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Abstract.

New perturbation theorems for matrices similar to Hermitian matrices are proved for
a class of unitarily invariant norms called -norms. These theorems improve known
results in certain circumstances and extend Lu’s theorems for the spectral norm, see
[Numerical Mathematics: a Journal of Chinese Universities, 16 (1994), pp. 177-185]
to @Q-norms.
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1 Introduction.

One of the main theorems in the theory for eigenvalue variation of Hermitian
matrices is the following (see, e.g., [3], [24]):

THEOREM 1.1. Let A and A be two n x n Hermitian matrices. Then for any
unitarily invariant norm || - || we have

i o -0 < -]

Here Eig*(A), defined for an n x n matrix A with real eigenvalues A; > Ay >
-+ > Ap, 18 the diagonal matrix Eig¢(A) = diag(A1, ..., An).

Theorem 1.1 was proved by Weyl [28, 1912] for the spectral norm and by
Loewner [21, 1934] for the Frobenius norm. Also, for the Frobenius norm it
is a corollary of a theorem by Hoffman and Wielandt [14, 1953], who estab-
lished, more generally, a theorem for normal matrices. For all unitarily invariant
norms, (1.1) was proved by Mirsky [23, 1960]. He derived it from a theorem of
Lidskii [20, 1950] and Wielandt [29, 1955).
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In the past, extensions of Theorem 1.1 have been made in the following over-
lapping cases:

1. A and A are similar to Hermitian matrices, in which case they are called
symmetrizable; see Kahan [18, 1975], Bhatia, Davis and Kittaneh [6, 19g1],
Bhatia, Elsner and Krause [8, 1994], Li [19, 1993], Lu [22, 1994], and most
recently, Bhatia, Kittaneh and Li [11].

2. A and A are normal matrices; see Hoffman and Wielandt [14, 1953], Bha-
tia [2], Bhatia and Holbrook [9] and [10], and Bhatia, Davis, and McIn-
tosh [7, 1983].

3. A and A are similar to normal matrices. In this case they are also called
normalizable; see Sun [25, 1984], Zhang [30, 1986], Lu [22, 1994], and most
recently, Bhatia, Kittaneh, and Li [11].

4. A and A are unitary; see Bhatia, Davis and McIntosh [7, 1983}, Bhatia
and Davis [5, 1984], Bhatia and Holbrook [9, 1987], and Elsner and He [12,

1993].

5. Ais Hermitian, while Ais skew-Hermitian; see Sunder [27, 1982] and Ando
and Bhatia [1, 1987].

6. A is Hermitian, and A is normalizable or even arbitrary; see Kahan [18,
1975], Lu {22, 1994] and Sun [26, 1996].

Extensions of Theorem 1.1 are also available when some information on invariant
subspaces of A or A is available. But extensions of these kinds are beyond the
scope of this paper. Here we concentrate on the extensions for symmetrizable
matrices. Recently Bhatia, Kittaneh and Li [11] proved the following.

THEOREM 1.2. Suppose there are invertible matrices X and X such that
X YAX and X 'AX are real diagonal matrices. Then

(1.2) [ist ) ~ Bt (D] < [sxomc)] |

A=A

Here x(X) def || X]2]] X ~*||2 is the spectral condition number of X, and || ||z is

the spectral norm, the largest singular value. Bhatia, Kittaneh and Li [11] also
obtained bounds for matrices similar to unitary, and more generally, to normal
matrices. Theorem 1.2 is the best bound in its general setting. In what follows,
we shall improve it under special situations: one of the matrices is Hermitian
or almost Hermitian. Our new results extend those of Lu [22] for the spectral
norm to the class of unitarily invariant—Q-norm.

NOTATION: Lower case letters will be used for vectors and, rarely, scalars to
follow convention; capital letters will be used for matrices. Lower case Greek
letters are used exclusively for scalars. Iy is the k-dimensional identity matrix.
A* is the conjugate transpose of A; similarly for z*. || - || stands for a general
unitarily invariant norm, while ||-||r is the Frobenius norm; see §2 for definitions.
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2 Unitarily invariant norms.

A matrix norm on the space of n x n complex matrices is unitarily invariant
(see [24, pp 74-88)) if it satisfies, besides the usual properties of any norm,

1. lUYV]| =Y for any unitary matrices U and V;
2. [IlY)l = |IY]|2 for any Y having rank one.

