Orthogonality of matrices and some distance problems

Rajendra Bhatia ${ }^{\text {a,* }}$, Peter Šemrl ${ }^{\text {b,1 }}$
${ }^{a}$ Indian Statistical Institute, 7, S.J.S. Sansanwal Marg, New Dethi - I10016. India
${ }^{\text {b }}$ Faculty of Mechanical Engineering. University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
Received 18 February 1998; accepted 29 June 1998
Submitted by V. Mehrmann
Dedicated to Ludwig Elsner on the occasion of his 60th birthday

Abstract

If A and B are matrices such that $\|A+z B\| \geqslant\|A\|$ for all complex numbers z, then A is said to be orthogonal to B. We find necessary and sufficient conditions for this to be the case. Some applications and generalisations are also discussed. © 1999 Elsevier Science Inc. All rights reserved.

Keywords: Birkhoff - James orthogonality; Derivative; Norms; Distance problems

Let A and B be two $n \times n$ matrices. The matrix A will be identified with an operator acting on an n-dimensional Hilbert space H in the usual way. The symbol $\|A\|$ stands for the norm of this operator. A is said to be orthogonal to B (in the Birkhoff-James sense [7]) if $\|A+z B\| \geqslant\|A\|$ for every complex number z. In Section 1 of this note we give a necessary and sufficient condition for A to be orthogonal to B. The special case when $B=I$ can be applied to get some distance formulas for matrices as well as a simple proof of a well-known result of Stampfli on the norm of a derivation. In Section 2 we consider the analogous problem when the norm $\|$.$\| is replaced by the Schatten p$-norm. The special case $A=I$ of this problem has been studied by Kittaneh [8], and used to

[^0]characterise matrices whose trace is zero. In Section 3 we make some remarks on how to extend some results from Section 1 to infinite-dimensional Hilbert spaces, and formulate a conjecture about orthogonality with respect to induced matrix norms.

1. The operator norm

Theorem 1.1. A matrix A is orthogonal to B if and only if there exists a unit vector $x \in H$ such that $\|A x\|=\|A\|$ and $\langle A x, B x\rangle=0$.

Proof. If such a vector x exists then

$$
\|A+z B\|^{2} \geqslant\|(A+z B) x\|^{2}=\|A x\|^{2}+|z|^{2}\|B x\|^{2} \geqslant\|A x\|^{2}=\|A\|^{2} .
$$

So, the sufficiency of the condition is obvious.
Before proving the converse in full generality we make a remark that serves three purposes. It gives a proof in a special case, indicates why the condition of the theorem is a natural one, and establishes a connection with the theorem in Section 2.

It is well-known that the operator norm $\|$.$\| is not Fréchet differentiable at$ all points. However, if A is a point at which this norm is differentiable, then there exists a unit vector x, unique upto a scalar multiple, such that $\|A x\|=\|A\|$, and such that for all B

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0}\|A+t B\|=\operatorname{Re}\left\langle\frac{A}{\|A\|} x, B x\right\rangle .
$$

See Theorem 3.1 of [1]. Using this, one can easily see that the statement of the theorem is true for all matrices A that are points of differentiability of the norm $\|$.$\| .$

Now let A be any matrix and suppose A is orthogonal to B. Let $A=U P$ be a polar decomposition of A with U unitary and P positive. Then we have

$$
\left\|P+z U^{*} B\right\| \geqslant\|P\|=\|A\|
$$

for all z. In other words, the distance of P to the linear span of $U^{*} B$ is $\|P\|$. Hence, by the Hahn-Banach theorem, there exists a linear functional ϕ on the space of matrices such that $\|\phi\|=1, \phi(P)=\|P\|$, and $\phi\left(U^{*} B\right)=0$. We can find a matrix T such that $\phi(X)=\operatorname{tr}(X T)$ for all X. Since $\|\phi\|=1$ the trace norm (the sum of singular values) of T must be $1 . S$ So, T has a polar decomposition

