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Abstract 

If A is an n x n nonnegative, irreducible matrix, then there exists /L(A) > 0. and a pos- 
itive vector x such that max,a,,x, = &4)x,. i = 1,2. n. Furthermore, ,n(A) is the max- 
imum geometric mean of a circuit in the weighted directed graph corresponding to A. 
This theorem, which we refer to as the max version of the Perron-Frobenius Theorem, 
is well-known in the context of matrices over the max algebra and also in the context of 
matrix scalings. In the present work, which is partly expository, we bring out the inti- 
mate connection between this result and the PerronFrobenius theory. We present sev- 
eral proofs of the result. some of which use the Perron-Frobenius Theorem. Structure of 
max eigenvalues and max eigenvectors is described. Possible ways to unify the Perron- 
Frobenius Theorem and its max version are indicated. Some inequalities for /c(A) are 
proved. 0 1998 Elsevier Science Inc. All rights reserved. 

K~~~~ror-tl.v: Max algebra; Nonnegative matrix: Perron-Frobenius theorem 

1. Introduction 

There has been a great deal of interest in recent years in the algebraic system 
called “max algebra”. This system allows one to express in a linear fashion, 
phenomena that are nonlinear in the conventional algebra. It has applications 
in many diverse areas such as parallel computation, transportation networks 
and scheduling. We refer to [l-4] for a description of such systems and their 
applications. 

Although there are several abstract examples of a max algebra, the term is 
generally used to denote the set of reals, together with -oc, equipped with the 
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binary operations of maximization and addition. We prefer to deal with the set 
of nonnegative numbers, equipped with the binary operations of maximization 
and multiplication. This system is clearly isomorphic to the former one as the 
exponential map provides an isomorphism from the former system to the latter 
system. 

Our interest will be in describing the analogue of the PerronFrobenius the- 
ory for this new system, referred to as the max version of the theory. The theme 
of the paper is that the max version of the Perron-Frobenius theory comple- 
ments the classical Perron-Frobenius theory and should be considered as an 
integral part of the classical theory. This paper contains a survey as well as 
some new results. Specifically, there is some novelty in the presentation of 
the proofs of Theorem 2 and the connection with the FrobeniussVictory The- 
orem pointed out in Section 2. Also, all the results in Sections 5,6 are new. 

We consider the set of nonnegative numbers equipped with two binary op- 
erations, defined as follows. If a 3 0, b 3 0, then their sum, denoted a @ b, is 
defined as max(a, b) whereas their product is the usual product, ab. Addition 
and multiplication of vectors and matrices are defined in a natural way. If 
A, B are matrices compatible for matrix multiplication, then we denote their 
product by A @B. when @ is used as a sum, to distinguish it from AB. For ex- 
ample, if 

A= 

Then 

1, B= [i i 81. 

3 3 0 

and A@B= [ 0 1 4 1 
3 2 4 

It can be easily proved that the product @ is associative and that it distributes 
over the sum CB. 

The paper is organized as follows. In Section 2 we present several proofs of 
the max version of the PerronFrobenius Theorem, some of which are new and 
some, although known, are presented for completeness. In the next two sec- 
tions we describe the structure of the max eigenvalues and eigenvectors of a 
nonnegative matrix. In Section 5 we show possible ways to unify the Per- 
ronFrobenius Theorem and its max version. In Section 6 some inequalities 
are proved, continuing a program initiated in [4,5]. 

2. Proofs of the max version 

If A is an n x n nonnegative matrix, then %(A) will denote the weighted di- 
rected graph associated with A; thus 9’(A) has vertices 1,2,. . . , n, and there is 
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an edge from i to j with weight aij if and only if aij > 0. By a circuit we always 
mean a simple circuit. The class of circuits includes loops, i.e., circuits of length 
1. In contrast, our paths may include a vertex and/or an edge more than once. 
By the product of a path we mean the product of the weights of the edges in the 
path. 