We denote by || - || a general wnitarily invariant norm. The most frequently used
unitarily invariant norms are the spectral norm || - ||2 and the Frobenius norm
|| - |lr- Let Y = (y;;) be an n x n matrix and denote its singular values by

01202220, 20

Then
1/2

n n 1/2
def def
(2.1) Yl = max IYulls = o1, [IY]le = | Y lyil® = (Z U?) :

=1
ull2 i

Among all unitarily invariant norms, the Ky Fan k-norms (see, e.g., [16, Theorem
3.4.1 on p. 195]).

k
d—ef s = * =
(22) mYmk - ;:l gi U UinlfiV*V RE [tr (U YV)]7 k 13 23 sy T

play an important role in proving inequalities involving all unitarily invariant

norms. Here both U and V are n x k; tr (+) is the trace of a matrix; RE [] is the
real part of a complex number. This is because of the following proposition (see

also [24, pp. 86-87]).

PROPOSITION 2.1 (Ky FAN [13]). Let Y and Y be two n x n matrices. Then
Y < |”Y||| for all unitarily invariant norms if and only if ||Y||, < ]HYmk for
all1 <k <n.

Special unitarily invariant norms that we are interested in here are the Q-
norms [4]. A unitarily invariant norm || - || is a Q-norm if there exists another
unitarily invariant norm || - ||" such that ||Y|| = ([||Y*Y||1')1/2. We follow Bha-

tia [4] and Ando and Bhatia [1] to denote a @-norm by |- |l,. Examples of
(-norms include the Ky Fan p-k norms (see [16, Problem 3 on p.199))

1/p
def * 1/2
1Y, = (Z 0?) =YY%,

i=1
forp>2and k=1,2,...,n. It is easy to see that
(23) 1Yl =W koo = 1Y 112, Y Mo = 1Y llr and [[Y (., = 1Y N -

In view of the fact that the singular values of Y*Y are the squares of those of
Y, we have, as a consequence of Proposition 2.1:
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PROPOSITION 2.2. Let Y and Y be two n x n matrices. Then Yl < |”)7|“Q
for all Q-norms if and only if |Vl < |||)~’”|,c2 forall1 <k <n.

This proposition has been used by Bhatia {4] and Ando and Bhatia [1] in their
proofs. The following characterization of ||Y]|,., plays an important role in our
later proofs.

PROPOSITION 2.3. We have

(2.4) 1Y B = jmax [YUlle = max UV ],

PROOF. It suffices to prove the first equality in (2.4) since [|[Y|l,., = Y *{l;.-
By picking the ith column of U to be the singular vector corresponding to the
singular value o; of Y, we see that

k
Y2, = 2 < YU||p.
¥ i = Do < max [YUle

i=1

On the other hand, it is known that the ith largest singular value of YU is no
bigger than that of ¥ (see, e.g., [16, Lemma 3.3.1 on p. 170]), thus we have

k
> o > |[YUIE,
i=1
as was to be shown. 0

3 Main results.

Our first theorem says that with (J-norms and when A is Hermitian, one can
do much better than Theorem 1.2.

THEOREM 3.1. Suppose that A is Hermitian and suppose that there is an
invertible matriz X such that X 1AX is a real diagonal matriz. Then

(3.1) H'Eigi(A) - Eigi(ﬁ)mQ < k(X)) WA - /IWQ :

Inequality (3.1) for the special case of the spectral norm is due to Lu [22].
THEOREM 3.2. Under the conditions of Theorem 1.2, we have

(3.2)

”Eigi(A)—EigL(g)HlQ < min{r(X),x(X)}
1/2
1 5 1 A
S I . B
(3.3)
i ) -], < mings 000 [r0nC0] 4 - A
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Inequality (3.2) for the special case of the spectral norm is also due to Lu [22].
We summarize sharpness comparisons of these inequalities and inequality (1.2)
for Q)-norms as follows.

1. When A is Hermitian, inequality (3.1) and inequality (3.3) are the same.
Among inequalities (1.2), (3.1) and (3.2), (1.2) is the worst in this case;
and (3.1) is sharper than (3.2) provided

9y2 +3v+4

2
~ 3.383. ..
9y ) ’

n()?)z<

where v = (3 + é—v33)1/3; otherwise (3.2) is sharper.

