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Chapter 1

Introduction and Scope of the Thesis

1.1 Introduction

The World Wide Web [12] (usually referred to as theWeb, WWWor W3) is an enormous

collection of data available over theInternet, which is a vast network of computers. It was

created in the year 1990 by Tim Berners-Lee, while he worked atCERN, Switzerland, and

was made available over the Internet in 1991. The World Wide Web Consortium [136]

authoritatively defines the Web as “the universe of network-accessible information, the

embodiment of human knowledge”. The Web consists of objects, also called documents

or pages in a generic sense, that are identified using a Uniform Resource Identifier (URI),

or what has more popularly come to be known as the Uniform Resource Locator (URL),

and these objects are connected to each other by means ofhyperlinks. This interlinked

nature of the Web distinguishes it from text corpora and other such collections.

The Web is a rapidly changing and expanding resource, and over the years, it has

seen a phenomenal growth in both its size and diversity. Starting from a single web

site (info.cern.ch) in 1990, it is now made up of millions of web sites. Currently,

the indexable Web itself consists of billions of heterogeneous documents — in the year

2005, Yahoo! [145] had announced to have indexedover 20 billiondocuments [146], and

Google [52] countered this statement by claiming to have indexedat least thrice as many
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documents than that [53]. These are all under-estimates, asthey take into account only

what has been crawled, and the true size of the Web isunknown.

There are a wide variety of data sources that contribute to the richness of the Web. We

list a few of these so that one may gauge the root of the heterogeneous nature of the Web:

• Content created for the Web, and published by the authors: This is usually made up

of textual (in either text or HTML formats), image, audio, orvideo content, and is

generally created and distributed by professionals.

• Content created for other purposes, and now made available onthe Web: Examples

include music, movies, and printed books.

• Public mailing lists and discussion forums: A lot of knowledge as well as entertain-

ing articles are shared in this form.

• User generated content: This recent phenomenon is about content being generated

by end-users, as opposed to professionals, and is changing the very face of the web.

This includes images, audio and video submitted by users of web sites and blogs.

• The deep web: This refers to content that is generated on the fly, and is generally not

indexed by search engines. New content that is being generated may be in response

to some user input (explicit inputs may be user’s identity orquery terms, while

implicit input could be geographic location of the user’s IPor browsing context), or

may depend on other factors (examples include time and changes in other parts of

the Web).

• Activity logs: While the earlier data sources were explicitly created by authors

and visitors of web sites, their activity itself, when recorded and stored, constitutes

another type of web data. In a sense, every action on the web, be it viewing a web

page, writing a mail, or uploading an image, to name a few, generates new content.

Of course, not all of this may be stored for a long period or be made publicly

available.
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The size and heterogeneity of the Web present immense challenges for knowledge

discovery. Knowledge discovery in databases (KDD) [49] is aimed at discovering natural

and interesting structures within such massive and often heterogeneous data. KDD stands

on the shoulders of the giant literature inPattern Recognition( [41,45,51,116], to name a

few) which predates the existence and availability of massive databases. However, KDD

is being visualized as not just being capable of knowledge discovery using generalizations

and magnifications of existing and new pattern recognition algorithms, but also the adap-

tation of these algorithms to enable them to process such data, the storage and accessing

of the data, its preprocessing and cleaning, interpretation, visualization and application of

the results, and the modeling and support of the overall human-machine interaction.

Data mining [56, 114] is that part of knowledge discovery which deals with the pro-

cess of identifying valid, novel, potentially useful, and ultimately understandable patterns

in data, and excludes the knowledge interpretation part of KDD. Data mining refers to

data in a general sense, and the basic techniques are applicable to various domains such

as text, web, or biological data, where one may make use of additional domain-specific

knowledge.Web miningis data mining for the web domain, and is defined as the extrac-

tion of interesting and potentially useful patterns and knowledge from objects or activity

on the Web.

Web mining tasks include page summarization, ranking, categorization and cluster-

ing, user modeling, and personalization. Among these, pageranking is one of the most

important tasks, whereby each web page is assigned a score reflecting something like the

popularity or authority of the page. Most present day page ranking algorithms are vari-

ants/combinations of the earliest page ranking algorithms, HITS and PageRank, which

were both developed around 1998 and had adapted bibliometric and sociometric ideas to

the Web. Interestingly, both HITS and PageRank model the Web as a directed graph, and

fall under the category of link analysis algorithms. Moreover, both HITS and PageRank

algorithms may be interpreted as surfer models which study the long term behavior of a

web surfer under various assumptions of traversing the set of available web pages.
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The objective of this thesis is to present the results of someinvestigations, both the-

oretical and experimental, addressing certain tasks essential for surfer modeling, page

ranking, and web mining, in general. Tasks considered include preprocessing text and

links in web document collections, providing new and bettersurfer models, and compar-

ing ranking algorithms. Before we describe the scope of the thesis, we provide a brief

review of web mining, surfer models, and page ranking, a discussion on some challenges

involved, and possible solutions.

Section 1.2 presents a brief overview of web mining and page ranking. Section 1.3

discusses the Web in a graph theoretic framework. We then study web surfer models in

Section 1.4. Preprocessing web data and comparing ranking algorithms are discussed in

Sections 1.5 and 1.6, respectively. The scope of the thesis is presented in Section 1.7.

1.2 Web Mining and Page Ranking

Web miningdeals with the application of data mining techniques on dataavailable from

the Web. There are roughly three knowledge discovery domains that pertain to web min-

ing: Web Content Mining, Web Structure Mining, and Web Usage Mining [26,76,91].

Web content mining [76, 91] is the process of extracting knowledge from the content

of documents or their descriptions. The heterogeneous and semi-structured nature of the

ever expanding information sources on the Web makes automated discovery, organization,

and management of Web-based information difficult. Content mining tasks include page

classification, clustering, summarization and relevance computation.

Web structure mining [26,76] is the process of inferring knowledge from the intercon-

nections of the Web documents induced by the hyperlinks between them. The existence

of link-based information distinguishes Web document collections from text corpora, as

hyperlinks induce relations between the linked documents.Page ranking and detecting

communities are two of the most common structure mining tasks. Web content mining

and web structure mining, when used together, produce powerful methods of analyzing
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Figure 1.1: Anatomy of a large-scale hypertext search engine [22]

web data. Page ranking, classification and clustering are all prime examples of tasks that

benefit from the marriage of web content and structure mining.

Web usage mining [33,91] attempts to discover useful knowledge from the secondary

data obtained from the interactions of the users with the Web. As users browse the Web,

foraging for information, they leave behind valuable information in terms of their online

behavior. This information may be utilized to improve the capability of the servers to

better satisfy their users. For example, understanding user behavior may help in site re-

organization and personalization.

We now elaborate upon page ranking which is one of the most important and complex

web mining tasks. When a user searches the Web with a query, a lot of pages may contain

or match the query, but only a few would be interesting and relevant to the user. Obtaining

scores to be used for ordering these web pages and placing themost relevant results at the

top, is known as page ranking. Fig. 1.1 shows where page ranking fits in the architecture

of search engines [22].

Ordering on keyword based relevance has been widely studiedin text mining and may

be easily extended to the Web. However, new challenges appear in the web scenario,
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because unlike text collections, the Web may contain a lot ofspam. Web page authors

may deliberately insert irrelevant or catchy keywords intotheir content, in an effort to

entice search engines to regard their pages as more relevantfor certain queries. Thus,

page ranking has to consider other measures such as popularity, authority, trust,etc.along

with relevance so that the “best” results appear at the top.

Several notions of popularity or authority are available inthe literature, and are based

on the link structure of the Web, where a link is assumed to be avote by the originating

page in favor of the destination page. The indegree algorithm [134] rated a page highly if

several pages pointed to it. Again, this algorithm may be easily manipulated by creating

a network of pages, with each page pointing to all the rest. Brin and Page [22] came

up with a normalized version of this algorithm whereby each page could obtain a certain

number of votes from its predecessors, and redistribute it equally into all its successors.

This simple algorithm, called PageRank, performs well enough to be used by the biggest

search engines.

1.3 The Web as a Graph

Both Web content mining and Web structure mining may be studied simultaneously by

treating the Web as a directed graph, with the documents forming the vertices and the

hyperlinks between them considered to be the arcs of the digraph. Broderet al [23] had

studied a huge set of web pages crawled by the AltaVista search engine, and found some

surprising properties regarding the structure of the Web. Their crawl had consisted of

about 200 million pages, and 1.5 billion links. The pages were divided into roughly four

equal parts:

• A Strongly Connected Component (SCC), where all the pages are reachable from

each other.

• IN, containing pages that lead to the SCC but cannot be reachedfrom it.
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Figure 1.2: Bow-tie structure of the web digraph [23]

• OUT, containing pages that can be reached from the SCC but do not lead back to it.

• Tendrils, which consists of pages that can neither be reached from the SCC nor lead

to the SCC.

Apart from these, there are some small disconnected components. Fig. 1.2 shows the

structure of the Web as depicted in [23], which eventually came to be known as thebow

tie structure.

Modeling the Web as a graph helps us utlize the abundant graphtheoretic literature

for understanding various properties of the Web. Interesting properties of the graph are

extracted by studying the access patterns of the nodes by real users. For example, if a page

is accessed more frequently than another page, the first pagemay be called more popular

than the second one. Often, instead of observing the user directly, it is easier to create a

model of her surfing behavior. These models, known as surfer models, assist in educing
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useful information from the given web data. The next sectionprovides a brief description

of surfer models, their theoretical background, some existing models, and applications.

1.4 Web Surfer Models

Surfer models model a user who browses the Web by consideringthe surfer’s behavior

to be a random walk on the web graph. The surfer is assumed to beclicking on links or

typing URLs to move on to new pages. With time, the state of the surfer keeps changing,

and this behavior may be treated as a stochastic process. At each time point (t), a snapshot

of her behavior, which is the state she is in att, is available. This process is, generally,

assumed to satisfy the Markov property, which means that thepresent behavior of the

surfer does not depend on past history (i.e., beyond a certain point back in time). Also,

it is assumed that the behavior of the surfer is time-invariant, i.e., given her current state,

the same behavior would be expected irrespective of the timeat which this state has been

achieved.

A brief note about the notion of time is in order here. When modeling the surfing

behavior of a user, the concept of time (t) may be considered in two different ways. One

way is to treat the total time since the surfer has started surfing as the timet, resulting in

a continuous stochastic process. The other is to consider the number of pages (including

repetitions) the surfer has traversed before reaching the current page, and thus, the time

is discrete. Generally, it is the second one that is more in use, perhaps due to the ease of

observing it through the explicit actions (clicks) of the surfer.

This discrete sequence of states being traversed by the surfer, is a random walk on

the web graph, and gives rise to a stochastic process{Xt} which denotes the state the

surfer is on at timet. The state of the user may be defined, as the situation demands,

to be the web page she is currently browsing, her topic of interest at that moment,etc..

The objective is to study this model from various angles, findinteresting properties, and

make appropriate interpretations about web users without involving real users directly.
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This serves as an alternative to observing real surfers which is a rather complex and time

consuming task, and involves issues like preserving privacy of individual users. Moreover,

such information may turn out to be noisy or biased and may notbe applicable to an

average or particular individual browsing the web.

These models make extensive use of Markov chain theory, which we briefly describe

now.

1.4.1 Markov Chain Theory

In this section, we review some elementary properties of Markov chains which would

be useful from the point of view of surfer models. For a more detailed treatment of the

subject of Markov chains, one may refer to [67].

A Markov chain is a sequence of random variablesX0, X1, X2, . . ., satisfying the

Markov property, namely, given the present state, the future and past states are indepen-

dent. The set of all states that the random variables may assume is called thestate space,

and is denoted byS. In the whole of this thesis, the state space being considered is fi-

nite. Also, the chain is assumed to be time-invariant, meaning that the random variable

Xn+1|Xn is independent ofn. This is also known as the memorylessness property. Thus,

the probabilities for a transition from a statei to statej may be specified without referring

to the time points. A matrix whose(i, j)th entry corresponds to the probability of a tran-

sition from theith state tojth state is called the transition probability matrix. This matrix

determines the Markov chain, and thereby, all its properties.

A Markov chain is irreducible if any state is reachable from any other state. A set

of states is called closed if no state outside it can be reached from a state within it. For

an irreducible Markov chain, no proper subset ofS is closed. A state is recurrent if the

chain would surely return to that state again in finite time. All states of a finite irreducible

Markov chain are recurrent.

A recurrent state is called periodic if it is impossible to return to the state except

at regular intervals. A state is aperiodic if it is not periodic, in which case, beyond a
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sufficiently long period of time, it is possible to be in that state for any time point. A

Markov chain is aperiodic if all its states are so. If one state of an irreducible Markov

chain is aperiodic, then so are all the other states, and thusthe chain itself is aperiodic.

A finite, irreducible and aperiodic Markov chain has a uniquestationary distribution,

meaning that the probability of the chain being in a given state converges with time to a

unique number. The convergence is a consequence of aperiodicity (for the probabilities

would have been oscillating if a state were periodic), whereas, the uniqueness results from

irreducibility, and thereby, whichever state the chain starts from, it would always converge

to the same distribution. The stationary distribution represents the long term behavior of

the chain and smooths out any initial biases or preferences.

We shall also describe Fuzzy Markov chains which have been studied in the present

thesis as a robust alternative to the classical Markov chains based on probabilistic transi-

tion matrices. Fuzzy Markov chains are similar to the classical Markov chains but operate

on the fuzzy algebra instead of the classical algebra. Whereas we have the usual addition

and multiplication on the classical algebra, these operations are changed tomax andmin,

respectively, in the fuzzy algebra. That is why fuzzy algebra is also known asmax-min

algebra.

The fuzzy counterparts of transition matrix, stationary distribution, etc.are defined

similar to those in the classical case [4]. For example, in the fuzzy case, the transition

matrix contains fuzzy numbers [4], instead of probabilities. The(i, j)th element of this

matrix denotes the belief (as opposed to the probability) ofmaking a transition to state

j when on statei. It is known that minor changes in the probabilistic transition matrices

may result in big differences in the limiting distributions, whereas fuzzy Markov chains

are more robust to changes in the entries of the transition matrix [4].

While classical Markov chains have been in use since being introduced in 1906 by A.

A. Markov [10], Fuzzy Markov chains are relatively recent, first appearing in [79]. While

there is a rich literature dealing with the various properties of fuzzy Markov chains, a few

properties regarding counterparts of classical Markov chains still remain unknown. For
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example, the conditions for regularity of fuzzy Markov chains still remain elusive.

We now elaborate on how surfer models may be viewed as Markov chains.

1.4.2 Surfer Models as Markov Chains

In order to cast surfer models as Markov chains, we would needto make the correspon-

dences between the two definitions. The state of the chain is simply the state of the user.

However, as mentioned earlier in Section 1.4, the definitionof the state of the user may

be varied to accommodate whatever features of the user one istrying to study.

Once the state space is fixed, all that needs to be done is to define a transition matrix.

This is a crucial step where one tries to incorporate all available domain knowledge about

surfing patterns with the objective of providing a model veryclose to reality. The(i, j)th

entry of the transition matrix is determined by what is deemed to be the probability or

belief value of moving on to thejth web page given that the surfer is presently on the

ith page. The computation of this probability may take into consideration several factors

like the content and link structure of these two and other pages, the total number of pages

available, topics of interest, preferences of users, and any other assumptions being made

on the movement of the surfer.

Now that one can cast the surfer model as a Markov chain, therehas to be a system

of interpreting the results obtained in terms of the properties of the chain. A visit of the

chain to a particular state may be thought of as a visit of the surfer onto the corresponding

web document. Similar interpretations may be made regarding the frequency of visits,

especially, after the chain has run for a long time. The stationary distribution of the

chain assigns a probability value to each state, and these values can be thought of as

the (unconditional, time-independent) probability of a surfer being on the corresponding

states.

In the case where the surfing pattern is being modeled as a classical Markov chain,

for the stationary distribution to exist and be unique, one has to ensure irreducibility and

aperiodicity. Surfer models can achieve aperiodicity easily. If a surfer is allowed to stay
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on the same state (i.e., the transition does not change her state), then the probability of

being on that state at any time point (after a sufficiently long time) is non-zero. Of course,

for the previous statement to hold regardless of the initialstate of the surfer, it is being

assumed that the chain is irreducible.

Guaranteeing irreducibility of the chain is not as straightforward as ensuring aperiod-

icity. The questions that need to be taken care of are as follows:

• What does a surfer do when she reaches a node with no outgoing arcs?

• How can she be sure of reaching each state in the state space? In other words, how

can she be sure of not getting trapped in a closed subset of states?

Nodes with no outgoing arcs are called dangling nodes. When a surfer lands on a dangling

node, she is allowed to move on to any of the available nodes. This means that artificial

arcs are added to dangling nodes (and they are no longer dangling). Interestingly, if

the surfer is allowed to jump from any node to any other node, irreducibility is assured.

Intuitively, this indicates that the surfer may always chose, with some probability, to jump

to a new random URL instead of following one of the outlinks.

Thus, we see that, specifying a surfer model involves deciding upon how the transi-

tions are allowed to take place, subject to the constraints of irreducibility and aperiodicity.

We now describe some such existing models.

1.4.3 Existing Models

Several surfer models have been introduced over the past decade, of which the random

surfer model is widely used. In the random surfer model, the surfer is assumed to be mov-

ing on to new pages at random by clicking on the links of the current page, occasionally

choosing to jump to a new page. This extremely simplistic andeasy-to-interpret model

captures what is meant by the popularity of a page, and is at the core of the immensely

popular PageRank algorithm.
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Another surfer model that has spawned several variants is the directed surfer model

[123]. The random surfer model assumes that the surfer is browsing web pages at random

by either following a link from the current page chosen uniformly at random or by typing

its URL. On the contrary, the directed surfer model assumes that, when the surfer is at any

page, she jumps to only one of those pages that are relevant tothe context, the probability

of which is proportional to the relevance of each outlink. Both models guarantee the

convergence of this stochastic process to a stationary distribution under mild assumptions

like the irreducibility of the transition probability matrix. In practice, these assumptions

are enforced by pruning or ignoring some links.

SALSA [86] presents a surfer model interpretation of the HITS algorithm [73], and

involves transforming the web graph into a bipartite graph.Here the(i, j)th element of

the transition matrix is defined to be the probability of reaching j from i by going, at

random, to one of the pages linking toi and then choosing one of the links available on

that page, again, at random.

1.5 Preprocessing Web Data

Preprocessing is an important step for mining tasks, whereby, the features of a data set

are modified so as to make information extraction reliable and convenient. Preprocessing

is necessitated due to one or more of the following reasons [132]:

• presence of noise in data: noise may disturb the informationextraction process by

making the data less than ideal.

• sparsity of data: this results in a lack of information regarding certain portions of

the data space, and consequently, inference cannot be generalized easily to unseen

examples.

For web data, there are two aspects in this regard: text preprocessing and link preprocess-

ing.
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1.5.1 Text based Preprocessing

Textual content may be noisy due to various reasons [139], some of them being:

• Words spelt wrongly or in an alternate way

• Presence of synonyms, homonyms,etc.

• Presence of stopwords or irrelevant words

• Use of several related but different words

• Presence of unexpected or foreign words

• Improperly formed or unclosed tags

Each one needs to be treated in its own way as they would otherwise interfere in basic

tasks such as tokenizing, indexing, and retrieval. Misspelt words and word variants may

be detected using a pre-defined dictionary, and corrected using either a table lookup, or

choosing valid words with a small edit distance from these words [80]. Stopwords may

be removed by using an exclusion list [126], though in some studies, they are retained

because of the value they provide in terms of context [89]. Similarly, some studies (e.g.,

[125]) ignore HTML tags for the sake of simplicity, while others (e.g., [87]) retain them

because of the richness they provide to the textual contents. Taking care of related words

is probably the most difficult and challenging part of preprocessing text data. Part of the

challenge lies in defining what “related” means, and the other part is to find groups of

words which can be clubbed together.

1.5.2 Link based Preprocessing

Link preprocessing [91] is an extremely important step for link analysis algorithms. For

example, ignoring all links between pages in the same domainwould yield vastly different

results than what one would have obtained when all those links were included. Detecting



1.6 Quantitative Comparison of Score based Ranking Schemes 15

and removing noise introduced by hyperlinks is a more complex task than the correspond-

ing operation for textual content. Apart from the presence of dead hyperlinks(that is, links

to non-existent web pages), links toirrelevant contentis a major cause of web page noise.

Judging which links lead to irrelevant content is a difficultjob because of the variety of

roles that hyperlinks play. Also, the very notion of relevance may change over time, one

of the reasons being that the target page has changed since the link was created. Apart

from noisy links, there are links which are deliberately introduced for spamming search

engines. Detecting and fighting link spam is a major field of study on its own.

1.6 Quantitative Comparison of Score based Ranking

Schemes

Once we have competing surfer models or page rank algorithmsthat produce score vec-

tors for the set of available documents, one may want to find how different the alternatives

are. For this particular case, there are two possible ways ofcomparison, namely, score

based and rank based [122]. Score based methods compare the underlying scores directly,

without considering the impact on ranking. Rank based methods first compute the rank-

ings induced by the scores, and then compare only the rankings, while ignoring the scores

totally.

1.6.1 Score Based Comparison

Score based comparison is usually performed by computing either the dissimilarity or the

similarity between the two vectors. Measures such as the Minkowski distance of orderp

(popular choices ofp being 1, 2, and∞, which result in the Manhattan, Euclidean and

Chebyshev distances, respectively) measure the dissimilarity, whereas, correlation and the

cosine of the two vectors measure similarity between them.
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1.6.2 Rank Based Comparison

Rank based comparison, on the other hand, is performed by firstconverting the scores into

the corresponding rankings and then computing similarity or dissimilarity between the

rank vectors. Once again, the Minkowski distances or the usual correlation measures may

be computed on the rank vectors, resulting in measures such as Spearman’s footrule and

Spearman’s correlation. Moreover, one may also make use of the concepts of concordance

and discordance [32] to compute the Kendall distance (also known as Kemeny distance

or bubble sort distance) between the two rank vectors.

As noted earlier, existing score based, as well as, rank based comparison methods

work in isolation, and either neglect the ranking perspective, or ignore the additional

information contained in scores.

1.6.3 Rank Fusion and Score Fusion

Given multiple sets of ranks or scores for the web documents under consideration, fu-

sion is the process of combining them to obtain a single set ofranks or scores. Rank

fusion [100,130], also known as rank aggregation [46,151],obtains a consensus ranking

from the available ranked lists. These lists need not be fulllists, making rank fusion a

very challenging problem. Score fusion, on the other hand, combines the scores directly,

in order to produce a consensus score vector, on which the final ranking may be based

upon. Two of the standard score fusion techniques are CombSUM(a simple average) and

CombMNZ (a weighted average) [83,122].

1.7 Organization and Scope of the Thesis

The present thesis provides some new results of investigation, both theoretical and ex-

perimental, concerning certain tasks related to Web surfermodeling. The tasks include

text and link preprocessing, page ranking, page categorization and quantitative evalua-
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tion. Methodologies developed are based on both classical probability theory and fuzzy

logic, to model surfing patterns, and they provide a strong mathematical framework for

comparing them on the basis of the resultant page ranks.

Our contribution to text preprocessing is the development of a novel corpus-based

stemmer while, that for link-preprocessing involves detecting relevant sequences and cy-

cles of web pages in the web graph. Novelty in the two surfer models developed in the

thesis is as follows: A topic-continuity based web surfer model is mathematically formu-

lated to incorporate the tendency of users to continue browsing on a particular topic. In

another model, the notion of fuzzy hyperlinks is introducedto develop a fuzzy web surfer

model based on the theory of fuzzy Markov chains. Apart from studying the properties of

surfer models, a new metric has been proposed for measuring how different the resultant

page rank vectors are. This metric computes distance between two rankings directly on

the basis of the underlying score values, and generalizes Kendall distance. Also, a top

k version of the metric is obtained which is particularly useful in comparing page ranks

when the number of documents is very large. The effectiveness of the methodologies

described in the present thesis is demonstrated on various data sets used in the context of

text mining and web mining. Superiority of the models over related ones is established

statistically.

The thesis consists of five contributory chapters apart fromthe Introduction (Chapter

1) and the Conclusions, Discussion and Scope for Further Works (Chapter 7) chapters. A

chapter-wise summary of the thesis is provided below.

Chapter 2 STEMMING FOR TEXT PREPROCESSING OFWEB DATA [14,103]

Preprocessing is an important step for mining tasks, whereby, the features of a data set

are modified so as to make information extraction reliable and convenient. For web data,

there are two aspects in this regard: text preprocessing andlink preprocessing. Among

the text preprocessing tasks, stemming, whereby semantically similar words are grouped

together, is an important and often used technique. Stemming has been generally observed

to improve recall in information retrieval. However, thereis no agreement on the same for
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the case of classification. We describe a novel corpus-basedstemming technique which

models the given words as being generated from a multinomialdistribution over the topics

available in the corpus. A sequential hypothesis testing like procedure helps us group

together distributionally similar words. This stemmer refines a given stemmer and its

strength can be controlled with the help of two thresholds. We have tested the proposed

methodology on three data sets and found that, despite a hugereduction in dictionary

size, the classification accuracies and retrieval precision have significantly improved in

most cases. It has also been found suitable for cross-corpusstemming. We also evaluated

this stemmer linguistically on the basis of error counting methods and found that even

without any prior knowledge of the language specific properties of the words, the stemmer

performs remarkably well.

Chapter 3 SEQUENCEDETECTION FORL INK PREPROCESSING OFWEB DATA [102]

Link based preprocessing is necessitated by the fact that useful structural information

on the web is often accompanied by a large amount of noise suchas banner advertise-

ments, navigation bars, copyright and privacy notices, etc. Such items often hamper

automated information gathering and web data mining tasks like web page clustering,

classification, information retrieval and information extraction. Link cleaning leads to

performance improvement for the above mentioned tasks.

The same content on the web may be present in a single documentor may be split

into several parts. Since the problem of page ranking is all about comparing documents

competing with each other in terms of their content and link structure, this leads to the

question of fair comparison.

In order to deal with such discrimination, we develop efficient and scalable algorithms

to detect content that could have been merged but has been spread over several documents

just for the sake of convenience or presentation. This involves detecting special graph

structures in the web graph, like sequences of web documentsterminating in a leaf node,

or a cycle of web pages. These algorithms are based on a simplistic notion of finding

“next” and “previous” elements of a sequence by looking at the relations between them,
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as reflected by the position of the links, the amount of surrounding text, and other such

features. This kind of link preprocessing not only eliminates several mirror pages, which

would not have been detected by the existing algorithms, butalso leads to the novel idea

of returning sets of pages as results from search engines.

Chapter 4 WEB SURFERMODEL INCORPORATINGTOPIC CONTINUITY [101,115]

Web surfer models study various aspects of web mining by realistically modeling web

users. Since the objective throughout is to maximize the gain of the end user (or supply

sufficient information to a service provider, who in turn, may pass the benefit to the end

user), appropriate web surfer models for real users are veryuseful. Once a model is

known to be reasonable, one does not need to track real surfers, and can simulate the

user’s behavior directly from the model, thus, saving valuable resources like time and

money, while maintaining privacy.

Surfer models simulate the behavior of web surfers by modeling the sequence of pages

visited as a stochastic process and extract useful and interesting information about the

web. In particular, they can be used to compute the ranks of a web page as the uncon-

ditional probability of a surfer being on that page under theassumed model. It has been

observed that the use of context information improves page ranking [123]. In particu-

lar, the continuity of topics that a surfer would maintain while browsing the web would

provide valuable information about the transition probabilities of the model.

In this chapter, we describe a web surfer model that incorporates the notion of topic

continuity. Therefore, unlike earlier models, it capturesthe inter-relationship between

categorization (context) and ranking of web documents simultaneously. The model is

mathematically formulated. A scalable and convergent iterative procedure is provided for

its implementation. Its different characteristic features, as obtained from the joint prob-

ability matrix, and their significance in web intelligence are mentioned. Both theoretical

and experimental results confirm the superiority of the model. Experiments are performed

on web pages obtained from WebBase.

Chapter 5 WEB SURFERMODELS INCORPORATINGFUZZINESS [15,104]
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In the previous chapter, surfer models were studied where the uncertainty in the

surfer’s transition from one page to another was modeled probabilistically. In some cases,

probabilistic models fail to capture the inherent variety of uncertainty. In this chapter, we

demonstrate the need for fuzzy web surfer models through some examples. In particular,

we deal with fuzziness in links between pages, especially, when links that are intended to

point to particular sections of web pages do not do that explicitly.

A novel web surfer model is introduced where the transitionsbetween web pages are

fuzzy quantities, and FuzzRank is defined, similar to PageRank, as the principal fuzzy

eigenvector of the fuzzy transition matrix. Whereas, the usual web surfer models are

based on the theory of Markov chains, the proposed model is based the on theory of fuzzy

Markov chains. In this manner, besides being able to model the inherent fuzziness in

links and contexts, the model inherits the advantages of fuzzy Markov chains, namely,

finite convergence, and robust computation. Also, a study isconducted into the ergodicity

properties of fuzzy Markov chains, and the efficient computation of FuzzRank. Experi-

ments performed on data sets from WebBase support the theory regarding the stability of

fuzzy surfer models.

Chapter 6 QUANTITATIVE EVALUATION OF PAGE RANKING SCHEMES [13,16]

In Chapters 4 and 5, we have described and studied various pageranking schemes.

While, it is clear that they produce different page rank values, two questions emerge

immediately:

• Which scheme is the best scheme? This involves comparing pairs of schemes.

• How distinct are the schemes in terms of the ranks they produce? Are they signifi-

cantly different?

The former has been widely studied in the context of page ranking, where most of the

approaches are subjective comparisons made between the competing schemes. The latter

is a relatively ignored problem, with the two page rank vectors compared only in terms of

the rankings produced by them.
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This chapter is concerned with quantifying how much page ranking schemes differ

from each other. To this end, a generalized Kendall distance, which can compare more

than just page ranking schemes, is defined. Metric properties for this newly introduced

measure are proved. The generalized Kendall distance looksat not only the final ordering

that the two schemes produce, but also at the spacing betweenpairs of scores. We take

a fusion based approach, whereby, two rank vectors are the same as each other if they

produce the same ranking on fusing together with another score vector (say, relevance to

a query).

A parameterγ in the definition of the metric, takes into consideration thepotential

uses of the score vectors to be compared. It is shown that the classical Kendall distance

may be obtained as a limiting value of our metric, asγ →∞.

A top k version of the metric is provided, which replaces the unknown values by

their expected values. The detailed computations are provided in the Appendix. Several

mathematical properties of the newly introduced metric arestated and proved.

Applications include comparing two page rank vectors, deciding on the stopping time

of the power iterations and measuring how well the ranks represent the scores. In partic-

ular, since the Kendall distance between a score vector and corresponding rank vector is

always zero, the last application sets our methodology apart from the usual rank compar-

ison methods. Experimental results on both small and large data sets depict the utility of

this new metric.

Chapter 7 CONCLUSIONS, DISCUSSION ANDSCOPE FORFURTHER WORK

The concluding remarks along with the scope for further research are made in Chapter

7.

Afer Chapter 7, two appendices are included. Additional results from Chapter 2 are

presented in Appendix A, and computational aspects of measures provided in Chapter

6 are discussed in Appendix B. These appendices would providea better clarity of the

results presented in the main text of the thesis.





Chapter 2

Stemming for Text Preprocessing of

Web Documents

2.1 Introduction

Given a web page, one would find contents in the form of plain text, as well as, hypertext

markup like tags for formatting the text, hyperlinks leading to other pages, or tags for

embedding multimedia content. This chapter is concerned with preprocessing the textual

content of web pages. The need for preprocessing textual content arises as it may be noisy

due to various reasons, some of them being:

• Words spelt wrongly or in an alternate way

• Presence of stopwords or irrelevant words

• Use of several related but different words

• Presence of unexpected or foreign words

• Improperly formed or unclosed tags

Each one needs to be treated in its own way as they would otherwise interfere in basic

tasks such as tokenizing, indexing, and retrieval. Misspelt words and word variants may
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be detected using a pre-defined dictionary, and corrected using either a table lookup, or

choosing valid words with a small edit distance from these words [80]. Stopwords may

be removed by using an exclusion list [126], though in some studies, they are retained

because of the value they provide in terms of context [89]. Similarly, some studies (e.g.,

[125]) ignore HTML tags for the sake of simplicity, while others (e.g., [87]) retain them

because of the richness they provide to the textual contents. Taking care of related words

is probably the most difficult and challenging part of preprocessing text data. Part of

the challenge lies in defining what “related” means, and the other part is to find groups

of words which can be clubbed together. We shall study in detail this task, known as

stemming, in the remainder of this chapter.

2.2 Stemming

Stemming is the process of clubbing together words that are similar in nature. Generally,

morphologically similar words are grouped together under the assumption that they are

also semantically similar. Stemming is frequently used in the field of information retrieval

[77, 128], because it results in an increase in recall, as documents that do not contain the

exact query terms are also retrieved. In particular, all documents containing words with

the same stem as the query term are considered relevant. Stemming also reduces the

size of the feature set (when words are viewed as the featuresof documents). For the

purpose of classification, this means that the models involved are far less complex than

what would have been if the original set of words were used. This also means that it would

lead to better generalization, in the sense that a small training error would imply a small

test error too. It has been observed that the classification performance does not go down

much due to the application of some of the standard stemmers.Also, this would lead to a

reduction in the size of the index that needs to be stored. Onemay note that stemming in

text mining may also be viewed as feature or prototype selection/reduction or clustering

in pattern recognition, and as case selection in case based reasoning problems, where the
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basic objective is to select the most representative features or dimensions or cases of a

class or a concept based on some similarity measure or grouping.