If(il,i2),(iz,i~),...,(ik,il) is a circuit in Y(A), then ai,,2aiz,l . ark,, is the cor- 
responding circuit product and its kth root is a circuit geometric mean. The max- 
imum circuit geometric mean in Y(A) will be denoted by p(A). A circuit is 
called critical if the corresponding circuit product equals p(A). An edge (or a 
vertex) of 9(A) is critical if it belongs to a critical circuit. The subgraph of 
%(A) spanned by the critical vertices is known as the critical graph of A. 

An n x n nonnegative matrix A is called a circuit matrh (see, for example, 
[3,6]) if each entry of the matrix is either 0 or 1 and if C%(A) is a circuit. 

We assume familiarity with basic aspects of nonnegative matrices and refer 
to [7] for concepts such as the Frobenius Normal Form, basic and final classes 
etc., which are not explicitly defined in this paper. 

The following will be needed in the sequel. 

Lemma 1. Let A be an n x n nonnegative, irreducible matrix and suppose 
x~W’,x3O,x#O,y>OsuchthatA@x=~x. Thenx>Oundy=p(A). 

Proof. The proof of the fact that x > 0 is similar to the well-known assertion 
that a nonnegative eigenvector of an irreducible, nonnegative matrix must be 
positive (see, for example, [8], p. 7) and is omitted. We then have 

max ajix, = 7x;. i= 1,2 ,.... Iz. (1) 

If (iI > iz), (il. i3). . . . ! (ik, il) is a circuit in Y(A), then by (l), 

ar,r,,,xf~., \ , < “X. lb, s= 1.2 . . . . . k, 

where k + 1 is taken to be 1. It follows that the corresponding circuit geometric 
mean is at most g and thus we have shown that 7 > p(A). 

Now consider the subgraph of Y(A) which consists of those (i, j) for which 
a;jXj = 7~;. In this graph each vertex has out degree at least one and hence it 
contains a circuit. That circuit must have circuit geometric mean equal to ;I 
and therefore 7 = p(A). [7 

We refer to the next result as the max version of the Perron-Frobenius The- 
orem. 

Theorem 2. Let A be an n x n nonnegative, irreducible matrix. Then there exists a 
positive vector x such that A @x = p(A)x. 

We now present several proofs of this theorem. The main purpose behind 
presenting these proofs is that they may provide a better understanding of 
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the result and suggest some extensions. Proof 1 is known (see, for example, [l], 
p. 185-187) and is sketched here for completeness. Proof 2, using Brouwer’s 
Fixed Point Theorem, imitates the corresponding proof of the Perron-Fro- 
benius Theorem. Proofs 3 and 4 derive the max version from the Perron-Fro- 
benius Theorem itself. Finally, Proof 5, based on the duality theorem, is hinted 
in [ 11, p. 205 but is worked out here rigorously. We denote the Perron eigenval- 
ue of the nonnegative matrix A by p(A). 

Proof 1. We assume, without loss of generality, that ,u(A) = 1, for otherwise we 
may consider the matrix lIp(A Let I(A) = [;I,;] be the n x n matrix where ~1,~ 
is the maximum product of a path from i to j in B(A). (Since 

0) = 1, ‘r’,i <cc.)Foranyi,k~{1,2,....n}wehave 

(A ‘8 I)& = max a,,;‘,, < i’,h (2) 

and therefore A 8 I- < r, where the inequality is to be interpreted component- 
wise.NowletkE{1,2,... ( n} be a critical vertex and let Ii denote the kth col- 
umn of r(A). Clearly, ;akX = 1 and hence fk # 0. Observe that max,a,,y,k 
represents the maximum product of a path from i to k where the maximum 
is taken over paths of length at least 2. Since k is critical, any path from i to 
k can be augmented by a circuit from k to itself with circuit product 1 and thus 
equality must hold in the inequality in (2). Thus A I% TX = rh. By Lemma 1, 
Ir > 0 and the proof is complete. 0 

Proof 2. Let .Y = {Y E R”: JJ 2 0, C:‘, J+ = 1 }. Define the map ,f : ./P + .d as 

if y E 9. Since A is irreducible, ,j’(,~) is well-defined for any y E 9. Also, j’ is 
continuous and hence by Brouwer’s Fixed Point Theorem. there exists x E .Y 
such that J’(x) = x. Therefore 

