree of discordance between the actual andromyf perceived scores for each pair of states in the EFl sktta

State
State| 2 3 4 5 6 7 8 9 10 | 11 | 12 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | Total
1 0.05| 0.05| 0.01| 0.04 | 0.08 | 0.03| 0.06| 0.02| 0.05| 0.04 | 0.04| 0.03| 0.05| 0.06 | 0.05| 0.06| 0.05| 0.02| O 0.79
2 0 |0.05|0.09|0.13| 0.08| 0.11| 0.06 | 0.09 | 0.08 | 0.07 | 0.07 | 0.09 | 0.10 | 0.09| 0.10| 0.09| 0.05| O 1.42
3 0.05| 0.10| 0.15| 0.08 | 0.12 | 0.07 | 0.10| 0.09 | 0.08 | 0.07 | 0.10 | 0.12| 0.10| 0.12 | 0.10| 0.06 | 0.01 | 1.60
4 0.05| 0.10| 0.04 | 0.08 | 0.03| 0.07| 0.06 | 0.05| 0.05| 0.07 | 0.10 | 0.09| 0.10| 0.09| 0.05| O 1.15
5 0.05| 0.01| 0.04| 0.01| 0.03| 0.03| 0.02| 0.02| 0.05| 0.07 | 0.07 | 0.09| 0.08 | 0.04| 0.01| 0.88
6 0.05| 0.01| 0.05| 0.01| 0.01| 0.01| 0.01| 0.02| 0.05| 0.04 | 0.07 | 0.06 | 0.03| 0.02 | 0.94
7 0.05| 0.01| 0.04| 0.04 | 0.03| 0.03| 0.06 | 0.09| 0.08| 0.11 | 0.10| 0.06 | 0.01 | 0.99
8 0.05| 0.01| 0.01| 0.01| 0.01| 0.03| 0.06 | 0.05| 0.08 | 0.07| 0.04 | 0.03| 0.93
9 0.05| 0.05| 0.04| 0.04 | 0.08 | 0.11| 0.10| 0.13| 0.12| 0.07 | 0.01 | 1.11
10 0 |0.01|0.01|0.04|0.08|0.07|0.10| 0.09| 0.05| 0.04| 0.93
11 0 |001|0.04|0.08|0.08|0.11|0.10| 0.05| 0.04| 0.93
12 0 | 0.05|0.09|0.08|0.12|0.11| 0.06| 0.04 | 0.94
13 0.05| 0.10| 0.09 | 0.13| 0.12| 0.07 | 0.05| 0.95
14 0.05| 0.05| 0.09| 0.08 | 0.03 | 0.08| 1.09
15 0 | 0.05|0.04]001]|012| 1.39
16 0.05| 0.05| 0.01| 0.12| 1.28
17 0 | 0.05|0.17| 1.76
18 0.05| 0.18| 1.59
19 0.15| 0.96
20 1.08

IO\ 2ININH puUe SUOISN|IU0D /°9
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Chapter 7

Conclusions, Discussion and Scope for

Further Work

In every chapter we have presented conclusions drawn fremepective methodologies
developed and the experimental results therein. Here wgotidate them to provide an
overall picture of the contributions of the thesis.

Chapters 2 and 3 described the groundwork (preprocessinglofdata) that needs
to be performed before the task of modeling a surfer may bentalp. These chapters
involved preprocessing of the available hypertext data s#tich may then be used for
estimating the models provided in Chapters 4 and 5, and thegalin insights into a
surfer’s behavior. These insights may be utilized for tddespage ranking and catego-
rization. Chapter 6 deals with the analysis of different gagnking schemes.

In Chapter 2 we had described the design of a stemming algosithich uses the
classification information of a corpus to refine a given steamie had introduced a pro-
cedure similar to sequential hypothesis testing to idggfibups of words that would be
stemmed to the same stem. The main advantage over other sterlike co-occurrence
based stemmers is its ability to drastically reduce theahery size while maintaining
both the classification accuracy and retrieval precisione Juperiority of the proposed

methodology was experimentally demonstrated for the tadkxb categorization when
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Naive Bayes classifier, Support Vector Machines and Maximuntnopy Method based
classifier were used. This was also supported by precigicaHrbased evaluation. An-
other set of experiments performed on WSJ data set dematstiad enhancement in
retrieval precision when the refined stemmers were employsdad of existing stem-
mers. The performance of refinement done by employing tresifieation information
from a different corpus increased as the number of commordsiacreased.