Several standard techniques are available in the literature which perform stemming

[50]. The strength of a stemmer is the amount of reduction in the size of the dictionary

obtained by it [50]. Strong (or aggressive) stemmers may reduce the size of the index

for a given corpus drastically. However, stemming is afflicted with two kinds of errors:

under-stemming and over-stemming [147]. Under-stemming is the case where words

that should have been grouped into the same class are not so, and the performance is

suboptimal. When too many unrelated words are merged together, then it is the case of

over-stemming. This leads to a reduction in precision during retrieval and an increase in

the error rate for classification. One may also note that withthe increase in the strength

of a stemmer, recall is increased but either retrieval precision or classification accuracy

(or both) are degraded. This may be concluded by observing that increase in stemming

strength gradually leads to reduced number of stem classes,and in the extreme case all

the words belong to a single stem class, which provides none of the information required

for classification or retrieval.

Thus, the general objective in designing a stemmer is to ensure that the classification

accuracy, as well as, the retrieval precision are maintained. In this article, we describe

the design of such a stemmer. We make use of the classificationinformation of the cor-

pus, and model words as arising from a multinomial distribution [69]. A segregation

method based on this can be employed on any existing rule based stemmer to refine its

equivalence classes for improvement. The proposed methodology is found to improve

both the classification accuracy and retrieval precision when applied on the Porter [118]

and Truncate(3) [144] stemmers, and, compared with some existing ones, including the

co-occurrence based refinement [144], and a distributionalclustering based stemmer [6].

The classification performance is measured on the 20 Newsgroups and WebKB data sets,

both in terms of accuracy and precision-recall plots of Naive Bayes, Support Vector Ma-

chines and Maximum Entropy based classifiers. The retrievalefficiency has been tested
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on the Wall Street Journal (WSJ) data set, and precision-recall values have been displayed

graphically. All the results have been tested for statistically significant improvement by

the proposed methodology over some of the related methods.

The article is organized as follows. The background on stemming and related work is

provided in Section 2.3. Then, we describe the proposed stemming technique in Sections

2.4 and 2.5 and present the experimental results in Section 2.6, respectively. We draw our

conclusions in Section 2.7.

2.3 Stemming and Related Work

Documents are generally represented in terms of the words they contain, as in the vector

space model [127]. Many of these words are similar to each other in the sense that they de-

note the same concept(s), i.e., they are semantically similar. Generally, morphologically

similar words have similar semantic interpretations, though there are several exceptions to

this, and may be considered as equivalent. The constructionof such equivalence classes

is known as stemming. A number of stemming algorithms, or stemmers, have been de-

veloped, which attempt to reduce a word to its stem or root form. Thus, the document

may now be represented by the stems rather than by the original words. As the variants

of a term are now conflated to a single representative form, italso reduces the dictionary

size, which is the number of distinct terms needed for representing a set of documents. A

smaller dictionary size results in a saving of storage spaceand processing time.

Stemming is often used in information retrieval because of the various advantages it

provides [77]. The literature is divided on this aspect withsome authors finding stemming

helpful for retrieval tasks [77] while others did not find anyadvantage [59]. However,

they are all unanimous regarding other advantages of stemming. Not only are the storage

space for the corpus and retrieval times reduced, recall is increased without much loss of

precision. Moreover, the system has the option of query expansion to help a user refine

his/her query.
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2.3.1 Different Stemming Algorithms

Various stemmers are available for several languages, including English. The most promi-

nent ones are those introduced by Lovins, Dawson, Porter, Krovetz, Paice/Husk and Xu

and Croft. We now provide a brief description of some of these algorithms.

Truncate(n)

This is a trivial stemmer that stems any word to the firstn letters. It is also referred to as

n-gram stemmer [144]. This is a very strong stemmer. However,whenn is small, say,

one or two, the number of over-stemming errors is huge. For this reason, it is mainly

of academic interest only. In the present work, we have considered the value ofn = 3,

which makes the stemming very aggressive and refer to it as Trunc3.

Lovins Stemmer

The Lovins Stemmer [95] was developed by J. B. Lovins and is a single pass, longest

match stemmer. It performs a lookup from a table of 294 endings, which have been

arranged on a longest match principle. The Lovins Stemmer removes the longest suffix

from a word. Once the ending is removed, the word is recoded using a different table

which makes various adjustments to convert these stems intovalid words. However, it is

highly unreliable and frequently fails to form words from the stems, or match the stems

of like meaning words.

Dawson Stemmer

The Dawson stemmer [38], developed by J.L. Dawson, extends the Lovins stemmer. It

uses a much more comprehensive list of around 1,200 suffixes,organized as a set of

branched character trees for rapid access. This, too, is a single pass and longest match

algorithm. In this case there is no recoding stage, which hadbeen found to be unreliable.
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Porter Stemmer

Martin Porter proposed the Porter stemmer [118] which is based on the idea that the suf-

fixes in the English language (approximately 1200) are mostly made up of a combination

of smaller and simpler suffixes. It has five steps and within each step rules are applied

until one of them passes the conditions. If a rule is accepted, the suffix is removed ac-

cordingly and the next step is performed. The resultant stemat the end of the fifth step is

returned.

The Porter stemmer is very widely used and various implementations are available

online athttp://www.tartarus.org/∼martin/PorterStemmer/. Versions

of this stemmer are also available for non-English languages.

Paice/Husk Stemmer

The Paice/Husk stemmer [110] is a simple iterative stemmer,and uses just one table of

rules; each rule may specify either deletion or replacementof an ending. The rules are

grouped into sections corresponding to the final letter of the suffix making the access to

the rule table quicker. Within each section the ordering of the rules is significant. Some

rules are restricted to words from which no ending has yet been removed. After a rule has

been applied, processing may be allowed to continue iteratively, or may be terminated.

Krovetz Stemmer

The Krovetz stemmer [78] was developed by R. Krovetz and makesuse of inflectional

linguistic morphology. It effectively and accurately removes inflectional suffixes in three

steps, the conversion of a plural to its singular form, the conversion of past to present

tense, and the removal of ’-ing’. The conversion process firstly removes the suffix, and

then through a process of checking in a dictionary for any recoding, returns the stem to a

word. It is a light stemmer in comparison to the Porter and Paice/Husk stemmers.
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Co-occurrence based stemmer by Xu and Croft

Xu and Croft [144] observed that most stemmers perform under-stemming or over-

stemming, or even both. Strong stemmers generally perform over-stemming only. Xu and

Croft came up with an algorithm that would refine the stemming performed by a strong

stemmer. To this end, they computed the co-occurrences of pairs of words belonging to

the same equivalence class. For each pair, they also computed the expected number of

co-occurrences, which would account for the words occurring together randomly. Thus,

they obtained a measure similar to the mutual information measure defined as:

em(wi, wj) = max

(

n(i, j)− En(i, j)

ni + nj

, 0

)

,

where,ni andnj are the frequencies ofwi andwj andn(i, j) is the number of times

the two words co-occur.E denotes the expected value. This measure ignores any co-

occurrences that may be attributed to pure chance. Only ifem(wi, wj) is significantly

greater than zero, they conclude that, in the given corpus, the two words indeed appear

together and may be retained in the same equivalence class.

Splitting the equivalence classes in an optimal way howeveris computationally very

expensive. When the equivalence classes are large, Xu and Croft opt for a suboptimal

solution obtained by a connected component labeling algorithm applied after thresholding

theem scores.

Dictionary based stemmers

There also have been dictionary based stemmers [54,71,77] which improve on an existing

stemmer by employing knowledge obtained from a dictionary.Word co-occurrences in a

dictionary are considered to imply the relations between words.

Probabilistic stemmers

Given a word in a corpus, the most likely suffix-prefix pair that constitutes the word is

computed [5]. Each word is assumed to be made up of a stem (suffix) and a derivation
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(prefix), and the joint probability of the (stem, derivation) pair is maximized over all

possible pairs constituting the word. The suffix and prefix are chosen to be non-empty

substrings of the given word, and it is not clear what should be done in the case when a

word should be stemmed to itself.

Refinement of an existing stemmer

In some cases, errors produced by a stemmer are manually rectified by providing an ex-

ception list [78]. The stemmer would first look up the exception list and, if the word is

found there, returns the stem found there. Otherwise, it uses the usual stemmer. The

co-occurrence based stemmer mentioned above is also one such algorithm, where the

exceptions are obtained automatically.

Distributional clustering as stemming

Distributional clustering [6] joins similar words into a group if the words have similar

probability distributions among the target features that co-occur with them. In their work

on document classification, Baker and McCallum had chosen the class labels as the target

features. The root forms of the words are not taken into consideration while grouping

them. This algorithm described in [6] is as follows. The mutual information of each word

in the corpus with the class variable is computed, and the words are sorted in descending

order. The number of desired clusters is fixed beforehand, say to M . The firstM words

are initialized to formM singleton clusters. The two most similar (of theM ) clusters are

merged. This similarity is measured in terms of the Kullback-Leibler divergence of the

distributions of the two clusters. The next word in the sorted list forms a new singleton

cluster. Thus, the number of clusters remainsM each time. In the present work, we refer

to this method asbaker. In our implementation, we have fixedM to the number of stems

obtained by refining the Truncate(3) stemmer using our model.
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2.3.2 Stemming and Classification

There are several works on text classification (see, for example, [148]), where stemming

has been employed in a routine manner. However, there are differences in opinions of re-

searchers regarding the effectiveness of stemming for the purpose of classification. While

Riloff [124] and Spitters [131] had concluded that stemming may not help increase clas-

sification accuracy, Buseman had observed that morphological analysis increases the per-

formance for a series of classification algorithms applied to German email classification.

In a recent work, Gaustad and Bouma [54] observed that stemming does not consistently

improve classification accuracy. More recently, however, Cohen, et al. [30] found stem-

ming advantageous while classifying medical documents.

Perhaps, the reasons for such varied observations lie in thedifferent characteristics

of the document collections involved. On the one hand, stemming would increase the

number of instances per feature (by reducing the number of features), which is a favorable

situation for classification. On the other hand, stemming may merge words regardless of

the class information that they hold, thereby confusing a classifier which is presented with

such mixed instances.

In what follows, we propose a novel stemming technique, whereby, even very strong

stemming does not reduce the classification accuracy.

2.4 Proposed Stemming Technique

2.4.1 Criteria

We try to improve upon the existing stemmers discussed aboveon the following aspects:

1. Substitute words: these words, though very similar in meaning and/or usage, often

do not tend to appear with each other. These are often the result of varying author

styles, where a particular author uses just one of the substitute words all the time.

Examples include words that have different spellings underBritish and American
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usage (e.g., colour and color). To infer that they should be stemmed to the same

word, one would need to analyze their co-occurrence with other words to find such

relations.

2. Words with many senses: when a word has many senses, there might be words that

are semantically similar to it in just one sense. Merging them would lead to loss of

information [78]. It is desirable that only those words which match in all the given

senses are merged.

3. Creation of new words: rule based stemmers occasionally create new words while

stripping suffixes. For example, the Porter stemmer stems both changeandchang-

ing to chang. Note that this is inevitable, and if a rule were to modify thefinal stem

by adding ane to it, it would lead to yet other problems likehangandhangingboth

stemming tohange. The creation of such words may also increase ambiguity when

dissimilar classes of words are merged. For example, the Porter stemmer stems

range, ranged, ranges, rangingandrang to rang, even thoughrang is unrelated to

the rest.

4. Simplicity and speed: rule based stemmers only need to step through a sequence

of predefined rules and are very efficient, albeit at the cost of stemming errors.

Corpus-based refinements are computationally expensive, asseen in the case of

co-occurrence based stemmers, where the process of refiningthe stems involves

computing the co-occurrences of each pair of words that map to the same stem. If

an equivalence class (set of words mapping to the same stem) is “large”, splitting it

optimally becomes an arduous task.

5. Cross-corpus stemming: it is desirable to perform the stemming operation only

once. Also, additional information like categories may notbe available for all cor-

pora. However, one would like the stemmer to perform reasonably well in that

situation too. The stemmer may be built based on a single corpus and the same set
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of stems is employed for other corpora, too. The challenge isto come up with a

stemmer which does well even when the two corpora are very different in nature.

We now describe a stemming algorithm that incorporates all the above desiderata.

2.4.2 Stemmer refinement by distribution based segregation

The objective at hand is that given an equivalence class of words, it is to be split in

such a way that the resulting equivalence classes reflect an improved stemming in terms

of classification and retrieval. The primary objective is not to group morphological or

semantically similar words, as a human linguist would do, though, such a feature would be

added attraction. We utilize the information available in aclassified text corpus to perform

the splitting. The primary assumption behind the proposed methodology is that two words

may be stemmed to the same stem if they are extremely similar in their distribution across

various categories.

Each word is assumed to have a multinomial distribution [69]over the set of categories

of the given corpus. In a multinomial distribution,n events are observed, each of which

hask possible outcomes, with theith outcome having a probability ofpi. The binomial

distribution is a special case wherek = 2. Words deemed to be arising from the same

multinomial distribution are kept in the same equivalence class, whereas, those which are

significantly different from each other are separated out. Here, differences in the total

number of appearances of the words (denoted byn) are ignored, just as in the vector

space (or the bag of words) model. The distribution of each word is estimated from its

frequencies in the various categories. Formally, the proposed methodology is as described

below.

Let {w1, w2, . . . , wn}, be the set of words belonging to an equivalence class, i.e.,

they all stem to the same stem. LetK be the number of categories of the given text

corpus. For each wordwi, we compute the occurrence vectorni1, ni2, . . . , niK , wherenik

is the number of occurrences of thewi under thekth category. We assume that eachwi
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arises from a multinomial distribution whose parameters are pi1, pi2, . . . , piK , andni =
∑K

k=1 nik. Here, eachpik denotes the probability ofwi appearing under thekth category

and is estimated as the corresponding proportion of occurrences in the corpus,nik/ni.

The aim is to partition this set of words into non-empty subsets such that each subset

consists of words whose estimated distributions are not significantly different from each

other. Moreover, this task needs to be done without a prior knowledge of the size of the

partition.

We employ a procedure similar to sequential hypothesis testing [137] for attaining this

goal. Two thresholds/cutoffs, sayt1 andt2, (t1 <= t2), are chosen for this purpose. The

words are sorted in descending order of their frequencies. Without loss of generality, we

shall now denote this sorted list of words by{w1, w2, . . . , wn}. The most frequent word,

w1, is chosen and is considered to stem to itself. We denote thisasstem(w1) = s1. Let S

be the current set of stems. So, initially,S = {s1}. We shall also denote the equivalence

class of stemsj by Sj, defined asSj = {wk : stem(wk) = sj}.

For each subsequent word, we compute a distance between its distribution function

and that of each stem inS, dij = d(wi, sj). The distance function may be any of those

discussed in Section 2.4.3. If each of these distances is greater than the bigger cutoff, i.e.,

dij > t2 ∀j, we shall call the current word as a new stem and add it to the set S. On the

other hand, if any of the distances, saydij, is smaller than the smaller cutofft1, we shall

add the current word to the equivalence class ofsj, so thatstem(wi) = sj.

This procedure is iterated with the two thresholds modified such that the new lower

threshold is greater thant1 and the larger one is smaller thant2. It may be noted that,

since the proposed algorithm depends on the accurate estimation of word distributions, the

larger the number of words or documents per class, the betterthe expected performance.

For the purpose of cross-corpus stemming, the stems are firstconstructed based on

one corpus. Then, the words of the other corpus are stemmed using the proposed method

whenever they are available in the first one. For all other words, we fall back upon a

standard stemmer like Porter or Trunc3.
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2.4.3 Choice of distance function and thresholds

The above mentioned description provides a general form of the corpus based stemmer.

For implementation, one needs to have a proper choice of distance function and thresh-

olds. These are described below. The term ‘distance’ above can be defined in various

ways to produce a variety of (mostly similar) stemmers. For example, the distance be-

tween a candidate wordwi and a stemsj may be defined in one of the following ways:

• the distance betweenwi and a prototype (or a representative) of the setSj.

• the minimum distance betweenwi and an element ofSj.

• the maximum distance betweenwi and an element ofSj.

For each of the above options, we can also have one or a combination of the following

kinds of distance functions:

• Euclidean distance between the distributions of the two

• Cosine distance (derived from the Cosine Similarity metric) of the distributions of

the two [126]

• Kullback-Leibler distance between the distributions of the two [81]

• A test statistic that would be used for testing the equality of the two distributions

[85]

The distance function may also take into consideration the size of the longest common

prefix, so that words with a longer common prefix would be more likely to be stemmed

to the same stem.

We deduce the computation time of our algorithm by looking atthe operations per-

formed for refining each of the initial equivalence classes.Suppose a stem class consists

of n words andm concept groups. So, the objective is to split the given stem class into

m concept classes. The words are sorted in descending order oftheir frequencies in
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O(n log n) time. Then each word would be compared with at mostm prototypes (one

for each concept class). Thus, splitting a stem group is anO(mn) operation (assuming

m < log n, otherwise, it would beO(n log n)). It may be noted that, at this stage, co-

occurrence based refinement would need to compute co-occurrences between all pairs of

words, thereby becoming anO(n2) algorithm.

Now, if there areM stem classes initially, the complexity of our method isO(Mmn).

Also,n is expected to beN
M

, whereN is the total number of words, i.e.,Mn = N . Hence,

the average complexity of the proposed method isO(mN), with m being interpreted as

the average number of concept groups per initial stem class.We note that, in the above

derivation,m depends onM because asM decreases the size of the initial equivalence

classes, and consequentlym, are expected to be increase.

This is an added advantage for the proposed method over the co-occurrence based

method as it would not require a prior stemming result to start with for the refinement

process (equivalent to using the Truncate(0) stemmer). However, for the purpose of stem-

ming, this would necessitate the incorporation of the longest common prefix based modi-

fication during distance calculations.

There are no strict guidelines for choosingt1 andt2 except that a hight1 would result

in more words getting a stem class of their own (understemming), and a lowt2 would

lead to large equivalence classes (overstemming). So, all that we are doing by choosingt1

andt2 is to fix a level of permissible understemming and overstemming errors. However,

it is not possible to directly compute the exact number/proportion of such errors (since

the exact distributions of the words are not known beforehand). If t1 = t2, then we

do not need multiple iterations in the given procedure. Thiswould result in a reduction

in computing time. However, it may miss out on some simple mergers of equivalence

classes. This is so because, once a word is called a new stem, it cannot be merged with

any of the existing stems at a later stage. Choosingt1 < t2 allows us to do just that.

In this case, whenever one is sure of neither merging the current word with an existing

stem nor assigning it to a new class of its own, this decision may be put off for later. In
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a following iteration, due to the change in the structure of the classes or the values of the

chosen thresholds, the decision may become clearer. The strength of the stemmer would

be proportional to the size of the thresholdst1 andt2.

2.5 Implementation

For the implementation of the proposed methodology, we preprocess the given corpus

first and then refine a given stemmer by splitting the equivalence classes generated by that

stemmer. We briefly describe these tasks here.

Any text corpus would contain several noisy terms. To clean such noise, some stan-

dard preprocessing tasks are performed on the given corpora. The headers of the docu-

ments are ignored altogether and only those words are retained which appear in at least

two documents. HTML tags and stopwords are removed before building the model. All

words are converted to lower case.

Then, to decide if a given wordwi may be merged with a stem classSj, we test

the difference between the estimated distributions ofwi andSj. The distributions are

estimated as the corresponding frequencies of words appearing under theK topics of the

given corpus. For testing the difference between the two distributions, Pearson’s statistic

[85] is computed as described below. Let,(ni1, ni2, . . . , niK) be the topic vector ofwi.

Definemjk to be the sum
∑

wi∈Sj
nik. Also, let mj denote the total

∑K

k=1 mjk. It is

assumed that the estimated distribution ofSj is the actual one. To test if(ni1, ni2, . . . , niK)

has arisen from the distribution ofSj, Pearson statistic is computed as:

mj

ni

K
∑

k=1

n2
ik

mjk

− ni

where,ni andmj are the totals, as defined above. Whenni is large, this statistic is known

to approximately follow aχ2 distribution withK − 1 degrees of freedom.

Since some of thenik values may be zero, we replace them by

n′
ik = 0.9nik + 0.1

ni

K
= nik + 0.1

(ni

K
− nik

)

. (2.1)
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This is done for each term in the dictionary. What we do here is,essentially, to perform a

smoothing operation. Now, none of the cells are empty and, moreover, the total remains

the same. In the remainder of this article, we shall refer ton′
ik asnik itself. If wi is merged

with Sj, themjk’s are updated by addingnik (after modifying as in Eq. 2.1) for eachj.

Since we have sorted the words in descending order of their frequencies, theχ2
(K−1)

assumption is satisfied initially. And, when the frequency of a word is very low, it would

not matter too much as the word itself might not have much of a say during classification.

Splitting each equivalence class is performed in two iterations. The values oft1 and

t2 are set toχ2
(K−1),α and4χ2

(K−1),α, respectively, during the first iteration. Here,χ2
(K−1),α

is the upperα cut-off of theχ2
(K−1) distribution, i.e., the value of theχ2

(K−1) distribution

function at the chosen cut-off is1 − α. t1 and t2 are both set to2χ2
(K−1),α during the

second iteration. In our implementation, we had chosenα to be0.05.

Though our methodology does not create any new words of its own, during cross-

corpus stemming, when the words encountered are not in the dictionary, a standard stem-

mer is used, and that may introduce new words into the system.

2.6 Experimental Results and Comparison

2.6.1 Data Sets Used

We evaluated the performance of the proposed methodology ontwo data sets, namely, 20

Newsgroups and WebKB. They are described below.

20 Newsgroups [1]

The 20 newsgroups (also known as 20NG) collection is a popular data set for experiments

in text applications of machine learning techniques, such as text classification and text

clustering. The 20NG data set is a collection of 19,997 newsgroup documents, partitioned

evenly across 20 different newsgroups. The categories are listed in Table 2.1.
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Table 2.1: List of Categories in the 20NG Data Set

alt.atheism rec.sport.hockey

comp.graphics sci.crypt

comp.os.ms-windows.miscsci.electronics

comp.sys.ibm.pc.hardwaresci.med

comp.sys.mac.hardware sci.space

comp.windows.x soc.religion.christian

misc.forsale talk.politics.guns

rec.autos talk.politics.mideast

rec.motorcycles talk.politics.misc

rec.sport.baseball talk.religion.misc

WebKB [138]

This data set consists of web pages collected from computer science departments of vari-

ous universities in January 1997 by the World Wide Web Knowledge Base project of the

CMU text learning group. There are 8,282 pages and they were manually classified into

the following seven categories (the figures in parentheses denote the number of pages in

a particular category):

• student (1641)

• faculty (1124)

• staff (137)

• department (182)

• course (930)

• project (504)
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• other (3764)

The class other is a collection of pages that were not deemed the “main page” representing

an instance of the previous six classes.

For each class the data set contains pages from the four universities

• Cornell (867)

• Texas (827)

• Washington (1205)

• Wisconsin (1263)

and 4,120 miscellaneous pages collected from other universities.

WSJ

The Wall Street Journal data set is a part of the TREC collection [58], and consists of more

than 170,000 records which appeared during 1987 to 1992 in the Wall Street Journal. The

queries (also called topics) and query relevance scores (inthe form of qrels files) are

available athttp://trec.nist.gov/data/testcoll.html.

2.6.2 Evaluation Procedure

The performance of distribution based stemmer refinement has been evaluated in two

ways. First, a direct evaluation in terms of linguistic analysis has been performed. This

would reveal how similar the system is to a human who groups together morphologi-

cally and semantically related words. The second evaluation is an indirect evaluation that

observes the effects of stemming on classification accuracyand retrieval performance.

For performing the linguistic analysis, we followed the procedure described in [111].

A generalization of this procedure is provided in [39] and isuseful for automatic evalua-

tion of stemmers, but this is not employed here due to lack of resources on the authors’
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part. There are 13,621 words in the intersection of the vocabularies of the webKB and

20NG data sets and a unix word list (generally, located at /usr/share/dict/words). Of these

words, we chose all the words starting with the alphabets a, b, c, p, q and r, which com-

prised a total of 5235 words. These words were manually grouped into 2069 classes, on

the basis that all and only those words which were judged to besemantically and mor-

phologically related were kept in the same group. As in [111], words with at least the first

two letters in common were considered for grouping together. So, words likeran andrun

or buy andboughtwere not stemmed to each other, butbring andbroughtwere kept in

the same group.

Paice has defined the following indices for quantifying overstemming and understem-

ming. LetW be the size of the given word sample, and letNG andNS denote the number

of concept groups (denoted byg) and stem classes (denoted bys), respectively. Also,

let ng andns denote the number of words ing ands, respectively. Now, suppose thatg

consists of words fromkg distinct stem classes, withugi instances fromith such class,

and thats consists of words fromls distinct concept groups, withvsi instances fromjth

such group, the understemming index (UI) and the overstemming index (OI) are defined

as follows.

UI =
1
2

∑NG

g=1

∑kg

i=1 ui(ng − ui)
1
2

∑NG

g=1 ng(ng − 1)
=

∑NG

g=1 n2
g −

∑NG

g=1

∑kg

i=1 u2
gi

∑NG

g=1 n2
g −W

(2.2)

OI =
1
2

∑NS

s=1

∑ls
j=1 vj(ns − vj)

1
2

∑NG

g=1 ng(W − ng)
=

∑NS

s=1 n2
s −

∑NS

s=1

∑ls
j=1 v2

sj

W 2 −
∑NG

g=1 n2
g

(2.3)

UI and OI values were computed for all the stemmers based on both the 20NG and the

webKB data sets. These values are displayed graphically in Figs. 2.1 and 2.2. A dashed

line is drawn from the UI-OI values of Truncate(3) to those oftrunc3 d its refinement to

show how the errors changed on refinement. It may appear from the figures that while

refining the Truncate(3) stemmer, too many understemming errors are introduced at the

cost of reducing a few overstemming errors. However, this isnot the case. It looks so just

because the denominator in Eq. 2.3 is much larger than that inEq. 2.2. More insight may
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Figure 2.1: Plot of OI vs. UI for stemmers refined using 20NG data set: UI and OI values

raised to the power1
2

for clarity

be gathered by looking at theangexample provided below.

We provide some examples of the equivalence classes produced by the proposed

methodology by refining the Porter and Truncate(3) stemmers. The Porter stem class

containing (abort, aborts, aborted, abortion) was split into two classes, wherebyabor-

tion was separated from the rest. Similarly, (circularity) was segregated from (circular,

circulars). The stem group corresponding toclosewas split into three groups (close,

closing, closes), (closed) and (closely, closeness). The above splits resulted from the dif-

ferences in usages of the words in the collection. For example, even though semantically
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Figure 2.2: Plot of OI vs. UI for stemmers refined using webKB data set: UI and OI

values raised to the power1
2

for clarity
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and morphologically,circularity is related tocircular, this term (and its plural) have a

different meaning in general and arise in a different context. Similarly, though the verb

and adjective forms ofclosehave been separated out,closedwas made into a new group

of itself, resulting in an understemming error.

Next, we present an example of refining the Truncate(3) stemmer. The stem classang

is split into the following eight classes (the first word of each group is the stem).(an-

gel, angelic, anglican, anglo, angling, anguish, anglicans), (angeles, angelo), (angelino),

(angels), (anger, angry, angola, angered, angelos, ang, angrier, angering), (angers), (an-

gle, angles, angular, angst, angus, angled, angulated, angstrom), (angmar). As may be

seen, despite some overstemming (e.g.,angling mixed with angel) and understemming

(e.g.,angelsandangersare left out as singletons instead of being merged withangeland

anger, respectively) errors, the splitting is largely successful as most of the related words

appear in the same group, especially because no linguistic analysis is performed. In par-

ticular, it is interesting to note thatangstromhas been retained in the same group asangle,

perhaps, as a consequence of both appearing in similar contexts.

The detailed analysis of the overstemming and understemming errors after refining

the stem classang is presented here. We treat this set of 29 words as the whole sample

available to us. There are 8 stem classes, and 14 concept groups consisting of these

words. 8 of the 29 words are proper nouns. The calculations for GDMT, GUMT, GDNT

and GWMT are provided in Tables 2.2 and 2.3. Hence, we see that,UI = 13
37

= 0.35 and

54
369

= 0.15.

For evaluating the performance of our system in refining the classification accuracy

of a stemmer we used the Bow Toolkit [96] and conducted the following experiments for

each data set. The document collections are preprocessed asmentioned in Section 2.5,

and the equivalence classes are split accordingly.

For training and testing, the data set is split randomly intotwo parts and the same split

is used for each stemmer. The proportion of documents chosenfor training is first taken

to be 60% and later the experiment was repeated with the same chosen to be 40%. The
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Table 2.2: The 14 concept groups for words starting withang

g ng kg (u1, . . . , ukg
) DMTg UMTg DNTg

ang 1 1 1 0 0 14

angel, angelic, angels 3 2 2, 1 3 2 39

angeles 1 1 1 0 0 14

angelino 1 1 1 0 0 14

angelo, angelos 2 2 1, 1 1 1 27

anger, angered, angering, angers, angrier, angry6 2 5, 1 15 5 69

angle, angled, angles, angling, angular, angulated6 2 5, 1 15 5 69

anglican, anglicans, anglo 3 1 1 3 0 39

angmar 1 1 1 0 0 14

angola 1 1 1 0 0 14

angst 1 1 1 0 0 14

angstrom 1 1 1 0 0 14

anguish 1 1 1 0 0 14

angus 1 1 1 0 0 14

Total: 29 37 13 369
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Table 2.3: The 8 stem classes for words starting withang

s ns ls (v1, . . . , vls) WMTs

angel, angelic — anglican, anglicans, anglo — angling — anguish 7 4 2, 3, 1, 1 17

angeles — angelo 2 2 1, 1 1

angelino 1 1 1 0

angels 1 1 1 0

anger, angered, angering, angrier, angry — ang — angelos — angola 8 4 5, 1, 1, 1 18

angle, angled, angles, angular, angulated — angst — angstrom — angus 8 4 5, 1, 1, 1 18

angmar 1 1 1 0

angus 1 1 1 0

Total: 29 54
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training and testing phases are repeated five times for each choice of the proportion.

The text classification algorithms employed to compute the classification accuracy

were Naive Bayes (NB) [88], Support Vector Machines (SVM) [68,135], and Maximum

Entropy Method (MaxEnt) [106]. Each document in the test setwas given a classification

score for each of the available categories. If a single category was to be assigned to a doc-

ument, the one with the maximum score for that document was chosen. We computed the

classification accuracy which is the proportion of test documents assigned to the correct

class. This value was computed for each of the individual categories also.

Classification accuracy measures the total number of correctly classified documents.

However, when documents are misclassified, it does not distinguish between them on

the basis of their classification scores. To take this into account, we have adopted the

following precision-recall method. The documents are firstsorted in descending order of

the classification scores. Only the largest score was considered for each document. Now,

at any value of recall, the precision (or classification accuracy) is computed. A higher

precision-recall curve is preferable. It may be noted that classification accuracy can be

obtained from this curve as the precision when recall is set to 100%. Experiments are also

performed where the precision-recall curves are obtained for each individual category.

To evaluate the retrieval capabilities of our algorithm, weconducted the following

experiments on the Wall Street Journal data set using the SMART system. Topics 101

to 150 were chosen as the given queries. The word vector weighting was set to TFIDF.

For each query, documents are retrieved and the precision isnoted at recall values set

to 10%, 20%, . . . , 100%. These precision values are averaged over all queries and are

presented in the form of precision-recall plots.

2.6.3 Comparison

As described in Section 2.4.2, the proposed distribution based segregation methodology

can be employed to refine the equivalence classes generated by any existing stemmer. In

the present investigation, we used it to obtain new stemmersbased on the Porter and Trun-
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cate(3) stemming for both the corpora. Let these new stemmers be denoted asporter d i

andtrunc3 d i, wherei is 1 for the 20NG data set and 2 for the WebKB data set. Similarly,

the stemmers derived using Baker and McCallum’s distributional clustering are denoted

asbaker1 andbaker2.

The reason for choosing Porter and Truncate(3) stemmers is as described below.

Porter’s stemmer is one of the most standard stemmers as is evident by its use in the

literature. Truncate(3) is a stemmer that is used mostly foracademic purposes. We have

used that because it is a very strong stemmer and results in several over-stemming errors,

thereby providing one a significant of scope for refinement.

The comparison process has four parts. In the first part, we compare the performance,

in terms of the classification accuracies, of the refined new stemmersporter d i and

trunc3 d i with that of the original ones (i.e.,porter and trunc3), as well as, no stem-

ming andbaker i. The objective is to demonstrate both the effectiveness of refinement

by our method, and improvement over the baseline performance where the original words

are used.