A@.~= { &8x),)x. 
It follows from Lemma 1 that 

p(A) = -&A Xx),, 
;=I 

completing the proof. 0 

Proof 3. Let 2 be an n x n matrix obtained by choosing one positive entry in 
each row of A and with maximum Perron eigenvalue. Then it can be seen that 
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p(i). the Perron eigenvalue of 2 is /[(A). Write k in the Frobenius Normal 
Form 

B,, 0 “’ 0 

Bz, lL> “’ 0 

r; 

0 

B 111 I B,,,? B,,,,,, 1 

If class i is basic then B,, must be a circuit matrix and so class i is final. If class i 
is not basic. then it must be a 1 x I zero matrix, in which case it is not final. 
Thus in the Frobenius Normal Form, the basic classes are the same as the final 
classes and hence (see [7], p. 40) A^ admits a positive eigenvector x correspond- 
ing to /l(A). Thus 2-Y = /1(,4)x. It remains to show that 
max, a,,,~, = /1(,4)x,, i = 1.2.. . . ~ n. For i = 1~ 2.. , II let j,. X, t { 1.2.. .!I} be 
such that the (i. jl) entry in 2 is positive and 

max a,,_~, = aji,xk,. i= 1.2.....17 
/ 

Let k be the matrix with the (i? k;) entry equal to N,,_, i = I, 2.. , II, and the 
remaining entries equal to zero. Then 

/i-u 3 2.r = p(A)x. (3) 

Premultiplying (3) by a Perron eigenvector of k we see that i)(k) 3 p(A). How- 
ever, by construction of a,p(A) = p(a) 3 p(k). Since .Y is positive. it follows 
that equality must hold in (3) and the proof is complete. 0 

Proof 4. This proof also uses the Perron-Frobenius Theorem. For any positive 
integer k, let A fk) denote the matrix [u!.]. A similar notation applies to vectors. 
Let J’(~) denote a Perron eigenvector b’f A(” and let z,~) denote the vector ~-ii; 
normalized to a probability vector (i.e. a nonnegative vector with components 
adding up to I .) The sequence z(i). ~(2,. belongs to the compact set of 
probability vectors and hence admits a convergent subsequence. For convc- 
nience we denote the subsequence again by :(A,. X- = I, 2. Thus we assume 
that lim~--x~,~, exists and we denote it by x. We have 

ah zh i, ,~I, = p(A’“‘)4i;,,, i = 1.2.. ./I. 
i 1 

Therefore 

= (~(A’“‘))“‘z,~,,, i = I, 2,. ./I. 

It is known (see, for example, [9]) that (p(A’“‘))“” + p(A) as k - 3~. Thus let- 
ting k go to infinity in the equation above, we get max,N,,X’, = p(A)u,. i = 
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1: 2> , n. It follows from Lemma 1 that x must be positive and the proof is 
complete. 0 

Proof 5. This proof uses the duality theorem of linear programming. Let 
b1.i = log a,i if a;j > 0 and b, = -A if “ii = 0, where A is sufficiently large SO 

that the critical graph of A is the same as that of [ehdl]. Consider the linear 
programming problem: 

minimize r subject to b,, + yj - y, < z, i, j = 1,2, . . . , n. 

The dual problem is 

max 
,i II 

cc biiw,, 
i=l /=I 

s.t. w,j 3 0, CCWi,=l, CW,,-CW,,, i=1,2,...,n. 
,=I ,=I /:I /=I 

Since both these problems are clearly feasible, by the duality theorem, they 
both have optimal solutions. Let rO,ylr.. .y,, be optimal for the primal prob- 
lem. We recall the known result (see, for example, [lo]) that the set of feasible 
matrices W = [w,,] for the dual problem is precisely the set of nonnegative, non- 
trivial linear combinations of circuit matrices. (Such matrices are called sum- 
symmetric matrices and we will encounter them again in Section 6.) Thus the 
optimal solution for the dual (and hence the primal) problem is precisely the 
maximum circuit arithmetic mean in B. It follows that p(A) = eQ. Let 
x;=eJ’f.i= 1,2 ,... .n.Thenwehave 

a,,x,<p(A)x;, i,j= 1,2, . . . . n. (4) 