$$
T=\left(\sum_{j=1}^{n} s_{j} u_{j} u_{j}^{*}\right) V,
$$

where s_{j} are singular values of T in decreasing order, $\sum_{j=1}^{n} s_{j}=1$, the vectors u_{j} form an orthonormal basis for H, and V is unitary. We have

$$
\begin{aligned}
\|P\| & =\operatorname{tr}(P T)=\sum_{j=1}^{n} s_{j} \operatorname{tr}\left[P u_{j}\left(V^{*} u_{j}\right)^{*}\right] \\
& =\sum_{j=1}^{n} s_{j}\left\langle P u_{j}, V^{*} u_{j}\right\rangle \leqslant \sum_{j=1}^{n} s_{j}\left\|P u_{j}\right\| \leqslant \sum_{j=1}^{n} s_{j}\|P\|=\|P\| .
\end{aligned}
$$

Hence, if k is the rank of T (i.e., $s_{k} \neq 0$, but $s_{k+1}=0$), then $\left\|P u_{j}\right\|=\|P\|$ for $j=1, \ldots, k$; and hence $P u_{j}=\|P\| u_{j}$. From the conditions for the CauchySchwarz inequality to be an equality we conclude that $V^{*} u_{j}$ is a scalar multiple of $P u_{j}, j=1, \ldots, k$. Obviously, these scalars must be positive, and so, $V^{*} u_{j}=u_{j}$ for all $j=1, \ldots, k$. It follows that T is of the form

$$
T=\sum_{j=1}^{k} s_{j} u_{j} u_{j}^{*}
$$

where u_{j} belong to the eigenspace K of P corresponding to its maximal eigenvalue $\|P\|$. Then $\phi\left(U^{*} B\right)=0$ implies

$$
\sum_{j=1}^{k} s_{j}\left\langle B^{*} U u_{j}, u_{j}\right\rangle=0
$$

If Q is the orthoprojector on the linear span of the u_{j}, then this equality can be rewritten as

$$
\sum_{j=1}^{k} s_{j}\left\langle Q B^{*} U Q u_{j}, u_{j}\right\rangle=0
$$

Since the numerical range of any operator is a convex set, there exists a unit vector $x \in K$ such that

$$
0=\left\langle Q B^{*} U Q x, x\right\rangle=\left\langle B^{*} U x, x\right\rangle=\langle U x, B x\rangle
$$

So,

$$
\langle A x, B x\rangle=\langle U P x, B x\rangle=\|P\|\langle U x, B x\rangle=0
$$

Notice that orthogonality is not a symmetric relation. The special cases when A or B is the identity are of particular interest $[3,4,8,10]$.

Theorem 1.1 says that I is orthogonal to B if and only if $W(B)$, the numerical range of B, contains 0 . For another proof of this see Remark 4 of [8].

The more complicated case when $B=I$ has been important in problems related to derivations and operator approximations. In this case the theorem (in infinite dimensions) was proved by Stampfli ([10], Theorem 2). A different proof attributed to Ando [3] can be found in [4] (p. 206). It is this proof that we have adopted for the general case.

Problems of approximating an operator by a simpler one have been of interest to operator theorists [4], numerical analysts [6], and statisticians [9]. The second special result gives a formula for the distance of an operator to the class of scalar operators. We have, by definition,

$$
\begin{equation*}
\operatorname{dist}(A, \mathbb{C} I)=\min _{z \in \mathbb{C}}\|A+z I\| \tag{1.1}
\end{equation*}
$$

If this minimum is attained at $A_{0}=A+z_{0} I$ then A_{0} is orthogonal to the identity. Theorem 1.1 then says that

$$
\begin{align*}
\operatorname{dist}(A, \mathbb{C} I) & =\left\|A_{0}\right\|=\max \left\{\left|\left\langle A_{0} x, y\right\rangle\right|:\|x\|=\|y\|=1 \text { and } x \perp y\right\} \\
& =\max \{|\langle A x, y\rangle|:\|x\|=\|y\|=1 \text { and } x \perp y\} . \tag{1.2}
\end{align*}
$$

This result is due to Ando [3]. We will use it to calculate the diameter of the unitary orbit of a matrix.