In the second part, we compare these new stemmers with the co-occurrence based

modified Porter and Trunc3 stemming of Xu and Croft [144]. These may be denoted, in

short, asporter c i andtrunc3 c i, i being the same as in the first part. Here the objective

is to compare the performance of our distribution based refinement process with the co-

occurrence based refinement process. These stemmers are also compared withbaker i.

The third part deals with comparison in terms of cross-corpus performance, where

a stemmer refined using the information from one data set is applied to another data set.

The objective is to study the dependence of a stemming algorithm on the data set based on

which it is derived, and its applicability to a dissimilar data. Here, we considertrunc3 d 1

andtrunc3 c 1 applied to the WebKB data set, andtrunc3 d 2 andtrunc3 c 2 applied to

the 20NG data set.

The fourth part involves comparison with respect to retrieval performance, where the

objective is to study the effects of the stemmers on the retrieval at various levels of recall.
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The stemmers being considered here areporter c 1, porter d 1, trunc3 d 1 andbaker1,

and they are applied to the WSJ data set. The stemmers refined onthe 20NG data set

are chosen for retrieval on the WSJ data set in order to evaluate how the refinements

generalize to other data sets in the case of retrieval.

2.6.4 Results

Tables 2.5 and 2.6 report the classification accuracies obtained by different stemming al-

gorithms for the 20NG data set and the WebKB data set, respectively. All abbreviations

used in the result tables are described in Subsection 2.6.3.We make the following obser-

vations from Tables 2.5 and 2.6:

• both porter d and trunc3 d fare better thanporter and trunc3, respectively, in all

cases for both the data sets.

• porter d shows a better performance thanporter c in all the cases, though the num-

ber of stems obtained byporter d 1 is slightly more than that byporter c 1.

• trunc3 d provides a better classification accuracy compared tono stemmingand

baker, the case of SVM for the WebKB data set being the only exception. The

same observation holds whentrunc3 d is compared toporter d.

• the number of words common to both the data sets is 20782, which is about 64%

and 37% of the dictionary sizes of the WebKB and 20NG data sets, respectively

(see Table 2.4). The classification accuracy obtained bytrunc3 d 1 is significantly

better thantrunc3 c 1 when applied to the WebKB data set. This confirms that the

refinement procedure performed by employing the classification information from

a different corpus works better when the number of common words is large.

• The statistical significance of the improvement gained by using the proposed stem-

mers over that of existing stemmers is tested using a t-statistic. Table 2.8 contains

thet−statistic values for the case of the Naive Bayes classifier applied to the20NG
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data set when the test set size is chosen to be40% (Fig. 1). Table 2.9 shows the

corresponding values for the WebKB data set. We observe fromTable 2.8, which

corresponds to Fig. 1, that there is a significant improvement, at 95% confidence

level, over existing stemmers whentrunc3 d 1 is employed. Similarly,trunc3 d 2

has significantly, at the 95% confidence level, outperformedexisting stemmers as

can be seen from Table 2.9, which corresponds to Fig. 5.

Apart from the classification accuracies, we also provide results in the form of

precision-recall plots (Figs. 2.3 and 2.4). More plots, corresponding to different clas-

sification methods, are available but have been moved to Appendix A (Figs. A.1–A.6) to

avoid cluttering the present chapter. It may be noted that the proposed algorithm consis-

tently outperforms the rest, especially, when considered along with the number of stems

obtained (Table 2.4). When based ontrunc3, the proposed method (i.e.,trunc3 d) con-

sistently improves the classification precision for all values of recall. This effect is more

prominent when Naive Bayes is used for classification (Figs. 2.3, A.1, 2.4 and A.4). This

is possibly because the stems obtained bytrunc3 d satisfy the Naive Bayes’ independence

assumption better than the original set of words. In that respect, our methodology may be

considered as a “modification of feature sets to make the independence assumption more

true” as mentioned in [88].

Note here that the time taken for stemming words is the same for any of the stemmers,

as the words and their stems can be stored in a hash table. It isthe time taken for creating

this hash table that may differ. While this is not significant for any of the rule based stem-

mers, it is comparatively quite high for the co-occurrence based stemmer, the proposed

one, as well as,baker(Table 2.7). The steep increase in the computation time fortrunc3 c

is a consequence of the large equivalence classes formed bytrunc3.

For testing the retrieval efficiency of the proposed methodology, we have chosen a

part of the WSJ data set consisting of Wall Street Journal articles published between 1987

to 1992. The queries used were topics 101 to 150. The retrieval experiments have been

performed using the SMART system with the word vector weighting set to TFIDF [26].
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Table 2.4: Stem counts and the largest equivalence classes obtained by various stemming algorithms

Stemming Data Set

Method 20NG WebKB

Stem Count Largest Class Index Stem Count Largest Class Index

Compression Compression

no stemming 56436 32299

porter 40821 gener: 24 13.6% 23446 gener: 25 15.3%

trunc3 8158 con: 675 76.6% 5053 con: 432 81.6%

trunc4 21252 inte: 236 42.2% 13283 inte: 192 50.4%

trunc5 33187 inter: 174 24.4% 20051 inter: 147 31.6%

porter c 47441 generic: 18 11.0% 26249 general: 24 25.6%

trunc3c 30710 considered: 652 24.2% 14921 convex: 430 44.8%

porterd 48502 general: 13 10.7% 23971 general: 25 27.0%

trunc3d 22643 discussion: 212 41.2% 6163 contents: 261 72.5%

trunc3c (cross) 13771 convex: 360 47.3% 11036 considered: 358 56.9%

trunc3d (cross) 10708 con: 314 52.2% 13857 int: 85 49.5%
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Table 2.5: Classification Accuracies for 20NG

Classification Method

Stemming Method NaiveBayes SVM MaxEnt

no stemming 80.44 80.06 77.08

porter 79.37 79.73 77.40

trunc3 72.88 71.11 68.24

trunc4 78.68 77.41 73.64

trunc5 79.73 78.15 74.24

porter c 1 79.59 79.57 77.46

trunc3c 1 74.28 74.13 75.03

porterd 1 80.34 80.21 77.53

trunc3d 1 81.98 81.19 77.85

baker1 81.38 81.19 77.15

trunc3c 2 74.82 73.38 71.01

trunc3d 2 74.73 73.51 70.59



2.6 Experimental Results and Comparison 53

Table 2.6: Classification Accuracies for WebKB

Classification Method

Stemming Method NaiveBayes SVM MaxEnt

no stemming 63.02 72.35 64.09

porter 61.86 70.14 62.76

trunc3 57.55 63.77 58.07

trunc4 60.85 66.56 50.67

trunc5 61.27 64.57 51.13

porter c 2 62.00 70.16 62.64

trunc3c 2 59.90 65.11 58.11

porterd 2 63.08 71.38 63.91

trunc3d 2 63.95 69.53 64.21

baker2 61.19 69.51 64.43

trunc3c 1 59.10 64.77 58.60

trunc3d 1 61.39 69.51 64.13

Table 2.7: Time (in secs) taken for creating the stem hash tables

Data Set

Method 20NG WebKB

porterd 3.2 2.6

trunc3d 5.5 5.1

porter c 3.6 2.2

trunc3c 9.2 4.7

baker 11.2 9.4
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Figure 2.3: Data Set: 20NG, Test Set Size: 40%, Method: NB.
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Figure 2.4: Data Set: WebKB, Test Set Size: 40%, Method: NB.
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Table 2.8: Statistical Significance values for 20NG using NB

Proposed Stemmers

Existing Stemmers porterd 1 trunc3d 1 trunc3d 2

no stemming 0.17 (0.43) 2.45 (0.02) 0.27 (0.40)

porter 1.73 (0.06) 4.38 (0.00) 2.53 (0.02)

trunc3 11.43 (0.00) 13.70 (0.00) 10.40 (0.00)

trunc4 9.23 (0.00) 9.91 (0.00) 8.89 (0.00)

trunc5 7.17 (0.00) 7.83 (0.00) 7.43 (0.00)

porter c 1 2.53 (0.02) 4.21 (0.00) 2.29 (0.02)

trunc3c 1 4.91 (0.00) 7.87 (0.00) 6.51 (0.00)

baker1 1.31 (0.11) 2.17 (0.03) 1.21 (0.13)

trunc3c 2 7.72 (0.00) 9.16 (0.00) 6.28 (0.00)

Table 2.9: Statistical Significance values for WebKB using NB

Proposed Stemmers

Existing Stemmers porterd 2 trunc3d 2 trunc3d 1

no stemming 0.87 (0.20) 2.43 (0.02) -0.36 (0.64)

porter 4.13 (0.00) 5.70 (0.00) -0.15 (0.56)

trunc3 13.21 (0.00) 15.18 (0.00) 5.64 (0.00)

trunc4 9.27 (0.00) 12.91 (0.00) 5.14 (0.00)

trunc5 8.41 (0.00) 11.58 (0.00) 4.73 (0.00)

porter c 2 3.93 (0.02) 5.81 (0.00) -0.26 (0.60)

trunc3c 2 7.80 (0.00) 9.37 (0.00) 2.11 (0.03)

baker2 0.71 (0.25) 1.97 (0.04) -0.61 (0.72)

trunc3c 1 9.45 (0.00) 10.96 (0.00) 2.97 (0.01)
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As mentioned earlier in Section 2.6.2, we have used the refinements obtained from the

20NG data set. We note thattrunc3 d 1 outperformsbaker1, as well as the remaining

methods, as seen from Fig. 2.5, withtrunc3 d providing more than 2% improvement over

baker1 until the recall is above 90%. The improvement has been foundto be statistically

significant at a 95% confidence level.

2.7 Conclusions

We have described the design of a stemming algorithm which uses the classification in-

formation of a corpus to refine a given stemmer. The main advantage over other stem-

mers like co-occurrence based stemmers is its ability to drastically reduce the dictionary

size while maintaining both the classification accuracy andretrieval precision. Experi-

ments conducted on 20NG and WebKB data sets confirm the superiority of the proposed

methodology for the task of text categorization when classifiers like Naive Bayes, Sup-

port Vector Machines and Maximum Entropy Method are used. This is also supported by

precision-recall based evaluation. Another set of experiments performed on WSJ data set

demonstrates the enhancement in retrieval precision when the refined stemmers are em-

ployed instead of existing stemmers. The performance of refinement done by employing

the classification information from a different corpus increases as the number of common

words increases.
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Figure 2.5: Retrieval results on WSJ, Similarity measure is TFIDF



Chapter 3

Sequence Detection for Link

Preprocessing of Web Documents

3.1 Introduction

In the previous chapter, we had concerned ourselves with preprocessing the textual con-

tents of individual web pages. Web pages, apart from containing text, also have a mech-

anism for connecting with other web pages through the use of hyperlinks. The present

chapter deals with how web pages may be preprocessed based onthe interconnections

between them.

The Web has a complex graph structure and is usually modeled as a digraph [19,22],

with the pages forming the vertices and the links between them being the arcs. This graph

structure, as reflected by the hyperlinks between web pages,carries a lot of information

in addition to the contents of individual pages.

The author of a web page may want a visitor to move on to one of a small set of pages.

On occasion, this set might be a singleton, implying that thevisitor is urged to directly

continue on to that page. Pages which are intended to be visited one after the other, in

a particular order, shall hereafter be referred to as asequence. A sequence is a path in

the graph theoretic sense, but it is not just any path, but onewhere there is a continuity
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in the contents of the constituent pages. A formal definitionof sequences, along with the

motivation for detecting them, is provided in Section 3.2.

A literature survey on sequence detection in graph theory, in Section 3.3, reveals that,

while there are a plethora of algorithms for detecting cycles and paths (in the graph the-

oretic sense) in graphs, there is none that suits our specificpurpose. We provide a novel

algorithm that detects, not just any ordered set of distinctpages, but sequences of pages

that were originally intended to be visited in that order. This algorithm involves detecting

continuity links and finding pieces of the sequence that may be joined together later. We

then make a few assumptions and produce a scalable but relaxed version of this algorithm.

These algorithms are described in Sections 3.4 and 3.5.

The true worth of detecting sequences lies in understandingthe numerous tasks that it

helps in – document retrieval, web graph size reduction, andduplicate detection, to name

a few. For all these tasks, the detected sequence may be replaced by a single web page

that includes the contents of all the pages in the sequence. While the reduction of the

size of the web graph is an obvious consequence, and duplicate detection is fairly easy

to understand, the effects of merging documents on retrieval tasks are more complicated.

We study thoroughly how theterm frequencyandinverse document frequencychange as

documents in the corpus are merged together. This constitutes Sections 3.6 and 3.7.

In Section 3.8, we provide results of experiments performedon HTML corpora that

confirm the efficacy and usefulness of the work presented in the current chapter. Sec-

tion 3.9 summarizes the contributions of the chapter and concludes it.

We now delve deeper into defining sequences of interest, and subsequently, identifying

them from the vast web graph.

3.2 Sequences and Cycles of Web Pages

We use the following terminology related to graphs [57]. A digraph or directed graph

G is an ordered pair(V,E), whereV is a set of vertices andE is the set of arcs or
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directed edges between these vertices. We denote the arc from vertexi to vertexj by

eij. A path in a digraph is a sequence of verticesx1, x2, . . . , xi, xi+1, . . . , xn such that

xi andxi+1 are connected by an arc inE, and the vertices are not repeated. A cycle is

a sequence of verticesx1, x2, . . . , xi, xi+1, . . . , xn, xn+1 such thatxn+1 = x1 and if xn+1

is removed, the remaining part is a path. We denote the path and cycle defined here by

x1.x2 . . . xi.xi+1 . . . xn and(x1.x2 . . . xi.xi+1 . . . xn), respectively. A digraph is strongly

connected if there exists a path from any vertexx1 to any other vertexxn in V . The in-

degree (out-degree) of a vertex is the number of arcs leadingto (going out of) the vertex.

The number of pages on the indexable Web is several billion, with Yahoo! claiming to

have indexed about 20 billion pages way back in the year 2005 [146]. According to [2],

the average number of links on a web page ranges between 9 and 28, which turns out to be

a humongous number of links for the whole web (note that, some, or many, of these links

may point to pages outside the indexed set of pages). Link analysis algorithms dealing

with the web graph assume that it is strongly connected, although, in practice, this is

ensured by adding artificial arcs to the graph [22].

In such massive digraphs, with several arcs between the vertices, sequences and cy-

cles are a common phenomenon. We now present an example to illustrate how huge the

number of cycles in the web graph could be, and why most of these individual cycles are

not interesting.

3.2.1 Motivation

Consider the following statement.

A: There is a cycle of web documents consisting of

– http://www.stanford.edu/index.html,

– http://www.yahoo.com/index.html, and

– http://wi-consortium.org/index.html
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One can easily be convinced that Statement A is true, primarily because of the high in-

and out-degrees of the chosen web pages. Moreover, Statement A would hold true even

in conjunction with any of the following statements:

B: The three pages appear in a prespecified order

C: The length of the cycle is exactly 10

D: The cycle contains no web page from aco.uk or a.net domain

The ease with which these statements have been made, and can be verified to be true,

provides an idea of how huge the number of cycles involving these three web pages would

be. This in turn would imply that the total number of cycles onthe web (without imposing

any conditions) would be extremely large. As mentioned earlier, the web has more than

20 billion documents, and an average out-degree of 20. Assuming this to be an Erdos-

Renyi (random) digraphG(n, p), with n being the total number of documents, andp being

the proportion of all possible links which actually exist, the expected number of cycles

of length, say 10, turns out to be of the order of2010. Enumerating all such cycles (say,

by an algorithm as mentioned in [133] or [94]) would be tedious and computationally

expensive, and several individual cycles that have been formed just by chance may not be

interesting at all.

Despite the huge number of cycles on the web, only a few of these cycles were con-

ceived at the time of their creation by the authors of the constituent pages. While the

reason behind creating such special structures in the web graph may be Search Engine

Optimization or simply a matter of convenience, sometimes it borders on malicious intent

or spam [142]. Moreover, with web authoring styles varying widely, the same kind of

content may be presented in a single page, or broken up into several pages. Such dissimi-

larities bring about large differences in link based analyses. So, for the sake of uniformity

and consistency during comparison of web pages, the detection of these special structures

is essential. We now specify what exactly are the structuresof our interest.
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3.2.2 Structures of Interest

We first take the help of an example (see Fig. 3.1), to characterize the kind of objects we

are interested in detecting from the web graph. Fig. 3.1 shows a directed graph, sayG,
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Figure 3.1: A strongly connected digraph

with the vertices labeledA to I being web documents and arcs being the links between

them. This graph is strongly connected because any vertex can be reached from any other

vertex.

We now look at the directed cycles of the graphG. There are two of them of length

greater than two, namely (B.C.D.E.F.G.B) and (A.I.H.F.G.B.A),each consisting of six

vertices. Although, technically, both the above cycles maybe reported by a cycle de-

tection algorithm, we observe that the former looks more regular compared to the latter.

Also, the names of the web pages are quite suggestive that thefirst cycle was intended

right at the outset, while the second one was formed just by chance.

We are interested only in cycles of the first kind which exhibit a regular pattern. In the

present chapter, we study sequences and cycles of web pages that have been deliberately

so generated by their author(s). In other words, at the time of creation of these pages, it

was intended that a surfer would view them all in a specific order.

We note that although our examples involved cycles of a graph, we could have made

similar statements about paths of the same graph. As we shallsee later, paths are what



64 Sequence Detection for Link Preprocessing of Web Documents

offer the most interesting applications in our context and cycle detection provides no

additional advantages for the tasks being considered in thepresent chapter.

We shall now formalize the definition of sequences of interest, which as we already

know, are not just any paths in the given graph. Mathematically, a sequence{Xn} is

defined as a function with its domain being a subset ofN (the set of non-negative integers)

and taking values in some setS. In our case, each value is a web page. The kind of

sequences that we are interested in may be defined as an ordered set of elements where

the relation between any two consecutive elements remains the same. In other words,

Xn+1 is related toXn in exactly the same way asXn is related toXn−1.

A sequenceof web pages is an ordered set of web pagesx1.x2. . . . .xk, such that

consecutive pages of a sequence are connected bycontinuity links, andxi+2 is linked to

xi+1 just the wayxi+1 is to xi. To understand continuity links better, let us look at the

various relationships bestowed upon two pages connected bya hyperlink. Hyperlinks

play a variety of roles like

• Reference: the user is expected to follow the hyperlink, visit the reference and

return back to the present page. Such instances abound in sites like Wikipedia [141].

• Continuation: the link is to content which the author of the present page would

recommend the user to access next. For example, a link fromhttp://www.

mutt.org/doc/manual/manual-1.html to http://www.mutt.org/

doc/manual/manual-2.html is a continuity link.

• Navigation: links of this kind are present to help the user easily navigate between

portions of the site. Usually, the same set of such navigational links (possibly,

excluding a self-link) appears in each page of a section of a site, resulting in a

clique of web pages.

• Advertisement: these links lead the visitor of the current page to advertisements,

which may or may not result in a (financial) gain to the owner ofthe web page.
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The past few years have seen increasingly contextually relevant advertisements be-

ing served, with the links being created dynamically at the time of page generation.

However, several studies (e.g., [150]) treat a link to an advertisement as noise, as-

suming that it is forcibly imposed on the user.

The above mentioned categories are not necessarily mutually exclusive (and are not

meant to be exhaustive, either). In particular, it is difficult to accurately determine if a link

is for the purpose of continuation or navigation. For example, Bharat and Mihaila treat

any link between two web pages in the same domain as navigational [17]. This definition

would include, to various extents, all four types of links described above. In particular,

when continuity links connect pages in the same domain (or perhaps, within the same

directory of a server), they could be flagged as navigationallinks.

We now make two important assumptions regarding continuitylinks. Put otherwise,

these are assumptions regarding how an author would split her content across multiple

pages.

• Assumption 1: Links for continuity occur only between pages in the same domain.

In other words, continuity of content occurs only through navigational links. This

assumption is usually reasonable as an author is most likelyto split content between

pages on the same domain.

• Assumption 2: Content is continued on pages at the same directory level. This is an

extension of the previous assumption. Sequential content would generally be split

(or organized) into files under the same directory.

An example of continued content that satisfies these assumptions ishttp://www.

mutt.org/doc/manual/manual-[1-7].html. These assumptions go a long

way in reducing the computational complexity of sequence detection, because the search

space for finding any sequence containing a particular page is restricted to the direc-

tory under which that page exists, as opposed to the whole webin the unrestricted

case. In certain cases, content may be continued over several directories, and under



66 Sequence Detection for Link Preprocessing of Web Documents

these restrictive assumptions, only parts of the content would be identified as being

continued. For example,http://www.mpt.iif.hu/pages/1/page1.html and

http://www.mpt.iif.hu/pages/2/page1.html are part of continued con-

tent. However, we would not treat them as part of a single sequence. In other words,

we would not necessarily be finding maximal subsequences, which is a tradeoff for the

gain in speed.

A consequence of Assumptions 1 and 2 is that continuity linksare now a strict subset

of navigational links which have been widely studied in the literature. In the next section,

we review existing literature on detecting navigational links and graph theoretic cycles.

3.3 Related Work

Sequence detection algorithms described in this chapter rely on both identification of

continuity links and detecting sequences and cycles from graphs. Here, we survey the

literature on both these topics.

The concept of continuity links has not been studied elsewhere, and the closest re-

lated literature is regarding navigational links which, asmentioned earlier, contain the set

of continuity links. Identification of navigational links has been studied in many works

available in the literature [17, 20, 37, 149]. Bharat and Mihaila [17] disregarded links be-

tween pages on affiliated hosts. Two hosts were called affiliated if they shared the first

three octets in their IP addresses, or the rightmost non-generic tokens in their hostnames

was the same. Borodin,et al. [20] identified and eliminated navigational links using a

very similar idea. However, not all navigational links are detected in this manner [20].

Moreover, this approach is quite severe, and some links connecting pages wholly on the

basis of their content would be wrongly classified as navigational links. This would espe-

cially be the case where, say, a member of an organization links to content on a colleague’s

page.

Yi and Liu [150] detect navigational links along with bannerads, decoration pictures,
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etc, which were collectively termed web page noise, in a set of pages by constructing a

compressed structure tree (CST). The diversity of tags in an element node of the CST

determines how noisy the corresponding block in the web pageis.

In the above mentioned studies, navigational links have been treated as noise and

discarded. Also, in [150], they have not been separated fromother kinds of web page

noise like banner ads, decoration pictures,etc.

Sequence or path detection in graphs has largely been restricted to finding Hamiltonian

paths, shortest paths between a pair of vertices, or counting the total number of paths

between two vertices. This conveys the impression that sequence detection, by itself,

was not considered very interesting. On the other hand, cycle detection has been widely

studied under two related areas, namely, pseudo-random number generation [21,107] and

graph theory [94, 140]. In pseudo-random number generation, a sequence of numbers is

generated by applying the same function to the last generated number. The objective is

to detect cycles in the sequences of random numbers being generated. By adding arcs

between consecutive elements of such sequences, this problem may be studied as a graph

cycle detection algorithm. Since, every element of such sequences has out-degree one,

stack based algorithms are employed for cycle detection [107].

Detecting cycles in general graphs and digraphs is more complicated, because the out-

degrees of the vertices may be more than one. There are several digraph cycle detection

algorithms, as evident from the opening statement of [94], which was itself published

several years back. Some of them like the one by Read and Tarzandepend on depth-first

search while others like the Szwarcfiter-Lauer algorithm employ a recursive backtracking

procedure which search strongly connected components of the graph [94]. For the web

graph, a sizeable portion of which may form a single stronglyconnected component, such

algorithms may only serve an academic purpose.

We now present algorithms that detect sequences of interestfrom the web graph.
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3.4 Proposed Sequence Detection Technique

We now describe two methodologies for detecting sequences in a set of web documents.

• The first one relies directly on the hyperlink structure, andis very much in line

with the definition of sequence mentioned above. In order to detect a sequence,

its individual segments are detected first, whereby, each triplet (three consecutive

elements) of the sequence is found. Such triplets are found by examining the sim-

ilarity of the pairs of linkseAB andeBC , whereA, B andC are three web pages

present in the web graph under consideration. Detection of the desired triplets of

the form(A,B,C) is performed in two steps. First, for each pageB, we identify

the continuity links leading into and out ofB. Then, each pair of links consisting

of an inlink and an outlink are checked to see if they form a part of a sequence.

All such triplets are stored and finally, they are merged to obtain sequences of web

pages.

• The second one, which does not directly rely as much on the hyperlink structure,

puts less emphasis on the accurate identification of continuity links, and is much

more scalable. Sequences are determined by looking at just asingle page, and the

positions of the continuity links in that page. This is further simplified into looking

at consecutive URLs found in the crawl order, and residing under the same direc-

tory. This assumes that the web crawling is performed in a breadth first manner. In

that case, when consecutive continuity links appear in a “contents” page that has

just been crawled, the corresponding pages would, usually,be crawled or traversed

in that order.

We now describe the first method for detecting sequences of web pages. As a first

step, we need to identify triplets of pages connected by continuity links. Since we do not

know which links are continuity links, this is not directly possible. So, we shall iden-

tify candidate triplets connected by navigational links instead. However, given that our
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ultimate goal is to select only those candidate triplets which are connected by continu-

ity links, we shall consider only those navigational links which connect pages within the

same directory.

Our approach for detecting navigational links is relatively simple compared to several

other approaches mainly because we are not interested in various other structures like

content blocks and templates,etc. We assume that navigational links mostly occur unac-

companied by text, the likely reason being that the anchor text is descriptive enough for

the user to understand where the link leads to. Since most continuity links lead to neigh-

boring pages, which in turn, have a similar look and feel, theuser is generally expected to

be familiar with the navigational links and no further description is required.

Whereas Bharat and Mihaila [17] treated links between any two pages on affiliated

hosts as navigational, we shall consider navigational links only if both the source and

target pages are at the same level, i.e., the two pages are located in the same directory

under the same domain. In this manner, we restrict the sequences to be detected to consist

of pages at the same level. This additional constraint in thedefinition of continuity links

drastically reduces the complexity of the algorithm for searching sequences in the web

graph.

For a given web page, we look at the link elements (delimited by “<a href=. . . >

. . . </a>”), and content elements which may either be a text token or animage. We

ignore all other content types in this study. A typical such sequence of text and links

looks like in Fig. 3.2 (this particular example sequence corresponds to the URLhttp:

//clgiles.ist.psu.edu/index.html). Here, ’L’ and ’T’ denote a link and

content element, respectively.

Note that the navigational links are clumped together, whereas, the other links in the

page are surrounded by text. We formalize this notion as follows: Let the string formed

as above be denoted byS and let its length ben. Also, letk be such thatS[k] is ’L’. Let

the set{S[k − 5], S[k − 4], S[k − 3], S[k − 2], S[k − 1]} be called the left neighborhood

of S[k] and{S[k + 1], S[k + 2], S[k + 3], S[k + 4], S[k + 5]} be the right neighborhood
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Figure 3.2: String of links and content elements of a web page

(one of them may have less than five elements, too, ifk < 6 or k > n − 6). Now, if

either the left or the right neighborhood ofS[k] contains at most three ’T’s, then we label

S[k] as a navigational link. Otherwise, the link is considered tobe a referential link and

is ignored. Basically, we are looking at the two neighboring windows (of size 5) to see if

it is predominantly text in that locality or not. The optimalchoice of window size is not

obvious, but we find that our present choice is reasonably good for our experiments.

Among the navigational links found, we further classify them into two kinds: top and

bottom. We assume that a continuity link would appear at the ends of a page (and not

at the middle). Ifk mentioned above is smaller (greater) thann
2
, we label the link as top

(bottom). This is our third simplistic assumption about continuity links:

• Assumption 3: Continuity links appear either at the top or the bottom of a page, and

not within running text.

This assumption is inspired from the standard practice of including a link to “next” and

“previous” pages at the top and/or bottom of each page. Note that by “top” we mean the

top portion in the HTML version of the page, and not necessarily the top portion of the

page when displayed in a browser. For example, the links in the initial portion of the

HTML content of a page may appear as a bar to the left.
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We now represent the features of the link by using a byte of information. The first

(second) bit denotes whether the link is a top (bottom) continuity link. The first (latter)

three of the remaining six bits keep the count of the link fromthe top (bottom). So, for

example, the second navigational link from the top would have 1*001*** and the third

navigational link from the bottom would have *1***010 (the values at ’*’ are determined

by the position of the link at the other end of the page). We provide another example to

clarify this. A navigational link that appears as the fourthlink from the top, and appears

again as the last link in a page, would have the information byte 11011000 associated

with it. Since we use only three bits to store the count of the link, only the top and bottom

eight navigational links are retained, and the rest are not called navigational links and the

corresponding bits at the beginning are set to 0.

Now that the navigational links have been identified, our task is to find the successor,

if any, of each such link. In the case, where we manage to find a successor, we shall call

the navigational link as a continuity link. For each pageB, we look at the navigational

links that lead intoB. For any such linkeAB, we look at its information byte and identify

the link onB with the same information byte. If there exists one such link, sayeBC , we

call it the successor ofeAB and the triplet is noted asA.B.C, and indexed byB for ease of

retrieval. What we are doing in terms of finding the successor of a link is trying to identify

the link that appears in almost the same position aseAB. Since, the user has reached page

B by clicking a link at that very position onA, it is very likely that the link on pageB

at the same position would be followed. This is what we mean bysaying that pageC is

related toB in the same way asB is related toA.

In this manner, all links which are present in sequences are assigned a successor and

are stored as triplets. The relation between the consecutive elements of the sequence might

not hold at the extreme ends of the sequences, but all triplets from the interior would be

found. These form the basic building blocks of larger sequences. Our task is now to

concatenate these segments into the actual sequence. Letx1.x2 . . . xn be an existing sub-

sequence (initially, all of them are of length 3). A subsequencey1.y2 . . . ym is prepended
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to it if ym−1 = x1 andym = x2, and the new subsequence becomesy1. . . . ym.x3. . . . xn.

Similarly, it is appended ify1 = xn−1 andy2 = xn and then the new subsequence becomes

x1.x2 . . . xn.y3 . . . ym.

We traverse these triplets, merging them into larger and large subsequences to obtain

all the desired sequences. Finally, when we have all the sequences, we check if there

are any cycles to be found. Note that this scheme of cycle detection corresponds to the

one used for detecting cycles in sequences of pseudo-randomnumbers. We do not need

the more general graph cycle finding algorithms because we are now dealing with only a

sequence of web pages and not the whole web graph. We refer to this algorithm as SC1.

Continuity links may sometimes be marked out in the HTML content of the page. This

is all the more common nowadays with a number of pages being generated automatically

or being converted from other formats such as MSWord or LATEX. If we assume that the

appearance of the wordsnavigationor navigin HTML comments or names of blocks gen-

uinely indicates that the block is a navigation panel, identifying continuity links becomes

straightforward. This obviates the tokenization of the pages and counting the neighbors of

links, and hence, improves the speed of the algorithm. Some web pages may also provide

information about the relations with other pages by means oflink elements. This again

makes the task of detecting sequences of pages trivial as therelations between them are

specified beforehand. However, authenticity of these specified relations is not guaranteed,

and an algorithm may be easily misled onto a wrong path.

The information about a continuity link that we store may notconvey the exact posi-

tion where it would be displayed due to a variety of reasons. Amore accurate way would

be to locate the actual position in the page where the link would be placed by analyzing

the HTML structure. This information may require more than abyte of storage space.

It may be noted that these storage requirements are far belowthat needed for the actual

index itself.

The next section describes the second of the above mentionedmethods for sequence

detection.
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3.5 Trading Accuracy for Scalability

Often the ideal definition of a sequence, which tries to gaugethe positions of the links,

might not be scalable as a wide variety of documents enter thecorpus, and especially, if

there are several documents under the same directory. The sequence detection algorithm

would be sent on a wild goose chase more and more frequently.

This section aims at efficiently detecting a majority of the sequences, the occasional

omission being traded in favor of scalability. Of course, these improvements in efficiency

would be garnered an additional assumption on the kinds of sequences we shall try to

find.

• Assumption 4: Names of the files (the last part of the URLs) are named so as to

reflect the continuity in content.

Usually, this is achieved by using a numerical or alphabetical suffix before the file exten-

sion, with the suffix increasing one at a time.

This assumption enables us to identify sequences without looking inside the HTML

contents of the indexed web pages. Only the list of URLs is needed, which may then be

sorted. Note that sorting the URLs would automatically grouptogether those that share

a common directory. We also note that a simple unix sort wouldnot always suffice for

sorting when there are numeric suffixes. For example, a string comparison of page9.html

with page10.html would place the former after the latter. Wemake a simple change to

the string comparison algorithm to take care of these cases.If both file names have only

numerals from the first position (from the left) where the twostrings differ to the end of

the strings, then the result of the string comparison would be the same as the comparison

of these numeric suffixes. Otherwise, usual string comparison is performed.

Next, we run through all the sorted URLs, and whenever two consecutive URLs have

the same directory name, we compute the distance between thetwo filenames. As earlier,

if the differing portions are both numeric, we compute the arithmetic difference as the

distance. Otherwise, we use the standard string distance function, namely, the Levenshtein
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edit distance. If this distance is less than or equal to 2, we shall call the two URLs to be

part of a sequence, and tag the second one with the same tag as the first one. Each URL

in the list would thus be assigned a number corresponding to which sequence it belongs

to, with some of these sequences being of length one. Since the first sequence detection

algorithm, SC1, does not detect sequences of length 2, in the present case also, we forcibly

ensure that sequences are of length at least three. From a practical point of view, and to

be on the safer side, we also impose an upper bound of 25 on the length of permissible

sequences. We call this algorithm SC2.