LetSc {1,2,... . n} be a nonempty set such that 

max aj,xi = p(A)x, 
/ (5) 

if and only if i E 5’. We assume, without loss of generality, that S is the maximal 
subset (i.e., has maximum cardinality) with this property. Let, if possible, 
S # { 1,2,. . . n}. Then we may increase each xi, i E S by a suitable constant 
so that the resulting XI.. , x, still satisfy (4) while (5) holds for some i @ ST 
which is a contradiction. Therefore S = { 1.2, . . . , n} and hence 
A @ x = &4)x. 0 

Theorem 2 can be thought of as a result on matrix scalings. Thus if A is a 
nonnegative, irreducible matrix, then Theorem 2 is equivalent to the assertion 
that there exists a diagonal matrix D with positive diagonal entries such that in 
D-‘AD, the maximum entry in each row is the same. (Indeed, using the nota- 
tion of Theorem 2, the ith diagonal element of D is x,, i = 1,2,. . . , n.) In this 
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context we refer to [lo, 1 l] for some related results. Several characterizations of 
/l(A) have also been given in [12]. 

3. Max eigenvalues of a reducible matrix 

Let A be an n x n nonnegative matrix. We say that i is a INNS eigendur of A 
if there exists a nonzero, nonnegative vector x such that A K x = ix. We refer to 
x as a corresponding mus eigenvrctor. As seen in the previous section. if A is 
irreducible, then it admits /L(A) as the unique max eigenvalue. The situation 
is more interesting when A is reducible. Consider the following matrices. 

A= [; ;]> B= [; 01, C= [; ;I. 
Clearly, A has two max eigenvalues, 4.5, with (1, O)T, (0, I)r as the correspond- 
ing eigenvectors. It can be verified that B has 5 as the only max eigenvalue, 
whereas C has two max eigenvalues, 4: 5. 

The general result describing the max eigenvalues of an arbitrary nonnega- 
tive matrix, obtained by Gaubert [13], and independently by Wende et al. [14], 
is given next. 

Theorem 3. Let A he ctn n x n nonnegutiw mutrix in Frohcnius Normal Form, 

A,, 0 ... 0 
A?, AZ7 ... 0 

1 

0 

As ... A,,,,,, I 
Then i is a mux eigenvdue qf’A 
thut i = p(A,;) und jiwthermore, 

dA,,) > dA,i). 

It is easy to figure out the max eigenvalues of the matrices in (6) using The- 
orem 3. Thus B does not have 4 as a max eigenvalue since the second class, 
which has a higher circuit geometric mean, has access to the first class. 

We now wish to point out that Theorem 3 can be regarded as the max ver- 
sion of a result in classical Perron-Frobenius theory, which goes back to Fro- 
benius, and which has been termed as the FrobeniussVictory Theorem by 
Schneider [ 151. 

Let A be a nonnegative n x n matrix. Which eigenvalues of A admit a non- 
negative eigenvector? Clearly, if A is irreducible, then the Perron eigenvalue 
p(A) is the only eigenvalue with this property. In the general case, we have 
the following, see [15]. 
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Theorem 4 (Frobenius-Victory Theorem). Let A be an n x n nonnegative matrix 
in Frobenius Normal Form, 

A,, 0 ‘.. 0 

Al, AZ2 .” 0 

!!. : 

. . 
. 0. 

A !I, I A,,,? A,,,,,, 

Then ,? is an eigenculue oj’A jrlith u corresponding nonnegative eigenvector ij’und 
only if there esists i t { 1,2, . . m> such that 2 = p(A,,) and jirrthermore, cluss j 
does not have ucccss to cluss i whenever [>(A,,) > p(A,,). 