The unitary orbit of a matrix A is the set of all matrices of the form $U A U^{*}$ where U is unitary. The diameter of this set is

$$
\begin{align*}
d_{A} & =\max \left\{\left\|V A V^{*}-U A U^{*}\right\|: U, V \text { unitary }\right\} \\
& =\max \left\{\left\|A-U A U^{*}\right\|: U \text { unitary }\right\} \tag{1.3}
\end{align*}
$$

Notice that this diameter is zero if and only if A is a scalar matrix. The following theorem is, therefore, interesting.

Theorem 1.2. For every matrix A we have

$$
\begin{equation*}
d_{A}=2 \operatorname{dist}(A, \mathbb{C} I) \tag{1.4}
\end{equation*}
$$

Proof. For every unitary U and scalar z we have

$$
\left\|A-U A U^{*}\right\|=\left\|(A-z I)-U(A-z I) U^{*}\right\| \leqslant 2\|A-z I\|
$$

So,

$$
d_{A} \leqslant 2 \operatorname{dist}(A, \mathbb{C} I)
$$

As before we choose $A_{0}=A+z_{0} I$ and an orthogonal pair of unit vectors x and y such that

$$
\operatorname{dist}(A, \mathbb{C} I)=\left\|A_{0}\right\|=\left\langle A_{0} x, y\right\rangle
$$

By the condition for equality in the Cauchy-Schwarz inequality we must have $A_{0} x=\left\|A_{0}\right\| y$. We can find a unitary U satisfying $U x=x$ and $U y=-y$. Then $U A_{0} U^{*} x=-\left\|A_{0}\right\| y$. We have

$$
d_{A}=d_{A_{0}} \geqslant\left\|A_{0} x-U A_{0} U^{*} x\right\|=2\left\|A_{0}\right\|=2 \operatorname{dist}(A, \mathbb{C} I)
$$

From (1.3) and (1.4) we have

$$
\begin{equation*}
\max \{\|A U-U A\|: U \text { unitary }\}=2 \operatorname{dist}(A, \mathbb{C} I) \tag{1.5}
\end{equation*}
$$

If X is any operator with $\|X\|=1$, then X can be written as $X=\frac{1}{2}(V+W)$ where V and W are unitary. (Use the singular value decomposition of X, and observe that every positive number between 0 and 1 can be expressed as $\frac{1}{2}\left(\mathrm{e}^{\mathrm{i} \theta}+\mathrm{e}^{-\mathrm{i} \theta}\right)$.) Hence we have

$$
\begin{equation*}
\max _{\|X\|=1}\|A X-X A\|=2 \operatorname{dist}(A, \mathbb{C} I) \tag{1.6}
\end{equation*}
$$

Recall that the operator $\delta_{A}(X)=A X-X A$ on the space of matrices is called an inner derivation. The preceding remark shows that the norm of δ_{A} is 2 $\operatorname{dist}(A, C I)$. This was proved (for operators in a Hilbert space) by Stampfli [10]. The proof we have given for matrices is simpler. In Section 4 we will show how to prove the result for infinite-dimensional Hilbert spaces.

A trivial upper bound for d_{A} is $2\|A\|$. This bound can be attained. For example, any block diagonal matrix of the form

$$
\left[\begin{array}{cc}
X & 0 \\
0 & -X
\end{array}\right]
$$

is unitarily similar to

$$
\left[\begin{array}{cc}
-X & 0 \\
0 & X
\end{array}\right]
$$

A simple lower bound for d_{A} is given in our next proposition.
Proposition 1.3. Let A be any matrix with singular values $s_{1}(A) \geqslant \cdots \geqslant s_{n}(A)$. Then

$$
\begin{equation*}
d_{A} \geqslant s_{1}(A)-s_{n}(A) \tag{1.7}
\end{equation*}
$$