3.6 Characteristics and Uses

We now discuss some characteristics of the proposed sequence detection technique. SC1

and SC2 detect sequences, but do not report paths that have been formed just by chance.

For example, these algorithms would surely not report a cycle that satisfies Statement A

(of Section 3.2.1). Thus, despite the existence of numerouscycles in the web graph, these

algorithms would report only a handful of sequences and cycles.

This methodology does not incorporate finding second level sequences and cycles, i.e.,

sequences of sequences and cycles,etc. This may be required for the sake of uniformity

in the case where a page is split into not just a single sequence but into multiple sequences

at different levels.

Note that we have taken care of only decimal suffixes in the SC2 algorithm. If the

numeric prefixes are non-decimal, SC2 might not be able to detect some of the sequences.

For example, if two consecutive filenames are part12.html and part20.html, where the

numeric suffixes are ternary numbers, SC2 would not recognizethem as part of a single

sequence. However, there are instances where consecutive elements with non-decimal

suffixes may be detected. For example, page9.html and pagea.html, where the ’a’ has

been used as the hexadecimal equivalent of 10, by virtue of having an edit distance of 1,

these are tagged as being part of the same sequence. Such instances are usually found
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when authors try to maintain a constant length for the file names. The condition on the

minimum length of sequences rules out cases where content issplit into exactly two parts

(say, part1.html and part2.html). While, technically, suchcases may be easily detected by

relaxing this condition, we retain the minimum length condition because there is too little

information to infer about the “next in sequence” property.

We now come to the utility of detecting sequences and cycles of web pages. One

apparent use of detecting sequences is to merge the pages in that order. What were indi-

vidual pages prior to merging, will now become sections of a single page. In this manner,

the number of vertices in the web graph may be reduced, which is computationally ad-

vantageous.

The proposed methodology may also be employed for bringing aconsistency into the

computation of page ranks despite the varying authoring styles. Some web page authors

may prefer to split their content into a sequence of pages, while others may like to keep it

all in a single page. These differences have an impact on the page ranks of the pages. To

see this, we revisit our example in Fig. 3.1, where, our cycledetection algorithm would

detect only the cycle (B.C.D.E.F.G). Now, consider a page BB that has the union of the

contents of all these individual six pages. We look at how theabove mentioned cycle of

pages would fare against the page BB with respect to page ranking. To this end, we create

a new example (Fig. 3.3), made of two strongly connected components and connect them.

We note that the two components of this directed graph, one consisting of the vertices AA,

BB, HH and II, and the other with the remaining vertices, have a correspondence between

them, with BB corresponding to the cycle (B.C.D.E.F.G). This graph is treated as the web

graph and the (unnormalized) PageRanks [22] of these nodes are shown below (Table

3.1). Although, content-wise, the pages B to G, put together, are equivalent to the page

BB, their ranks are different. In general, for the case of the actual web graph, it would be

much more difficult to ascertain the effect of merging a sequence of pages, but, as evident

from this example, it is not necessary that the ranks of the constituent pages remain the

same. Thus, in the case of web search, the results returned may be influenced by whether



76 Sequence Detection for Link Preprocessing of Web Documents

HH
�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
��

�
�
����

���
���
���
���
���

���
���
���
���
���
���

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
��� ��

��
��
��
��
��

��
��
��
��
��
��

����
����
����
����
����

����
����
����
����
����

��
��
��
��

��
��
��
��

A

B

C

D
E

F

G

BB

AA

H

�
�
�
�

Figure 3.3: One component of the graph has a cycle, the other has it merged

all the content has been kept in a single page or has been splitinto a number of pages. In

this respect, our algorithm may be utilized to maintain uniformity among various portions

of the web, so that comparisons between web pages become lessdependent on authoring

styles.

There is yet another and more important advantage of mergingsuch sequences of

web pages. Consider two pagesX andY which form part of a sequence. Suppose that

the pagesX andY contain termst1 andt2, respectively, and are the most authoritative,

individually, for the respective terms. LetZ be a page containing botht1 andt2, but which

is not as authoritative on eithert1 or t2 asX andY , respectively.Z may be returned ahead

of both X andY as the most authoritative page containing botht1 andt2. Note thatX

may not even contain the termt2, and even if it does, may not be authoritative for it.

However, when bothX andY form part of a merged sequence, they would correctly be

returned ahead of Z for the query consisting oft1 andt2. In reality, pages likeZ behave

like pages containing spam words. They are not at all authoritative for the terms they

contain, but nevertheless have terms which co-occur very rarely. Such pages permeate

the initial portion of the search results when a user enters such a combination of terms,

primarily because of the lack of better pages containing allthe query terms together.

It may be noted that the pagesX andY need not be physically merged together. A

search engine may perform the analysis as if their content iscombined together and output
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Table 3.1: PageRanks for the pages in Fig 3.3

Page Rank

A 1.172

B 1.542

C 0.805

D 0.834

E 0.859

F 1.290

G 1.247

H 0.482

AA 1.295

BB 0.956

HH 0.517

both the pages in response to a query. In this manner, sets of web pages may be output by

a search engine in response to a (multiple term) query, as opposed to the current trend of

providing single pages as search results.

Merging documents has a major impact on the retrieval process. We dig deeper into

how the frequencies of the terms change as a result of mergingdocuments.

3.7 Impact of Merging Documents on TFIDF Scores

A TFIDF based score is a normalized measure of the importanceof a termt to a document

d in the corpus. TF refers to Term Frequency, and is the count ofthe occurrences of the

term in the document. Since, longer documents are likely to have more instances of the

term t, TF is normalized in order to be able to compare across documents. A common
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method of normalizing TF is to divide by the total number of tokens in the document [26].

tf(t, d) =
n(t, d)

∑

τ n(τ, d)
(3.1)

That some words occur more frequently in the corpus than others has to be taken into

consideration while combining the importance scores of various words for a document.

This is done by weighting the TF scores by the Inverse of the Document Frequency (IDF).

IDF is inversely proportional to the number of documents in the corpus containing term

t, and is generally defined as [26]:

idf(t) = log(
1 + |D|

|Dt|
) (3.2)

The TFIDF score oft for documentd is simply taken as the product of the corresponding

TF and IDF values.

Now, suppose that the given corpus isC and we have detected some sequences of

documents and merged them together resulting in the corpusC ′. We study how the TFIDF

scores for the various terms and documents are changed as a consequence of merging the

documents. Here,t is a term in a documentd which is contained in the original corpusC,

andd′ is a document inC ′. Let N andN ′ denote the number of documents inC andC ′,

respectively. By definition,N ′ ≤ N .

• If d ∈ C ′ (that is, documentd is unchanged as it is not part of any detected se-

quence), the TF oft in d is unchanged. However, the IDF oft may change asDF ′(t)
N ′

need not equalDF (t)
N

. This is because

IDF (t) ↑⇔ DF (t) ↓⇔
DF (t)

N
>

DF ′(t)

N ′
⇔

N ′

N
>

DF ′(t)

DF (t)
.

In words, the IDF oft increases if a higher proportion of documents containingt

are merged together, as compared to the proportion of documents merged in the

original corpus. So, the overall importance oft for the documentd, as reflected

by tfidf(t, d), increases in such a case, as a consequence of the termt now being

expected to appear in fewer documents as compared to other terms in d. Similar
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statements hold for the decrease, and no change, in importance of the termt for the

documentd.

• If d 6∈ C ′ (that is, documentd has been merged together with some other documents

to form d′), the term frequency of a termt that occurs frequently in many of the

documents merged together to formd′ is higher than that of a term which appears

rarely in all the documents put together. For example, ift1 andt2 both have equal

term frequency ind, but t1 appears in no other documents constitutingd′, whereas

t2 appears in all of those documents, the term frequency oft1 in d′ would be lower

than that oft2 in d′. Also, it is clear thatt2 would benefit more thant1 in terms

of increase inIDF (with or without normalization). Thustfidf(t, d′) would be

more for terms appearing more in the whole sequence of documents, which seems

reasonable, as it means that the term that is contained in several of the documents

is deemed to have higher importance for the collection as a whole.

• The previous points were concerned with comparison betweenterms. Now, we

shall study the effect of merging different documents on a single term. If a termt

appears once in each of the documentsd1, d2 andd3, and say,d2 andd3 are merged

together, whereasd1 is kept separate, then the (normalized) TF oft is still very

similar to the unmerged situation. To elaborate, let us assume thatn1, n2, andn3

are the number of words in the three documents respectively.Now, the TF oft in

d1 remains 1
n1

, whereas the TF oft in d2 merged withd3 is 2
n2+n3

. It may be noted

that the quantity 2
n2+n3

is the inverse of the arithmetic mean (A.M.) of n2 andn3,

and
1

n2
+ 1

n3

2
is the inverse of the harmonic mean (H.M.) of n2 andn3, and hence,

the following set of inequalities hold:

min

{

1

n2

,
1

n3

}

≤
2

n2 + n3

≤
1
n2

+ 1
n3

2
,

where the second inequality follows fromA.M. ≥ H.M., and the first inequality
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may be seen as follows:

n2 + n3

2
≤ max {n2, n3} =

1

min
{

1
n2

, 1
n3

} .

Thus, the TF oft may not increase or decrease much when the documents con-

tainingt are merged together. However, even if the absolute TF oft is unchanged,

as noted earlier, the TF oft would be relatively higher than the TF of some other

terms. This is a consequence of there being more distinct terms in d2 andd3 put

together, than individually.

3.8 Experimental Results

We now present the results of experiments. We have tested theproposed algorithm on

three different data sets. First we test our algorithms on the Python data set, a small

collection of web pages, so that a manual verification of the results is feasible. All

files under the websitehttp://docs.python.org were obtained (available online

as a tar bzipped file fromhttp://python.fyxm.net/ftp/python/doc/2.4/

html-2.4.tar.bz2). There were a total of 1412 HTML files. Of these, 1408 HTML

files were under 10 subdirectories. Under each subdirectory, the HTML pages form cy-

cles. A quick inspection at the pages contained in this data set reveals that there are at least

thousands of possible (not necessarily disjoint) cycles, of which only ten are interesting

(because they were so generated and placed in subdirectories).

We apply our SC1 and SC2 algorithms to the Python data set and tensequences are

detected by both of them. The lengths of the cycles are 9, 18, 21, 32, 64, 83, 99, 116, 120

and 836. The output sequences were manually verified to be completely accurate. Thus,

we also know that SC2, which is an approximate version of SC1, fares equally well when

the data sets are simple. The Python data set indeed has files with numeric suffixes, which

is exactly the additional assumption that SC2 makes.

Next, we detected sequences in the WB1 and WB13 data sets using SC1 and SC2.
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Table 3.2: Number of sequences detected by SC1 (NSC1) and SC2 (NSC2), and per-

centage of their intersection

Data Set NSC1 NSC2 NSC2
NSC1

WB13 1368 1338 97.8%

WB1 3376 3293 97.5%

Table 3.3: Number of pages included in sequences detected bySC1 (PSC1) and SC2

(PSC2), their percentages, and the percentage of their intersection

Data Set No. of pages (N ) PSC1 PSC1
N

PSC2 PSC2
N

PSC2
PSC1

WB13 34343 9590 27.9% 9423 27.4% 98.3%

WB1 106025 41443 39.1% 40936 38.6% 98.8%

The number of sequences detected by SC1 and SC2, and the proportion of the sequences

detected by SC1 also detected by SC2 are mentioned in Table 3.2.

We observe from Table 3.2 that SC2 detects close to 98% of the sequences detected by

SC1, which uses the original definition of a sequence, on both the data sets. This confirms

thatAssumption 4is not too restrictive in practice, the reason being that webpage authors

do name consecutive pages of a sequence using numeric or alphabetic suffixes.

Table 3.8 lists the number of pages covered by the detected sequences. The remaining

pages, i.e., 70.1% and 61.4% of WB13 and WB1, respectively, are the singleton pages,

which are not considered part of any sequences. We do not strictly assert that they are not

part of any sequences because of two subtle reasons:

• We have decided not to detect any sequences of size two, primarily because SC1

lacks this ability by the very definition.

• The caution being exercised in not allowing abnormally longsequences results in

wrapping. Our threshold being chosen as 25, if there is a sequence of length 26,
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it would result in our algorithm finding a sequence of length 25, and the last page

would be called a singleton.

Next, we examine the lengths of the detected sequences. Histograms of the lengths

of detected sequences are plotted in Figs. 3.4–3.7. A logarithmic scale has been used

for theY -axis because, otherwise, the excessively huge number of singletons and small

sequences would dominate the plot. Comparing Fig. 3.4 and Fig. 3.5, we find that the

sequences not detected by SC2, but detected by SC1, on WB13 data set are predominantly

small ones. The case of WB1 is similar, too. Again, this revealsthat sequences without

suggestive root and suffix combinations are rare as the length of the sequences increase.
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Figure 3.4: Histogram of the length of the sequences detected by SC1 on the WB13 data

set

We measure the impact of merging sequences of documents on the TF and IDF of

terms in the WB1 and WB13 data sets, the exact methodology being asdescribed here.
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Figure 3.5: Histogram of the length of the sequences detected by SC2 on the WB13 data

set

For a given corpus, we retain only words that are present in a unix dictionary (available in

/usr/share/dict/words of most unix (especially, Linux) machines. Interestingly,

this set of words includes frequently used proper nouns likeStanford and Berkeley, too.

All words are folded to lower case, and are run through the Porter stemmer. Now, each

document is represented as a bag of words, with the words being the aforementioned

stems. Also, an inverted index is created, whereby, for eachstem, the documents and the

corresponding frequencies are listed. The above process isrepeated for the corpus with

merged sequences of documents.

Now, for each stem in the corpus (note that the set of the stemsis the same in both the

merged and unmerged set of documents), we compute the ratio of the IDF in the merged

and the original corpus. The top gainers, in terms of IDF, forboth WB13 and WB1 data
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Figure 3.6: Histogram of the length of the sequences detected by SC1 on the WB1 data

set

sets are shown in Figs. 3.8 and 3.9.

It is interesting to note that the words with maximum IDF gainare those that appear

across several different pages of a sequence, and in a sense,are representative of the

sequences they appear in. Also, interesting is the fact thatstop words and other commonly

used words are all pushed to the end of the list as they gain theleast in terms of IDF owing

to their being omnipresent in the corpora.

3.9 Conclusions

In this chapter, we have introduced a novel methodology for the task of detecting se-

quences of web pages. Also, the importance of sequence detection has been highlighted
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Figure 3.7: Histogram of the length of the sequences detected by SC2 on the WB1 data

set

extensively. With the help of some examples, we have explained why detectingall possi-

ble sequences and cycles of web pages is neither feasible norinteresting. Consequently,

we described the sequences of interest, and then presented amethodology for detecting

only the few interesting sequences which were created to be traversed in that order. The

proposed algorithms SC1 and SC2 use varying levels of domain knowledge, coded in

terms of assumptions on the sequences of interest, but essentially capture the same no-

tion that consecutive elements of a sequence have a constantrelation between them. SC1

identifies continuity links in web pages, as well as, their positional information, and tracks

sequences by traversing pages through links with the same positional information. SC2,

on the other hand, operates directly on the URL list itself, identifying consecutive pages

based on the URL strings. Experiments conducted on the Python, WB13 and WB1 cor-
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pora demonstrate the effectiveness of SC1 and SC2 in detectingsequences, and also depict

how merging the obtained sequences affects the term frequencies and inverse document

frequences for various terms present in the corpora.

Apart from studying the problem of web page sequence detection, and providing so-

lutions for the same, a major contribution of this chapter was to introduce novel ideas

that can take advantage of sequence detection. Identifyinga group of pages as being con-

stituents of a single document reduces both the number of nodes and the number of edges

in the Web graph. This, in turn, results in a reduction in the computational time and re-

sources required for operations like page ranking on the Webgraph. Given the importance

that duplicate detection has received in literature, the application of sequence detection to

identifying duplicates is also quite interesting. In addition, matching queries to content

across multiple web pages, and thereby, returning sets of pages as web results, is a novel

concept in itself.

This chapter, along with the previous one, presented work that prepares web data sets

before the task of surfer modeling is taken up. In the following two chapters, we delve

into the modeling process itself. In Chapter 4, we employ classical probabilistic approach

while Chapter 5 incorporates the concept of fuzziness in surfer modeling.
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Chapter 4

Web Surfer Model Incorporating Topic

Continuity

4.1 Introduction

The present chapter deals with a methodology based on the principle of surfer models that

simultaneously performs page ranking and context extraction.

Surfer models involve modeling the behavior of a user who browses the Internet. The

sequence of pages that the user visits is modeled as a stochastic process{Xt}, whereXt

denotes the page the surfer is on at timet. The state space for this process consists of

all web documents, each page being a state that the process may attain. The transition

probabilitiesP (Xt+1 = v|Xt = u), 1 ≤ u, v ≤ N (N is the number of pages), are

defined as the probability of reaching pagev in one step, given that the user is currently

on pageu. This transition may happen by either clicking on a link tov available inu or

by typing the URL ofv.

In general, one would be interested in knowing some of the properties of the process

{Xt}. One such property of interest is the convergence of this process to a stationary

distribution. In other words, we would like to know if, for each web page, the probability

of the surfer being on that specific page converges to some value ast→∞. We may also
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be interested in knowing if the above property holds regardless of the starting point of the

surfer and whether it is the same value each time. These properties may be used to draw

inferences about, among others, the ranks and categories ofweb documents.

Traditional information retrieval methods and text miningmethods for the above tasks

are not directly applicable to the web due to the following reasons.

The World Wide Web (WWW or the Web) is a vast network of interlinked web pages

which are mostly in HyperText Markup Language (HTML) format. Other types of doc-

uments on the web are text, pdf, ps, images,etc. HTML documents are semistructured

and contain links to other documents on the Internet. This graph structure, along with the

content of all the pages, adds a new dimension to web mining over text mining.

Another distinguishing feature of the Internet is its easy access to all sorts of people.

A web page may be published by anybody regardless of her profession, nationality, age,

education,etc. Moreover, the content is not reviewed before it is made available. This

leads to a severe degradation of the quality in terms of the accuracy, authenticity, integrity

and consistency of the content available on the web.

Traditionally, documents were ranked on the basis of their contents. With the avail-

abiilty of link information in web documents, and its being less prone to malicious ma-

nipulation, this information has been employed for rankingpages. The final ranking of

results produced in response to a query take into consideration both the link-based ranks

and the content-based ranks. It has been shown in [123] that inclusion of context in the

ranking scheme greatly enhances the performance.

If the process{Xt} has a stationary distribution, then one can actually look atthe

time-independent probability valueP (X = x), and this may be considered to be the rank

of the pagex. It is the unconditional probability that a surfer would be on pagex.

The Random Surfer Model assumes that the surfer is browsing web pages at random

by either following a link from the current page chosen at random or by typing its URL.

On the contrary, the Directed Surfer Model assumes that, when the surfer is at any page,

she jumps to only one of those pages that are relevant to the context, the probability of
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which is proportional to the relevance of each such outlink.Both models guarantee the

convergence of this stochastic process to a stationary distribution under mild assumptions

like the irreducibility of the transition probability matrix. In practice, these assumptions

are enforced by pruning or ignoring some links.

The present chapter is an attempt in demonstrating the significance of incorporating

the information derived from another aspect, namely, the history of a user for ascertaining

the transition probabilities in the surfer model for ranking a page. Here, the surfer is

assumed to follow, more often than not, links on topics contained on the pages that she

had visited earlier, thus maintaining a continuity of topics.

In this chapter, it is shown to be possible to simultaneouslyestimate both the rank

and categorization of the available pages, unlike the earlier models. As a result, both

categorization and ranking improve. A mathematical framework of the model is provided

here along with its convergence and scalable properties. Other applications of the model,

as obtained from the joint probability matrix, are also listed. The superiority of the model

over some related ones is demonstrated both theoretically and experimentally on a dataset

obtained from WebBase [65].

The chapter is organized as follows: the surfer models are described in detail in Sec-

tion 4.2. In Section 4.3, we describe our model that incorporates the information derived

from the history of a user (or, the continuity of topics) along with the motivation behind

it. These are followed by the different characteristic features of the methodology and

its complexity. Experimental results are given in Section 4.4, while the conclusions are

drawn in Section 4.5.

4.2 Surfer Models

A variety of surfer models, such asrandom surfer[22], HITS (Hypertext Induced Topic

Selection[73], PHITS (Probabilistic HITS[31], SALSA (Stochastic Approach to Link

Structure Analysis)[86], directed surfer[123], topic-sensitive pagerank[61], etc., are
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available in the literature. More recently, another model calledWPSS (Web Page Scoring

Systems)has been proposed in [42]. This model is very general and eachof the above

mentioned models becomes a special case of WPSS.

All the above models consider random walks on the web and the rank of a page is

computed as the probability of being on that page during the random walk. The model

considered by WPSS [42] allows for random walks where the surfer is allowed to do one

of the following: follow a forward link, go to a backward link, jump to another URL

or stay in the present page. It thereby encompasses all the actions allowed by the other

models. Among these models, HITS, PHITS and SALSA incorporate random walks in

both forward and the backward directions. In that sense, they do not model a realistic

surfer who would not know all the pages that lead to the page she currently is on. On

the other hand, random surfer model, directed surfer model and topic-sensitive pagerank

incorporate following only forward links, and not backwardlinks. In the present chapter,

since we are concerned about incorporating the informationcontained in the history of a

surfer, we explain only the latter ones in some detail.

4.2.1 Random Surfer Model

The random surfer model models a user who keeps visiting new pages by clicking, at

random, the links available on the current page. Thus, giventhat the surfer is on pagev

at timet, the probability of her being on pageu at timet + 1, P (Xt+1 = u|Xt = v), is

assumed to be1
|Fv |

, whereFv is the set of forward links fromv. Therefore, the probability

of the surfer being on pageu at timet + 1 is computed as

P (Xt+1 = u) =
N
∑

v=1

P (Xt+1 = u|Xt = v)P (Xt = v), (4.1)

whereN is the total number of pages. Counting only those pagesv for whichP (Xt+1 =

u|Xt = v) > 0 (i.e., those pages which have a link tou), we have

P (Xt+1 = u) (4.2)
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=
∑

v∈Bu

P (Xt+1 = u|Xt = v)P (Xt = v) (4.3)

=
∑

v∈Bu

P (Xt = v)

|Fv|
, (4.4)

whereBu denotes the set of backlinks ofu. Here, the second equality is a consequence of

assuming that an outgoing link would be chosen at random.

Let the transition matrix for the stochastic process{Xt} be denoted by

M = ((muv))u,v∈{1,2,...,N}. (4.5)

We then have,

muv =
luv

∑N

w=1 lwv

, (4.6)

whereluv denotes the(u, v)th element of the link matrix of the web graph, and is de-

fined as being equal to1 if and only if v has a link tou, for u, v ∈ {1, 2, . . . , N}.

Let Rt
u denoteP (Xt = u). Then, the probability distribution ofXt+1, R

(t+1) =

(Rt+1
1 , Rt+1

2 , . . . , Rt+1
N )T , may be recursively defined as,

R
(t+1) = MR

(t). (4.7)

If this stochastic process has a stationary distribution, it would satisfyR = MR. The

uth element of the vectorR is the unconditional probability of the surfer being on page

u, and may be considered to be the rank of pageu, andR may be called the rank vector.

To computeR, which is nothing but the dominant (or principal) eigenvector of M , the

power method is employed, wherebyR
t converges toR ast→∞. This is the basic idea

behind the PageRank algorithm suggested by Brin and Page [22].

This manner of page ranking is quite similar to employing manual reviewers. In the

case of manual reviewing, a few selected/qualified people review web pages or sites sub-

mitted for reviewing. PageRank, on the other hand, considersall the authors of web pages

as its reviewers and a reviewer rates a web page highly by providing a link to that page

from her own page.
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Now, the process{Xt}, defined in the above manner, may have certain absorbing sets

of states (which make the process reducible). In terms of webpages, this means that

certain sets of web pages may not have links to pages outside them. These are known as

rank sinks (or leaks when the sets are singletons). Under theassumed model, the surfer is

bound to be stuck in one of these sets of pages ast increases. In practice, however, this is

not reasonable, as the surfer can visit a page outside an absorbing set of pages, by typing

its URL. To reflect this, the model is modified slightly. It is assumed that when the surfer

is on a pagev, he may either decide to type the URL of a new page, the probability of

which is taken to bed (d > 0),or follow one of the links available on the page. That is,

m′
uv := P (Xt+1 = u|Xt = v) =

d

N
+

1− d

|Fv|
. (4.8)

This makes the stochastic process irreducible and the corresponding web graph strongly

connected. The PageRank vector can now be computed as the principal eigenvector of

M ′ = ((m′
uv)). In practice, pages having no outlinks are kept out of the PageRank

computation, and are plugged in later.

The order of the matrixM ′ may be very large, sometimes running into several billion,

and the computation of PageRank needs enormous effort. Consequently, efficient schemes

considering both time and space requirements have been reported, [60,70].

4.2.2 Directed surfer model

Richardson and Domingos [123] have modeled a more intelligent surfer, who probabilis-

tically chooses the next page to be visited depending on the content of the pages and the

query terms the surfer is looking for. The transition probabilities are calculated in terms

of a relevance functionRq(u) that computes the relevance of pageu to queryq. This is

an extension of the one-level influence propagation model introduced in [119].

The probability of reaching pageu from v, m′
uv, is computed as

m′
uv = (1− β)P ′

q(u) + βPq(v → u), (4.9)
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where,P ′
q(u) andPq(v → u) are arbitrary distributions.P ′

q(u) is the probability that the

surfer reaches pageu (without following a link) in the context ofq and corresponds to the

bias vector in the PageRank computation.Pq(v → u), on the other hand, is the probability

of choosingu in the context ofq from among the links provided on pageu. In practice,

P ′
q(u) andPq(v → u) may be derived from a relevance measure as

P ′
q(u) =

Rq(u)
∑N

v=1 Rq(v)
, (4.10)

and

Pq(v → u) =
Rq(u)

∑

z∈Fv
Rq(z)

, (4.11)

where,Rq(u) is the relevance ofu to q. The rank vector computed in this manner is

termedQuery Dependent PageRank, or QD-PageRank, in short.

The choice of the relevance function is arbitrary. IfRq(u) = 1, ∀ q, u, it is the random

surfer model. Other suggestions forRq(u) provided in [123] include an indicator function

for the presence ofq in u and TFIDF-like scores forq in u. (TFIDF stands for Term

Frequency-Inverse Document Frequency). The latter ones make the model more efficient.

In the experiments reported in [123],Rq(u) was chosen to be the fraction of words equal

to q in the pageu.

Even though it is not explicitly stated in [123], the bias vector and the transition proba-

bilities may be obtained from different relevance measures(say,R′
q andRq, respectively).

In this connection, Haveliwala’s recent work on topic-sensitive ranking [61, 62] of web

pages may be mentioned, where a PageRank vector is computed for each distinct topic.

For each topic, a different bias vector is used during the computation of PageRank, where

the bias vector contains non-zero entries corresponding toonly those pages which appear

under that particular category in ODP directory. The topic is decided on the basis of the

context of the query.

This investigation [61, 62] may, therefore, be treated as a special case of the directed

surfer model where the values assumed byq are from the set of categories listed under

the Open Directory (athttp://dmoz.org). In this case, the choice ofR′
q andRq is as
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follows:

R′
q(u) = I[u appears under categoryq in ODP], (4.12)

where,I is the indicator function and

Rq(u) = 1 ∀ q, u. (4.13)

Note that although this algorithm does not make use of the content in the individual pages

for deciding upon the transition probabilities for choosing one of the outlinks, this aspect

can be incorporated, as in [123].

The improvement of performance in page ranking due to incorporation of the said

content can be explained through an example in Fig. 4.1.
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Figure 4.1: Example 1: showing the significance of page content

In Fig. 4.1, we have a set of web pages on two topics, e.g.,computers(C) andsports

(S). Let us assume that pagesx and y have similar content on topicC but x is more

relevant to a queryq on topicC thany. Let us also assume that the content on topicS is

not relevant toq.

In response to the queryq, the directed surfer model computes the query dependent

ranks as follows:x is more relevant thany for q and, so,Pq(u → x) > Pq(u → y) and

Pq(v → x) > Pq(v → y). Since,S is not relevant toq, Pq(· → w), the probabilty of

reachingw from any of its backlinks, is zero and consequently,Rankq(w) = 0. Now,

Rankq(x) = P (u→ x) ∗Rankq(u) + P (v → x) ∗Rankq(v) (4.14)
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and,

Rankq(y) = P (u→ y) ∗Rankq(u) + P (v → y) ∗Rankq(v). (4.15)

Thus,Rankq(x) > Rankq(y), andx will appear beforey in the results forq, as desired.

Haveliwala’s algorithm, on the other hand, computes the ranks in the following man-

ner: At first, the topic ofq is determined based on text analysis. In the present case, itis

C. SoC-sensitive PageRank (RankC), where the bias vector consists of non-zero entries

for only pages that appear under the categoryC of Open Directory [109], is used for the

purpose of ranking the results. TheC-sensitive ranks forx andy are computed as

RankC(x) = 0.5 ∗RankC(u) + 0.5 ∗RankC(v) (4.16)

and,

RankC(y) = 0.5 ∗RankC(u) + 0.5 ∗RankC(v) + 0.5 ∗RankC(w). (4.17)

Now, even thoughw has content only onS, RankC(w) need not be zero due totopic

drift [27, 28], where a sequence of links followed by the surfer maylead him onto a

completely different topic than what she started with. Thus, RankC(y) turns out to be

greater thanRankC(x), which is not appropriate. Therefore, despite creating a topic

sensitive bias vector, it seems reasonable also to incorporate the content information for

computing the transition probabilities, thereby reducingthe value ofRankC(y).

4.3 Surfer Model Incorporating History

4.3.1 Motivation

We illustrate here the need for a surfer model which can incorporate the history of the

surfer. Let us consider Fig. 4.2 and let pagew be the page currently being browsed by

a user. This page contains content on two distinct topics, namely, C andS. It is desired

to compute the probabilities with which the user moves on tox, y andz, respectively by
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clicking on a link on pagew. According to the random surfer model, each of the above

probabilities equals1
3
.

The directed surfer model uses the similarity of the contents (of x, y andz with w)

for computing the transition probabilities. In this case, by virtue of their contents, the

similarities ofx, y andz with w are approximately equal, thereby making the transition

probabilities again to be approximately1
3

each.

It may be noted that, under both the random and directed surfer models, these transi-

tion probabilities remain the same irrespective of whetherthe surfer was atu or v prior to

reachingw. In case the surfer was atu, intuitively, it is more likely that she would move

on tox instead ofy or z. In other words, the notion of the surfer’s history affecting the

choice of outlink may be useful in determining the link that the user follows.
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Figure 4.2: Example 2 showing the significance of surfer history

4.3.2 Theory

As seen in the above example, it is evident that the transition probabilities depend on the

pages visited prior to reaching the current page. In order toincorporate this dependency,

we propose a new surfer model, where a surfer moves on to pagesthat match his topic

of interest. We assume that every page may have content on oneor more topics and the

user chooses one of them as her topic of interest. Usually, the surfer moves on to a new
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page in keeping with her topic of interest. However, occasionally she may also visit other

pages, say, out of curiosity.

Even though one might be tempted to conclude that the topic ofinterest may be es-

timated from the page’s contents itself, Example 4.2 provesthe contrary. The topic of

interest is guessed by looking at the pages from which the page under consideration is

reached. The knowledge of pages visited previously may be utilized by an online algo-

rithm that computes the transition probabilities each timethe user visits a new page.

