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Abstract 

If A and B are matrices such that IIA + zBII ~ IIA II for all complex numbers z, then A 
is said to be orthogonal to B. We find necessary and sufficient conditions for this to be 
the case. Some applications and generalisations are also discussed. © 1999 Elsevier 
Science Inc. All rights reserved. 
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Let A and B be two n × n matrices. The matrix A will be identified with an 
opera tor  acting on an n-dimensional Hilbert space H in the usual way. The 
symbol IIA II stands for the norm o f  this operator .  A is said to be or thogonal  to 
B (in the Birkhoff-James sense [7]) if JJA +zB]l ~> HAIl for every complex 
number  z. In Section 1 o f  this note we give a necessary and sufficient condit ion 
for A to be or thogonal  to B. The special case when B ----- 1 can be applied to get 
some distance formulas for matrices as well as a simple p roo f  o f  a well-known 
result o f  Stampfli on the norm o f  a derivation. In Section 2 we consider the 
analogous  problem when the norm ]].]i is replaced by the Schatten p-norm.  The 
special case A = 1 o f  this problem has been studied by Kit taneh [8], and used to 
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characterise matrices whose trace is zero. In Section 3 we make some remarks 
on how to extend some results from Section 1 to infinite-dimensional Hilbert 
spaces, and formulate a conjecture about orthogonality with respect to induced 
matrix norms. 

1. The operator norm 

Theorem 1.1. A matrix A is orthogonal to B if  and only if  there exists a unit 
vector x E H such that rlAxll = IIAI[ and (Ax, Bx) = O. 

Proof. If such a vector x exists then 

[IA + zBll 2 >>. I[(A + zB)xJ[ 2 = ll,4xf[2 + [zl2tlBxld 2 ~ IIAx[I 2 =  IIAI[ 2. 

So, the sufficiency of the condition is obvious. 
Before proving the converse in full generality we make a remark that serves 

three purposes. It gives a proof  in a special case, indicates why the condition of 
the theorem is a natural one, and establishes a connection with the theorem in 
Section 2. 

It is well-known that the operator norm II,ll is not Fr6chet differentiable at 
all points. However, if A is a point at which this norm is differentiable, then 
there exists a unit vector x, unique upto a scalar multiple, such that 
[IAx[[ = HAIl, and such that for all B 

d A B 
dt t=o"A + tB[[ = Re ( [-~[ x' x ) .  

See Theorem 3.1 of [1]. Using this, one can easily see that the statement of the 
theorem is true for all matrices A that are points of  differentiability of the norm [[. [[. 

Now let A be any matrix and suppose A is orthogonal to B. Let A = UP be a 
polar decomposition of  A with U unitary and P positive. Then we have 

[IP+zU*BII >~ [IP/[ = p[All 

for all z. In other words, the distance of  P to the linear span of U'B is [IP][. 
Hence, by the Hahn-Banach theorem, there exists a linear functional 4, on the 
space of matrices such that [[~bl[ = 1, ~b(P) = I[PI[, and q~(U*B) = 0. We can 
find a matrix Tsuch that ~b(X) = tr(XT) for all X. Since I[ ll : 1 the trace norm 
(the sum of  singular values) of  T must be 1. So, T has a polar decomposition 

T =  sjuj V, 
\ i = l  J 

n where s~ are singular values of T in  decreasing order, ~ j= l  s: -- 1, the vectors uj 
form an orthonormal basis for H, and V is unitary. We have 
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n 

IIPll = tr(PT) = y ~ s  s tr[Puj(V* uj)* ] 
j=l 

n n n 

= Z j<pu , V*ujl <. Zsjll jll E jllt'll = ItPII. 
j=l /=1 j=l 

Hence, if k is the rank of T (i.e., sk # 0, but s,+l = 0), then [[Pus[ [ = [[PH for 
j =  1 , . . . , k ;  and hence Pug. = [[P[[ug. From the conditions for the Cauchy-  
Schwarz inequality to be an equality we conclude that V'u: is a scalar multiple 
of  Pug., j =  1 , . . . , k .  Obviously, these scalars must be positive, and so, 
V*uj = u: for all j = 1 , . . . ,  k. It follows that T is of  the form 

k 
Z juj.;, 
j=l 

where u s belong to the eigenspace K of P corresponding to its maximal 
eigenvalue HP][. Then O(U*B) = 0 implies 

k 

Zsj<B*Uuj,.j) =0.  
j=l 

If  Q is the orthoprojector on the linear span of the u j, then this equality can be 
rewritten as 

k 

Zsj<QB* UQuj, u j) = O. 
j=I 

Since the numerical range of any operator is a convex set, there exists a unit 
vector x c K such that 

0 = <QB*UQx, x) = (B*Ux, x) = (Ux, Bx). 