Whereas Chapter 2 focused on preprocessing the textual tentelocuments, Chap-
ter 3 concentrated on preprocessing the documents basée bygerlink structure. We
have developed a novel methodology for the task of detestagiences of web pages.
Also, the importance of sequence detection has been higbtgextensively. With the
help of some examples,we have explained why deteaihgossible sequences (or cy-
cles) of web pages is neither feasible nor interesting. &mlosntly, we described the
sequences of interest, and then presented a methodologletiecting only the few in-
teresting sequences which were created to be traversedtiortfer. The proposed algo-
rithms SC1 and SC2 use varying levels of domain knowledge,ccodirms of assump-
tions on the sequences of interest, but essentially cafiteargame notion that consecutive
elements of a sequence have a constant relation between 8€identifies continu-
ity links in web pages, as well as, their positional inforimat and tracks sequences by
traversing pages through links with the same positionarmation. SC2, on the other
hand, operates directly on the URL list itself, identifyingnsecutive pages based on the
URL strings. Apart from providing the algorithms to deteajsences of web documents,

this chapter also highlighted some potential applicatieash having great value.

e Fair comparisonhas been thoroughly discussed in Chapter 3, and is intended to
tackle the possibility of a search engine being coaxed imbonpting the ranks of

irrelevant (or less relevant) pages.

e Duplicate detectioris an application with immense value. At the same time, it
presents great challenges, due to the very nature of hovembistmade available

over the Web. Detecting and removing duplicates would tesitiuge savings in
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storage requirements, and subsequently, on processiag tim

e Returning multiple pages as a single ressltanother interesting approach of in-
formation retrieval that comes out of Chapter 3. This entaiégching a single
guery across multiple documents. Present day search anigicle this capability
(except for adding the anchor text into the content of theedaging pointed to, in

the indexing phase) and hence, present a single page aslafora@oquery.

Experiments conducted on the Python, WB13 and WB1 corpora deratet the ef-
fectiveness of SC1 and SC2 in detecting sequences, and alsebtedelpow merging the
obtained sequences affects the term frequencies andestecsiment frequences for var-
ious terms present in the corpora.

We studied the page ranking problem from the surfer modglergpective in Chap-
ters 4 and 5. Both chapters, however, had different objectawnel had described attempts
at solving different problems.

Chapter 4 addressed the problem of modeling the inter-oelstiip between page cat-
egorization and ranking in terms of topic continuity. A nawfsr model, called the Topic
Continuity Model, was described. This model is based on tleenfme that a surfer’s
present and future locations are not independent of previoeations and the context
that can be inferred from the history of the surfer. At anyegitime point, the surfer is
assumed to be more likely to continue on the current topiotafrest, occasionally ven-
turing onto other topics, as in the real world. This incogimmn of topic continuity is a
unique feature of this methodology.

An offline algorithm developed for this purpose probahitiglly estimates the surfer’s
current topic of interest from his/her present locationwatl as, the history. In turn, the
locations likely to be visited next are based on the currapitctof interest, too. This re-
sulted in a scalable and convergent iterative procedutetbaides page categorizations
as well as ranking simultaneously. Consequently, the jaiibgbility matrix, whose en-
tries denoted the probability of a surfer simultaneouslingen a particular page and

having a particular topic of interest, contains a wealtmédimation in it. The marginal
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values of this matrix represent unconditional probaletit- the column totals denoting
the page ranks, and the row totals denoting the interespind@n the web. Similarly, di-
viding the entries of the matrix by the marginal values rssul conditional probabilities
— topic specific page ranks when divided by the row total, aagkpcategorization when

divided by the column total.

The novel theoretical formulation of fuzzy web surfer madel Chapter 5 addresses
a different concern, namely, that of providing stabilityth@ whole process of page rank
computing. These models integrate the existing work on wefesmodels and fuzzy
Markov chains defined on theax-min algebra. We have also provided a detailed section
on the motivation behind the need for fuzzy surfer model® dé&finition of FuzzRank is
a simple and elegant fuzzy counterpart of PageRank, whichisiedon the random surfer
model. Experimental results confirm that FuzzRank has venylai ranking properties,
and yet is more robust to noise. This robustness is a consegu# the tendency of
FuzzRank to avoid a strict ranking in the absence of strondeene to that effect. While
FuzzRank may result in a large number of ties if this were the saterion for ranking
web pages, given that several other factors, like queryaalee, would be considered
during the ranking process, the ability to consistentlykrdre pages in the presence of

noise is an advantage.