Our primary interest being in offline applications, we guess, probabilistically, the

history of the surfer, and thereby estimate the topic of interest. We compute a set

of transition probabilities under the assumption that a user generally browses with a

particular topic of interest and is more likely to browse pages on similar topics rather

than dissimilar ones. We formally introduce our model as follows:

Topic Continuity Model

LetXt andIt denote the page the surfer is on and her topic of interest, respectively, at time

t. We assume that any surfer is interested in one ofT distinct topics. We also assume that

the probability of the surfer changing her topic of interestat any given time isǫ (ǫ < 0.5),

i.e.,

P (It+1 6= k|It = k,Xt = v) = ǫ,∀t, k andv. (4.18)

Note that this implies that

P (It+1 6= It)

=
∑

k

P (It+1 6= k|It = k) P (It = k)

=
∑

k

∑

v

P (It+1 6= k|It = k,Xt = v) P (It = k,Xt = v)

= ǫ

Further, we assume that any of the (T − 1) remaining topics are equally likely to be
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chosen when a change does happen, that is,

P (It+1 = k|It = l, Xt = v) =







(1− ǫ) if k = l

ǫ
T−1

o.w.
(4.19)

We can expand the probability of the state at time (t + 1) in terms of the probability

conditioned on the knowledge of the state at timet. So, the joint probability of the surfer

being on a pagez and her topic of interest beingk at time (t + 1) may be written as

follows:

P (It+1 = k,Xt+1 = z)

=
∑

v∈Bz

∑

l

P (It+1 = k,Xt+1 = z|It = l, Xt = v)P (Xt = v, It = l)

=
∑

v∈Bz

∑

l

P (Xt+1 = z|It+1 = k, It = l, Xt = v) ∗

P (It+1 = k|It = l, Xt = v)P (It = l, Xt = v). (4.20)

Now, substitutingǫ or 1− ǫ, as the case may be, and rearranging the terms, we have

P (It+1 = k,Xt+1 = z)

=
∑

v∈Bz

(1− ǫ)P (Xt+1 = z|It+1 = k,Xt = v)P (It = k,Xt = v)

+
∑

v∈Bz

ǫ

T − 1

∑

l 6=k

{P (Xt+1 = z|It+1 = k,Xt = v)P (It = l, Xt = v)}

=
∑

v∈Bz

(1− ǫ)P (Xt+1 = z|It+1 = k,Xt = v)P (It = k,Xt = v)

+
∑

v∈Bz

ǫ

T − 1
P (Xt+1 = z|It+1 = k,Xt = v) ∗

{

∑

l

P (It = l, Xt = v)− P (It = k,Xt = v)

}

=
∑

v∈Bz

P (Xt+1 = z|It+1 = k,Xt = v) ∗

{

(

1−
ǫT

T − 1

)

P (It = k,Xt = v) +
ǫ

T − 1

∑

l

P (It = l, Xt = v)

}

.(4.21)

From Eq. 4.21 it is clear that the proposed surfer model satisfies the Markov property,

in the sense that given the state at timet, the surfer’s behavior at time (t+1) is independent
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of that at time (t− 1) (and anything prior to that). It may be noted that the history of the

surfer has already been implicitly taken into account through the probabilities of each

achievable state of the surfer at timet.

Now, as in the Directed Surfer Model, we assume that

P (Xt+1 = z|It+1 = k,Xt = v) =
P (It = k|Xt = z)

∑

y∈Fv
P (It = k|Xt = y)

, (4.22)

the difference being that these probabilities are now time-dependent, whereas in the Di-

rected Surfer Model [123], they are not. Plugging this into Eq. 4.21, we have

P (It+1 = k,Xt+1 = z)

=
∑

v∈Bz

P (It = k|Xt = z)
∑

y∈Fv
P (It = k|Xt = y)

{(

1−
ǫT

T − 1

)

P (It = k,Xt = v)

+
ǫ

T − 1
P (Xt = v)

}

(4.23)

Note that, in Eq. 4.23, if we substituteP (It = k,Xt = z) by 1
T
P (Xt = z), (i.e., any

topic is equally likely on any given page), the equation simplifies to

1

T
P (Xt+1 = z) =

1

T

∑

v∈Bz

1

|Fv|
P (Xt = v),

which is the same as the equation for the random surfer model.

Similarly, if we had setǫ to be 0, choosing

P (Xt+1 = z|It+1 = k,Xt = v) =
P (I0 = k|X0 = z)

∑

y∈Fv
P (I0 = k|X0 = y)

,∀ t,

Eq. 4.21 is similar to the Directed Surfer Model, with the random jump factor excluded.

Although, the present work generalizes existing surfer models, the topic continuity

model is non-linear, and therefore, theoretically provingthat P (It = k,Xt = v) con-

verges witht for all values ofv andk has not been possible. In practice, however, the

method has been experimentally observed to converge, details of which are provided in

Section 4.4.3.
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4.3.3 Obtaining initial estimates

For faster convergence of the above iterative procedure, a good initial estimate of the

joint probability distribution is necessary. The joint probability P (I0, X0) is estimated

as P (I0|X0)P (X0), whereP (X0) is obtained using an existing version of PageRank.

The quantitiesP (I0|X0) have been estimated using the Naive Bayes algorithm [88], a

standard method for text classification, asP (I0 = Cj|X0) ∝ P (Cj)
∏K

i=1 P (xi|Cj) (the

denominator,P (X0), is common), where the documentX0 is treated as the term vector

(x1, x2, . . . , xK), andCj is the jth topic listed under the Open Directory. The topic-
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Figure 4.3: Flowchart for the Topic Continuity Model
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conditional probabilities for each term,P (xi|Cj), and the prior probabilities of the topics

P (Cj), are estimated as the corresponding frequencies obtained from the pages listed

under the Open Directory.

The vector(P (I0 = Cj|X0))j=1,2,...,K is then normalized and itsjth element is the

probability of the page having content onjth topic. It may be noted that this need not

be the desired conditional probability value that we intendto estimate ultimately. For

example, a page may appear quite relevant to the topic, say “Business”, however, its

primary topic may be something different, say “News”, depending on the context (or

neighborhood) of the web page. Nevertheless, this classification suffices to serve our

purpose of finding an initial estimate of the matrixG.

These initial estimates are then plugged into the iterativeprocedure. For ease of under-

standing, we provide a (simplified) flowchart depicting the steps involved in the proposed

algorithm.

4.3.4 Page Ranking, Categorization, and Other Uses

As described above, we have obtained the stationary (joint)distribution of(I,X). The

probability matrix may be written as:

G =

g11 g12 · · · g1N

g21 g22 · · · g2N

...
...

.. .
...

gK1 gK2 · · · gKN

(4.24)

The rows and columns stand for topics and web pages, respectively. Each element

of this matrix,gkv, represents the joint probability of a topic of interest anda web page,

P (I = k,X = v). We note the following properties of this matrix, along withtheir

utilities.

• The sum of thevth column,
K
∑

k=1

gkv = g.v = P (X = v), (4.25)
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is the rank of pagev. So the quantityg.v may be used forunconditionally ranking

web pages.

• The sum of thekth row,

N
∑

v=1

gkv = gk. = P (I = k), (4.26)

is the unconditional probability of a surfer’s topic of interest beingk. This has

significance in obtainingtopic representations on the web.

• The(v, k)th element divided by its row total,

gkv

gk.

=
P (I = k,X = v)

P (I = k)
= P (X = v|I = k), (4.27)

is thetopic specific page rankof pagev (for topick). In other words,gkv is propor-

tional to the rank ofv for topick.

• The(k, v)th element divided by its column total,

gkv

g.v

=
P (I = k,X = v)

P (X = v)
= P (I = k|X = v), (4.28)

is the probability of the topic of interest beingk when the surfer is on pagev and

hence, thevth column provides therelevance of a web pageon each of theK topics.

• The parameterǫ, as mentioned in Section 4.3.2, controls the curiosity factor of the

surfer. The higher theǫ, the more curious she is. In other words, the lower theǫ, the

more focused is the surfer and less frequently tends to change the topics of interest.

This can be applied topersonalizationwhere the behaviour of users is quite varied.

Note that the proposed algorithm modifies PageRank exactly inthe same way as

PHITS [31] modifies HITS (Hypertext Induced Topic Selection) [73]. HITS like algo-

rithms are prone to link spamming, where, to improve the authority a new page, all that

one needs to do is create several pages that link to existing authoritative pages as well as
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the new one. On the other hand, the proposed algorithm inherits its robustness from the

PageRank algorithm.

Earlier investigations had generally, focused on either page ranking or page catego-

rization. What the current investigation does is to perform both these inter-dependent

tasks simultaneously. This notion had been mentioned in [36] and had also been indepen-

dently reported in a preliminary form in [101].

It is interesting to note that the proposed algorithm does not actually categorize, in its

true sense, a web page’s contents. It just estimates what a surfer would be interested in

when she reaches a page. This means that even though the termsappearing in a document

are suggestive of some particular category, the topics and ranks of the pages linking to it

play a major role in determining if it indeed is relevant for that category. The scores that

we compute for each page can be considered equivalent to categorization in the sense that

this is what a user visiting this page would think about.

We mention here that though both Haveliwala’s topic-sensitive PageRank algorithm

and the proposed one make use of the topic information available under the ODP direc-

tory, there is a difference in the manner in which it is employed. While the former one

needs information about which topics a URL is listed under, the latter needs some text

categorization mechanism, which in this particular case, happens to be derived from the

ODP data. Since Haveliwala’s algorithm does not need to categorize each available page,

it is computationally more efficient compared to our algorithm. However, by virtue of this

extra effort, the proposed methodology counters topic drift by controlling the transfer of

rank between dissimilar pages.

4.3.5 Complexity and scalability

We now discuss the complexities involved in the proposed algorithm. LetK be the num-

ber of topics under consideration. Then the disk space required isK times that required

for ordinary PageRank and is the same as that for topic-sensitive PageRank [61]. As noted

in [123], despite being higher than the requirements for therandom surfer model, it is far
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smaller than that for the index (of the original page contents) itself. The time complexity

for the computation of the matrixG is as follows: From Eq. 4.23, it is obvious that, in

each iteration and for eachk andz, the computation ofgkz needsO(|Bz|) computations

(corresponding to each backlinkv of z). Thus, for all theKN entries inG, letting B̄

denote the average number of backlinks of a page,O(NKB̄) computations are required

during each iteration. This is about the same as that for topic-sensitive PageRank, al-

though our algorithm involves some additional overhead forcomputingP (X = v) and
∑

y∈Fv
P (I = k|X = y) at the end of each iteration. Note that we do not count the

preprocessing steps like stemming, stopword removal and creation of an inverted index

as they are the same for any such algorithm.

4.4 Experimental Results

The performance of the proposed methodology has been evaluated along with compar-

isons with some of the existing algorithms. Here we discuss the data sets used, and the

methods of implementation and evaluation.

4.4.1 Data Sets Used

A training data set is obtained from the Open Directory Project, which is the largest, most

comprehensive human-edited directory of the Web. It is constructed and maintained by a

vast, global community of volunteer editors [109]. A file in RDF (Resource Description

Framework) format has been downloaded from the Open Directory [109]. This file con-

sists of URLs and their description organized into seventeendistinct topics (Table 4.1).

The words available in the description are assumed to represent, to some extent, the topics

under which they appear.

The test data set, consisting of approximately five million pages was obtained from

WebBase [65] (more could not be obtained due to local constraints on disk space). These

pages form a connected neighborhood of the web. We have used astream based access
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Table 4.1: Top level categories available in the RDF file obtained from ODP

Adult Recreation

Arts Reference

Business Regional

Computers Science

Games Shopping

Health Society

Home Sports

Kids And Teens World

News

to download pages, whereby pages are retrieved in the order they were crawled [65]. The

original pages contained raw HTML along with a header that consisted of the page’s URL,

timestamp,etc.Only the URL information was used in our experiments. Words that were

obtained from the above mentioned RDF file were the only ones that were retained and the

rest were discarded. The links were normalized and self-links were removed. The links

were stored separately and an inverted index was created forthe downloaded collection.

Only the counts of the words were stored, as is done in the vector space model.

Note that the ODP data set has information on the categories of pages, but no link

information. On the other hand, the WebBase data set has link information but no cat-

egorization. That is why we used ODP data for training based on the categorization

information, while the text and link information in the WebBase data is used for testing.

For estimating the value ofǫ, we have used themsnbc.com anonymous web data

(available athttp://kdd.ics.uci.edu/databases/msnbc/msnbc.html),

which has transition information between categories unlike the ODP and WebBase data

sets. This data describes the page visits of users who visited msnbc.com on September

28, 1999. Visits are recorded in time order and only the category of the page requested is
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stored. There are seventeen categories (Table 4.2).

Table 4.2: Categories in the MSNBC data set

frontpage living

news business

tech sports

local summary

opinion bbs

on-air travel

misc msn-news

weather msn-sports

health

4.4.2 Implementation

During training, initial page categorizations were obtained using the Naive Bayes algo-

rithm, as already mentioned.

For estimating the value ofǫ, it is observed that of a total of 3708976 transitions during

4698820 visits in the msnbc data, over 65% transitions were between pages on the same

category, i.e., there were about 35% cross-topic transitions. Accordingly, we chose the

value ofǫ to be 0.35. Note that, this data set did not capture any requests that would have

been served from the user’s cache. Had these requests been included in the data set, the

number of within-transitions would have been higher, i.e.,ǫ value would have been lower.

In order to reflect this, we also conducted experiment for a lower value ofǫ = 0.2, to

reflect a more focused surfer.

For an efficient implementation of the page rank computation, we rewrite Eq. 4.23 as:

P (It+1 = k,Xt+1 = z)
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=
P (It = k,Xt = z)

P (Xt = z)

∑

v∈Bz

{(

1− ǫT
T−1

)

P (It = k,Xt = v) + ǫ
T−1

P (Xt = v)
}

∑

y∈Fv
P (It = k|Xt = y)

(4.29)

At the end of each iteration, we compute the following for each pagev:

P (Xt = v) =
∑

k

P (It = k,Xt = v), (4.30)

and
∑

y∈Fv

P (It = k|Xt = y) =
∑

y∈Fv

P (It = k,Xt = y)

P (Xt = y)
, , (4.31)

While traversing the adjacency matrix of the web graph,

∑

v∈Bz

{(

1− ǫT
T−1

)

P (It = k,Xt = v) + ǫ
T−1

P (Xt = v)
}

∑

y∈Fv
P (It = k|Xt = y)

(4.32)

is computed separately. At the end of the iteration, we multiply the above quantity by
P (It=k,Xt=z)

P (Xt=z)
, thus obtaining the value forP (It+1 = k,Xt+1 = z), for each1 ≤ k ≤ K,

1 ≤ z ≤ N .

The iterations were allowed to run until convergence in terms of theL∞ norm. For

improved precision during computations, we had scaled up the whole joint probability

matrix, ((Pkz))1≤k≤K,1≤z≤N by N (so that the sum of each column of the matrix would

be 1, on the average). In other words, the procedure was stopped as soon as

max
k

max
z

(N ∗ P (It+1 = k,Xt+1 = z)−N ∗ P (It = k,Xt = z))

was less than a threshold. In our experiments, this threshold was chosen to be 0.001.

4.4.3 Evaluation

The process of evaluation consists of two parts: the first part deals with comparison of the

ranks of the pages and the second with their contexts.

The ranks obtained by our method were compared against thoseobtained by PageRank

[22] and QD-PageRank [123]. Five volunteers were chosen for this purpose. Ten queries
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Figure 4.4: Page Rank Comparison

were chosen from those used in [61] (some queries were modified considering the size of

the collection available with us).

The queries used for evaluation are provided in Table 4.3. The top ten pages ob-

tained in response to the queries by the four algorithms, namely, random surfer model (or

PageRank), directed surfer model (or QD-PageRank), proposedapproach withǫ = 0.35

and proposed approach withǫ = 0.2, were studied by the five volunteers. They provided

a rating (or score) between 0 and 10, a rating of 10 being the best, to each algorithm for

each query. The average values obtained for each query are presented in Fig. 4.4. We

have performed pairwise comparisons testing for difference of the means using a t-test

with 9 degrees of freedom. The null hypothesis was taken to bethat the means were

equal, while the alternate hypothesis was that the second method (the one appearing later

in the bar-plot) fared better. The tests gave the following results:
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• The proposed method (for both the above mentioned values ofǫ) and the directed

surfer model significantly outperform the random surfer model at a confidence level

of 95%.

• The scores obtained by the proposed method withǫ = 0.2 show a significant im-

provement over those obtained by the directed surfer model at a confidence level of

95%.

• The improvement in scores over the directed surfer model obtained by the proposed

method withǫ = 0.35 is significant at a confidence level of 90%, but not at a

confidence level of 95%.

• No significant difference was observed (that is, the null hypothesis was accepted)

between the scores of the proposed algorithm for the two choices ofǫ.

These findings further strengthen the theoretical observations as mentioned in Section

4.3.4.

Table 4.3: Queries used for comparing page ranks

1 architecture

2 bicycling

3 computer vision

4 gardening

5 gulf war

6 java

7 rock climbing

8 table tennis

9 vintage wine

10 volcano
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In the second part of our evaluation, we compared the categorization of web pages by

our method with those of Naive Bayes [88] and SVMLight [68].

All these methods including the proposed one were then used to obtain the topic cat-

egorization of ten randomly chosen pages (Table 4.4) into the fifteen topics under con-

sideration, and the earlier volunteers were asked to rate them. A score of 10 to a page

denotes that the volunteer viewed the page categorization as totally appropriate, while a

score of 0 denotes a complete mismatch with the volunteer’s categorization. The results

are shown in Fig. 4.5 only forǫ = 0.2, as an example. Both the proposed algorithm and

SVMLight produced significantly better categorization than the Naive Bayes algorithm at

95% confidence level. Since our algorithm has used the Naive Bayes algorithm for initial

estimates, this indicates that our method has improved the categorization, as expected.

However, it is seen that both ours and SVMLight are at par evenat a 90% confidence

level.

It may be noted that we had already obtained the joint probability matrix during our

experiments on page ranking. Therefore, the categorization experiment only needed to

implement the computations mentioned in Equations 4.28 and4.25, which are very inex-

pensive, for each of the ten pages.

The number of iterations needed for the convergence of the proposed topic continuity

model was 19 whenǫ was set to0.35 and14 whenǫ was chosen to be0.2. For checking

the scalability of the proposed algorithm, we measured the time taken by it and compared

against the same for each of PageRank, QD-PageRank, and topic-sensitive PageRank (Ta-

ble 4.5). The times mentioned are only those for the actual computation of the ranks and

not for the preprocessing steps which are common to all. Noneof the above computa-

tions employed the extrapolation methods [70] mentioned above. It is worth mentioning

that both the number of iterations and the time taken reported above do not include the

corresponding figures for obtaining the intial estimates ofthe joint probability matrix.
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Figure 4.5: Comparison of categorization

4.5 Conclusions and Discussion

The problem of modeling the inter-relationship between page categorization and ranking

in terms of topic continuity has been addressed in this chapter. An offline algorithm devel-

oped for this purpose probabilistically estimates the surfer’s history, and thus, his/her cur-

rent topic of interest. The incorporation of surfer history(or topic continuity) is a unique

feature of this methodology. This resulted in a scalable andconvergent iterative procedure

that provides page categorizations as well as ranking simultaneously. The merits of the

methodology have been established both theoretically and experimentally. Although we

have presented experimental results only for page ranking and categorization, the method

can be made applicable for topic-sensitive page ranking, topic representation on the web

and personalization.

While the simultaneous estimation of page ranking and categorization is an advantage

of the proposed method, a theoretical proof of convergence evades us for the same reason.

Also, the topic continuity model presented in this chapter did not include the random

jump factor. More recently, Nieet al [105], introduced another topic continuity model
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Table 4.4: URLs of pages used for evaluating categorization

1 www.journalism.org/ccj/resources/symington.html

2 www.hcu.ox.ac.uk/TEI/P4beta/SA.htm

3 www.cruiseopinion.com/majesty-royal6.htm

4 www.icna.org/tm/feb00cover5.htm

5 www.ashbrook.org/publicat/onprin/v8n4/hayward.html

6 www.osha.gov/oshstats/bls/txts/ostb0521.txt

7 www.pueblo.gsa.gov/cictext/state/tipscanada.html

8 www.heritage.org/issues/chap5.html

9 www.skypub.com/news/news.shtml/spc/contact/news/news print.html

10 www.state.mn.us/courts/library/archive/supct/9703/c9952124.htm

that incorporates the random jump factor, too.

In this chapter, we have dealt with web surfer models using probability theory where

the performance depends on estimates of various parametersof the web graph, such as the

probabilities of transition from one web page to another. Also, each surfer model makes

some simplistic assumptions about the behavior of a hypothetical surfer. Acknowledging

that the assumptions and estimates may be slightly off, one may like to have a method-

ology that serves a similar purpose as the aforementioned surfer models and, simultane-

ously, is fairly robust. Chapter 5 deals with one such attempt, namely, fuzzy web surfer

models.
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Table 4.5: Running time

Method Time taken (in secs)

PageRank 60

QD-PageRank (for all 10 queries) 150

Topic-sensitive PageRank 1000

Proposed (ǫ = 0.35) 1300

Proposed (ǫ = 0.2) 1200





Chapter 5

Web Surfer Models Incorporating

Fuzziness

5.1 Introduction

As the web consists of pages created by millions of individuals, there is a wide variety

of authoring styles. Most present day content and link analysis algorithms are robust

against differences in fonts, colors,etc., which are mostly ornamental. Some others can

withstand, to some extent, malicious manipulation of content and links. However, they

are sensitive to whether the information is contained in a single document or is spread out

in a collection of documents. For the sake of uniformity in comparison during content and

link analysis, information present in a single web page may be artificially divided into a

collection of web pages. This division introduces an uncertainty in the page boundaries

as well as the targets of hyperlinks.

A variety of web surfer models exist which model the sequenceof web pages a surfer

follows as a Markov process. The transition probabilities are obtained by considering the

number of links in each page. Here, it is assumed that there isno uncertainty in the given

web pages or the transition probabilities. In practice, this is not the case. This imprecision

may be modeled with the help of fuzzy sets, or in particular, by fuzzy numbers. This
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forms the basis for the present investigation, where we extend existing surfer models to

fuzzy surfer models. Fuzzy web surfer models were first introduced in [104], and were

studied in further detail in [15]. Since we now deal with fuzzy numbers, Markov chain

theory is replaced by fuzzy Markov chain theory, which employs the max-min (or fuzzy)

algebra instead of the classical algebra with multiplication and addition operations. These

models may be employed, among other things, to compute ranksof web pages, which we

call FuzzRanks. We believe that these models add to the set of tools needed for the

development of intelligent information technologies [155] to be applied in the areas of

web intelligence [92].

Fuzzy web surfer models described in this chapter, apart from being able to handle

fuzziness in various aspects, inherit the advantages of fuzzy Markov models, namely, ro-

bustness and finite convergence. Robustness is a very important aspect because it implies

that small changes in the transition matrix would not changethe results drastically. Its

significance arises from the fact that the transition matrices are not known beforehand

and are estimated during the analysis phase, and so, (slightly) different methods of esti-

mation, may lead to immensely dissimilar results. As a consequence, FuzzRank is more

stable as compared to PageRank. FuzzRank reflects the belief ofa surfer being on a page,

and cannot fluctuate to extreme cases as in the case of probabilistic models.

The theory of fuzzy Markov chains is based on fuzzy algebra, also known as the

max-min algebra, which has been fairly well studied in literature, and well compared

against classical algebra. Naturally, the question arisesas to how models relying on these

different algebras would compare against each other. Afterall, these models would inherit

the advantages, as well as, the disadvantages of the underlying algebras, and it is worth

a performance comparison. So, in addition to the lucrative properties of robustness and

finite convergence, surfer models based on fuzzy Markov chains merit undertaking a study

for purely academic reasons, too.

This chapter is organized as follows. Section 5.2 discussesthe preliminaries such

as fuzzy sets, Markov chains, fuzzy Markov chains and web surfer models. We make
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use of these components to describe fuzzy web surfer models in Section 5.3, which we

begin with a few motivational examples, and also define FuzzRank, which is the fuzzy-

equivalent of PageRank. Section 5.4 consists of an illustrated example, and several exper-

imental results, which convincingly demonstrate the advantages of FuzzRank over PageR-

ank. Section 5.5, concludes the chapter and mentions some future directions of research

on this topic.

5.2 Preliminaries and Background

We now provide the background as well as the notation on fuzzysets, Markov chains, and

fuzzy Markov chains.

5.2.1 Fuzzy Sets

Conventional sets consist of a group of elements. An element of the universe (Ω) may

or may not belong to a given set, and only one of these two possibilities may happen.

However, for the sake of situations where it is not clear if anelement belongs to a set

or not, the concept of fuzzy sets was proposed [152]. A fuzzy set is a generalization of

the conventional set, where there is some measure of uncertainty of membership in the

set. For a fuzzy set S, there is a membership function associated with it which provides a

membership value for each element inΩ.

µS : Ω→ [0, 1] (5.1)

Generally,µ is so chosen thatmaxx∈Ω µS(x) = 1, in which case, it is said to be normal-

ized.

The union and intersection operations of the classical setsis extended to the fuzzy

sets, by taking the max and min, respectively, of the corresponding membership values of

each element.
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5.2.2 Markov Chains

A (first order) Markov chain [67] is a sequence{Xn}n∈IN of random variables where each

random variable,Xi, takes a value from a state space S, and the sequence satisfies

P (Xn+1|X0, X1, . . . , Xn) = P (Xn+1|Xn) . (5.2)

{Xn} is called homogeneous ifP (Xn+1|Xn) is independent ofn. In this chapter,

we shall deal with only discrete, homogeneous Markov chains, with finite state space

S = {1, 2, . . . , N}. Let pij denoteP (Xn+1 = i|Xn = j), which is the one step transi-

tion probability from statei to statej. P = ((pij))i,j∈S is called the (one-step) transition

probability matrix. The probability ofXn+1 assuming a statej is given by

P (Xn+1 = j) =
N
∑

i=1

P (Xn+1 = j|Xn = i)P (Xn = i)

=
N
∑

i=1

pijP (Xn = i) (5.3)

Now, them-step transition probability fromi to j, denoted byp(m)
ij may be expressed

in terms ofpij (which is the same asp(1)
ij ) as:

p
(m)
ij = P (Xn+m = i|Xn = j) (5.4)

=
∑

m
∏

k=1

P (Xn+k = xn+k|Xn+k−1 = xn+k−1)

=
∑

xn+1,...,xn+m−1∈S

m
∏

k=1

pxn+k,xn+k−1
(5.5)

From this expression, it may be observed that them-step transition probability matrix

P (m) is the same asPm, them-th power ofP .

A statei is called aperiodic ifgcd{n : p
(n)
ii > 0} is 1. A Markov chain is called

aperiodic if all the states inS are aperiodic. It is called irreducible if every pair of states

in S are reachable from each other. A finite, aperiodic, irreducible Markov chain is called

regular, andP n > 0 for somen ≥ 1 for regular Markov chains.
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For a regular Markov chain,p(n)
ij → πj ∀i, j ∈ S. π = (π1, π2, . . . , πN) is called the

stationary distribution of the Markov chain. This propertyis termed ergodicity, and means

that, regardless of its initial state,P (Xn = j) converges to a uniqueπj. The convergence

and uniqueness of the chain are guaranteed only if the chain is aperiodic and irreducible,

respectively.

5.2.3 Fuzzy Markov Chains

The probabilities in the previous Subsection are real numbers and are all assumed to be

known. In practice, they are estimated, and there are errorsassociated with the estimation

procedure, which in turn, may again be estimated under suitable assumptions. The uncer-

tainty in the transition probabilities may sometimes be better modeled in terms of fuzzy

numbers.

In order to define a fuzzy Markov chain, we first define a fuzzy distribution and a

fuzzy transition matrix.

A fuzzy distribution onS is defined by a mappingµx : S → [0, 1], and is represented

by a vectorx = (µx(1), . . . , µx(N)).

A fuzzy transition matrixP is defined as a fuzzy distribution on the Cartesian product

S × S. P is represented by a matrix((pij))i,j∈S [4]. With this notation, a fuzzy Markov

chain is defined as a sequence of random variables, where the transitions are determined

by the fuzzy relationP and satisfy

µx(n+1)(j) = max
i∈S
{µx(n)(i) ∧ pij}, j ∈ S (5.6)

Equation 5.6 is the fuzzy algebraic equivalent of the transition law of classical Markov

chains provided in Eq. 5.3. The multiplication and additionoperations in Eq. 5.3 have

been replaced by themin and max operations, respectively. Naturally, the powers of

the matrixP may be defined in the same manner as earlier. The interesting result is

that, unlike the case of classical Markov chains, whenever the sequence of matricesP n

converges, it does so in finitely many steps to a matrixP τ . If it does not converge, it
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oscillates with a finite periodν starting from some finite power. The above statements are

proved rather easily [4].

When the powers ofP converge to a non-periodic solutionP τ , the associated fuzzy

Markov chain is called aperiodic andP τ is called a limiting fuzzy transition matrix. A

fuzzy Markov chain is called ergodic if the rows ofP τ are identical. This definition is

again similar to that of classical Markov chains, but the necessary and sufficient conditions

for ergodicity are not known in this case [4].

We now propose a web surfer model that relies on the theory of fuzzy Markov chains.

Since web surfer models and fuzzy Markov chains have been described in detail already,

to avoid duplication, we describe the proposed methodologyin a concise manner, making

use of the notations and notions of this section.

5.3 Fuzzy Web Surfer

5.3.1 Motivation

We look at a few examples which demonstrate the need for new surfer models to deal with

various kinds of uncertainty on the web. Authoring styles onthe web vary widely and this

results in the same kind of content being displayed in various formats. For example, the

same content may be packed in one (possibly, big) document, or may be spread out across

several linked list of documents. The process of retrieval and ranking are sensitive to such

differences, which are usually a simple consequence of contrasting tastes or conveniences.

With most search engines indexing an increasing number of documents in PDF, PS

and other formats, this situation is encountered all the more often. Fig. 5.1 shows a set of

HTML pages, and a PDF document, both containing equivalent information. However,

when the web is treated as consisting of individual atomic documents, it results in unfair

comparison, as the PDF document has more content compared toeach of the individual

pages. One way to improve the level of fairness during such comparisons is to detect
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A

B

C

3

2

1

P

(a) (b)

Figure 5.1: Equivalent information in (a) HTML and (b) PDF

S T

Figure 5.2: Which section is being pointed to? Actual target is fuzzy.

equivalent information, even if it is split across documents in one place and not the other,

as performed in [102].

Fig. 5.2 shows a link from a source document S to a target document T. Now, T

contains a lot of information, but the link is just for a particular portion of the page T.

The question is which is the portion of T being implicitly referred to by this link. The

relevance of this question lies in the fact that the link points to the web page T as a whole

and so the weight being transferred through this link spillsover to all of T instead of being

restricted to the intended portion only.

To strengthen this argument, we provide a real life example.Fig. 5.3 shows a portion
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Figure 5.3: A portion of a web page at Webmasterworld with a link to Jon Kleinberg’s

home page

of the web page located atwww.webmasterworld.com1 which contains a link to Jon

Kleinberg’s home page2. The link that leads to Kleinberg’s home page provides no more

information than its URL. The home page under consideration has two named sections,

namelyPapersandLinks, and there is an introduction above it. It is clear from the context

that the above mentioned link indeed refers to thePapersportion of the page. In addition,

the Paperssection is further subdivided according to the topics of thepapers, but the

subsections are not named. Had they been named, we can once again conclude that the

link in question actually leads to theWeb Analysis and Search: Hubs and Authorities

subsection.

The above examples demonstrate that:

• a link to a web page may in reality be referring to just one or more pagelets, and

not the whole page itself. Resolving which pagelet is referred to by a link needs

contextual information, and yet this may not be precise.

• a page may have to be artifically divided into pagelets or sections, to avoid the

weight attributed by a link to one pagelet spilling over to other pagelets. As men-

1http://www.webmasterworld.com/forum10003/428.htm
2http://www.cs.cornell.edu/home/kleinber/index.html
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tioned earlier, this is required for fair comparison duringretrieval because, although

this particular link is for a small portion of the page, the contents of the rest of the

page benefit from it, thus enjoying a better status as compared to similar content

elsewhere.

It may be noted that it is not claimed that one or the other is necessarily better, because

some systems may assign more weight to more content, whereas, others may penalize it.

All that is being argued for is that such disparities may leadto diverse results, and need

to be addressed at an early stage of link and content analysis. We now formulate a basic

methodology for fuzzy web surfer models.

5.3.2 FuzzRank: Fuzzy Page Ranking

In what follows, we assume that the web pages have been preprocessed with the goal of

increasing uniformity among them. By uniformity, we mean that the differences due to

authoring styles, as explained earlier are reduced. There are two approaches for that. One

approach is that big pages are split into pagelets [29,120],and each of them can be called

a new page. The other option is to merge related pages, makingeach of them a section

(or pagelet) of one large page [101,115]. The second approach is well suited for retrieval

tasks by virtue of providing a larger coverage. However, forthe purpose of link and

content based analysis, we believe the first approach works better, because it generates a

large number of small and coherent pages, thus avoiding topic drift.

As in existing surfer models, we label the available web pages (after preprocessing)

from {1, 2, . . . , N}. We propose the methodology for fuzzy web surfer models by im-

itating that of existing surfer models. Similar to the concept of PageRank, we define

the concept of FuzzRank, where the objective is to compute, for each given web page,

a value which reflects the belief that a web surfer would be on that page. This value is

proportional to the belief that the surfer would be on one of its backlinks. Similarly, asso-

ciated with each link in a page, there is a fuzzy number that indicates the belief that this
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link would be followed, given that the surfer is on that page.These constitute the fuzzy

transition matrix.

Formally, we are interested in computingµ(i) for each pagei, which is the uncondi-

tional belief that a surfer would be oni. In other words, given a fuzzy transition matrix

P , we want to obtain the eigen fuzzy set [4] ofP which satisfiesµ ◦ P = µ. Here, the

operation◦ is the fuzzy max-min operation, as described in Eq. 5.6.

FuzzRank, the fuzzy counterpart of PageRank is now defined, as the greatest fuzzy

eigen set of the fuzzy transition matrix, the existence of which has been proved in [129].

It is also known that this greatest fuzzy eigen set lies betweenx
(0) andx

(1), where

x
(0)
k = min

j
max

i
Pij ∀k = 1, 2, . . . , N

and

x
(1)
k = max

i
Pik ∀k = 1, 2, . . . , N.

x
(0) is always an eigen fuzzy set, whereas, whenever,x

(1) is an eigen fuzzy set, it is the

greatest. Now, it is also known [4] that the greatest eigen fuzzy set is of the form of

x
(1) ◦ P k, for some positive integerk.