2. When k(X) =~ I‘L()A(; ) > 1, asymptotically the amplification factors in front
of some unitarily invariant norm of A — A in the inequalities are roughly

\%K(X)Z in (3.2),
(3.4) k(X)3?  in  (3.3),
k(X) in (1.2).
So (1.2) is the best, while (3.2) is the worst.
3. Inequality (1.2) is sharper than (3.2) if

either n()z) > k(X) > ﬂ_l or k(X) > K?(j(;) S V26(X)?2 — 1

K(X) T k(X))

otherwise (3.2) is sharper. If (1.2) is indeed worse, it is worse by no more
than a factor v/2 than (3.2), since

~q1/2 _ 1 - 1 i
[N(X)K(X)] < V2 min {,e(X),n(X)}E <K(X)E(X) + m)

always.

4. Inequality (3.3) is sharper than (1.2) if

either 1< K(X)? < k(X)) or 1<k(X)?<r(X);

otherwise (1.2) is sharper.

5. Inequality (3.2) is sharper than (3.3) if

~ (972+37+4

2
1< k(X)r(X) < 5 ) ~3.383..;

otherwise (3.3) is sharper.
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4 Proofs of Theorems 3.1 and 3.2.

The following lemma is well-known; it is implicit in the proofs in Kahan [17
1967] and [18, 1975].

LEMMA 4.1. Suppose that B and Bz are two n X n Hermitian matrices, and
suppose o is an eigenvalue of B — B with corresponding eigenvector u, i.e.,
(B~ B)u =au. LetT be an n x n diagonal matriz with oll diagonal entries
nonnegative. Then

k)

u*(BT — IB)u| > |aju*Tu.

Proor.

|u*(BT — T'B)ul |u*(B — B)T'w + u* (BT — T'B)u
low* Tu + uw* (BT — T B)u|

|a|u* Ty,

v

since au*l'y is a real number and BT — I'B is skew-Hermitian implies that
u*(BT — T'B)u is a pure imaginary complex number. O

LeMMA 4.2. Let T be an n X n diagonal matriz with all diagonal entries
positive, and let u be an n-vector with ||ulls = 1. Then

wTu-w Ty > 1.

Proor.
1=y = U*F1/2F~1/2u < ||u*111/2||2“r71/2u”2 — (U*Fu_u*r—lu)l/Q

where the inequality holds because of the Cauchy-Schwarz inequality. O

LemMMA 4.3. Let T = diag(o1,02,...,0,), where oy > g9 > --- > 0, > 0; and
let w be an n-vector with ||ullz = 1. Then

*72 1/2_ *—2 1/2< U%+U;Zz
(wT?u)"" - (wT%u) '~ < oo

This is the well-known Kantorovich’s inequality [15, Theorem 7.4.41 on p.444].

PrOOF of Theorem 3.1. Since || - || is unitarily invariant, we may assume that
A = A is real diagonal. By Proposition 2.2, it suffices to prove the inequality
(3.1) for all Ky-Fan 2-k-norms || - ||,.,. Write X-'AX = A, and let X = UT'V*
be the SVD, where U and V are unitary and I' = dlag(al,og,.. ,0n) with
o1 > 09 > - > 0,. Then

Ja-4],, = [a-x5x2
k;2 k;2
= A - UTV*AVT-U* .
12
= |lU*AU = TV*AVT™! )

(4.1) = ||B-rBr! ]HH :
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where B = U*AU and B = V*AV are two Hermitian matrices. Notice that
Eig'(B) = Eig'(A) and Eig"(B) = Eig"(A).
Let ay,as, ..., a, be the eigenvalues of B — §, ordered so that

o > laa| > -+ > [al.

Choose orthonormal vectors uy,...,u,, such that (B — Blu; = aju;, j =

1,2,...,n. Then by Theorem 1.1

k 1/2
S fonl’) = |- 5, > mEig« ei' 5|
<m:1 k;2 k;2
(4.2) = ” Eig*(A) — Eigh(A Hl
Set v, def INu;. Proposition 2.3 implies
1/2
lo-roefl,, = (o -rm)
;2
~ 2
o lur (B - FBF_l)vm‘
(4.3) >

2 o3

Now, let us bound each term within (- --)1/2 from below. We have

luf,(B—TBUC Y,|  |ul, (B = TB)uy,|
llvmll2 B llvml2

lam |, Tum,

(u:nrgum)l/2

> (by Lemma 4.1)