The final contributory chapter (Chapter 6) is a culminatiothdd thesis, and involves
comparing page ranking methodologies. It dealt with gdizmg measures of discor-
dance for the case when the underlying scores are known. Acniiets been provided
to compare score vectors directly. This metric turns outedhe Kendall distance when
a parametefy, denoting the ratio of fusing proportions, is large. Expexnts of various

kinds demonstrated the wide range of applications of thigime
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7.1 Scope for Further Research

In this section, we discuss the scope for future work rel&tetie contributions made in
the thesis.
Chapter 3 highlighted the applications of sequence detectiaturally, it would be

apt to have implementations that realize these applicatiohis includes development of

e Ranking algorithms that can consistenty compare contentheher not it is dis-

tributed across multiple pages,

e Algorithms for detecting duplicate and near duplicate eahtn a manner insensi-

tive to the presentation styles, and

e Search engines capable of returning multiple pages as ke segylt. If individual
parts of a query match different pages in a sequence, themeebe presented a

sequence of web pages to be visited for satisfying his/Hernmation need.

Also, another line of research arising out of the work on sege detection would be to
identify multi-level sequences, that is, sequences whagepare at varying depths. As
an analogy, we have looked at various sections, and havéfiddrihe chapters that are
made up of these sections. As a next step, some of these chapg be identified to
constitute a book.

While the simultaneous estimation of page ranking and categgmn in Chapter 4 is
an advantage of the topic continuity model, a theoreticabpof convergence evades us.
Such a theoretical proof, if it exists, would guarantee thgepvations made experimen-
tally.

Although we had presented experimental results only foepagking and categoriza-
tion, the topic continuity model can be made applicable dpid-sensitive page ranking
and topic representation on the web, too. Also, since thanpaiere may be modified
to accommodate the curiosity factor of an individual, eaicthhe above applications may

be personalized. Similarly, it has been assumed that abketapic transitions are equally
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likely. In reality that may not be the case, mostly becauseestopics are more related
while others are not. This indicates thdtself might have to be varied for each topic-topic
pair.

The topic continuity model presented in this chapter didinciude the random jump
factor. Recently, Niet al[105], introduced another topic continuity model that irpm
rates the random jump factor. This factor may be incorpdrate similar manner in our
model, too.

All the above enhancements to the model would further irsrd¢he computational
load, and, consequently, it is imperative to have more efiicalgorithms for obtaining
the joint probability matrix. One may aim for a reduction lietcomplexity for obtaining
the matrix by either trying to provide a variant of the topantinuity model that is easier
to compute, or by employing some approximation algorithms.

Theoretical investigations into the properties of the fuizansition matrix, and fuzzy
Markov chains, in general, may yield significant insightsaiconvergence of the itera-
tive procedure, ergodicity, sensitivity to noise, and éeithplementation.

There is a tremendous scope for future work based on the gjezagion of Kendall

distance introduced in Chapter 6.

e One may study the cases whdras assumed to arise from specific distributions.
While we have restricted ourselves to the Uniform distrimitiwhich is reasonable
under various assumptions, there may be particular caseeWhs known to have
a different distribution, say Gaussian, or perhaps, a Ptavedistribution. We
believe this additional knowledge may be incorporated theoformulation of the

metric to obtain more appropriate distance measures.

e Obtaining the properties such as maximum and minimumDofS;, S;) and
D,’j(Sl,Sg) for particular values ofy is another theoretically challenging work.
These properties shall help in normalization of the metnd ahall be useful for

obtaining distance values that are independent of the nuaflitems being scored.
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e Speeding up the computation of the proposed metric is a veppitant aspect.
Any speedup would have many implications on various exgséilgorithms in the
literature. For example, it might result in better and faslgorithms for rank ag-

gregation.

Integrating all the methodologies presented in this thesisld be an interesting task
to do. This would mean building an intelligent web-basedd®aystem that preprocesses
the available data sets, obtains model estimates from tbempares several variants of

the models, extracts useful information, and ultimatebates a rich user experience.
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Appendix A

Additional Results on Classification

Performance from Chapter 2

In Tables 2.5 and 2.6 of Section 2.6.4, we had provided theraces obtained with the
classification method chosen to be NaiveBayes, SVM and Matowever, for want of

space, only two precision-recall plots, correspondingao/BBayes, were provided there.
We now provide more precision-recall plots portraying tim@ioved performance by the
distribution based stemmer over other stemmers. It may bedrtbat the observations

made and conclusions drawn in Section 2.6.4 were based qidiseavailable here too.
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Appendix B
Computation of D%(SY, S5, )

We shall now evaluate the integrals in Egs. 6.26—6.28. Wk déaotes;; — s;; by a in
the rest of this article. (This is not an indication thatvould appear as the lower limit
of the integrals, though, it sometimes may). In order to e the integrals, we shall

repeatedly employ the following techniques:

e Split the region of integration into the positive and negatialf-lines, so thaf (z)

may be determined.
e Split the integrals to determine the upper and lower limits.
e Convertintegrals of the king” to [’ — [* (if a > 0) or [/ + [ (if a < 0).
Also, we shall drop the referencesdo, S,, SF and.Ss as they are clear from the context.