Thus, computing FuzzRank makes use of the power method in max-min algebra, and

is similar to computing PageRank, the difference being that one cannot start with an ar-

bitrary vector. One may note that,x
(1) itself equals1 ◦ P , and hence FuzzRank is of the

form 1 ◦ P k. Thus the initial vector for the power iterations for computing FuzzRank is

always1.

So, the task at hand is to obtain accurate values of the elements of the fuzzy transition

matrix, because, once that is done, Eq. 5.6 is all that is required to compute the FuzzRanks

of the web pages.

Whenever a page has a single link to another page, it is assumedthat there is no

fuzziness present there. This is usually the case when an original page sayA has been

split into pagelets which were originally its named sections and a link from a page, say

B had specifically pointed to a named section, sayA♯C. Then, after splitting, the page
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B points to just a single page representingA♯C. Had the link just pointed toA without

referring to the intended section, the splitting would involve some fuzziness as to which

section is being referred to. In that case, the membership values of the target of the link

from B are non-zero for multiple pages representing the original sections ofA. The

membership values may be determined by considering similarity of the context around

the anchor of the link and the potential target regions. Thus, the fuzzy transition matrix

may be obtained.

5.3.3 Advantages and Limitations

We now discuss some features of the proposed class of fuzzy web surfer models. A list

of advantages are listed first, following which we delve intothe shortcomings of such a

model.

We observe that theoretically, and intuitively, fuzzy web surfer models have the fol-

lowing merits:

1. Capture fuzziness in page contents: page boundaries may not be apparent all the

time, especially when a single large page consists of several pagelets. Moreover,

noise in web pages also affects the precise identification ofthe content of interest

to the user.

2. Capture fuzziness in links: a page may contain several outlinks but not all of them

may be intended for the same purpose. The reason for their presence may be ease

of navigation, leading to advertisements, references, or pointing to authoritative

resources. Similarly, a link to a particular page may in reality be actually for just

one or two sections or pagelets of a page. These kinds of uncertainty may be better

modeled by the proposed methodology.

3. Can take into account fuzzy contexts: context sensitive algorithms depend a lot on

the modeling assumptions. For example, the context of a query may not be precisely

clear, but the system may have a broad idea about it.
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4. Robust computations: this is perhaps, the most emphatic reason for choosing fuzzy

web surfer models. The computations in max-min algebra are more robust to per-

turbations as compared to usual addition and multiplication operations. There is an

example in [4] that demonstrates the robustness of fuzzy Markov systems in com-

parison to regular Markov chains. When the entries of the transition matrix are

perturbed by small quantities, the effects on the stationary distribution of the regu-

lar Markov chains are drastic, whereas, for fuzzy Markov chains, the changes are

comparable to the perturbations.

5. Finite convergence: the stationary distribution of fuzzy Markov chains can be com-

puted in finite number of steps, whereas, for regular Markov chains, only an ap-

proximation may be found as the convergence may not be achieved in finitely many

steps. Existing web surfer models assume that, even though convergence is not

attained, the order of the probabilities in the obtained distribution suffices.

We now study the possible limitations of the proposed methodology. It is well known

that a Markov chain is ergodic if it is regular. However, in the case of fuzzy Markov

chains, no such results are known. So, it is not clear when FuzzRank would actually exist,

and even if it does, if it would be independent of the initial state of the process. There

is an example in [4] where the rows of the limiting fuzzy transition matrix are distinct,

thereby demonstrating the existence of non-ergodic fuzzy Markov chains.

This, however, need not be a limitation as all that it impliesis that the final fuzzy

distribution of the surfer being on a particular page may notbe independent of his initial

state. In practice, this may indeed be the case as a surfer starting from one set of pages

may, in the long run, behave differently from another one whostarts from a different set of

web pages. Thus, that the fuzzy Markov chain of web pages being visited is not ergodic

may be a blessing in disguise, which may be useful in computing topic sensitive page

ranks or for detecting web communities.
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5.4 Experimental Results

The objective of this section is to demonstrate the purpose and usefulness of fuzzy surfer

models and to study the properties of FuzzRank. We begin this section with an example

that serves as a preview of the experiments performed. The methodology is described as

we present the details of the example.

The first step is to choose a (web) graph whose nodes are to be ranked. For this

example, we choose a randomly generated directed graph. There are many generative

graph models, as mentioned below:

• Erdos-Renyi model [47]: Given the number of vertices, edges are added randomly.

• Power-law models [97]: Here the in-degrees and out-degreesare assumed to arise

from a power distribution of the formy = xa. The R-MAT model [25] engulfs

these and the Erdos-Renyi model.

• Lognormal models [18, 97]: These models have been shown to dobetter than the

power-law models for modeling the web graph and are faster and scalable.

We choose the exponential distribution, which is similar tothe lognormal distribution,

and is easier to simulate. In our case, to make sure that thereare no orphans (that is,

nodes with no in-links), for each node, we draw a random number from a (zero truncated)

exponential distribution, and choose that many nodes at random from which in-links to

the present node are created. Note that the out-degree for some nodes may be zero. A

sample random graph with 10 nodes is presented in Fig. 5.4.

The in-degrees, in-links, out-degrees and out-links for this sample graph are listed in

Table 5.1. In this case, none of the out-degrees are zero.

Next, the PageRank vector is computed for this graph, and the vector at different

iterations 1, 2, 3, and 31 (when it converged) are shown in Table 5.2. For the purpose of

presenting consistently, all the vectors aremax-min normalized, that is, they are linearly

transformed so that their minimum is 0 and maximum is 1. The value ofd (the probability
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Figure 5.4: A sample graph with 10 nodes and 28 links

for a random jump) is set to 0.15 during the computation of PageRank throughout our

experiments.

We provide the FuzzRank vectors, too, as they evolve over iterations, in Table 5.3.

Throughout our experiments, we set the fuzzy transition matrix to be the same as that

used by the random surfer model. Again, we note that, although no normalization is

performed during the actual computation of FuzzRank, they are max-min normalized

while reporting them here.

We make the following observations by comparing Tables 5.2 and 5.3. We use Kendall

discordance to measure the amount of disagreement between the two rank vectors. This

discordance is defined as the proportion of discordant pairsamong the total ofk(k−1)
2

pairs.

A pair (i, j) is called discordant with respect to two rank vectors, ifi is ranked ahead of

j by one, and ranked behindj by the other. In the case of a tie, it is assumed that there is

no discernible disagreement.

• The ordering of pages according to FuzzRank is achieved afterthe first iteration it-

self, and the actual convergence requires one more iteration. For the case of PageR-
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Table 5.1: In-Links and Out-Links of the Sample Graph in Fig.5.4

Node Out-Degree Out-Links In-Degree In-Links

0 2 2, 4 5 1, 2, 4, 5, 7

1 3 0, 3, 9 3 3, 4, 8

2 2 0, 3 2 0, 8

3 3 1, 5, 7 7 1, 2, 4, 6, 7, 8, 9

4 5 0, 1, 3, 6, 8 1 0

5 1 0 1 3

6 2 3, 9 4 4, 7, 8, 9

7 3 0, 3, 6 1 3

8 5 1, 2, 3, 6, 9 1 4

9 2 3, 6 3 1, 6, 8

Table 5.2: PageRank computations for the Sample Graph in Fig.5.4

Node Initial Iter 1 Iter 2 Iter 3 . . . Iter 31

0 1.000 0.915 0.618 0.935 . . . 0.879

1 1.000 0.225 0.430 0.326 . . . 0.365

2 1.000 0.211 0.527 0.225 . . . 0.390

3 1.000 1.000 1.000 1.000 . . . 1.000

4 1.000 0.126 0.494 0.201 . . . 0.359

5 1.000 0.056 0.339 0.200 . . . 0.242

6 1.000 0.436 0.370 0.374 . . . 0.367

7 1.000 0.056 0.339 0.200 . . . 0.242

8 1.000 0.000 0.000 0.000 . . . 0.000

9 1.000 0.352 0.412 0.279 . . . 0.327
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Table 5.3: FuzzRank computations for the Sample Graph in Fig.5.4

Node Initial Iter 1 Iter 2 Iter 3

0 1.000 1.000 1.000 1.000

1 1.000 0.166 0.444 0.444

2 1.000 0.375 1.000 1.000

3 1.000 0.375 1.000 1.000

4 1.000 0.375 1.000 1.000

5 1.000 0.166 0.444 0.444

6 1.000 0.375 1.000 1.000

7 1.000 0.166 0.444 0.444

8 1.000 0.000 0.000 0.000

9 1.000 0.375 1.000 1.000

ank, the final ordering is achieved after the twelfth iteration.

• FuzzRank has clumped several nodes together. The number of distinct ranks are 3

for FuzzRank and 9 for PageRank. This indicates that FuzzRank isa more conser-

vative way of ranking (compared to PageRank) where it concludes that the given in-

formation in the form of the structure of the graph is insufficient for strictly putting

one node ahead of the other, and encourages the use of other factors, such as query

relevance, to make this decision.

• The discordance between PageRank and FuzzRank is2
45

. The disagreement is due

to a single node (Node 1), which has a PageRank of 0.365. Had thePageRank value

been 0.326 or less (with the PageRank values remaining the same for the remaining

nodes), there would have been no discordance between the tworank vectors.

Often, one would be interested in finding the discordance between the topk ranked

nodes. Generally, this is to indicate that a discordant pairamong the top ranked pages
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of a ranked list is more significant as compared to the same at the bottom of the list.

Comparing top k lists [48] involves obtaining the topk elements of both the lists and

looking for discordant pairs among the union of those elements. If c is the number of

elements in common to the two topk lists, the total number of elements in the union,n, is

k− c+k− c+ c = 2k− c. Unlike in [48], where it is assumed that the ranks of the nodes

outside the topk lists are not known, we shall make use of the available information to

compute the actual discordance, thereby avoiding the estimation of discordance suggested

in [48]. To handle ties consistently, we shall keep all the tied elements together. So, for

the FuzzRank vector, the sets top1 to top 6 are all the same, consisting of the nodes

0, 2, 3, 4, 6, and9, whereas the top7 to top9 lists have the nodes1, 5, and7, in addition

to the aforementioned6 nodes. As we varyk from 1 (we note that, fork = 1, the top

elements of both lists may be the same, and hence a pair might not be possible at all, in

which case the discordance would be defined to be zero) to 10, the number of discordant

pairs between PageRank and FuzzRank is 0 for1 ≤ k ≤ 5, 1 for k = 6, and 2 for

7 ≤ k ≤ 10. Fig. 5.5 plots the normalized discordance values, whereby, for eachk > 1,

the number of discordant pairs is divided byn(n−1)
2

.

We now look at the effects of mutating the given graph on the rankings of the nodes.

This is important because, often, a link to a page (or a section of the page), might not

exist explicitly. The ranking algorithm would need to be robust to gracefully handle noise

in links. It has been shown theoretically in [4] that the classical Markov chains may be

severely impacted by small changes in the transition matrix, whereas, that is not the case

for fuzzy Markov chains.

We perform a simple mutation on the sample graph, such as adding a node or removing

a node. Each of the following three graphs is produced as a result of one such mutation.

M1: The link4→ 3 is removed.

M2: The link 5 → 0 is removed. Note that, this means that there are no out-linksfrom

node 5, making it arank leak.
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Figure 5.5: Discordance between the PageRank and FuzzRank vectors for the top k ranked

nodes of the sample graph

M3: A new link 5→ 2 is added to the graph.

The PageRank and FuzzRank vectors are computed for each of the mutated cases, and

are presented alongside those for the original graph. Note that, there is no discordance

between the FuzzRank vectors for the various graphs, although, the scores have changed

for some of the nodes. For the case of PageRank, however, each mutation produces a

different change. This demonstrates the robustness of FuzzRank. The significance of

this robust computation is that the creation of the transition matrix is based on several

(simplistic) assumptions, and when these deviate from reality, the resultant ranking may

be well away from the ideal one. The robustness of FuzzRank is related to the great

number of ties in this case. By not committing itself to a strict ranking, it absorbs the

effects of slight changes in the transition matrix.

We now describe the data sets that we have used in our experiments. We have gener-

ated 100 graphs each of sizes 10, 100, and 1000, randomly. We chose two real life data

sets from Stanford’s WebBase [65] and named them WB17440 and WB47060, after the

host and port numbers from which they are available. The former is a crawl of a part of
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Table 5.4: PageRank and FuzzRank for the nodes in the Sample Graph in Fig. 5.4, and its

mutated versions, with the nodes ordered in descending order of PageRank

Node PageRank FuzzRank PR M1 FR M1 PR M2 FR M2 PR M3 FR M3

3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0 0.879 1.000 0.950 1.000 0.475 1.000 0.726 1.000

2 0.390 1.000 0.412 1.000 0.256 1.000 0.505 1.000

6 0.367 1.000 0.412 1.000 0.403 1.000 0.349 1.000

1 0.365 0.444 0.386 0.333 0.369 0.444 0.358 0.444

4 0.359 1.000 0.373 1.000 0.213 1.000 0.300 1.000

9 0.327 1.000 0.356 1.000 0.374 1.000 0.316 1.000

5 0.242 0.444 0.220 0.333 0.268 0.444 0.251 0.444

7 0.242 0.444 0.220 0.333 0.268 0.444 0.251 0.444

8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000



136 Web Surfer Models Incorporating Fuzziness

D(PageRank, FuzzRank) for random graphs with 10 nodes

Discordance Value

N
um

be
r 

of
 G

ra
ph

s

0.0 0.1 0.2 0.3 0.4

0
20

40
60

80

Figure 5.6: Discordance values between PageRank and FuzzRankvectors for 100 ran-

domly generated graphs with 10 nodes

the berkeley.edu domain, and there are about 140 thousand pages with over 1.6 million

links to pages within the same data set. WB47060, which is a crawl of a part of the

stanford.edu domain, consists of about 40 thousand pages and over 260 thousand links to

pages within itself.

Having earlier detailed the methodology of the experimentson an example, the results

are now quickly presented. Figs. 5.6, 5.7, and 5.8 present the discordance values be-

tween the PageRank and FuzzRank vectors for 100 randomly generated graphs with 10,

100, and 1000 nodes, respectively. As in the earlier example, the discordance values are

generally low. Moreover, these values decrease as the number of nodes increases. The

corresponding discordance values for the WB17440 and WB47060 data sets are 0.08

and 0.1, respectively, implying that PageRank and FuzzRank donot disagree much on

even large real life data sets.
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D(PageRank, FuzzRank) for random graphs with 100 nodes
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Figure 5.7: Discordance values between PageRank and FuzzRankvectors for 100 ran-

domly generated graphs with 100 nodes

D(PageRank, FuzzRank) for random graphs with 1000 nodes
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Figure 5.8: Discordance values between PageRank and FuzzRankvectors for 100 ran-

domly generated graphs with 1000 nodes
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5.5 Conclusions and Discussion

The novel theoretical formulation of fuzzy web surfer models by integrating existing

works on web surfer models and fuzzy Markov chains is very interesting. The defini-

tion of FuzzRank as the fuzzy surfer models counterpart of PageRank, which is based on

the random surfer model is both simple and elegant. Experimental results confirm that

FuzzRank has very similar ranking properties, and yet is morerobust to noise. This ro-

bustness is a consequence of FuzzRank to avoid a strict ranking in the absence of strong

evidence to that effect. While this may result in a large number of ties if this were the

sole criterion for ranking web pages, given that several other factors, like query relevance,

would be considered during the ranking process, the abilityto consistently rank the pages

in the presence of noise is an advantage. The walk-through with an example clearly shows

how stable FuzzRank is over PageRank. Future directions for research on this topic in-

volve stability analysis for various other kinds of noise, and obtaining an accurate fuzzy

transition matrix based on both the links and the contextualinformation.

The present chapter, along with the previous one, dealt withranking web pages. In

the next chapter, we discuss how to compare page rank vectors, or more generally, any

pair of ranking schemes.



Chapter 6

Quantitative Evaluation of Page

Ranking Schemes

6.1 Introduction

Ranking a set of items is a fairly frequent task, and involves pairwise comparison of the

given items. This comparison may be performed by inquiring an oracle for each pair of

items, in which case, the ranking procedure is known as comparison based ranking. On

the other hand, one may assign scores to each item, thus producing a total ordering on the

set of items. Each item is assigned a score which denotes how early the item appears in

the list, and thus, comparing each pair is now performed by comparing the corresponding

scores. The present work is concerned with score based rankings only, and each ranking

is assumed to be induced by ascoring schemeor function.

Several scoring schemes may compete with each other for ranking the same set of

items, and the items may be ranked differently by each of them. Given two such scoring

schemes, two questions arise:

• Which scheme is better?

• How different are the two schemes?
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In the present chapter, we are concerned with the answers to the second question. One

may note that it is not sufficient to ask the first question alone as, instead of just declaring

one of them to be better than the other, it is imperative to measure how much better one

scoring is over the other.

Comparing such scoring schemes is generally performed by comparing the induced

ranking on the set of items. However, several different scoring systems may lead to the

same ranking of the items, and a rank based comparison cannotdiscriminate between

such schemes. In the present chapter, we propose a more general approach, whereby, the

scoring schemes may be perceived to be different even if theyinduce identical rankings.

Our approach is based on the idea that similar scoring schemes discriminate between

two items in a similar manner. If the scores assigned to itemsi and j by one scoring

scheme are far apart, while those by another are very close toeach other, it indicates that

the two schemes are dissimilar. It is interesting to note that this also corresponds to a

fusion based approach for measuring similarity/dissimilarity of scoring schemes. Often,

these scoring schemes are used in combination with some other scoring method, sayT , to

produce the final ranking [34, 44, 108, 122]. This process of combining scores is referred

to asscore fusion[44, 108]. If two sets of scores are exactly the same, their rankings

remain the same even after score fusion. Also, differences in the scores assigned by two

methods may lead to different rankings, depending on the scores used for fusion. If we

knowT beforehand, then we may rank the items after fusing their scores, and compute a

dissimilarity value on the basis of the induced rankings.

In the present chapter, we look at the case whereT remains unknown. Based on cer-

tain simple assumptions about this unknown scoring schemeT , we compare two scoring

schemes on the basis of how likely they are to produce a discordant pair. We provide

a metric in this regard, which relies on the margins separating the scores. Even if two

items receive almost equal scores, they might be ranked differently depending onT . The

present investigation is about studying how likely it is forthem to be ranked differently

upon score fusion.
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The manuscript is organized as follows. We introduce the notation and background

for comparing scores and rankings, and rank fusion in Section 6.2. The proposed method-

ology is described in Section 6.3, which includes motivational examples and a discussion

on the characteristics of our method. Section 6.4 deals withextending the proposed met-

ric for comparing topk scorings, and applications of the metric are discussed in Section

6.5. We report some preliminary experimental results in Section 6.6, before drawing our

conclusions and mentioning future work in Section 6.7.

6.2 Comparing Scoring Functions: Background

6.2.1 Notation

Our universe consists of a set of objects or items indexed byΩ = {1, 2, 3, . . . , n}, and

each of them shall be referred to by its index. Unless otherwise stated,i andj refer to

two elements ofΩ, andi < j. These objects or items may be documents in corpus, states

in a country, students in a university, and so on. A scoring scheme or function assigns

a real numbersi ∈ [0, 1], called a score, toi, for eachi ∈ Ω. In the present work,

only normalized scoring schemes shall be considered, i.e.,maxi si = 1 andmini si =

0. The kth scoring scheme, or equivalently, thekth score vector is denoted bySk =

(sk1, sk2, . . . , skn). We useR(si) to denote the rank ofi, andR(S) is an abbreviation for

(R(s1), R(s2), . . . , R(sn)). Objects with larger scores appear earlier in the ranked list, so

thatsi > sj ⇒ R(si) < R(sj).

Let S1 andS2 be two scoring schemes. A pair(i, j) is called discordant w.r.t.S1 and

S2, if (s1i − s1j)(s2i − s2j) < 0, i.e., the two schemes orderi andj in different ways.

If (s1i − s1j)(s2i − s2j) > 0, theni andj are said to be concordant. The comparison is

called a tie if(s1i − s1j)(s2i − s2j) = 0. A tie may occur in one of three ways:s1i = s1j,

s2i = s2j, or both, and it is called a1-tie, a2-tie or a double tie, respectively. Without loss

of generality, we assume that the first set of scores are sorted:



142 Quantitative Evaluation of Page Ranking Schemes

Assumption 1 (Monotonicity of S1) 1 = s11 ≥ s12 ≥ . . . ≥ s1n = 0,

for, otherwise, we may sortS1 andS2 in descending order withS1 as the primary key.

Let S andT = (t1, t2, . . . , tn) be two score vectors.αS +βT means the score vectors

S andT arefused together, with the fusing proportions0 < α < 1 andβ = 1 − α. So,

theith element of the fused vector isαsi +βti. Whenα = β = 0.5, we shall simply write

S + T , instead of the technically correct0.5S + 0.5T , noting that the ranking remains the

same in both cases.

We now provide some background on comparing rankings and fusion.

6.2.2 Background on Rank Comparison

Comparison of rankings is a fairly well studied problem, and we mention the most pop-

ular rank comparison methods here. Comparing two different rankings has been studied

in various fields. In each case, a measure has been provided that takes into account how

much the positions of each item differ in the two ordered lists. The measure is zero when

the two rankings are exactly the same, whereas it is maximum when the rankings are com-

pletely opposite to each other. Some very useful and widely used measures for comparing

two rankings are Spearman’s footrule, Spearman’s rank correlation and Kendall’sτ .

Spearman’s footrule is defined as:

ρ1 :=
n
∑

i=1

|R(s1i)−R(s2i)| . (6.1)

Spearman’s rank correlation [32] is defined as:

ρ2 :=

(

n
∑

i=1

(R(s1i)−R(s2i))
2

)
1
2

. (6.2)

Both ρ1 andρ2 are 0 if both the rankings are the same, and attain their maximum

values whenR(S1i) = n + 1−R(S2i), ∀ i ∈ Ω.

Kendall’s Tau (orτ ) [32] is defined as the difference of the proportions of concordant
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and discordant pairs according toS1 andS2:

τ(S1, S2) =
2

n(n− 1)

∑

i<j

sign(s1i − s1j)(s2i − s2j) (6.3)

and may be rewritten in terms of only the number of discordantpairs as

τ(S1, S2) = 1−
4

n(n− 1)

∑

i<j

I[(s1i−s1j)(s2i−s2j)<0] (6.4)

The summation in Eq. (6.4) is the number of discordant pairs w.r.t. S1 andS2 and is

referred to as the Kendall distance between them [46]. Formally, the Kendall distance

between each pair{i, j} w.r.t. S1 andS2 is defined as:

K(S1, S2; i, j) =



















1 if i andj are discordant

1
2

if i andj have a single tie

0 o.w., i.e., ifi andj are concordant or have a double tie
(6.5)

When this quantity is summed over all the pairs of items, then it is called the Kendall

distance betweenS1 andS2, or equivalently, betweenR(S1) andR(S2), and is denoted

by K(S1, S2) or D(R(S1), R(S2)). This is also referred to as Kendall (Tau) distance,

Kemeny distance, or bubblesort distance betweenR(S1) andR(S2) when interpreted as

the number of pairwise adjacent transpositions needed to transform from one ranked list

to the other.

More recently, Bar-Ilan, et al. proposed that differences inranking in the initial part

of the lists should be given more weightage than those towards the end of the lists [9].

The dissimilarity between the two rankings is computed as:

µ =
n
∑

i=1

∣

∣

∣

∣

1

R(S1(i))
−

1

R(S2(i))

∣

∣

∣

∣

(6.6)

6.2.3 Background on Fusion

Fusion is the process of combining multiple sets of ranks or scores available for the given

items. Rank fusion [100, 130], also known as rank aggregation[46, 151], obtains a con-
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sensus ranking from the available ranked lists. These listsneed not be full lists, making

rank fusion a very challenging problem.

Score fusion, on the other hand, combines the scores directly, in order to produce a

consensus score vector, on which the final ranking may be based upon. Such fusion may

be performed by taking an average of the scores assigned to anitem. Two of the standard

score fusion techniques are CombSUM (a simple average) and CombMNZ (a weighted

average) [83,122,143].

Several studies have compared the effectiveness of rank andscore fusion. Scores

contain more information than ranks, but may be prone to noise. It is suggested in [46]

that only the induced ranks should be considered for fusion,whereas, in [99], it is found

that score fusion is advantageous, provided that normalization is performed properly. A

detailed discussion on ranks versus scores is available in [98].

6.3 Comparing Underlying Scores Directly

One may compare two score vectors directly using a measure like Pearson’s correlation

coefficient. However, the interpretation of the coefficientin terms of the resultant ranking

is lost. Also, the correlation coefficient is not a metric, and hence cannot be interpreted

directly as a distance between two scoring systems. The correlation coefficient may be

transformed into a metric, but it still does not reflect the rank-specific differences between

two scorings, and is not always useful for comparing rank-inducing scoring functions.

An alternative is to compare the scores assigned to the available objects on the basis

of the rankings they produce.

6.3.1 Motivation

We shall now emphasize upon the significance of comparing scorings directly. We start by

asking the following question: “Is it sufficient to use onlyR(S1) andR(S2) for comparing

S1 andS2?” We look at the following examples to gain some insight in this regard.
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Figure 6.1: Same ranks, different scores

Example 1: Suppose that itemsi andj receive identical scores in each scoring scheme,

i.e.,s1i = s1j ands2i = s2j. By definition, there is a double tie betweeni andj w.r.t. S1

andS2. Now, if there is a measurement error, due to which the scoresare slightly per-

turbed,i andj would be declared to be either concordant or discordant (with probability

1), though, in reality, they are neither of the two. This is a consequence of the fact that

discordance is a hard concept, and a pair may be either discordant or not, but nothing in

between.

Example 2: Let n = 10. The objects1, 2, . . . , 10 are scored in three different ways as

shown in Fig. 6.1. Here,s1i = n−i
n−1

, s2i = 1− (i−1)2

(n−1)2
, s3i = (n−i)2

(n−1)2
. It may be noted that,

while the ranks are identical in all three cases, the scores differ significantly. For example,

items1, 2 and3 have barely distinguishable scores w.r.t.S2, whereas, the scores are quite

varied in the cases ofS1 andS3. If ranking by themselves is the sole objective of the

three scoring functions, then they may be deemed identical.Otherwise, that the resolving

power of the three scoring functions is different implies some amount of dissimilarity

between them.

Example 3: Let (s1i, s1j, s2i, s2j, s3i, s3j) = (0.4, 0.5, 0.5, 0.4, 0.9, 0.1). So, the items

i andj are discordant w.r.t.S1 andS2, as well as, w.r.t.S1 andS3. However, are they
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“more” discordant in the second case? Again, this question cannot be answered without

the notion of a degree of discordance.

Example 4: Lets12 = 0.7, s13 = 0.4, s22 = 0.6 ands23 = 0.5. Assumes1k = s2k ∀k ∈

Ω \ {2, 3}. Note that items2 and3 are concordant w.r.t.S1 andS2, and also that bothS1

andS2 induce the same rankings, i.e.,R(S1) = R(S2). Now, suppose that the objects are

to be ranked after fusing their scores withT . So, the two rankings obtained areR(S1 +T )

andR(S2 + T ). The question we are concerned with is whether these two rankings are

identical. It is obvious that the answer depends on the values of t2 andt3. For example, if

t2 = 0.3 andt3 = 0.5, then the fused scores are given bys12 + t2 = 1.0 > s13 + t3 = 0.9

ands22 + t2 = 0.9 < s23 + t3 = 1.0, and hence(2, 3) forms a discordant pair according

to S1 + T andS2 + T . One may easily observe that(2, 3) would form a discordant pair

whenevert3 − t2 ∈ (0.1, 0.3).

Example 5: Now, if s12 = 0.9, ands13 = 0.1, while s22 ands23 remain the same as in

Example 4,2 and3 again form a concordant pair w.r.t.S1 andS2. However,(2, 3) forms

a discordant pair w.r.t.S1 + T andS2 + T whenevert3 − t2 ∈ (0.1, 0.8). In a sense, it is

more likely for(2, 3) to be discordant in this case, than in the earlier one.

The essence of these examples was to demonstrate that even thoughS1 andS2 may

appear identical or similar on the basis of the rankings theyproduce by themselves, the

likelihood of a discordant pair being produced after score fusion depends both on the

distribution oftj − ti (for all pairsi < j) and the spacing between the scores assigned to

the objects of the universe.

Another compelling reason for comparing scores directly isthat given justS1 and

S2, rank comparison methods have no way of distinguishing between the cases when the

fusing parameter,α, is big (say, 0.9) or small (say, 0.1). In isolation, as long as both the

vectors are multiplied by the same scalar, rank comparison measures come up with the

same value each time. Of course, if all one needs to do is to rank the items on the basis of

justS1 andS2, thenR(S1) andR(S2) should suffice for comparing the scores, i.e., score

comparison methods provide no additional advantage.
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6.3.2 Comparing Scores Directly

The objective in the present investigation is to discern between two scoring functions

directly without performing the additional task of computing the induced ranks. Taking

a cue from Examples 1 and 3, we propose the concept of a degree of discordance for a

pair of items, which subsumes the usual definition of discordance as a special case. As

discussed in Example 2, the dissimilarity of two scoring functions w.r.t. a pair{i, j}may

be inferred from the differences in the separation ofi and j by the scoring functions.

Thus, a measure of dissimilarity betweenS1 andS2 may be based on the separations

d
(1)
ij = s1i − s1j andd

(2)
ij = s2i − s2j. The mored(1)

ij andd
(2)
ij are apart, the higher the

dissimilarity.

We now look at an alternative approach, which leads to the same notion of discordance

once again. In particular, we would like to study how likely it is for a discordant pair to

appear during score fusion.

In this regard, let us formalize our observations in Examples 4 and 5 of Section 6.3.1.

The fused scores ofi w.r.t. S1 + T andS2 + T ares1i + ti ands2i + ti, respectively, for

each1 ≤ i ≤ n. The pair(i, j) forms a discordant pair w.r.t.S1 + T andS2 + T , if and

only if,

((s1i + ti)− (s1j + tj)) ((s2i + ti)− (s2j + tj)) < 0,

or equivalently, if and only if,

((tj − ti)− (s1i − s1j)) ((tj − ti)− (s2i − s2j)) < 0. (6.7)

That the quantity (6.7) is negative is equivalent to having(tj − ti) in the interval

(

min
{

d
(1)
ij , d

(2)
ij

}

, max
{

d
(1)
ij , d

(2)
ij

})

,

where,d(1)
ij andd

(2)
ij denote the differencess1i−s1j ands2i−s2j, respectively. Thus, once

again, the dissimilarity is proportional to the differenceof d
(1)
ij andd

(2)
ij . Note thatd(1)

ij is

positive, by Assumption 1, in Section 6.2.1.
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Similarly, it may be easily seen that the pair(i, j) forms a discordant pair w.r.t.αS1 +

βT andαS2 + βT , if and only if tj − ti belongs to the interval
(

min

{

α

β
d

(1)
ij ,

α

β
d

(2)
ij

}

, max

{

α

β
d

(1)
ij ,

α

β
d

(2)
ij

})

.

Let γ denote the ratioα
β
, and let, for each pairi < j,

aS1,S2

ij = min {s1i − s1j, s2i − s2j} , and

bS1,S2

ij = max {s1i − s1j, s2i − s2j} .







(6.8)

We note that, for each pair(i, j), there are associated real numbersaS1,S2

ij andbS1,S2

ij ,

such that(i, j) is a discordant pair according toαS1 +βT andαS2 +βT whenevertj− ti

is in the interval
(

γaS1,S2

ij , γbS1,S2

ij

)

. For ease of notation, we drop the superscriptsS1 and

S2 when they are clear from the context. As seen earlier, the interval [aij, bij] holds the

key to the likelihood of a discordant pair being produced. For this reason, we propose

Dγ(S1, S2) =
n−1
∑

i=1

n
∑

j=i+1

Dγ(S1, S2; i, j), (6.9)

as a measure of discordance betweenS1 andS2, whereDγ(S1, S2; i, j) is a suitably chosen

measure on the interval(aij, bij). We shall writeD as a shorthand forD1. In the present

chapter, we make the choice ofDγ(S1, S2; i, j) as

Dγ(S1, S2; i, j) =

∫ γbij

γaij

f(x)dx =

∣

∣

∣

∣

∣

∫ γ(s2i−s2j)

γ(s1i−s1j)

f(x)dx

∣

∣

∣

∣

∣

, (6.10)

where,f(x) is a continuous probability density function with(−1, 1) as its support. As a

particular case, in the present work, we choosef to be the triangular density function:

f(x) =



















1 + x if −1 < x ≤ 0

1− x if 0 < x ≤ 1

0 o.w.

(6.11)

Dγ(S1, S2; i, j) ranges between0 and 1 and shall be called the degree of discordance

betweeni and j w.r.t. S1 andS2. A value of 0 denotes either a double tie or perfect
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concordance (i.e.,d(1)
ij = d

(2)
ij ), whereas1 implies perfect (or extreme) discordance (i.e,

d
(1)
ij d

(2)
ij = −1).