So, 

(Ax, gx> = (UPx, Bx> = IIPIl(Ux, gx> = O. [] 

Notice that orthogonality is not a symmetric relation. The special cases 
when A or B is the identity are of particular interest [3,4,8,10]. 

Theorem 1.1 says that I is orthogonal to B if and only if W(B), the numerical 
range of B, contains 0. For  another proof  of this see Remark 4 of [8]. 

The more complicated case when B = I has been important in problems 
related to derivations and operator approximations. In this case the theorem 
(in infinite dimensions) was proved by Stampfli ([10], Theorem 2). A different 
proof  attributed to Ando [3] can be found in [4] (p. 206). It is this proof  that we 
have adopted for the general case. 
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Problems o f  approximat ing an opera tor  by a simpler one have been of  in- 
terest to opera tor  theorists [4], numerical  analysts [6], and statisticians [9]. The 
second special result gives a formula  for the distance o f  an opera tor  to the class 
o f  scalar operators .  We have, by definition, 

dist(A, CI) = rain IIA +zZII. (1.1) 
zEC 

I f  this minimum is at tained at Ao = A 4-zoI  then A0 is or thogonal  to the 
identity. Theorem 1.1 then says that  

dist(A, CI) = IIA011 = max{J(Aox,  y)l:  Ilxll = Ilytt -- 1 and x 3_ y} 

= m a x { l ( A x ,  y)[: Ilxll --Ilyll = 1 and x A_y}. (1.2) 

This result is due to Ando  [3]. We will use it to calculate the diameter  of  the 
unitary orbit of  a matrix. 

The uni tary  orbit  of  a matr ix A is the set of  all matrices of  the form UA U* 
where U is unitary. The diameter  of  this set is 

dA = max{[[VAV* - UAU*[I: U, V unitary } 

= max{[lA - UAU*[]: U unitary}. (1.3) 

Notice that  this diameter  is zero if and only if A is a scalar matrix. The fol- 
lowing theorem is, therefore,  interesting. 

Theorem 1.2. For every  m a t r i x  A we have 

dA ---- 2 dist(A, CI) .  (1.4) 

Proof.  For  every unitary U and scalar z we have 

JIA - UAU*I[ = II(A - z l )  - U(A  - zI)U*[I ~<2[IA - zll[. 

So, 

dA ~< 2 dist(A, CI). 

As before we choose Ao = A + zol  and an or thogonal  pair o f  unit vectors x and 
y such that 

dist(A, CI) = [[A0[[ = (Aox, y) .  

By the condit ion for equality in the Cauchy-Schwarz  inequality we must  have 
A0x -- [[A0[[y. We can find a unitary U satisfying Ux = x and Uy = - y .  Then 
UAoU*x = -tlAo[[y. We have 

dA ~- dAo >~ [[A0x - UAoU*x[[ = 2][A0[[ = 2 dist(A, CI). [] 

F r o m  (1.3) and (1.4) we have 
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max{ inA U - UA LI: u unitary} = 2 dist(A, CI) .  (1.5) 

I f  X is any opera to r  with [[XI[ = 1, then X can be writ ten as X = ~ (V + W) 
where V and W are unitary.  (Use the singular value decompos i t ion  of  X, and 
observe that  every positive number  between 0 and 1 can be expressed as 
1 (ei0 _1_ e-i0).) Hence we have 

max  IIAX - NAil = 2 dist(A, CI) .  (1.6) 
IlXll=l 

Recall that  the ope ra to r  hA (X) = A X  - XA on the space o f  matr ices is called an 
inner derivation.  The  preceding remark  shows that  the norm of  6A is 2 
dist(A, CI) .  This was proved  (for opera tors  in a Hi lber t  space) by Stampfli  [10]. 
The p r o o f  we have given for  matr ices is simpler. In Section 4 we will show how 
to prove  the result for  infinite-dimensional Hilbert  spaces. 

