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Distance between commuting tuples of normal operators

By

RAJENDRA BHATIA, LUDWIG ELSNER and PETER SEMRL

Abstract. A sharp bound is obtained for the distance between two commuting tuples
of normal operators in terms of the distance between their joint spectra.

Introduction. Let A = (A4, ..., A,,) be an m-tuple of linear operators on a Hilbert space
A . We can identify this in a natural way with an operator from  into the Hilbert space
A, the direct sum of m copies of #, by putting Ax = (Aix,...,Ay,x). It is then natural to
define the norm of A as

1/2
(1) Al = |A*A]"? =

m
Y AFA;
j=1

When the operators A; are pairwise commuting operators we say that A is a commuting
tuple. In this case there is a well-known notion of a joint spectrum of A called the 7aylor joint
spectrum [11]. This is a compact subset of €C" and will be denoted here by the symbol (A).
The joint spectral radius of A is defined as

) r(A) = max {||4] : 4 € o(A)},

where ||4| stands for the Euclidean norm of 4 as an element of €C”. An analogue of the
Gelfand-Beurling spectral radius formula for single operators has recently been established
for commuting tuples [8]; see also [5].

When A; are commuting normal operators, the Taylor spectrum of the tuple A coincides
with the one obtained via the spectral theorem : o(A) is the support of a spectral measure P
on C" with respect to which the A; have a joint spectral resolution

3) Aj = [2;dP(2).
In this case we have
) [All = r(A).
In this note we prove the following theorem.
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Theorem 1.1. Let A = (Ay,...,A,,) and B = (By,...,B,,) be two commuting m-tuples of
normal operators on a Hilbert space. Then

(5) A — B = V2max{[|i—ul : 4€o(A), u € o(B)}.
This inequality is sharp.

When J# is finite-dimensional and m = 1, this theorem says that if A, B are n x n normal
matrices with eigenvalues 4y, ...,4,, and yu,...,u,, respectively, then

|A - B| = VZmax |4 —
ij
This has been proved earlier in [1] and in [9]. Such inequalities have long been of interest in
perturbation theory; see [2, Ch.VI]. More recently, there has been interest in extending some

of the classical perturbation bounds to commuting tuples; see [3], [4], [6], [7], [10]. This
programme is carried further in this note.

2. Proof of the theorem. We will first prove a theorem about the distance between
compact sets in C".

Let {-,-) denote the standard inner product in € or R™. The convex hull of a subset M of
a vector space will be denoted by conv (M).

Lemma 2.1. Let M, N be finite subsets of R" such that
(6) (u,v) >0 forall ueM,veN.
Then there exists a vector w in R™ such that
(7) (w,u) >0 forall ue MUN.

Proof. From (6) we see that (u,v) > 0 for all u € conv(M) and v € conv(N). Thus the
vector 0 is neither in conv(M) nor in conv(N). We claim that it does not belong to
conv(M U N) either. If it did, we would have

i+ B =0

for some choice of vectors uj,...,u, from M, v,...,v; from N, and positive numbers
at, ..,y Py By with 37 a; + 37 ;= 1. This would give

0= <Z a;u;, Z(I,‘M[) = *<z a;u;, Zﬁﬂ/,‘) < 0,

which is not possible.
Now let w be the vector in conv(M U N) that has minimal norm. Then for 0 = ¢ =1

[(1—e)w+eul)* = |w|* forall ueMUN.
Comparing the first order terms in e, we get from this

(wou) = [w||* >0 forall ue MUN. O

Lemma 2.2. Let M, N be finite subsets of C" such that
Re(u,v) > 0 forall ue M, veN.
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Then there exists a vector w in C" such that
Re(w,u) > 0 forall ue MUN.