The significance of choosing this particular functionf is as explained below. The

relevance scores lie in the interval[0, 1], and thereby,tj − ti ∈ [−1, 1]. We make a

simplistic assumption thatti andtj areiid U(0,1), in which case the density oftj − ti is

f . Another reason for choosing the uniform distribution is that it is the least biased prior

distribution, and corresponds to the fact that nothing elseis known aboutT (that is, there

is no particularT on the basis of whichS1 andS2 are being compared).

I1(a, γ) =

∫ γa

0

(1− x)dx

=







∫ 1

0
(1− x)dx if γa ≥ 1

∫ γa

0
(1− x)dx o.w.

=







1
2

if γ ≥ 1
a

γa− 1
2
γ2a2 o.w.

(6.12)

Also, one may note that
∫ 0

γa

(1 + x)dx = I1(−a, γ).

ThusDγ(S1, S2; i, j) may be evaluated as

∫ γbij

γaij

f(x)dx =



















∫ γbij

0
(1− x)dx−

∫ γaij

0
(1− x)dx if 0 ≤ aij ≤ bij

∫ γbij

0
(1− x)dx +

∫ 0

γaij
(1 + x)dx if aij ≤ 0 < bij

∫ 0

γaij
(1 + x)dx−

∫ 0

γbij
(1 + x)dx if aij ≤ bij ≤ 0

=



















I1(bij, γ)− I1(aij, γ) if 0 ≤ aij ≤ bij

I1(bij, γ) + I1(−aij, γ) if aij ≤ 0 ≤ bij

I1(−aij, γ)− I1(−bij, γ) if aij ≤ bij ≤ 0

(6.13)

It may be noted that we do not need to consider the caseaij ≤ bij ≤ 0, since,b =

max
{

d
(1)
ij , d

(2)
ij

}

≥ d
(1)
ij ≥ 0, by Assumption 1.
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6.3.3 Characteristics and Discussion

It may be easily verified that the proposed measure for comparing two scoring systems,

Dγ(S1, S2) is a pseudometric. It is a metric whenγ ≤ 1. The following theorem provides

a more general proof, wheref is chosen to be any continuous probability density function

on (−1, 1) (i.e., taking strictly positive values on(−1, 1), and0 elsewhere), and is not

restricted to the triangular density function.

Theorem 2 (Metric properties of Dγ(S1, S2)) Let S1 and S2 be two normalized score

vectors of lengthn, and letγ be a positive real number. Let the discordance for the pair

(i, j) w.r.t. S1 andS2, Dγ(S1, S2; i, j), be defined as in Eq. 6.10. whereaij and bij are

as defined in Eq. 6.8 and letDγ(S1, S2) be defined as in Eq. 6.9. Then,Dγ(S1, S2) is a

metric ifγ ≤ 1 and a pseudometric otherwise.

Proof: To prove the theorem, it needs to be shown thatDγ(S1, S2) satisfies the following

properties:

Dγ(S1, S2) ≥ 0 ∀ S1, S2 (6.14)

Dγ(S1, S1) = 0 (6.15)

If γ ≤ 1, Dγ(S1, S2) = 0 ⇒ S1 = S2 (6.16)

Dγ(S1, S2) = Dγ(S2, S1) (6.17)

Dγ(S1, S2) + Dγ(S2, S3) ≥ Dγ(S1, S3) (6.18)

Properties (6.14)-(6.17) may be easily verified from the definitions (6.9)–(6.11). Prop-

erty (6.14) (non-negativity) follows immediately from thefact that eachDγ(S1, S2; i, j)

is the probability that a random variable with densityf takes a value in a subinterval

(aij, bij) of (−1, 1). The proof of Property (6.15) is trivial, as each of the subintervals

(aij, bij) are now of length0.

To prove Property (6.16), we note thatγ ≤ 1⇒ (γaij, γbij) ⊆ (−1, 1) ∀ i < j. Since

f(x) > 0 if x ∈ (−1, 1), we have

Dγ(S1, S2; i, j) = 0⇔ aij = bij.
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So,Dγ(S1, S2) = 0 implies that

s1i − s1j = s2i − s2j ∀ i < j ∈ Ω.

Note thats11 = 1. Also,

s21 − s2n

=
n−1
∑

i=1

s2i − s2,i+1

=
n−1
∑

i=1

s1i − s1,i+1

= s11 − s1n

= 1

Thus,s21−s2n = 1, and so the normalization constraint implies thats21 = 1 ands2n = 0.

Settingj = i + 1, and varyingi from 1 to n− 1, we observe thats1j = s2j ∀ 2 ≤ j ≤ n,

and hence,S1 = S2. Thus Property (6.16) is proved. This property need not holdfor

γ > 1 because the integration interval may have no intersection with (−1, 1), in which

case,f would be0 throughout the interval.

From the definition in Eq. 6.8, and the symmetry ofmax andmin,

aS1,S2

ij = aS2,S1

ij andbS1,S2

ij = bS2,S1

ij , ∀ i < j ∈ Ω,

and hence,

Dγ(S1, S2; i, j) = Dγ(S2, S1; i, j),

thereby confirming Property (6.17).

To prove Property (6.18) we make use of the following facts aboutmax andmin:

min{a, b} ≤ max{b, c}, (6.19)

min{a, c} ≥ min {min{a, b}, min{b, c}} (6.20)
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and

max{a, c} ≤ max {max{a, b}, max{b, c}} . (6.21)

The fact (6.19) implies that

aS1,S2

ij ≤ bS2,S3

ij , andaS2,S3

ij ≤ bS1,S2

ij , (6.22)

and hence, the following inequalities hold:

(

aS1,S2

ij , bS1,S2

ij

)

∪
(

aS2,S3

ij , bS2,S3

ij

)

=
(

min
{

aS1,S2

ij , aS2,S3

ij

}

, max
{

bS1,S2

ij , bS2,S3

ij

})

⊇
(

aS1,S3

ij , bS1,S3

ij

)

. (6.23)

Here, the first equality is a consequence of Eq. 6.22 which ensures that the union of

the given intervals is indeed an interval. The second inequality is a consequence of Eqs.

(6.20) and (6.21). It may be noted that the same inequalitieshold even when theaij ’s and

bij ’s are multiplied by a positive constantγ.

Integrating the non-negative functionf over the above intervals (scaled by the constant

γ), we have the following set of inequalities:

∫ γb
S1,S2
ij

γa
S1,S2
ij

f(x)dx +

∫ γb
S2,S3
ij

γa
S2,S3
ij

f(x)dx

≥

∫ γ max{bS1,S2
ij , b

S2,S3
ij }

γ min{aS1,S2
ij , a

S2,S3
ij }

f(x)dx

≥

∫ γb
S1,S3
ij

γa
S1,S3
ij

f(x)dx, (6.24)

which is the same as the triangular inequality

Dγ(S1, S2; i, j) + Dγ(S2, S3; i, j) ≥ Dγ(S1, S3; i, j)

Summing over all pairs(i < j), we have Property (6.18).

Thus,Dγ(S1, S2) is a metric ifγ ≤ 1, and a pseudometric otherwise.

�



6.3 Comparing Underlying Scores Directly 153

Kendall distance corresponds to a special case of the proposed metric by choosingf

to have equal mass on(−1, 0) and(0, 1) (a weaker condition than symmetry), andβ to

be very close to zero, or equivalently,γ very large. Intuitively, this means that there is no

fusion, andS1 andS2 are being compared directly to each other. It may be observedthat,

in such a case, the interval(γaij, γbij) either contains the whole of(−1, 1) (whenaij < 0)

or does not have any intersection with(−1, 1) (whenaij > 0), which is the support off ,

and thus, the degree of discordance is either1 or 0, respectively. When there is a tie (and

it is not a double tie), one limit of the integral in Eq. 6.10 becomes zero, and the other

limit is either larger than1 or smaller than−1, and hence, the degree of discordance is1
2
.

For a double tie, the degree of discordance is0 for anyγ (indicating perfect concordance).

Thus, whenγ is very large,Dγ(S1, S2; i, j) assumes the value of1 whenever(i, j) is a

discordant pair w.r.t.S1 andS2, 0 when it is a concordant pair,1
2

in case of a single tie,

and0 for a double tie, and hence,Dγ(S1, S2) is the Kendall distance betweenS1 andS2.

Formally, this may be defined as:

K(S1, S2; i, j) = lim
γ→∞

Dγ(S1, S2; i, j) ∀ i < j (6.25)

For each pair,{i, j}, asγ increases, the value ofDγ(S1, S2; i, j) monotonically de-

creases to0 if {i, j} is concordant, and increases to1 otherwise. However, this does not

imply thatDγ(S1, S2) either monotonically increases or decreases withγ, the reason be-

ing that some of the individual components may increase while others decrease, and the

rates may not balance each other. It may be easily verified in the case ofn = 3, that

Dγ(S1, S2) may first increase and then decrease withγ.

Dγ(S1, S2) is bounded above byn(n−1)
2

. This is obvious becauseDγ(S1, S2; i, j) is

bounded above by1 for each pair{i, j}. Also,Dγ(S1, S2) andK(S1, S2) do not dominate

each other. For example, whenK(S1, S2) = n(n−1)
2

, Dγ(S1, S2) may be smaller (say,

whenγ = 1), andDγ(S1, S2) may be positive whenK(S1, S2) is zero (whenS1 6= S2 but

R(S1) = R(S2)). Thus,Dγ(S1, S2) − K(S1, S2) may be positive for certain choices of

S1 andS2 and negative for some others.
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Though the Kendall distance may be computed naı̈vely in O(n2) time, Knight’s algo-

rithm [74] based on mergesort, achieves the same inO(n log n) time by taking advantage

of the redundancy involved in computingK(S1, S2). No such algorithm is known, as yet,

for computingDγ(S1, S2). Preliminary ongoing research in this direction is promising

and suggests the existence of linear time algorithms to compute a “reasonable” approxi-

mation toDγ(S1, S2). Alternatively, when the number of items,n, is large, one may resort

to a method like the one suggested by Fagin, et al. [48], whereonly thek top ranked items

of both lists are considered for comparison. A “topk” version of the proposed metric is

presented in the next section.

6.4 Comparing Topk Scores

A top k list is the set of items with the largest scores. Topk lists differ from full lists

because two lists need not have the same set of items. IfC is the set of items common to

both the lists, then there are a total of2k−|C| items in the two lists combined together, and

thus, there are a total of(2k−|C|)(2k−|C|−1)
2

pairs. To compute the degree of discordance of

a pair{i, j}, the four score values, viz,s1i, s1j, s2i ands2j need to be known. However, all

four scores are known for only|C|(|C|−1)
2

pairs, and for the remaining pairs, either one or

two of the scores are unknown, and hence, some sort of estimation needs to be performed

for determining their degree of discordance.

We extend our procedure to comparing the topk scores of two scoring functions by

mimicking the work of Fagin, et al. [48]. Fagin, et al. compared the topk lists obtained

by two different rankings [48]. When dealing with items whichappear in only one list,

the definitions of ranks and discordance are appropriately modified, resulting in, among

many others, a Kendall distance for topk lists.
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6.4.1 Comparing Topk Lists

We first study the approach of Fagin, et al. [48] for generalizing the definition of dis-

cordance to the case of topk lists. We reproduce the text from [48] and, simultaneously,

make a note of how the same extension for the computing the degree of discordance would

differ in each case. Letτ1 andτ2 be two topk lists. The generalized discordance between

i andj, w.r.t. two listsτ1 andτ2 is denotedK(p)(τ1, τ2; i, j).

Case 1 (i andj appear in both topk lists): If i andj are in the same order (such asi being

ahead ofj in both top k lists), then letK(p)(τ1, τ2; i, j) = 0; this corresponds to “no

penalty” for{i, j}. If i andj are in the opposite order (such asi being ahead ofj

in τ1 andj being ahead ofi in τ2), then let the penaltyK(p)(τ1, τ2; i, j) = 1.

In this case, the usual definitions of discordance and degreeof discordance are applicable.

Case 2 (i and j both appear in one topk list (say τ1), and exactly one ofi or j, say i,

appears in the other topk list (τ2)): If i is ahead ofj in τ1, then let the penalty

K(p)(τ1, τ2; i, j) = 0, and otherwise letK(p)(τ1, τ2; i, j) = 1. Intuitively, we know

thati is ahead ofj as far asτ2 is concerned, sincei appears inτ2 but j does not.

Here, there is no confusion regarding what the discordance should be as it is clear thati is

ahead ofj in τ2. However, the degree of discordance needs the information regarding the

separation betweeni andj. If i appears higher inτ2, then,j is far belowi as compared

to wheni is towards the bottom ofτ2. Also, since Fagin, et al. [48] consider only lists of

items, there are no ties, whereas in our case, the scores may be tied.

Case 3 (i, but notj, appears in one topk list (sayτ1), andj, but noti, appears in the other

topk list (τ2)): Then let the penaltyK(p)(τ1, τ2; i, j) = 1. Intuitively, we know that

i is ahead ofj as far asτ1 is concerned andj is ahead ofi as far asτ2 is concerned.

Again, though one is sure of discordance in this case, the degree of discordance may be

partially inferred from the positions ofi andj in their respective lists.
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Case 4 (i andj both appear in one topk list (sayτ1), but neitheri norj appears in the other

top k list (τ2)): This is the interesting case (the only case where there isreally an

option as to what the penalty should be). Such pairs{i, j} are called special pairs.

In this case, we let the penaltyK(p)(τ1, τ2; i, j) = p.

This is the most difficult case, since the order ofi andj in τ2 is not known. However, the

positions ofi andj in τ1 carries some information regarding what the degree of discor-

dance may now be.

6.4.2 Degree of Discordance for Topk Scores

We shall now extend the definition of the degree of discordance to the case of the topk

scores by making the maximum use of the available information and averaging out the

unknown part. To compute the average over the unknown score values, we assume (as

in Section 6.3.2) that they are uniformly distributed, and are independent of each other,

and take the expectation. We assume that the topk scores of two scoring functionsS1

andS2, saySk
1 andSk

2 , are given, along with the corresponding lists of items,τ1 andτ2.

By Assumption 1,τ1 = {1, 2, . . . , k}. Let Dk
γ(S

k
1 , Sk

2 ; i, j) denote the degree of discor-

dance betweeni andj w.r.t. Sk
1 andSk

2 (though not mentioned explicitly,Dk
γ(S

k
1 , Sk

2 ; i, j)

involvesτ1 andτ2 also).

Case 1 (i, j ∈ τ1 ∩ τ2):

Since,s1i, s1j, s2i, s2j are all known, the earlier definition is applied straightaway

andDk
γ(S

k
1 , Sk

2 ; i, j) = Dγ(S1, S2; i, j).

Case 2 (i, j ∈ τ1, but i ∈ τ2 andj 6∈ τ2):

So,s1i, s1j, s2i are known buts2j is unknown. All that is known abouty = s2j is

that0 ≤ s2j ≤ s2k ≤ s2i. Let a denotes1i − s1j. Therefore, we have

Dγ(S1, S2; i, j) =

∫ γ max{a,s2i−y}

γ min{a,s2i−y}

f(x)dx.
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Since,y is unknown, we average the degree of discordance over all possible values

of y by taking the expectation as follows:

Dk
γ(S

k
1 , Sk

2 ; i, j) = E [Dγ(S1, S2; i, j)]

=
1

s2k

∫ s2k

0

∫ γ max{a,s2i−y}

γ min{a,s2i−y}

f(x)dx dy (6.26)

It may be noted that, as it is already given that0 ≤ y ≤ s2k, the above is a con-

ditional expectation, wherey is assumed to be fromU(0, s2k) distribution. Also,

Eq. 6.26 corresponds to the definition ofK(p)(τ1, τ2; i, j) in Case 2 in Section 6.4.1.

This may be seen by noting that whenγ is large, the integral in Eq. 6.26 is 0,1
2

or

1 according asa > 0, a = 0 or a < 0.

Case 3 (i ∈ τ1, j ∈ τ2, andi 6∈ τ2, j 6∈ τ1):

Letting y = s1j andz = s2i, and noting thatz − s2j ≤ 0 ≤ s1i − y, the expected

value of the degree of discordance may once again be computedas

Dk
γ(S

k
1 , Sk

2 ; i, j) = E [Dγ(S1, S2; i, j)[

=
1

s1ks2k

∫ s1k

0

∫ s2k

0

∫ γ(s1i−y)

γ(z−s2j)

f(x)dx dz dy (6.27)

Case 4 (i, j ∈ τ1, i, j 6∈ τ2):

Let us denotes1i − s1j, s2i ands2j by a, y andz, respectively, and without loss of

generality, assume thata ≥ 0. Thereby, the expected degree of discordance is given

by:

Dk
γ(S

k
1 , Sk

2 ; i, j) = E [Dγ(S1, S2; i, j)[

=
1

s2
2k

∫ s2k

0

∫ s2k

0

∫ max{γa,γ(y−z)}

min{γa,γ(y−z)}

f(x)dx dz dy (6.28)

6.5 Applications

Scores contain more information than ranks, especially because the ranks may themselves

be derived from the scores. So, comparing scorings finds applications in any field where



158 Quantitative Evaluation of Page Ranking Schemes

rankings need to be compared. We describe two such application areas related to page

ranking. In addition, we elaborate on how the scores may alsobe used to measure how

representative the ranks are.

6.5.1 Comparing Web Page Rankings

Ranking web pages has attracted the attention of several researchers, mainly due to the

challenges it poses in terms of scalability and the imprecise and subjective nature of the

task. Given the wide variety of ranking methods available, it is natural to compare them

to decide which one is better. A more fundamental task is to decide whether the two given

rankings are indeed different, and if so, how well-separated they are.

Though the task is torank web documents, page ranking algorithms assign scores to

pages. These scores are called page ranks. Existing works [20] compare the rankings by

converting the scores into ranks and then computing the distance between these ranks. As

discussed earlier in this chapter, and also, as is evident from the literature, these scores

are seldom used in isolation for producing the final rankings. In such a case, the proposed

methodology is more appropriate for comparing the page ranks, as it takes maximum

advantage of the available information regarding the intended use of the page ranks. For

example, if the fusing proportions (and thereby,γ) are known beforehand, the distance

Dγ(S1, S2) may be computed appropriately. On the other hand, if the algorithms produce

the final ranking without fusing the scores, then,γ may be set to a very high value, which

results in the computation of the Kendall distance.

It is common in the case of ranking web pages that the number ofitems is very large,

and under such circumstances,Dk
γ(S

k
1 , Sk

2 ) should be used to compareS1 andS2 in terms

of their topk scores, withk set to a few hundred or thousand.
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6.5.2 Stopping Criterion for the Power Method

Another application of the proposed metric is in deciding when to stop the iterations in

thepower method[121]. The power method is used to obtain the dominant (or principal)

eigenvector of matrixA, starting with an arbitrary vectorx(0). It is an iterative proce-

dure, whereby successive vectorsx
(i+1) are produced by multiplyingA with x

(i), and is

guaranteed to converge as the number of iterations tends to infinity.

In several studies like [11,82], the page rank vectors correspond to the principal eigen-

vectors of some transition probability matrix, and are computed iteratively by the power

method. Once again, as in Section 6.5.1, the size of the document collection under consid-

eration may be huge, in which case, each iteration is very costly, sometimes taking several

hours to a few days [70], and hence, early stopping is desirable. The page rank vectors

produced by consecutive iterations are compared to see if near convergence is attained.

In some instances, the computation is performed for a fixed number of iterations, say

50 or 100 iterations [11]. Though convergence may not be attained (intheL1 or L2 sense)

by the time the computation is stopped, the resultant vectoris declared to be the final

page rank vector. The justification provided for such a behavior is that this vector serves

its purpose in terms of ranking the documents, which is the final objective. In other words,

even if the iterations are allowed to run for longer, the ranking would not change by much,

as determined by the Kendall distance. Alternatively, one may base the stopping criterion

in terms of theL1 distance between the consecutive page rank vectors. However, since the

ultimate objective is to rank the pages, it is preferable to use a rank comparison method

for determining the stopping time [11].

While such a justification is acceptable if ranking is the soleobjective, there might

be other objectives too. In most cases, the page rank vector is considered as a set of

importance scores and is combined with other entities, suchas relevance scores, before

the final ranking is produced [123]. Thus, it is natural to askif it is sufficient to stop the

computation after a certain number of iterations. The proposed distance measure may be

used to check if (near) convergence has been attained. This convergence would be in a
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sense that considers the purpose of computing the eigenvector.

6.5.3 Quantitative Measurement of the Representation of Scores by

Ranks

A system ranking items on the basis of scores assigned to them, may choose to reveal

only the ranks of those items, usually, by returning them in aparticular order. While it

is true that the items would be ordered in exactly the same manner on the basis of their

scores too, the scores are only partially revealed. For example, let there be four items

(1, 2, 3, 4), each of which is assigned a scoresi, i = 1, 2, 3, 4, and the items are ordered in

descending order of scores. If it is known that the ordered list is1, 2, 3, 4, then all that is

revealed about the scores is that1 = s1 ≥ s2 ≥ s3 ≥ s4 = 0. However, there is a general

(human) tendency to perceive that the scores are uniformly distributed. So, the scores

are implicitly assumed to be1, 2
3
, 1

3
and0, respectively (or something similar). This also

corresponds to the average case, where one may observe that thoughs3 may be either less

than or greater than1
3
, it is expected (under the assumption of uniformity) to be close to

1
3
. Such uniform scores, implicitly assumed on the basis of theranks, shall be called the

uniformly perceived scores, and the uniformly perceived score vector shall be denoted by

R(S) (or simply byR if S is clear from the context). For the sake of notational simplicity,

we shall sometimes refer to uniformly perceived scores as just perceived scores in the rest

of this paper.

In reality, the underlying scores may not be reflected properly by the rankings avail-

able. For instance, in the above example, the actual scores could have been(1, 0, 0, 0), or

(1, 1, 1, 0) or (1, 0.5, 0.5, 0), or any such4-tuple satisfying the ordering criterion. So, the

perceived scores may or may not reflect the underlying scores. Thereby, one should be

able to measure if at all the perceived scores are similar to the actual scores.

The present work provides a methodology to quantify the separation between the ac-

tual scores and the perceived scores. Let there ben items1, 2, . . . , n, and let their per-
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ceived and actual scores be denoted byr1, r2, . . . , rn ands1, s2, . . . , sn, respectively. So,

the perceived score of theith item is given byri = 1 − i−1
n−1

= n−i
n−1

. It may be noted that

Kendall distance between the scores and the perceived scores is zero, which is due to the

fact that both of them result in the same rankings.

The degree of discordance of a pair(i < j) is thereby given by

Dγ(R,S; i, j) =

∫ max(si−sj , j−i
n−1

)

min(si−sj , j−i
n−1

)

(1− x)dx,

since, it is already known thatsi ≥ sj, andrj − ri = j−i

n−1
> 0. If si − sj = j−i

n−1
,

then the degree of discordance is zero. The other extreme is the case when the degree of

discordance for the pair(i, j) is maximum. This happens, whensi− sj is either0 or 1 —

which of the two is determined byj − i. If j − i is close ton− 1, then,Dγ(R,S; i, j) is

maximized atsj = si, whereas ifj − i is near1, si = 1 andsj = 0 maximizes the value

of Dγ(R,S; i, j).

As earlier, we would also be concerned with the total score based discordance between

the two scorings. This is obtained by summing the degree of discordance over all possible

pairs, and is given by

Dγ(R,S) =
n−1
∑

i=0

n
∑

j=i+1

Dγ(R,S; i, j)

Again, if si = 1− i−1
n−1

, for eachi = 1, 2, . . . , n, thesi’s coincide with theri’s and hence,

Dγ(R,S) turns out to be zero.

Since eachDγ(R,S; i, j) is bounded above by1
2
, it may be trivially seen that

Dγ(R,S) ≤ n(n−1)
4

. However, findingR andS such thatDγ(R,S) attains a maximum

is not as simple as maximizingDγ(R,S; i, j) for each pair(i, j), the reason being that

the pairs are not independent of each other, due to the monotonicity and normalization

constraints. For example, ifn = 5, Dγ(R,S; 1, 2) is maximized whens2 = 0 whereas

Dγ(R,S; 1, 3) is maximized whens3 = 1, however, both cannot happen simultaneously

(becauses2 ≥ s3).

How well R represents a particular score vectorS0 may be measured by the notion of

the p-value ofDγ(R,S0). Consider the set,S0, of all S vectors such thatR(S) = R(S0).
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The p-value is the probability of having anS vector (S ∈ S0) such thatDγ(R,S) ≥

Dγ(R,S0). In other words, the p-value ofDγ(R,S) is the proportion ofS vectors inS0

which are at an equal or higher distance fromR thanS0 is fromR. So, when most of the

S vectors are such thatDγ(R,S) ≥ Dγ(R,S0), thenDγ(R,S0) may be considered to be

small, andvice versa. Thus, when the p-value corresponding toDγ(R,S) is very small,

it may be declared thatR(S) does not representS well enough.

6.6 Experimental Results

To understand the significance of the present work and to validate the claims made in this

chapter, several experiments of the following kinds were conducted.

• Study of the behavior ofDγ(S1, S2) for various values ofγ.

• Study of the behavior ofDk
γ(S1, S2) for various values ofn andk, and testing the

dependence on the assumption of uniformity.

• Determining the number of iterations for eigenvector computation.

• Predicting the discordance in a pair of vectors after score fusion.

• Computing the distance between uniformly perceived and actual scores.

We now describe each of these experiments and their results along with our observations

and analysis.

6.6.1 Behavior ofDγ(S1, S2)

It is theoretically assured thatDγ(S1, S2) ≤
n(n−1)

2
, and also thatlimγ→∞ Dγ(S1, S2) =

K(S1, S2). Moreover, our remarks on Page 153 make it amply clear thatDγ(S1, S2) is

not a monotone function ofγ although eachDγ(S1, S2; i, j) is so.
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Figure 6.2: Plots ofDγ(S1, S2) vs. γ, for 10 randomly chosen(S1, S2) pairs, with (a)

n = 3, (b) n = 4 and (c)n = 5
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The aforementioned properties are graphically depicted inFigs. 6.2(a), 6.2(b) and

6.2(c). Here,n is set to3, 4 and5, respectively, and tenS1, S2 pairs are randomly gener-

ated, andDγ(S1, S2) is computed for values ofγ varying from1 to 30. The Kendall dis-

tance,K(S1, S2) may take values only from{0, 1, . . . n(n−1)
2
}, and theDγ(S1, S2) values

are seen to be converging to the respective Kendall distances. The rates of convergence,

however, are different in each case. Also, in some of the cases,Dγ(S1, S2) varies mono-

tonely withγ, whereas, in the remaining cases, it is not so. However, eventually (beyond

some value ofγ), monotonicity is restored in each of the cases.

6.6.2 Behavior ofDk
γ(S1, S2)

We now study the properties ofDk
γ(S1, S2) as k varies from1 to n. A pair of score

vectors is generated randomly and min-max normalization [84] is applied. The topk

items (according to the scores) are selected from each vector, while the scores of the

remaining items are assumed to be unknown, andDk
γ(S1, S2) is computed as described

in Section 6.4.2. SinceDk
γ(S1, S2) is an expected value, with the expectation being taken

over all the unknown score values, it is imperative to know how good this approximation

is. In the present case, all the score values are known, and therefore, the exact value

Ek
γ (S1, S2) may also be computed by summing up the (exact) degree of discordance of all

the pairs appearing in the union of the two topk lists.

The computed values ofDk
γ(S1, S2), Ek

γ (S1, S2) and Dk
γ(S1, S2) − Ek

γ (S1, S2) are

shown graphically in Fig. 6.3, from which it may be seen that theDk
γ(S1, S2) approxi-

matesEk
γ (S1, S2) very well. It may be noted that the computation ofDk

γ(S1, S2) is based

on the assumption thatS1 andS2 arise from the Uniform (U(0, 1)) distribution. In or-

der to test the dependence of the approximation on the distributional assumptions, two

more experiments were conducted, withS1 andS2 arising from the Gaussian (N(0, 1))

distribution in one and the Exponential (E(1)) distribution in the other. The results are

presented in Figs. 6.4 and 6.5, respectively, and it may be observed that there is a consis-

tent over-estimation in the case of the Gaussian distribution, whereas, the approximation
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Figure 6.3: Plots ofDk(S1, S2), Ek(S1, S2) and Dk(S1, S2) − Ek(S1, S2) vs. k, for

(S1, S2) generated from Uniform distribution, with (a)n = 10, (b) n = 100 and (c)

n = 1000
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is very good in the case of the Exponential distribution.

6.6.3 Determining the number of iterations for computing page

ranks

As discussed in Section 6.5.2, one would like to know when to terminate the power it-

erations based on the amount of change in the rankings in the consecutive iterations.

We chose two data sets from Stanford’s WebBase [65] and named them WB17440 and

WB4 7060, after the host and port numbers from which they are available. The former is a

crawl of a part of the berkeley.edu domain, and there are about 140 thousand (140K) pages

with over 1.6 million (1.6M) links to pages within the same data set. WB47060, which

is a crawl of a part of the stanford.edu domain, consists of about 40 thousand (40K) pages

and over 260 thousand (260K) links to pages within itself. The PageRank [60] algorithm

was run for 100 iterations on both the chosen data sets. We then computedK(0.5)(Si, Si+1)

andDk(Si, Si+1) (γ set to 1), which are the topk versions of Kendall distance and the

proposed distance, respectively. HereSi is the page rank vector at the end of theith itera-

tion, andk was chosen to be 100, 1000 and 5000. We have also computedK(p)(Si, S100)

andDk(Si, S100), though these quantities would not be availableduring the page rank

computation. These values are presented in the plots in Figs. 6.6 and 6.7.

It may be noted from Figs. 6.6 and 6.7 that ifDk(Si, Si+1) is to be used instead of

K(0.5)(Si, Si+1), (near) convergence is declared much earlier. For example,in Fig. 6.6a,

Dk(Si, Si+1) would have recommended the termination of the procedure after 20 itera-

tions, whereas,K(0.5)(Si, Si+1) would have led to at least 26 iterations. This indicates

that once it is decided that the obtained ranks would be fusedtogether with some other

score vector (in equal proportions, since we have setγ to be 1), there would be no signif-

icant improvement by continuing beyond 20 iterations.
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Figure 6.4: Plots ofDk(S1, S2), Ek(S1, S2) and Dk(S1, S2) − Ek(S1, S2) vs. k, for
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6.6.4 Predicting discordance after score fusion

This set of experiments is aimed at predicting the discordance after score fusion, without

actually performing the fusion. Such requirements arise often in the Web domain, say,

for comparing page rank vectors. The traditional method of comparing page rank vectors

is to use each of them to retrieve the top pages for a set of queries and computing the

discordance between them (see, for example, [123]). This involves doing the following

for each query. The set of documents matching (or containing) the query is identified, and

the query relevance scores for each document are computed. These relevance scores are

combined with the ranks of the documents, and the documents are ordered according to

the fused scores. A rank comparison measure is then computedbetween the topk lists

arising from each of the page rank vectors fused with the relevance vectors.

Ideally, the set of queries should be very large so that a comprehensive comparison

between the page rank vectors may be made. In addition, the number of documents in the

corpus may be huge, too. Under such circumstances, it is computationally prohibitive to

compare the page rank vectors for various choices of the weights (or fusing parameters).

To this end, the proposed measure may be employed to circumvent the actual compu-

tation of discordance measures between the fused score vectors by having a reasonable

approximation as demonstrated by the following experiment.

We consider the WB17440 and WB47060 corpora once more. Two page rank vec-

tors, labeledS1 andS2, over these data sets are obtained by considering the vectors after

3 and 50 iterations, respectively, of the eigenvector computation mentioned earlier. Note

that the exact method of obtaining these vectors is not relevant to the present experiment.

The fusing proportionβ (= 1− α) is varied over the values0.25, 0.50, and0.75.

We first compare the two vectors in the following naive manner. We choose each word

in the corpus as a single-term query, and stem them using Porter’s algorithm [118]. An

inverted index is created for each data set. Now, for each stem word w in the corpus,

the list of documents containing that stem is extracted, andthe TFIDF [127] vector,Tw,

is computed. Let the corresponding page rank vectors, of thesame length asTw, be
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calledS1w andS2w, respectively. There are over 44 thousand (44K) and 35 thousand

(35K) distinct stems in WB17440 and WB47060 data sets, respectively. When only the

5000 top ranked documents are considered in these datasets,there are over 14K and 16K

distinct stems, respectively.

Now for each word, we computeK(0.5)(S1w, S2w) andK(0.5)(αS1w + βTw, αS2w +

βTw), which are the topk discordance values betweenS1w andS2w, and between the

fused vectorsαS1w + βTw andαS2w + βTw, respectively.

These quantities are averaged over all the words by dividingtheir sum by the sum of all

possible pairs for each word, and the averages are denotedKτ k
0.5(S1, S2) andDτ k

γ (S1, S2)

(where, as earlier,γ = 1−β

β
), respectively, reflecting the quantities they estimate. Mathe-

matically, ifdfw is the number of documents in whichw appears, the average is computed

as

Kτ k
0.5(S1, S2) =

2
∑

w K(0.5)(S1w, S2w)
∑

w dfw(dfw − 1)
, (6.29)

and

Dτ k
γ (S1, S2) =

2
∑

w K(0.5)(αS1w + βTw, αS2w + βTw)
∑

w dfw(dfw − 1)
. (6.30)

The above procedure is repeated using just the top 5000 documents in each data set. These

averages, which would have been the measurements from the traditional rank comparison

technique described earlier, are tabulated in Table 6.1.