A trivial upper  bound  for dA is 2llAI[. This  bound  can be attained. For  ex- 
ample,  any block diagonal  matr ix  of  the fo rm 

is unitarily similar to 

[ oj0 
A simple lower bound  for  dx is given in our  next proposi t ion.  

Proposit ion 1.3. Le t  A be any m a t r i x  with singular values Sl(A) /> . . -  /> s , (A) .  
Then 

d.~ >~ s l (A)  - s,(A). (1.7) 

Proof.  Let  z be any complex  n u m b e r  with polar  fo rm z : re i°. Let A = UP be a 
polar  decomposi t ion  of  A. Then 

II A - zlII = II P - z U * l l  >~ i n f { l l P - z V l l :  V unitary} 

= inf{lIP - rVll: v unitary}. 

By a theorem of  Fan  and Hoffman,  the value of  the last inf imum is [IP - rill 
(see [5], p. 276). So 

min IlA - zll[ >1 min lIP - rill : min max [sj - r I 
zEC r >/0 r ) 0 j 

= ½ (s, (A) - s , (A) ) .  

The proposi t ion  now follows f rom Theorem 1.2. [] 
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If A is a Hermitian matrix then there is equality in (1.7). 

2. The Sehatten norms 

For 1 ~<p < c~, the Schatten p-norm of  A is defined as 

IIAllp = s j (A))  p , 

where sl(A) >>.... >>. sn(A) are the singular values of  A. 
If  1 < p < ec, then the norm II,llp is Fr~chet differentiable at every A. In this 

case 

d =0[IA + = Re tr IAI p-IU*B, tB[IPp (2. 1) P 

for every B, where A = UIAI is a polar decomposition of  A. Here IAI = (A'A) 1/2. 
I f p  = 1 this is true if A is invertible. See [2] (Theorem 2.1) and [1] (Theorems 
2.2 and 2.3). 

As before, we say that A is orthogonal to B in the Schatten p-norm (for a 
given 1 ~<p < oe) if 

IIA +zBII~ I> IlAl[p foral l  z. (2.2) 

The case p = 2 is special. The quantity 

(A, B) -- tr A*B 

defines an inner product on the space of  matrices, and the norm associated with 
this inner product is [].[[2. The condition (2.2) for orthogonality is then 
equivalent to the usual Hilbert space condition (A, B) = 0. Our next theorem 
includes this as a very special case. 

Theorem 2.1. Let A have a polar decomposition A = UIA[. I f  for any 1 <<.p < oe 
we have 

tr[A[ p-I U*B = 0, (2.3) 

then A is orthogonal to B in the Schatten p-norm. The converse is true for all A, i f  
1 < p < c~, and for all invertible A, i f p  = 1. 

Proof. If (2.3) is satisfied, then for all z 

tr IAI p = tr [AIP-I([AI +zU*B). 

Hence, by H61der's Inequality ([5], p. 88), 
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tr IAI p <~ 111AI ~-' [Iql[ IA[ + zU*BIIp = II[AI p-' Ilq[[ A + zBllp 

= [tr ]AI(P-I)q] 1/q IIA +zBIl~ = (tr IAI")J/°IIA + zBIl~, 

where q is the index conjugate to p (i.e., 1/p + 1/q = 1). Since 

(tr [ALP) '-'/q = (tr ]AqP) 1/p = IlAI]p, 

this shows that 

[IA[[p~< IIA +zB]lp forall  z. 

Conversely, if (2.2) is true, then 

Ilei°A + tnllp >! Ilei°A[Ip 

for all real t and 0. Using the expression (2.1) we see that this implies 

Re tr(lAI p-' e-i°U*B) = 0, 

for all A if I < p < co, and for invertible A i fp  = 1. Since this is true for all 0, 
we get (2.3). [] 

The following example shows that the case p = 1 is exceptional. If 

A =  (10 0)0 and B = (  00 ~ ) '  

then 

[IA + zBIIl ~ IIAII1 

However, 

tr U*B = tr B ¢ 0. 

for all z. 