Case 2 In order to be able to evaluate the integral in Eq. 6.26,needs to know the

answers to the following questions:
— Whethera < s9; — y: The answer to this question determines the limits of
integration.

— Whethera < 0: It is already known thaty; — y > 0. So, ifa < 0, then

min{a, so; — y} = a, and the limits of integration are known. Moreover, if
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a > 0, f(x) could be replaced by — x throughout, whereas, if < 0, f(x) is
1+ zin(a,0)andl — z in [0, min{y(s2% —y), 1}).

— Whether—1 < ~va < 1: If ~a is the lower limit of the integration, then
if va < —1, itis replaced by-1 and if it is greater than, then the integral
become9. Similarly, if va is the upper limit of the integration, themjti > 1,

it is replaced byi and ifya < —1, then the integral become@s

— Whether—1 < v(sy; —y) < 1. The previous observation holds again wjih
replaced byy(sa; — ).

We break up the present case into four sub-cases, wherelahtive questions may

be answered better in each of the individual sub-cases.

Case 2au < 0. S0,va < 0 < y(s9; — Sox) < Y(82; — Y) < YSa;-

ED,(i.j)

s2k v(s2i—Yy)
- e |
S2k va
= / / - d:pdy+—/ /f )dx dy
Sok Sok

= 12(522752k7 )+Il(_7 )7

where

12(82“ Sk, ’7

321 y)
= / / (1 —z)dzx dy
Sok
4

SQkfol—:cdxdy if y> 1

52i—S2k

52k
E {fosm v fo (1 —x)dz dy

+ fSQk 07(521'—2!)(1 _ $)d$ dy if L <7y< 1

522_7 $2i =82k

o O] (o2i= 1 — z)dx dy 0.W.
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1 : 1
5 If ’)/ Z 8§24 82k
ﬁ <32i o % o 7(S2i - S2k>2 <1 . "/(821'3—321@))) |f é < v < SQiES%
% (2821' — Sgk) — %2 (38%1 — 389;S91, + S%k) O0.W.
(B.1)
and/, is as defined in Eq. 6.12.
Case 2b0 < a < s9; — S9. S0,a < S9; — Y
ED’Y(Z7J)
sk v(s2i—Yy)
- [ / f(x)da | dy
0 82]€ ya
322 ya
= / / dxdy——/ / f(z)dz dy
S2k S2k
= [2(52z732k77) _[1< 77)7 (BZ)

wherel, and/, are as defined earlier.

Case 2Cisg; — sop < @ < S9; SO,min{a, s9; —y} equalse if y < s9; —a, andsg; —y

otherwise.

ED, (i, j)

s2i—a  ry(s2i—y)
— / 1—xda:dy+—/ / (1 —=x)dx dy
32k 0 ya S2k Jszi—a (82—
§2;—a 52L
— / 1 (1 —z)dx dy — / (1 —2z)dx dy
32k 0 0 0
v(s2i—y
/ 1—:dedy—/ 1—xdxdy
82]€ S2i—a 0 0
§2;—a 521
— / 1—x)da:dy / (1 —z)dx dy
52k 0 0 0
v(s2i—y)
/ (1 —2x)dx dy — / (1 —z)dzx dy
52k 0 0 0

sai—a  py(s2i—y)
= = 1—x)dxdy——(821 >-71(
Sok S2k
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+ Ii(a,y) — I (S2, Sok, V)

2(s89; — a
- | i : (L2(2i, 820 — a,y) — h(a, 7)) + Th(a,7) — Ta(s2i, 52k, 7XB.3)
2k

Case 2du > sy; Thus,max{a, se; — y} equalsa, and we have

ED,(i.j)

S2k 1 ya
= / —(/ (1—x)dx)dy
0 S2k v(s82i—y)

= [1(@, 7) - IQ<32’£7 S2k; ’y)a

Case 3: Theintegral in Eq. 6.27 is relatively easier to evaluzettingy = s,; andz = sy;,
and noting that—s,; < 0 < sy;,—y, the expected value of the degree of discordance

may be computed as

D’j(Sf, S¥.i,j) = ED 4(S1, 521, 7)