Some remarks are in order now. If we work exclusively over the semiring of 
nonnegative numbers, then an eigenvalue of a (nonnegative) matrix A should 
be rightfully defined as a number i such that there exists a nonzero, nonnega- 
tive vector x with Ax = ix. Taking this viewpoint we realize that Theorem 4 is 
merely describing the set of “eigenvalues” of a nonnegative matrix. The second 
remark is that Theorem 3 should be regarded as a max version of Theorem 4. 
In fact if we apply Theorem 4 to the matrix Ai”) = [afj] and use a limiting argu- 
ment as in Proof 4 of Theorem 2, then we deduce the “if part of Theorem 3. 

4. Max eigenvectors 

Let A be a nonnegative, irreducible n x n matrix. Then it is well-known that 
the eigenvector corresponding to p(A) is unique up to a scalar multiple. The 
situation concerning the max eigenvectors is more interesting. 

We assume, without loss of generality, that /I(A) = 1. Recall the definitions 
of critical circuit and critical graph in Section 2. We also use the matrix I in- 
troduced in Proof 1 of Theorem 2. We denote the critical graph of A by Y(A). 
The structure of the max eigenvectors is described in the next result. 

Theorem 5. Let A be a nonnegative, irreducible n x n matrix lcith p(A) = 1. 
Suppose the critical gruph .X(A) I ws k strongly connected components und let 
6. ~ V, be the corresponding sets qf vertices. Then the following ussertions 
hold. 
I. 
2. 

3. 

A fly column oj’r corresponding to a vertex of .P(A) is a mux eigenvector oj’A. 
AI~J> tn!o columns of I- corresponding to vertices in the same K are scalar mul- 
tiples of each other. 
Let i, E &:, und let T,, be the corresponding column of r. j = 1.2. . k. Then 
I-,, ~ . T,i are “linearly independent” in the sense that none oj’them is a linear 
combination (using the max sum) of others. Furthermore, any eigenvector of 
A is a linear combination (again using the max sum) qf r,, . , I-,{. 



II 

Example 6. Consider the matrix 

-0.5 1 0.3 0.4 0.2 

1 0.2 0 0 0.3 

A= 1 0 0 1 0. 

0.2 1 1 0.3 0.2 

0 0.4 1 0 1 

Then /l(A) = 1 and the critical graph X(A) has 3 strongly connected compo- 
nents. It can be verified that 

- 1 1 0.4 0.4 0.3 

1 1 0.4 0.4 0.3 

r-111 1 0.3 

111 1 0.3 

Ill 11 

We conclude that (1, 1: 1, 1, l)T, (0.4,0.4: l! 1. l)T and (0.3.0.3.0.3,0.3, l)T con- 
stitute a set of “linearly independent” max eigenvectors of A and any other max 
eigenvector is a linear combination (using the max sum) of these vectors. 

For a proof of Theorem 5 and for a similar result for reducible matrices we 
refer to [1,14]. We conclude this section by stating a simple consequence of 
Theorem 5. 

Corollary 7. Let A he u nonnegutive, irreducible n x n matris. Then the ~ICIS 
eigenvector oJ’A is unique, up to u scular multiple, #‘and only if’the criticui gruph 
.YY (A) is stronglJ1 connected. 

5. Unifying the Perron-Frobenius Theorem and its max version 

If x is a vector of order n and if 0 < p < 03, then let / 1x1 lp denote the &-norm 
of x, given by {Cy=, l_~l~}“~. Then the following result clearly unifies the Per- 
ron-Frobenius Theorem and its max version. The proof can be given using 
Brouwer’s Fixed Point Theorem as before. 