The ideas used in our proof of Theorem 2.1 are adopted from Kittaneh [8] 
who restricted himself to the special case A = 1. 

3. Remarks 

Remark 3.1. Theorem 1.1 can be extended to the infinite-dimensional case with 
a small modification. Let A and B be bounded operators on an infinite- 
dimensional Hilbert space H. Then A is orthogonal to B if and only if there 
exists a sequence {xn} of unit vectors such that llAx.It--, IIAII, and 
(Axe, Bx~) ---, O. Indeed, if such a sequence {xn} exists then 
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I[A +zBII 2 >/II(A +zB)x,,l[ 2 

= []Ax.[[ 2 + [zlZllBx.][ z + 2 Re (~ (Ax . ,Bx . ) ) .  

IIA + zBll 2 ~ lim supll(A + zB)x.II 2 ~ IIAId 2. 

To prove the converse we first note that Theorem 1.1 can be reformulated in 
the following way: if A and B are operators acting on a finite-dimensional 
Hilbert space H then 

min I[A +zBII : max{ l (Ax ,y)[ :  Ilxl[ = Ilyll = 1 and y ± Bx}.  

It follows that for operators A and B acting on an infinite-dimensional Hilbert 
space H we have 

min [[A +zB[[ = sup{l (Ax,y)[:  [Ix[[ : I[Y][ = 1 and y ± Bx}.  

This implication was proved in the special case when B = I in [4] (p. 207). A 
slight modification of the proof  yields the general case. Assume now that A is 
orthogonal to B. Then rain IIA + zB[] = HAIl. Therefore we can find sequences 
of unit vectors {xn}, {y~} E H such that (Axn,y,) -~ ][A][ andy ,  ± Bx,.  It follows 
that [[Axn[] ---* J[A[I, and consequently 

Axn 
~0 

Y° IIAx.II 

and 

lim (Ax.,Bx.)= lim IpAx~II(y.,Bx.)= O. 

This completes the proof. 

Remark 3.2. The statement following (1.6) about norms of derivations can also 
be proved for infinite-dimensional Hilbert spaces by a limiting argument. 

Let H be an infinite-dimensional separable Hilbert space, and let A be a 
bounded operator on H. Let {P.} be a sequence of finite rank projections in- 
creasing to the identity. Denote by A. the finite rank oper~itor P,,A restricted to 
the range of P~. Let min:~e [IA, - zll[ = IIA,, - z,I[[. For each n we have 

sup 
IlXll ~< 1 

f lAX-gAll  ~ sup 
IXl~ <~ 1 

>~ sup 
JtX]I ~< 1 

= sup 
IlXll <~ 1 

I IAp,~Yp. - p.XP.All  

lIP. (AP.XP. - P,~P.A )P. II 

II (P.A P.) (P.XP.) - (P.XP.) (P.A Po)lf 

= 2][An -z , , III .  
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Pass ing  to a subsequence ,  if  necessary,  a s s u m e  tha t  z, ~ z0. T h e n  

l im [tA, - z,I[I = [IA - zoZrl >1 dist(A, CI) .  
n ~ o c  

Hence ,  

sup IIAX -XAII >/2 dist(A, CI). 
IIXII ~< l 

T h u s  the n o r m  o f  the  de r iva t ion  6A is equa l  to 2 dist(A, CI) .  

R e m a r k  3.3. In  view o f  T h e o r e m  1.1 we are t e m p t e d  to m a k e  the fo l lowing  

conjec ture .  Let  I1.11 n o w  represen t  a n y  n o r m  o n  the vec to r  space C", a n d  also 
the n o r m  it induces  o n  the  space o f  n x n mat r i ces  ac t ing  as l inear  o p e r a t o r s  o n  

C ". W e  con jec tu re  tha t  

IIA + zBII >1 IIAll for all z 

if  a n d  on ly  if there  exists a u n i t  vec tor  x such tha t  IIAxll = IIAII a n d  

IIAx + zgxll >t IIAxll fo r  all z. 
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