Proof. Let z be any complex number with polar form $z=r \mathrm{e}^{\mathrm{i} \theta}$. Let $A=U P$ be a polar decomposition of A. Then

$$
\begin{aligned}
\|A-z I\| & =\left\|P-z U^{*}\right\| \geqslant \inf \{\|P-z V\|: V \text { unitary }\} \\
& =\inf \{\|P-r V\|: V \text { unitary }\} .
\end{aligned}
$$

By a theorem of Fan and Hoffman, the value of the last infimum is $\|P-r I\|$ (see [5], p. 276). So

$$
\begin{aligned}
\min _{z \in \mathbb{C}}|A-z I| \geqslant \min _{r \geqslant 0}\|P-r I\| & =\min _{r \geqslant 0} \max _{j}\left|s_{j}-r\right| \\
& =\frac{1}{2}\left(s_{1}(A)-s_{n}(A)\right) .
\end{aligned}
$$

The proposition now follows from Theorem 1.2.

If A is a Hermitian matrix then there is equality in (1.7).

2. The Schatten norms

For $1 \leqslant p<\infty$, the Schatten p-norm of A is defined as

$$
\|A\|_{p}=\left[\sum_{j=1}^{n}\left(s_{j}(A)\right)^{p}\right]^{1 / p}
$$

where $s_{1}(A) \geqslant \cdots \geqslant s_{n}(A)$ are the singular values of A.
If $1<p<\infty$, then the norm $\|\cdot\|_{p}$ is Fréchet differentiable at every A. In this case

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \| A+\left.t B\right|_{p} ^{p}=p \operatorname{Re} \operatorname{tr}|A|^{p-1} U^{*} B \tag{2.1}
\end{equation*}
$$

for every B, where $A=U|A|$ is a polar decomposition of A. Here $|A|=\left(A^{*} A\right)^{1 / 2}$. If $p=1$ this is true if A is invertible. See [2] (Theorem 2.1) and [1] (Theorems 2.2 and 2.3).

As before, we say that A is orthogonal to B in the Schatten p-norm (for a given $1 \leqslant p<\infty$) if

$$
\begin{equation*}
\|A+z B\|_{p} \geqslant\|A\|_{p} \text { for all } z \tag{2.2}
\end{equation*}
$$

The case $p=2$ is special. The quantity

$$
\langle A, B\rangle=\operatorname{tr} A^{*} B
$$

defines an inner product on the space of matrices, and the norm associated with this inner product is $\|\cdot\|_{2}$. The condition (2.2) for orthogonality is then equivalent to the usual Hilbert space condition $\langle A, B\rangle=0$. Our next theorem includes this as a very special case.

Theorem 2.1. Let A have a polar decomposition $A=U|A|$. If for any $1 \leqslant p<\infty$ we have

$$
\begin{equation*}
\operatorname{tr}|A|^{p-1} U^{*} B=0 \tag{2.3}
\end{equation*}
$$

then A is orthogonal to B in the Schatten p-norm. The converse is true for all A, if $1<p<\infty$, and for all invertible A, if $p=1$.

Proof. If (2.3) is satisfied, then for all z

$$
\operatorname{tr}|A|^{p}=\operatorname{tr}|A|^{p-1}\left(|A|+z U^{*} B\right)
$$

Hence, by Hölder's Inequality ([5], p. 88),

$$
\begin{aligned}
\operatorname{tr}|A|^{p} & \leqslant\left\||A|^{p-1}\right\|_{q}\left\|\left.A\left|+z U^{*} B\left\|_{p}=\right\|\right| A\right|^{p-1}\right\|_{q}\|A+z B\|_{p} \\
& =\left[\operatorname{tr}|A|^{(p-1) q}\right]^{1 / q}\|A+z B\|_{p}=\left(\operatorname{tr}|A|^{p}\right)^{1 / q}\|A+z B\|_{p},
\end{aligned}
$$

where q is the index conjugate to p (i.e., $1 / p+1 / q=1$). Since

$$
\left(\operatorname{tr}|A|^{p}\right)^{1-1 / q}=\left(\operatorname{tr}|A|^{p}\right)^{1 / p}=\|A\|_{p}
$$