Next, we employ the proposed metric to obtain an approximation of the values in

Table 6.1. The discordance measuresKτ k
0.5(S1, S2) andDτ k

γ (S1, S2) are shown in Table

6.2. Here,Kτ k
0.5(S1, S2) is the topk Kendall distanceK(0.5)(S1, S2) normalized by all

possible pairs of pages in the union. Similarly,Dτ k
γ (S1, S2) is the normalized version

of Dk
γ(S1, S2). These computations are repeated for the top 5000 pages of each data set,

and are also tabulated in Table 6.2. Note that the values in Table 6.2 are independent

of the content of the web pages, or to rephrase, the relevanceof pages to queries is not

considered during ranking.

We observe from Tables 6.1 and 6.2 that the corresponding values in Tables 6.1 and

6.2 are very similar and show similar patterns and trends. For example, on the WB17440
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Table 6.1: Kendall and degree of discordance values averaged over all words

WB1 7440 WB4 7060

Pages selected (k) Kτ k
0.5 γ Dτ k

γ Pages Selected (k) Kτ k
0.5 γ Dτ k

γ

All (140K) 0.0160 3 0.0049 All (40K) 0.0222 3 0.0096

All (140K) 0.0160 1 0.0023 All (40K) 0.0222 1 0.0049

All (140K) 0.0160 1
3

0.0012 All (40K) 0.0222 1
3

0.0020

Top 5000 0.1220 3 0.0279 Top 5000 0.1130 3 0.0409

Top 5000 0.1220 1 0.0137 Top 5000 0.1130 1 0.0200

Top 5000 0.1220 1
3

0.0067 Top 5000 0.1130 1
3

0.0081

Table 6.2: Normalized Kendall and degree of discordance values

WB1 7440 WB4 7060

Pages selected (k) Kτ k
0.5 γ Dτ k

γ Pages Selected (k) Kτ k
0.5 γ Dτ k

γ

All (140K) 0.0189 3 0.0032 All (40K) 0.0253 3 0.0067

All (140K) 0.0189 1 0.0017 All (40K) 0.0253 1 0.0029

All (140K) 0.0189 1
3

0.0006 All (40K) 0.0253 1
3

0.0011

Top 5000 0.1214 3 0.0133 Top 5000 0.1090 3 0.0323

Top 5000 0.1214 1 0.0078 Top 5000 0.1090 1 0.0110

Top 5000 0.1214 1
3

0.0045 Top 5000 0.1090 1
3

0.0054
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data set, whenγ is set to 1, the discordance value as found from the naive experiment

is 0.0023, and its estimate turns out to be 0.0017. When the possibility of fusion is not

taken into consideration, the corresponding estimate would have been 0.0189, which is

well away from 0.0023. TheDτ k
γ values in Table 6.2, however, are all underestimates

of the corresponding values in Table 6.1, possibly due to theTFIDF scores not being

uniformly distributed. Nevertheless, these values, differ significantly from Kendall’sτ

values, and shrink asβ is increased. Moreover, it may be seen from Figs. 6.8 and 6.9

that asβ increases, the shrinking happens for each word (and not juston average), as

the green (lightly shaded) histograms are squeezed to the left. The blue (densely shaded)

histograms remain stationary. The plots for the full document sets are similar, but are less

informative by virtue of a much larger proportion of zeros (the leftmost bars).

In conclusion, the proposed metric helps us directly predict the discordance between

the two page rank vectors instead of taking recourse to the traditional rank based com-

parisons which involve comparing fused vectors for a large number of queries which,

in the present case, run into several thousands. In cases where more relevance factors

are involved (for example, search engines like Yahoo! and Google weight hundreds of

factors to compute relevance [43]), for comparing two variants of a particular factor, all

that is needed to be known is the fusion parameter (α) for the factor under consideration.

That way, without knowing the weights for the remaining factors involved, or even what

the exact factors are, one may estimate the amount of discordance that could result from

differences in the two variants of this single factor.

6.6.5 Uniformly Perceived versus Actual Scores

This experiment is aimed at measuring the similarity between the uniformly perceived

and actual scores by computing the distanceD(R,S). In other words, this is an attempt

to quantify how much information is lost by converting the scores to ranks. For this

purpose, the Economic Freedom Index (EFI) data set is chosen, in which 20 states of

India were assigned a set of composite scores, and were ranked accordingly [40]. The
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Figure 6.8: Histograms of Kendall’sτ values for each word in the top 5000 pages of

WB1 7440 data set with and without the TFIDF vectors fused to the rank vectors, and the

fusion parameterβ set to (a)0.25, (b) 0.50 and (c)0.75
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Figure 6.9: Histograms of Kendall’sτ values for each word in the top 5000 pages of

WB4 7060 data set with and without the TFIDF vectors fused to the rank vectors, and the

fusion parameterβ set to (a)0.25, (b) 0.50 and (c)0.75
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Table 6.3: Economic Freedom Index for 20 States of India

Rank State EFI Rank State EFI

1 Gujarat 0.40 11 Orissa 0.32

2 Andhra Pradesh 0.38 12 Karnataka 0.31

3 Kerala 0.37 13 Uttar Pradesh 0.30

4 Chhattisgarh 0.37 14 West Bengal 0.30

5 Tamil Nadu 0.37 15 Himachal Pradesh 0.30

6 Maharashtra 0.37 16 Jharkhand 0.29

7 Rajasthan 0.35 17 Punjab 0.29

8 Haryana 0.35 18 Uttaranchal 0.28

9 Madhya Pradesh 0.33 19 Bihar 0.26

10 Jammu & Kashmir 0.33 20 Assam 0.22

data set is presented in Table 6.3.

For the EFI dataset, the distance between ranks and scores is11.36. In order to be

able to judge how good or how bad it is, we generated several score vectors (of size 20)

uniformly, and counted the number of times, a score vector had a distance of 11.36 or

more from the perceived score vector. The p-value turns out to be 0.12, which indicates

that only about 12% of score vectors are more separated from the perceived score vectors.

This, in turn, signifies that the scores in the EFI data set arenot very well represented

by the corresponding ranks (through the perceived scores).The authors of [40] had ex-

pressed their opinion that the ranks did not represent the scores well. The results of our

experiments now provide a quantitative evidence for the same.

The individual degrees of discordance for each pair of states are displayed in Table

6.4. We have also computed the p-values for each of the individual cells. For each pair

of states, we count the number of randomly generated score vectors with a higher degree

of discordance for the same pair of states. All entries with the corresponding p-value less
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than0.05 are shown in bold, and there are 31 such values, which is about16% of the

total of 190 entries. It may be noted that the 31 entries in bold are not the largest entries

of Table 6.4. For example, the entry at position(3, 8) (0.12) is larger than that at(3, 19)

(0.06), however, the former is more likely to occur than the latter.

6.7 Conclusions and Future Work

The present chapter dealt with generalizing measures of discordance for the case when

the underlying scores are known. A metric has been provided to compare score vectors

directly. This metric turns out to be the Kendall distance when a parameterγ, denoting

the ratio of fusing proportions, is large. Experiments of various kinds demonstrate the

wide range of theory and applications of the metric introduced in the present work.

There is a tremendous scope for future work, including studying the cases whereT is

assumed to arise from specific distributions, obtaining theproperties such as maximum

and minimum ofDγ(S1, S2) andDk
γ(S1, S2) for particular values ofγ, and speeding up

the computation of the proposed metric.
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Table 6.4: Degree of discordance between the actual and uniformly perceived scores for each pair of states in the EFI dataset
State

State 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Total

1 0.05 0.05 0.01 0.04 0.08 0.03 0.06 0.02 0.05 0.04 0.04 0.03 0.05 0.06 0.05 0.06 0.05 0.02 0 0.79

2 0 0.05 0.09 0.13 0.08 0.11 0.06 0.09 0.08 0.07 0.07 0.09 0.10 0.09 0.10 0.09 0.05 0 1.42

3 0.05 0.10 0.15 0.08 0.12 0.07 0.10 0.09 0.08 0.07 0.10 0.12 0.10 0.12 0.10 0.06 0.01 1.60

4 0.05 0.10 0.04 0.08 0.03 0.07 0.06 0.05 0.05 0.07 0.10 0.09 0.10 0.09 0.05 0 1.15

5 0.05 0.01 0.04 0.01 0.03 0.03 0.02 0.02 0.05 0.07 0.07 0.09 0.08 0.04 0.01 0.88

6 0.05 0.01 0.05 0.01 0.01 0.01 0.01 0.02 0.05 0.04 0.07 0.06 0.03 0.02 0.94

7 0.05 0.01 0.04 0.04 0.03 0.03 0.06 0.09 0.08 0.11 0.10 0.06 0.01 0.99

8 0.05 0.01 0.01 0.01 0.01 0.03 0.06 0.05 0.08 0.07 0.04 0.03 0.93

9 0.05 0.05 0.04 0.04 0.08 0.11 0.10 0.13 0.12 0.07 0.01 1.11

10 0 0.01 0.01 0.04 0.08 0.07 0.10 0.09 0.05 0.04 0.93

11 0 0.01 0.04 0.08 0.08 0.11 0.10 0.05 0.04 0.93

12 0 0.05 0.09 0.08 0.12 0.11 0.06 0.04 0.94

13 0.05 0.10 0.09 0.13 0.12 0.07 0.05 0.95

14 0.05 0.05 0.09 0.08 0.03 0.08 1.09

15 0 0.05 0.04 0.01 0.12 1.39

16 0.05 0.05 0.01 0.12 1.28

17 0 0.05 0.17 1.76

18 0.05 0.18 1.59

19 0.15 0.96

20 1.08





Chapter 7

Conclusions, Discussion and Scope for

Further Work

In every chapter we have presented conclusions drawn from the respective methodologies

developed and the experimental results therein. Here we consolidate them to provide an

overall picture of the contributions of the thesis.

Chapters 2 and 3 described the groundwork (preprocessing of web data) that needs

to be performed before the task of modeling a surfer may be taken up. These chapters

involved preprocessing of the available hypertext data sets which may then be used for

estimating the models provided in Chapters 4 and 5, and thereby, gain insights into a

surfer’s behavior. These insights may be utilized for taskslike page ranking and catego-

rization. Chapter 6 deals with the analysis of different (page) ranking schemes.

In Chapter 2 we had described the design of a stemming algorithm which uses the

classification information of a corpus to refine a given stemmer. We had introduced a pro-

cedure similar to sequential hypothesis testing to identify groups of words that would be

stemmed to the same stem. The main advantage over other stemmers like co-occurrence

based stemmers is its ability to drastically reduce the dictionary size while maintaining

both the classification accuracy and retrieval precision. The superiority of the proposed

methodology was experimentally demonstrated for the task of text categorization when
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Naive Bayes classifier, Support Vector Machines and Maximum Entropy Method based

classifier were used. This was also supported by precision-recall based evaluation. An-

other set of experiments performed on WSJ data set demonstrated the enhancement in

retrieval precision when the refined stemmers were employedinstead of existing stem-

mers. The performance of refinement done by employing the classification information

from a different corpus increased as the number of common words increased.

Whereas Chapter 2 focused on preprocessing the textual contents of documents, Chap-

ter 3 concentrated on preprocessing the documents based on the hyperlink structure. We

have developed a novel methodology for the task of detectingsequences of web pages.

Also, the importance of sequence detection has been highlighted extensively. With the

help of some examples,we have explained why detectingall possible sequences (or cy-

cles) of web pages is neither feasible nor interesting. Subsequently, we described the

sequences of interest, and then presented a methodology fordetecting only the few in-

teresting sequences which were created to be traversed in that order. The proposed algo-

rithms SC1 and SC2 use varying levels of domain knowledge, coded in terms of assump-

tions on the sequences of interest, but essentially capturethe same notion that consecutive

elements of a sequence have a constant relation between them. SC1 identifies continu-

ity links in web pages, as well as, their positional information, and tracks sequences by

traversing pages through links with the same positional information. SC2, on the other

hand, operates directly on the URL list itself, identifying consecutive pages based on the

URL strings. Apart from providing the algorithms to detect sequences of web documents,

this chapter also highlighted some potential applications, each having great value.

• Fair comparisonhas been thoroughly discussed in Chapter 3, and is intended to

tackle the possibility of a search engine being coaxed into promoting the ranks of

irrelevant (or less relevant) pages.

• Duplicate detectionis an application with immense value. At the same time, it

presents great challenges, due to the very nature of how content is made available

over the Web. Detecting and removing duplicates would result in huge savings in
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storage requirements, and subsequently, on processing time.

• Returning multiple pages as a single resultis another interesting approach of in-

formation retrieval that comes out of Chapter 3. This entailsmatching a single

query across multiple documents. Present day search engines lack this capability

(except for adding the anchor text into the content of the page being pointed to, in

the indexing phase) and hence, present a single page as a match for a query.

Experiments conducted on the Python, WB13 and WB1 corpora demonstrated the ef-

fectiveness of SC1 and SC2 in detecting sequences, and also depicted how merging the

obtained sequences affects the term frequencies and inverse document frequences for var-

ious terms present in the corpora.

We studied the page ranking problem from the surfer modelingperspective in Chap-

ters 4 and 5. Both chapters, however, had different objectives and had described attempts

at solving different problems.

Chapter 4 addressed the problem of modeling the inter-relationship between page cat-

egorization and ranking in terms of topic continuity. A new surfer model, called the Topic

Continuity Model, was described. This model is based on the premise that a surfer’s

present and future locations are not independent of previous locations and the context

that can be inferred from the history of the surfer. At any given time point, the surfer is

assumed to be more likely to continue on the current topic of interest, occasionally ven-

turing onto other topics, as in the real world. This incorporation of topic continuity is a

unique feature of this methodology.

An offline algorithm developed for this purpose probabilistically estimates the surfer’s

current topic of interest from his/her present location, aswell as, the history. In turn, the

locations likely to be visited next are based on the current topic of interest, too. This re-

sulted in a scalable and convergent iterative procedure that provides page categorizations

as well as ranking simultaneously. Consequently, the joint probability matrix, whose en-

tries denoted the probability of a surfer simultaneously being on a particular page and

having a particular topic of interest, contains a wealth of information in it. The marginal
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values of this matrix represent unconditional probabilities – the column totals denoting

the page ranks, and the row totals denoting the interest in topics on the web. Similarly, di-

viding the entries of the matrix by the marginal values results in conditional probabilities

– topic specific page ranks when divided by the row total, and page categorization when

divided by the column total.

The novel theoretical formulation of fuzzy web surfer models in Chapter 5 addresses

a different concern, namely, that of providing stability tothe whole process of page rank

computing. These models integrate the existing work on web surfer models and fuzzy

Markov chains defined on themax-min algebra. We have also provided a detailed section

on the motivation behind the need for fuzzy surfer models. The definition of FuzzRank is

a simple and elegant fuzzy counterpart of PageRank, which is based on the random surfer

model. Experimental results confirm that FuzzRank has very similar ranking properties,

and yet is more robust to noise. This robustness is a consequence of the tendency of

FuzzRank to avoid a strict ranking in the absence of strong evidence to that effect. While

FuzzRank may result in a large number of ties if this were the sole criterion for ranking

web pages, given that several other factors, like query relevance, would be considered

during the ranking process, the ability to consistently rank the pages in the presence of

noise is an advantage.

The final contributory chapter (Chapter 6) is a culmination ofthis thesis, and involves

comparing page ranking methodologies. It dealt with generalizing measures of discor-

dance for the case when the underlying scores are known. A metric has been provided

to compare score vectors directly. This metric turns out to be the Kendall distance when

a parameterγ, denoting the ratio of fusing proportions, is large. Experiments of various

kinds demonstrated the wide range of applications of this metric.
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7.1 Scope for Further Research

In this section, we discuss the scope for future work relatedto the contributions made in

the thesis.

Chapter 3 highlighted the applications of sequence detection. Naturally, it would be

apt to have implementations that realize these applications. This includes development of

• Ranking algorithms that can consistenty compare content whether or not it is dis-

tributed across multiple pages,

• Algorithms for detecting duplicate and near duplicate content in a manner insensi-

tive to the presentation styles, and

• Search engines capable of returning multiple pages as a single result. If individual

parts of a query match different pages in a sequence, the usermay be presented a

sequence of web pages to be visited for satisfying his/her information need.

Also, another line of research arising out of the work on sequence detection would be to

identify multi-level sequences, that is, sequences where pages are at varying depths. As

an analogy, we have looked at various sections, and have identified the chapters that are

made up of these sections. As a next step, some of these chapters may be identified to

constitute a book.

While the simultaneous estimation of page ranking and categorization in Chapter 4 is

an advantage of the topic continuity model, a theoretical proof of convergence evades us.

Such a theoretical proof, if it exists, would guarantee the observations made experimen-

tally.

Although we had presented experimental results only for page ranking and categoriza-

tion, the topic continuity model can be made applicable for topic-sensitive page ranking

and topic representation on the web, too. Also, since the parameterǫ may be modified

to accommodate the curiosity factor of an individual, each of the above applications may

be personalized. Similarly, it has been assumed that all cross-topic transitions are equally
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likely. In reality that may not be the case, mostly because some topics are more related

while others are not. This indicates thatǫ itself might have to be varied for each topic-topic

pair.

The topic continuity model presented in this chapter did notinclude the random jump

factor. Recently, Nieet al [105], introduced another topic continuity model that incorpo-

rates the random jump factor. This factor may be incorporated in a similar manner in our

model, too.

All the above enhancements to the model would further increase the computational

load, and, consequently, it is imperative to have more efficient algorithms for obtaining

the joint probability matrix. One may aim for a reduction in the complexity for obtaining

the matrix by either trying to provide a variant of the topic continuity model that is easier

to compute, or by employing some approximation algorithms.

Theoretical investigations into the properties of the fuzzy transition matrix, and fuzzy

Markov chains, in general, may yield significant insights about convergence of the itera-

tive procedure, ergodicity, sensitivity to noise, and better implementation.

There is a tremendous scope for future work based on the generalization of Kendall

distance introduced in Chapter 6.

• One may study the cases whereT is assumed to arise from specific distributions.

While we have restricted ourselves to the Uniform distribution, which is reasonable

under various assumptions, there may be particular cases whereT is known to have

a different distribution, say Gaussian, or perhaps, a Power-law distribution. We

believe this additional knowledge may be incorporated intothe formulation of the

metric to obtain more appropriate distance measures.

• Obtaining the properties such as maximum and minimum ofDγ(S1, S2) and

Dk
γ(S1, S2) for particular values ofγ is another theoretically challenging work.

These properties shall help in normalization of the metric and shall be useful for

obtaining distance values that are independent of the number of items being scored.
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• Speeding up the computation of the proposed metric is a very important aspect.

Any speedup would have many implications on various existing algorithms in the

literature. For example, it might result in better and faster algorithms for rank ag-

gregation.

Integrating all the methodologies presented in this thesiswould be an interesting task

to do. This would mean building an intelligent web-based search system that preprocesses

the available data sets, obtains model estimates from them,compares several variants of

the models, extracts useful information, and ultimately creates a rich user experience.

←−
⊕

−→





Appendix A

Additional Results on Classification

Performance from Chapter 2

In Tables 2.5 and 2.6 of Section 2.6.4, we had provided the accuracies obtained with the

classification method chosen to be NaiveBayes, SVM and MaxEnt. However, for want of

space, only two precision-recall plots, corresponding to NaiveBayes, were provided there.

We now provide more precision-recall plots portraying the improved performance by the

distribution based stemmer over other stemmers. It may be noted that the observations

made and conclusions drawn in Section 2.6.4 were based on theplots available here too.
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Figure A.1: Data Set: 20 newsgroups, Test Set Size: 60%, Method: NB.
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Figure A.2: Data Set: 20 newsgroups, Test Set Size: 60%, Method: SVM.
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Figure A.3: Data Set: 20 newsgroups, Test Set Size: 60%, Method: MaxEnt.
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Figure A.4: Data Set: WebKB, Test Set Size: 60%, Method: NB.
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Figure A.5: Data Set: WebKB, Test Set Size: 60%, Method: SVM.
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Figure A.6: Data Set: WebKB, Test Set Size: 60%, Method: MaxEnt.





Appendix B

Computation of Dk
γ(Sk

1 , Sk
2 ; i, j)

We shall now evaluate the integrals in Eqs. 6.26–6.28. We shall denotes1i − s1j by a in

the rest of this article. (This is not an indication thata would appear as the lower limit

of the integrals, though, it sometimes may). In order to evaluate the integrals, we shall

repeatedly employ the following techniques:

• Split the region of integration into the positive and negative half-lines, so thatf(x)

may be determined.

• Split the integrals to determine the upper and lower limits.

• Convert integrals of the kind
∫ b

a
to
∫ b

0
−
∫ a

0
(if a ≥ 0) or

∫ b

0
+
∫ 0

a
(if a < 0).

Also, we shall drop the references toS1, S2, Sk
1 andSk

2 as they are clear from the context.

Case 2 In order to be able to evaluate the integral in Eq. 6.26, one needs to know the

answers to the following questions:

– Whethera ≤ s2i − y: The answer to this question determines the limits of

integration.

– Whethera < 0: It is already known thats2i − y > 0. So, if a < 0, then

min{a, s2i − y} = a, and the limits of integration are known. Moreover, if
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a ≥ 0, f(x) could be replaced by1− x throughout, whereas, ifa < 0, f(x) is

1 + x in (a, 0) and1− x in [0, min{γ(s2i − y), 1}).

– Whether−1 < γa < 1: If γa is the lower limit of the integration, then

if γa < −1, it is replaced by−1 and if it is greater than1, then the integral

becomes0. Similarly, if γa is the upper limit of the integration, then ifγa > 1,

it is replaced by1 and ifγa < −1, then the integral becomes0.

– Whether−1 < γ(s2i− y) < 1. The previous observation holds again withγa

replaced byγ(s2i − y).

We break up the present case into four sub-cases, whereby, the above questions may

be answered better in each of the individual sub-cases.

Case 2a:a < 0. So,γa < 0 ≤ γ(s2i − s2k) ≤ γ(s2i − y) < γs2i.

EDγ(i, j)

=

∫ s2k

0

1

s2k

(

∫ γ(s2i−y)

γa

f(x)dx

)

dy

=
1

s2k

∫ s2k

0

∫ γ(s2i−y)

0

f(x)dx dy +
1

s2k

∫ s2k

0

∫ 0

γa

f(x)dx dy

= I2(s2i, s2k, γ) + I1(−a, γ),

where

I2(s2i, s2k, γ)

=
1

s2k

∫ s2k

0

∫ γ(s2i−y)

0

(1− x)dx dy

=



































1
s2k

∫ s2k

0

∫ 1

0
(1− x)dx dy if γ ≥ 1

s2i−s2k

1
s2k

[

∫ s2i−
1
γ

0

∫ 1

0
(1− x)dx dy

+
∫ s2k

s2i−
1
γ

∫ γ(s2i−y)

0
(1− x)dx dy

]

if 1
s2i

< γ < 1
s2i−s2k

1
s2k

∫ s2k

0

∫ γ(s2i−y)

0
(1− x)dx dy o.w.
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=



















1
2

if γ ≥ 1
s2i−s2k

1
2s2k

(

s2i −
1
3γ
− γ(s2i − s2k)

2
(

1− γ(s2i−s2k)
3

))

if 1
s2i

< γ < 1
s2i−s2k

γ

2
(2s2i − s2k)−

γ2

6
(3s2

2i − 3s2is2k + s2
2k) o.w.

(B.1)

andI1 is as defined in Eq. 6.12.

Case 2b:0 < a < s2i − s2k. So,a < s2i − y

EDγ(i, j)

=

∫ s2k

0

1

s2k

(

∫ γ(s2i−y)

γa

f(x)dx

)

dy

=
1

s2k

∫ s2k

0

∫ γ(s2i−y)

0

f(x)dx dy −
1

s2k

∫ s2k

0

∫ γa

0

f(x)dx dy

= I2(s2i, s2k, γ)− I1(a, γ), (B.2)

whereI1 andI2 are as defined earlier.

Case 2c:s2i−s2k < a < s2i So,min{a, s2i−y} equalsa if y ≤ s2i−a, ands2i−y

otherwise.

EDγ(i, j)

=
1

s2k

∫ s2i−a

0

∫ γ(s2i−y)

γa

(1− x)dx dy +
1

s2k

∫ s2k

s2i−a

∫ γa

γ(s2i−y)

(1− x)dx dy

=
1

s2k

∫ s2i−a

0

(

∫ γ(s2i−y)

0

(1− x)dx dy −

∫ γa

0

(1− x)dx dy

)

+
1

s2k

∫ s2k

s2i−a

(

∫ γa

0

(1− x)dx dy −

∫ γ(s2i−y)

0

(1− x)dx dy

)

=
2

s2k

∫ s2i−a

0

(

∫ γ(s2i−y)

0

(1− x)dx dy −

∫ γa

0

(1− x)dx dy

)

+
1

s2k

∫ s2k

0

(

∫ γa

0

(1− x)dx dy −

∫ γ(s2i−y)

0

(1− x)dx dy

)

=
2

s2k

∫ s2i−a

0

∫ γ(s2i−y)

0

(1− x)dx dy −
2(s2i − a)

s2k

I1(a, γ)
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+ I1(a, γ)− I1(s2i, s2k, γ)

=
2(s2i − a)

s2k

(I2(s2i, s2i − a, γ)− I1(a, γ)) + I1(a, γ)− I2(s2i, s2k, γ)(B.3)

Case 2d:a > s2i Thus,max{a, s2i − y} equalsa, and we have

EDγ(i, j)

=

∫ s2k

0

1

s2k

(
∫ γa

γ(s2i−y)

(1− x)dx

)

dy

= I1(a, γ)− I2(s2i, s2k, γ),

Case 3: The integral in Eq. 6.27 is relatively easier to evaluate. Lettingy = s1j andz = s2i,

and noting thatz−s2j ≤ 0 ≤ s1i−y, the expected value of the degree of discordance

may be computed as

Dk
γ(S

k
1 , Sk

2 ; i, j) = EDγ(S1, S2; i, j)

=

∫ s1k

0

∫ s2k

0

1

s1ks2k

(

∫ γ(s1i−y)

γ(z−s2j)

f(x)dx

)

dz dy

=

∫ s1k

0

∫ s2k

0

1

s1ks2k

(

∫ γ(s1i−y)

0

(1− x)dx +

∫ 0

γ(z−s2j)

(1 + x)dx

)

dz dy

=
1

s1k

∫ s1k

0

∫ γ(s1i−y)

0

(1− x)dx dy +
1

s2k

∫ s2k

0

∫ 0

γ(z−s2j)

(1 + x)dx dz

= I2(s1i, s1k, γ) + I2(s2i, s2k, γ) (B.4)

Case 4: To evaluate the expectation in Eq. 6.28, we shall splitthis case into two sub-cases.

Let us denotes2i ands2j by y andz, respectively, and without loss of generality,

assume thata ≥ 0.

Case 4a:a < s2k. The intervals of integration are split into regions wherea ≤ y−z

anda > y − z, respectively. Thus, Eq. 6.28 may be rewritten as

EDγ(i, j)

=
1

s2
2k

∫ s2k

0

∫ s2k

0

∫ max{γa,γ(y−z)}

min{γa,γ(y−z)}

f(x)dx dz dy
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=
1

s2
2k

∫ a

0

∫ s2k

0

∫ γa

γ(y−z)

f(x)dx dz dy

+
1

s2
2k

∫ s2k

a

(

∫ y−a

0

∫ γ(y−z)

γa

f(x)dx dz +

∫ s2k

y−a

∫ γa

γ(y−z)

f(x)dx dz

)

dy

=
1

s2
2k

∫ a

0

(
∫ y

0

∫ γa

γ(y−z)

(1− x)dx dz +

∫ s2k

y

∫ γa

γ(y−z)

f(x)dx dz

)

dy

+
1

s2
2k

∫ s2k

a

(

∫ y−a

0

∫ γ(y−z)

γa

(1− x)dx dz +

∫ y

y−a

∫ γa

γ(y−z)

(1− x)dx dz

+

∫ s2k

y

∫ γa

γ(y−z)

f(x)dx dz

)

dy

=
1

s2
2k

∫ a

0

(

∫ y

0

(

∫ γa

0

(1− x)dx −

∫ γ(y−z)

0

(1− x)dx

)

dz

+

∫ s2k

y

(
∫ γa

0

(1− x)dx +

∫ 0

γ(y−z)

(1 + x)dx

)

dz

)

dy

+
1

s2
2k

∫ s2k

a

(

∫ y−a

0

(

∫ γ(y−z)

0

(1− x)dx−

∫ γa

0

(1− x)dx

)

dz

+

∫ y

y−a

(

∫ γa

0

(1− x)dx−

∫ γ(y−z)

0

(1− x)dx)dz

)

+

∫ s2k

y

(
∫ γa

0

(1− x)dx +

∫ 0

γ(y−z)

(1 + x)dx

)

dz

)

dy

=
1

s2
2k

(
∫ s2k

0

∫ s2k

0

∫ γa

0

(1− x)dx dz dy − 2

∫ s2k

a

∫ y−a

0

∫ γa

0

(1− x)dx dz dy

)

+
1

s2
2k

∫ s2k

0

∫ s2k

y

∫ 0

γ(y−z)

(1 + x)dx dz dy

+
1

s2
2k

(

∫ s2k

a

∫ y−a

0

∫ γ(y−z)

0

(1− x)dx dz dy

−

∫ a

0

∫ y

0

∫ γ(y−z)

0

(1− x)dx dz dy −

∫ s2k

a

∫ y

y−a

∫ γ(y−z)

0

(1− x)dx dz dy

)

= I1(a, γ)−
(s2k − a)2

s2
2k

I1(a, γ)

+
1

s2
2k

∫ s2k

0

∫ s2k−y

0

∫ γu

0

(1− x)dx du dy

+
1

s2
2k

(
∫ s2k

0

∫ y

0

∫ γu

0

(1− x)dx du dy − 2

∫ a

0

∫ y

0

∫ γu

0

(1− x)dx du dy
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−2

∫ s2k

a

∫ y

y−a

∫ γu

0

(1− x)dx du dy

)

= I1(a, γ)−
(s2k − a)2

s2
2k

I1(a, γ) + 2I3(s2k, s2k, γ)− 2I3(a, s2k, γ)

−2I4(a, s2k, γ), (B.5)

where,

I3(a, s2k, γ) =
1

s2
2k

∫ a

0

∫ y

0

∫ γu

0

(1− x)dx du dy

=



































1
s2
2k

∫ a

0

∫ y

0

(

γu− γ2u2

2

)

du dy if γa ≤ 1

1
s2
2k

∫

1
γ

0

∫ y

0

(

γu− γ2u2

2

)

du dy

+ 1
s2
2k

∫ a
1
γ

∫

1
γ

0

(

γu− γ2u2

2

)

du dy o.w.

+ 1
s2
2k

∫ a
1
γ

∫ y
1
γ

1
2
du dy

=







γa3

6s2
2k

(

1− γa

4

)

if γa ≤ 1

1
4s2

2k

(

1
2γ2 +

(

a− 1
γ

)(

a + 1
3γ

))

o.w.

and

I4(a, s2k, γ) =
1

s2
2k

∫ s2k

a

∫ a

0

∫ γu

0

(1− x)dx du dy

=











s2k−a

s2
2k

∫ a

0

(

γu− γ2u2

2

)

du dy if γa ≤ 1

s2k−a

s2
2k

(

∫

1
γ

0

(

γu− γ2u2

2

)

du dy +
∫ a

1
γ

1
2
du dy

)

o.w.

=







s2k−a

s2
2k

γa2

2

(

1− γa

3

)

if γa ≤ 1

s2k−a

s2
2k

(

a− 2
3γ

)

o.w.

Case 4b:a ≥ s2k.

EDγ(i, j)

=
1

s2
2k

∫ s2k

0

∫ s2k

0

∫ γa

γ(y−z)

f(x)dx dz dy

=
1

s2
2k

∫ s2k

0

(
∫ y

0

∫ γa

γ(y−z)

(1− x)dx dz +

∫ s2k

y

∫ γa

γ(y−z)

f(x)dx dz

)

dy
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=
1

s2
2k

∫ s2k

0

∫ y

0

(

∫ γa

0

(1− x)dx−

∫ γ(y−z)

0

(1− x)dx

)

dzdy

+
1

s2
2k

∫ s2k

0

∫ s2k

y

(
∫ γa

0

(1− x)dx +

∫ 0

γ(y−z)

(1 + x)dx

)

dzdy

=
1

s2
2k

∫ s2k

0

∫ s2k

0

∫ γa

0

(1− x)dx dzdy

−
1

s2
2k

∫ s2k

0

∫ y

0

∫ γ(y−z)

0

(1− x)dx +
1

s2
2k

∫ s2k

0

∫ s2k

y

∫ 0

γ(y−z)

(1 + x)dx dz dy

= I1(a, γ)− I3(s2k, s2k, γ) + I3(s2k, s2k, γ) = I1(a, γ) (B.6)
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