Theorem 8. Let A be u nonnegative, irreducible, n x n nmtris and let 0 < p 6 IX. 
Then there exists j. > 0 and a nonnegative vector x sucl~ thut 

Il(o,lXlr’~~ , a,,,~,,) 1 lp = ix,. i = 1~ . . n 

Note that if 0 < p < XI. then Theorem 7 may be derived by applying the 
Perron-Frobenius Theorem to the matrix [UC.]. 
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We now indicate another possible way to unify the two results. Let k be a 
fixed positive integer, 1 6 k < n. If x-v E R”, then let us define xT 8!r y to be 
the sum of the k largest components in {x,yl, . ~,~y,~}. If A is an n x n matrix 
and if .Y E [w”. then A %A x is then defined in the obvious way, i.e., the ith com- 
ponent of A c3A x is given by (a,, . . a;,() ‘%:I/, x. Observe that when k = n, xT ‘&, y 
is simply Cy_, x,y,. whereas if k = 1, then xT ~$3, y = xT @?: = max,x,y,. Thus 
the following result may be thought of as a unification of the Perron-Frobenius 
Theorem and its max version. The proof of the result can be given, using 
Brouwer’s Fixed Point Theorem, along the lines of Proof 2 of Theorem 2 
and is omitted. We only make one remark which is useful in the proof. If A 
is a nonnegative, irreducible n x II matrix and ifs E R” is a nonnegative, non- 
zero vector such that A #cfsk x is a constant multiple of x, then it follows that 
x > 0. 

Theorem 9. Let A he un n x n nonntppaticr, irreducihlr matrix und let 1 < k 6 n. 
Then there esists u posititle vector x und u constunt 7 such that A fik x = yr. 

We now turn to the question of uniqueness of ;’ in Theorem 9. If A is an 
n x n nonnegative matrix, let /Q(A) denote the maximum Perron eigenvalue 
of a matrix obtained by retaining at most k nonzero entries in each row. 

Theorem 10. Let A hr m n x n nonnrgutiw, irreducihlr mutri.y, let 1 6 k < n und 
/et i’ > 0. x > 0 such tht A %,, .x = y-.x. Then ‘j’ = 1~ (A). 

Proof. Let A^ denote a matrix obtained by retaining at most k nonzero entries in 
each row of A. Then clearly ax < 7-r. Premultiplying this inequality by a left 
Perron eigenvector of 2 and keeping in mind that x > 0. we get p(a) < ;‘. Also, 
since the sum of the largest k components in {cl;lx~, ,u;,J,~} is 
jx,.i= 1.2. . . . . n. we can make a choice of 2 for which ;’ = p(a). It follows 
that ;’ = /Q(A). 0 

It is instructive to have a graph theoretic interpretation of ph(A). By the Per- 
ron eigenvalue of a directed graph we mean the Perron eigenvalue of its adja- 
cency matrix. Observe that ph(A) is precisely the maximum Perron eigenvalue 
of a strongly connected subgraph of Y’(A) in which the outdegree of any vertex 
is at most k. 

It appears that further development of a Perron-Frobenius type theory is 
difficult when 1 < k < n. We point towards some problems that arise. 

In the classical Perron-Frobenius theory, the Perron eigenvalue of A and AT 
is the same, and this fact is crucially used in the theory. A similar result holds in 
the max version, i.e., the case k = 1. However, when 1 < k < n. the property is 
no longer valid as indicated by the next example. 
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Example 11. Let 

A= 

3 4 

0 i 

3 0 

0 0 

0 0 

0 

; 
0 > 
0 

0 

x= 

1 

1 

1 > 
1 

1 

-2- 

2 

y= 1 

1 

1 

Then A @J* x = 10x and AT &_y = 9~. Thus p?(A) = 10 whereas p2(AT) = 9. 
We may be able to take care of the problem indicated in Example 11 by im- 

posing pattern conditions on the matrix. One example of such a result is the 
following. 

Theorem 12. Let A be an n x n nonnegative, irreducible, tridiagonal matrix Tllrtz 
pk(A) = pk(AT).k = 1,2,. . . ,n. 