this shows that

$$
\|A\|_{p} \leqslant\|A+z B\|_{p} \quad \text { for all } z .
$$

Conversely, if (2.2) is true, then

$$
\left\|\mathrm{e}^{\mathrm{i} \theta} A+t B\right\|_{p} \geqslant\left\|\mathrm{e}^{\mathrm{i} \theta} A\right\|_{p}
$$

for all real t and θ. Using the expression (2.1) we see that this implies

$$
\operatorname{Re} \operatorname{tr}\left(|A|^{p-1} \mathrm{e}^{-i \theta} U^{*} B\right)=0
$$

for all A if $1<p<\infty$, and for invertible A if $p=1$. Since this is true for all θ, we get (2.3).

The following example shows that the case $p=1$ is exceptional. If

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

then

$$
\|A+z B\|_{1} \geqslant\|A\|_{1} \quad \text { for all } z
$$

However,

$$
\operatorname{tr} U^{*} B=\operatorname{tr} B \neq 0
$$

The ideas used in our proof of Theorem 2.1 are adopted from Kittaneh [8] who restricted himself to the special case $A=I$.

3. Remarks

Remark 3.1. Theorem 1.1 can be extended to the infinite-dimensional case with a small modification. Let A and B be bounded operators on an infinitedimensional Hilbert space H. Then A is orthogonal to B if and only if there exists a sequence $\left\{x_{n}\right\}$ of unit vectors such that $\left\|A x_{n}\right\| \rightarrow\|A\|$, and $\left\langle A x_{n}, B x_{n}\right\rangle \rightarrow 0$. Indeed, if such a sequence $\left\{x_{n}\right\}$ exists then

$$
\begin{aligned}
\|A+z B\|^{2} & \geqslant\left\|(A+z B) x_{n}\right\|^{2} \\
& =\left\|A x_{n}\right\|^{2}+|z|^{2}\left\|B x_{n}\right\|^{2}+2 \operatorname{Re}\left(\bar{z}\left\langle A x_{n}, B x_{n}\right\rangle\right) .
\end{aligned}
$$

So,

$$
\|A+z B\|^{2} \geqslant \lim \sup \left|(A+z B) x_{n}\right|^{2} \geqslant\|A\|^{2} .
$$

To prove the converse we first note that Theorem 1.1 can be reformulated in the following way: if A and B are operators acting on a finite-dimensional Hilbert space H then

$$
\min \|A+z B\|=\max \{|\langle A x, y\rangle|:\|x\|=\|y\|=1 \text { and } y \perp B x\} .
$$

It follows that for operators A and B acting on an infinite-dimensional Hilbert space H we have

$$
\min \|A+z B\|=\sup \{|\langle A x, y\rangle|:\|x\|=\|y\|=1 \text { and } y \perp B x\} \text {. }
$$

This implication was proved in the special case when $B=I$ in [4] (p. 207). A slight modification of the proof yields the general case. Assume now that A is orthogonal to B. Then $\min \|A+z B\|=\|A\|$. Therefore we can find sequences of unit vectors $\left\{x_{n}\right\},\left\{y_{n}\right\} \in H$ such that $\left\langle A x_{n}, y_{n}\right\} \rightarrow\|A\|$ and $y_{n} \perp B x_{n}$. It follows that $\left\|A x_{n}\right\| \rightarrow\|A\|$, and consequently

$$
y_{n}-\frac{A x_{n}}{\left\|A x_{n}\right\|} \rightarrow 0
$$

and

$$
\lim _{n \rightarrow \infty}\left\langle A x_{n}, B x_{n}\right\rangle=\lim _{n \rightarrow \infty}\left\|A x_{n}\right\|\left\langle y_{n}, B x_{n}\right\rangle=0 .
$$

This completes the proof.
Remark 3.2. The statement following (1.6) about norms of derivations can also be proved for infinite-dimensional Hilbert spaces by a limiting argument.