(4.4) > l\(;__;%l_ (u:nrum)l/‘z ’

since z*I'*z < g12*I'z. Inequalities (4.3) and (4.4) yield

r 1/2
. 1
(4.5) HIB - rBr—lm > - (Z |am|2u,*nrum> .
k;2 \/O1 fooyan)

Similarly, setting w; = I'"'u;, we have
X 1/2
|5 - rar| > [ B
k2 me1 " 2
1/2
(Z lwe, (B — TBI- 1)um|2>

|wm||2

\Y

—
-
(=]

Nt

vV
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and
lwi (B ~TBC Yup|  |ulfy (T 1B = BT Vuy,|
lwmll2 llwmll2
w (by Lemma 4.1)
(ug, T ~2um) "
(4.7) > Volam| (w50 um) %

since z*T'?z < -2*T"'z. Inequalities (4.6) and (4.7) yield

k 1/2
, > \/on <Z |am|2ufn1"“1um) .
m=1

Inequalities (4.5) and (4.8) imply that

, 5 12, 1/2
R — a * * T —
‘HB—FBF 1’”’6;2 > ,/U—Z‘<§ |am|2umFum> <§ |t |20, T lum>

m=1 m=1

(4.8) mB —TBr! “|k

\

k
1 2 - 1/2
* F Lo ¥ F 1
k(T')1/2 7; |l (um Um Uy, um)

(by the Cauchy-Schwarz inequality)

v

v

k
1 .

—_— E |t |2 (by Lemma 4.2)

x(T)1/2 2 m

1 2
= e
K(X)V/2

1
K()})lﬁ

k;2

~ 12
> it () - B D oy (2.
Inequality (3.1) for || - flg = |l - ., is a consequence of (4.1) and this. O

PRroOF of Theorem 3.2. Without loss of generality, we may assume that
k(X) > k(X). Again by Proposition 2.2, it suffices to prove the inequalities for

all Ky-Fan 2-k-norms || - ||,.,. Following notation in the proof of Theorem 3.1,
we have
I N

32 52

Let X~!X = UTV* be the SVD, where U and V' are unitary and I' = diag(o1, 0,
.,0,). Then

lHA _ UTV*AVTU*

(4.10) mA - X*UZ’T\X"IX‘“
k2 k;2

|z -5,
k;2
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where B = U*AU and B = V*AV are Hermitian matrices. Notice that
Eigh(B) = Eigt(A) and Eig"(B) = Eig'(A).
Let a1, as,...,a, be the eigenvalues of B — ]§, ordered so that
| > Jaz| > -+ 2 |an];

and denote the corresponding orthonormal eigenvectors of B-B by uy,us,. .., un,.
By Theorem 3.1, we have

rx 2] fa-xomm x> e - e @),
= [Jeistca) - Bt
Note that
(4.11) &(D) = k(X 1X) < k(X)r(X).

Inequality (3.3) follows by combining the above inequality with (4.9).
To prove inequality (3.2), we notice that

07 1/2
Rl 2 Uy, L
e I I
m X y71/2
~ ur '~ u
o], = (S () |
ki2 | m=1 (u:n]-_‘7 um)
see (4.4) and (4.7). So
| ~rar))
k2
. r p1/2 . . 07 1/2
u* Tu u u
> Iaml2 m—m> |am|2 (m_"L>
mz::l ((u:nmm)”? mz:: (g, T =2t/
k
u* Tuy, w Ty,
Z Iam|2 m i m
2::1 (W T2um)' " (uz,D2uy)'?

(by the Cauchy-Schwarz inequality)

v

Z |am[? 2+02 (by Lemmas 4.2 and 4.3)

201 On

_ 20’10’n Zl |2
- Um
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i oAl
> — = “ Eig'(A) — Eig*(ﬁ)uf (by Theorem 1.1).
&(T) + =] k52

This, together with (4.9) and (4.10), proves that

1/2 _
—\}—5 (n(r) + ﬁ) lHB _TBr! m

1/2 N
,.@(X):}_5 (n(r) + %) [ A“lm .

st —et @], <

IN

1
Now use (4.11), and the fact that for z > 1 the function z + — is monotonically
z

increasing, to obtain the inequality (3.2). O
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