Proof. If k 3 3 then pk(A) and pLk(AT) are both equal to the Perron eigenvalue 
of A, whereas if k = 1, then pi(A) = pI (AT) = ,u(A). Thus we only consider the 
case k = 2. Since A is tridiagonal, a strongly connected subgraph of Y(A) must 
be a subgraph induced by vertices i, i + 1.. . ,j for some i 6 j. Thus a strongly 
connected subgraph in which each vertex has outdegree at most two, consists 
of a subgraph induced by vertices i, i + 1 for some i or of a single loop. It 
follows in view of the remark following Theorem 10 that 

p2(A) = max aji,i = 1,2.. . ,n; p ai, a;.;+ I . iE1.2 . . . . . n-l 
a,+ I ., a,+h+l 1 

As a consequence of this formula for p2(A), we conclude that 
/is(A) = /Q(A~). 0 

In the remainder of this section we keep k E { 1,2, . . . : n} fixed. We introduce 
terminology which is effective only in the present section. If A is a nonnegative. 
irreducible n x n matrix and if A ~3~ x = pA(A)x, where x is a nonzero, nonneg- 
ative vector, then we refer to x as a k-eigenvector of A. The set of k-eigenvectors 
of A is closed under the usual addition if k = n and under @ if k = 1. However. 
it is not closed under either of these additions if 1 < k < n and thus we cannot 
think of a concept such as a basis for the eigenspace. We now give a condition 
under which the eigenvector is unique, up to a scalar multiple, thereby gener- 
alizing the result known for k = 1, n (see Corollary 7). 

We call a subgraph of 3(A) k- maximal if it has maximum Perron eigenvalue 
among all strongly connected subgraphs with each vertex having outdegree at 
most k. The union of all k-maximal subgraphs is called the k-critical subgraph. 
A vertex or an edge is said to be k-critical if it belongs to the k-critical sub- 
graph. 



Proof. Let X.Y be eigenvectors, so that ,4 ;/, x = A+, (A)s. A KA J’ X~/Q (A)?. Since 
A is irreducible, .u,_r’ must be positive. There exists a matrix A obtained by 
retaining at most k positive entries in each row of 4 such that 2.~ = ,H,~(A)x. 
Clearly. 

a,, < A >s, y = pi (A)>,. (7) 

Premultiplying (7) by a Perron eigenvector of A^ we get /l1 (a) < ,u,, (A). Since 
/Q(A) = ,+, (A). we must have 2~3 = ,n,, (A)y. We assume. without loss of general- 
ity, that A is in the Frobenius Normal Form. Since ,4^ admits a positive Perron 
eigenvector, its basic classes and the final classes are the same (see [7]. p. 40). 
Let 

BII 

0 

B l)i / I. I 

41 

0 0 

B ,,,,,I 0 

B,,, I I .ijl B,,, / I .,,]A I 

B ,I,” Bp.m I 

0 

0 

0 

B /‘I, 

where classes I, 2.. . nz are the basic, final ones. Since B,,. i = 1.2.. , nz are 
irreducible, the corresponding subvectors in .X.Y must be proportional. 

Thus if the edges (i,,j). (k,l) of Y(A) belong to the same k-maximal sub- 
graph, then (al. .x~) is proportional to (L;.,v,). Since the h--critical subgraph is 
strongly connected, it follows that the subvectors of X,Y corresponding to the 
k-critical vertices in 9(A) are proportional. The remaining parts ofx.): are then 
completely determined (as in the proof of Theorem 3.10 in [7]) and they must 
also be proportional. 0 

6. Inequalities for p(A) 

In this section we first continue a program initiated in [4] and obtain an in- 
equality for p(A) which is motivated by known inequalities for nonnegative 
matrices. The inequality is similar to Bi-egman inequality [I61 concerning the 
permanent. Yet another Bi-egman type inequality was proved in [5]. 

An n x n matrix is called sum-symmetric’ if its ith row sum equals the ith col- 
umn sum for i = I ( 2, , n. We first prove a preliminary result. 



2 Li,j lOgiT,, < log /l(Z). 
,., I 

Proof. If C’ is a sum-symmetric matrix with C:I,_, II,, = I. then it is well-known 
(see [3], p. 126) that U can be expressed as a nonnegative linear combination of 
circuit matrices. Let ti = Cr=, QC’“’ where IA > 0 and C’“’ = [cl”‘] is a circuit 
matrix. k = I. 2.. .p. Let I’i be the length of the circuit corresponding to 
Cl/‘) k= 1.3 _. , p. Clearly, 

It is easily seen, using C:‘, _, u,, = 1. that 

Now 

where the inequality follows from (8) and (9). That completes the proof. 0 

As before, -X(.4) will denote the critical graph of A. 