Let H be an infinite-dimensional separable Hilbert space, and let A be a bounded operator on H. Let $\left\{P_{n}\right\}$ be a sequence of finite rank projections increasing to the identity. Denote by A_{n} the finite rank operator $P_{n} A$ restricted to the range of P_{n}. Let $\min _{z \in \mathbb{C}}\left\|A_{n}-z I\right\|=\left\|A_{n}-z_{n} I\right\|$. For each n we have

$$
\begin{aligned}
\sup _{\|X\| \leqslant 1}\|A X-X A\| & \geqslant \sup _{\|X\| \leqslant 1}\left\|A P_{n} X P_{n}-P_{n} X P_{n} A\right\| \\
& \geqslant \sup _{\|X\| \leqslant 1}\left\|P_{n}\left(A P_{n} X P_{n}-P_{n} X P_{n} A\right) P_{n}\right\| \\
& =\sup _{\|X\| \leqslant 1}\left\|\left(P_{n} A P_{n}\right)\left(P_{n} X P_{n}\right)-\left(P_{n} X P_{n}\right)\left(P_{n} A P_{n}\right)\right\| \\
& =2\left\|A_{n}-z_{n} I\right\| .
\end{aligned}
$$

Passing to a subsequence, if necessary, assume that $z_{n} \rightarrow z_{0}$. Then

$$
\lim _{n \rightarrow \infty}\left\|A_{n}-z_{n} I\right\|=\left\|A-z_{0} I\right\| \geqslant \operatorname{dist}(A, \mathbb{C} I)
$$

Hence,

$$
\sup _{\|X\| \leqslant 1}\|A X-X A\| \geqslant 2 \operatorname{dist}(A, \mathbb{C} I) .
$$

Thus the norm of the derivation δ_{A} is equal to $2 \operatorname{dist}(A, \mathbb{C} I)$.
Remark 3.3. In view of Theorem 1.1 we are tempted to make the following conjecture. Let $\|$.$\| now represent any norm on the vector space \mathbb{C}^{n}$, and also the norm it induces on the space of $n \times n$ matrices acting as linear operators on \mathbb{C}^{n}. We conjecture that

$$
\|A+z B\| \geqslant\|A\| \quad \text { for all } z
$$

if and only if there exists a unit vector x such that $\|A x\|=\|A\|$ and

$$
\|A x+z B x\| \geqslant\|A x\| \quad \text { for all } z
$$

Acknowledgement

This work was begun during the first author's visit to Slovenia in September 1997. Both authors are thankful to the Slovene Ministry of Science and Technology for its support.

References

[1] T.J. Abatzoglou, Norm derivatives on spaces of operators, Math. Ann. 239 (1979) 129-135.
[2] J.G. Aiken, J.A. Erdos, J.A. Goldstein, Unitary approximation of positive operators, Illinois J. Math. 24 (1980) 61-72.
[3] T. Ando, Distance to the set of thin operators, unpublished report, 1972.
[4] C. Apostol, L.A. Fialkow, D.A. Herrero, D. Voiculescu, Approximation of Hilbert Space Operators II, Pitman, Boston, 1984.
[5] R. Bhatia, Matrix Analysis, Springer, New York, 1997.
[6] N.J. Higham, Matrix nearness problems and applications, in: Applications of Matrix Theory, Oxford University Press, Oxford, 1989.
[7] R.C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. 61 (1947) 265-292.
[8] F. Kittaneh, On zero-trace matrices, Linear Algebra Appl. 151 (1991) 119-124.
[9] C.R. Rao, Matrix approximations and reduction of dimensionality in multivariate statistical analysis, in: Multivariate Analysis - V, North-Holland, Amsterdam, 1980.
[10] J.G. Stampfli, The norm of a derivation, Pacific J. Math. 33 (1970) 737-747.

[^0]: * Corresponding author. E-mail; rbh@isid.ernet.in.
 ${ }^{1}$ E-mail: peter.semrl@uni-mb.si.