Proof. Splitting all vectors into their real and imaginary parts, this statement can be
derived from the one of Lemma 2.1. [

Theorem 2.3. Let X, Y be two compact subsets of C". Then there exists a point y in C" such
that

8 A -yl =v2 A=l
8) max 4 = y[l + max [l —y]l = V2max |12 x|

uey

Proof. By an approximation argument, it is enough to prove this when X, Y are finite
sets. Let f be the nonnegative real-valued function on €" defined as

= A - =l
fly) =max |2 = yl| + max Jlu —v|

This function attains a minimum value, since X, Y are bounded. Assume, without loss of
generality, that the minimum is attained at the point 0. Then,

(9) £(0) = max |14 + max |« = f(y), forall .
9.4 uey

Let s= max 1All, ¢t = max llel], and let M={AeX:|Al|=s}, N={uecY:|u|| = t}.
Ae ue
Then M,N are finite subsets of €". We claim that there exist A € M, u € N such that
Re(d,u) = 0.
Suppose this is not the case. Then, by Corollary 2.2, there exists w in C” such
that Re(w,z) >0 for all z€ MUN. Then for e, a positive number close to 0, we
have

(10) lz —ew|* = ||z + 2|w|* — 2 Re(w,z) < ||z||* forall zeMUN.
Also, for A € X\M and u € Y\N, we have for such an ¢

(11) 14 —ewl = |l +ellw] <s,

(12) i —ewll = full +<llwl <.

The inequalities (10), (11), (12), show that, for small ¢, we have
flew) < s+t =f(0).
This contradicts (9).
So, we can choose 1 € M, u € N, such that Re(4,u) = 0. For this pair we have
t
I =l = AP + P = 2Ret, )" = (42 = 22

In other words,

max [|A|| + ma = Vv2max [|[A —u].
max 4]+ max [ju] = v2max |12 - u

ney

This proves the theorem. O
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Proof of Theorem 1.1. If A and B are commuting m-tuples of normal operators, then
so are A — yI and B — yI, for every y in C" . Here yI = (y,1,...,y,I). We have

|A =Bl = [A—I|| + [B-I|

= max |4 — max |lu —
max 2=y + max u—7].
because of (4). Now use Theorem 2.3 to conclude the proof. [

The bound (5) is known to be sharp in the simplest case, dim # =2 and m = 1. Just
consider the 2 x 2 matrices

=(1o) 2= (5 0)

Acknowledgement. The third author thanks the Ministry of Science and Technology
of Slovenia for a research grant, and the Indian Statistical Institute, New Delhi, for a visit
during which this work was done.

References

[1] T. ANDO, Bounds for the antidistance. J. Convex Anal. 2, 1-3 (1996).
[2] R. BHATIA, Matrix Analysis. New York 1997.
[3] R. BHATIA and T. BHATTACHARYYA, A generalisation of the Hoffman-Wielandt Theorem. Linear
Algebra Appl. 179, 11-17 (1993).
[4] R. BHATIA and T. BHATTACHARYYA, A Henrici Theorem for joint spectra of commuting matrices.
Proc. Amer. Math. Soc. 118, 5-14 (1993).
[5] R. BHATIA and T. BHATTACHARYYA, On the joint spectral radius of commuting matrices. Studia
Math. 114, 29-38 (1995).
[6] L. ELSNER, A note on the Hoffman-Wielandt Theorem. Linear Algebra Appl. 182, 235-237 (1993).
[7] L. ELSNER, Perturbation theorems for the joint spectrum of commuting matrices: a conservative
approach. Linear Algebra Appl. 208/209, 83—95 (1994).
[8] V. MULLER and A. SOLTYSIAK, Spectral radius formula for commuting Hilbert space operators.
Studia Math. 103, 329-333 (1992).
[9] M. OMLADIC and P. SEMRL, On the distance between normal matrices. Proc. Amer. Math. Soc. 110,
591-596 (1990).
[10] A. PrRYDE, A Bauer-Fike theorem for the joint spectrum of commuting matrices. Linear Algebra
Appl. 173, 221-230 (1992).
[11] J. L. TAYLOR, A joint spectrum for several commuting operators. J. Funct. Anal. 6, 172-191 (1970).

Eingegangen am 31. 8. 1997

Anschriften der Autoren:

R. Bhatia Ludwig Elsner Peter Semrl

Indian Statistical Institute Fakultit fiir Mathematik T.F., University of Maribor
New Delhi 110016 Universitit Bielefeld Smetanova 17

India D-33501 Bielefeld 2000 Maribor

Slovenia