Proof. We follow the proof technique used to prove Theorem 3.2 in [5]. We 
assume that A. Z are positive as the general case may then be obtained by a 
continuity argument. 

Inequality (10) is clearly equivalent to 

IOg /l(Z) 3 log /l(A) + 2 Z/i/( log Z,/ - log a,,) 
!./_I 
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As in Proof 5 of Theorem 2, let b;, = 1Ogaii for all i,j, and consider the linear 
programming problem: 

minimize 7 subject to b,i+,vj-y,<T, i,j= 1.2 ,... ,tt. 

The dual problem is 
,, 

max ec b;iwij 
i=l /=I 

II II 

s.t. w,j 3 0, cc W,j = 1, &=&. i= 1,2 ).... n. 
i-l /=I j=l /=I 

Choose optimal xl % . . ,x,, for the primal problem. Then 

b,i+~i--~<log/c(A), i,j= 1.2 ,..., n 

and equality holds if (i,j) is on a critical circuit. 
Now 

(12) 

eU,j(logzj, - loga,,) = eUjj(lOgZ, - log/A(A) -Xl +X1) 
i.j-I i.j=l 

= 2 U,, log Zji - log /L(A) 2 24,j < log /A(Z) 
,./=I i.j= I 

where the first equality comes from the fact that equality holds in (12) if 
(i,j) E Y(A) h’l w 1 e U,j = 0 if (i,j) +2 H(A). The second equality is then obvious. 
Finally, the last inequality follows from Lemma 14 and the fact that 
CyiZl u,, = 1. That completes the proof of (11) and hence the theorem. 0 

Our next result is motivated by the fact (see Proof 4 of Theorem 2) that for 
an n x n nonnegative matrix A, @(A(“)))“” --+ p(A) as k + w. 

Theorem 16. Let A be an n x n nonnegative mutrix. Then 

,Ii~--(p(A”))l’~ = p(A). (13) 

Proof. We remark that the power Ak is the usual kth power of a matrix, rather 
than the power obtained by using the max addition. 

If B is a nonnegative n x n matrix, then (see [12]), for any integer k 3 0, 

P(B) G P(B). 
Therefore 

(p(A))’ = p(Ak) 3 &4”) 

and hence 
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(/(A”))“” 6 p(A). (14) 

If A is an n x n nonnegative matrix, then it is well-known (see, for example, 
[12]) that 

0) G W(A) 

and therefore 

,)(A”) <q@). 

It follows that 

1 0 
I il 

_ p(A) < (p(k))‘? 
II (15) 

The result follows by letting k + CQ in (14) and (15). 0 

It is also known (see [17]) that for an n x n nonnegative matrix A, 
(p(,@))‘//’ 6 (p(A(Y1))“’ for 0 < p < q. Thus it is tempting to conjecture that 

(p(AP))“” < (/l(A”))“” (16) 

for positive integers p < q. This is false however, as indicated by the next exam- 
ple. 

Example 17. Let 

A= 

Then it can be verified that 

(p(A’))“’ z 4.3589 while @(A’))“’ z 4.3198. 

In our concluding result we show that (16) is true if p = 1. 

Theorem 18. Let A he un n x n nonnegutive mutrix. Then jbr any positive integer 

4, 
/c(A) < MA”))““. (17) 

Proof. Suppose 

P(A) = (ai,r2a;?,i . a,,,, I”‘. 
Consider the closed path of length q! obtained by going around the circuit 

il + j, i + i, + il. 

q times. The corresponding path product is 

a,,iza,2,, .a;,i,a,,i2a,,,, .“a,,,, .“a,,,2ai2,i ...a ,,,,. 
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Rewrite this as xl CC? xi. where xl is the product of the first q terms, CC? is the 
product of the next q terms and so on. Then it can be seen that 

(X,X?” 2,)’ ’ < p(‘4”). (18) 
Since %I r2 x, = (,u(A))~“. the result follows from (18). 0 
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