Y(s1i—y)

= / / / f(x)dx | dz dy

Slk82k ’\/(Z 323)
S1k Sok 1 (Sli_y) 0

= / / / (1—as)da:+/ (1+z)dzr | dz dy
S1k52k (z—s25)
Y(s1i—y

= / / 1—xd1:dy—i——/ / (1+z)dzx dz

S1k S2k (z— SQJ)

= Ir(S1, S1k:7Y) + L2(52i, Sok, ) (B.4)

Case 4: To evaluate the expectation in Eqg. 6.28, we shallte@itase into two sub-cases.
Let us denotes,; andsy; by y andz, respectively, and without loss of generality,

assume that > 0.

Case 4au < sq9;. The intervals of integration are split into regions where€ y — z

anda > y — z, respectively. Thus, Eqg. 6.28 may be rewritten as

max{ya,y(y—2)}
/ / / f(z)dz dz dy
SQk min{vya,y(y—z)}

ED,(
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= / / / x)dx dz dy
S51 Y(y—2)
(y—=2) sok [@
/ / z)dr dz + / / f(z)dx dz | dy
52k; y—a Jy(y—2)
= i (// 1—xd:1:dz+/ / dxdz)dy
Sok Jo Y(y—=z)
1 yma
T/ / / l—mdxdz—i-/ / (1 —z)dx dz
2k y—a Jy(y—=z)
—i—/ / f(z)dx dz) dy
Yy Y¥(y—=)
1 a Yy va y(y—=2)
= / / (1 —z)dx —/ (1 —z)dx | dz
Sk Jo 0 0 0
S2k ya 0
+ / ( (1 —x)dx + / (1+ x)dm) dz) dy
Y 0 Y(y—=2)
1 s2k y—a ¥(y—=2) va
+— / / (1 —2z)de — / (1—x)dx | dz
Sk Ja 0 0 0
Yy va Y(y—=2)
+ / </ (1 —2z)de — / (1— x)dx)dz)
y—a 0 0
Sok ya 0
+ / (/ (1 —2z)dx +/ (1+ x)dx) dz) dy
Y 0 Y(y—=2)
1 S2k S2k ya S2k Yy—a ya
= T(/ / / (1—x)dxdzdy—2/ / / (1—x)dxdzdy)
Sak \Jo 0 0 a 0 0
1 sok  fS2k 0
+T/ / / (14 z)dz dz dy
Sk Jo y Y(y—=2)
1 sor ry—a  y(y—=2)
+— / / / (1 —z)dr dz dy
Sok 0
v(y—=2) y z)
// (1 —2)dx dz dy — / / / (1 —2)dz dz dy
0 0 0 y—a

(SQk - a) ]1 (CL, ’7)
S5k

Sok—Y U
/ / / (1 —z)dzx du dy
SQk
yu
(/ // 1—:cdxdudy—2/// (1 —z)dx du dy
52k;

CIJ

= N(a) -
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Yu
—2/ / / 1—a:dxdudy)
y—a

Sop — @
= Li(a,vy) — %8—)11( v) + 213(sok, Sak,Y) — 215(a, Sok, )
2%

_2I4<a782k77)7 (B5)

where,

]3(a732ka’7) - S / / / 1 —l’ dCC du dy
Qk

skfofo —72“>dudy if ~va<1
2

b
2, fo fo 1( U= 722112) du dy

f%fl Jo (7u—¥> du dy 0.W.
2k %
1 ra (y1

(1= it o<1

1 1 1 1
@<W—l—<a—;> (a—|—5>> 0.W.

and
Ii(a, sar, ) = / / / (1 - z)dz du dy
82k
=25
- 2240 (fo (fyu - —) du dy + f 1du dy) 0.W.
2k
828162 ava (1 _ ) if ya <1
— 2k
82:%:1 (CL _ %) 0.W.

Case 4bu > sy;.

sak /Y [ s2p e
(/ / (1 —2z)dxdz+ / / f(z)dx dz> dy
0 Jy(y—=2) Y Y(y—2)
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Y(y—=2)
= / / / (1—2) da:—/ (1 —z)dz | dzdy
S 0
0
/ / (/ (1 —x)dx + / (1+ :L’)dx> dzdy
S2k v(y—=2)
S2k va
= / / / (1 —2)dzx dzdy
SQk
(y—2)
/ // 1—xdx—|——/ / / (14 z)dz dz dy
SQk S Y(y—=2)

- ]1(@,7) - ]3(52k782k7 ) + -[3(82k7 Sok, Y ) - Il (B 6)
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