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Motivated hy the firat-order Pitman closeness of best aaymptotically
normal sstimaiors and some recent developmenta on higher-order agymp-
totic efficiency of eatimataors, a gerond-order seymptotic theory is developed
for comnpariaon of eatimatora under the Pitman closeness critorion, covering
hoth the casea without and with nuisance parameters. The notion of second-
order Pilman admissibility is alao developed.

1. Introduction. Hest asymptotically nermal (BAIN) estimators are known
to be firat-order efficient in the light of conventional quadratic riek a3 well as
the Pitman eloseness critecion (PCCY, and an asymptotic first-order represceo-
tatiom of catimators plays a vital rele in this context [sce, Keating, Mason and
Sen (1993}, Chapter 6], The past two decades have witnessed a phenomenal
growth of research Hterature on higher-order asymptotic efficiency wherein
Edgeworth cxpansions, hias corrections and (asyvmptotic) median unbiasedness
have made significant contributiona toward the aecomplished unifications, al-
though the work is mosily confined to quadratic or related (e.g., bowl-shaped)
risk functions. The ploncering work of RBao (1981) has led to a rovival of in-
terest in recent yeara in atudiea on the PCC. In a logically integrated form, a
gystematic and detailed account of the advantages and disadvantages of the
PCC compared to the classical measures baged on rigk funetiona is contained in
the recent work of Kealing, Mason and Sen (1893), The carhier chaptors of this
monograph deal with the genesis of the PCC along with the related anomalies
and eontroveraies, while the last two chapters are devoted to characterizations
of Pitman closest cetimators (fur varions parametric families) and unification of
the PCC with the conventional decision-theorelic measures in & simple asymp-
totic framework. However, vory little progress has so far been made beyond
the firat-order aaymptotica. Even in a conventional deciaion-theoretic aetup, in
the eontext of higher-order asymptotics, it ig not vneommon [see, Ghosh and
Sinha (1981} to confine attention only to a {(smaller) class of estimators which
is in & senee asymptotically second-order complete, and the recent noteworthy
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work of Severind (1991, 1992} alae pertaine to a gimilar elass (whers transitfivity,
equivariance and other desirable properties in a deasion-theoretie formulation
may not be that important, and may not even hold, in general}. To us, the use
of the PCC in the context of this highernrder optimality of eztimators 2eoms
to he an intoresting supplement to the vsual decision-theoretic formulation for
the following reasons. It ahows that there ia an intuitively reasonable way of
comparing estimators which may not preserve transitivity so that transitivity
may not be as fundamental as we vsnally assume it to be. This seems to be the
view of Blyth and Pathak (1985) and is shared by others. Moreover, il points
to the importances of the jeint distribution of estimators which 1s also 1Emored
in the vaual decigion-theoretic formulationa. In this context, it seema to be of
some interest to ecompare from this point of view members of a clags of estima-
tors which is asymptotically second-order complete in a certain sense lef Ghosh
and Sinha (1981} and Ghosh (19%94)]. It therfore appears to us that much work
remains to be done on higher-order asymptotic comparisoms of cstimators with
regard Lo the PCC and with reference to general parametric families, and the
currcnt study portaing to this general ohjective.

The PCC, cesentially a measure of pairwize comparisons, extends to compar-
isons within a suitable class of estimators only under additional restrictions
sich as equivariance {with reapect to suitable groups of transformations), an-
cillarity {of the difference of pairs of estimators in the claga) or asymplotic
first-order representation (yielding the asymptotic normality) and so0 on. As
mentioned before, the usual definition of Pitman closeness extends in a nat-
ural way to cover the second-order case (gee Section 23, but it has a natural
appeal only when the competing estimators are first-order officiont, that is,
they are BAN in a general senae, For this reason, and given the affinity of BAN
egatimators to the classieal maxdmum likelihood eatimators (MLE's), in the cur-
rent study we confine ourselves to the class of estimators which essentially
adhere to the MLE (by amall hias corrections). This ales enables us to atudy the
gecond-order Pitman admissibility of estimators within the same class. In this
parametric framework, the pregent weork attempta to study the second-order
admissibility results i light of the PCC, We confine ourselves Lo the caze of a
single parameter of intereat, although the results in Scetion 3 pertain to a morc
general case where there are gome nuisance parameters,

2. The one-parameter case. Lot [X;; i = 1) be azequence of independent
and identically digiributed {1.i.d.) random variables (rv’a) with a distribution
function (d.f.) F admitting a density function f{x; #) with reapect Lo some gigma-
finite measure p, where # is an unknewn scalar parameter; £, the paramctor
apace for &, iz the real line B or some open subaet of . We adhere to the
Azsumptionz in Bhattacharya and Ghogh (1878) with & = 3 {in their netation)
and with f1-; &) and g(-; 81 in their notation interpreted, respectively, as log £ 4)
and f{; 0} in our notation. Let #(= &,) be the MLE of # based on X, X,
{where n is the aample aize), defined in the sense of Theorem 3 of Bhattacharya
and {Zhosh (1978), Then, along the lines of Gheosh and Sinha (1981} [zee aleo
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Pianzagl and Wefelmeyer (1978)], we consider a class @ of estimators of the form
T, =6 +n7'Q,

where the following hold:

1. @ = d(#) +0,(1) under &, d{-) being continuoualy differentiable with a fune-
tiomal form independent of n;
2. for cvery pogitive £, free from », and every 8 C &,

P&{lQ —d8)] = ’} = D{H_lm] A8 1 — oo

The class © is quite large. In particular jsee, Ghosh and Sinha (1981}, by Theo-
rem 3 of Bhatltacharya and Ghosh (1978), it includes all eatimators of the form
8 + n=1d(#), where di) satisfles condition 1,

Let F = Eg{[{rjxr?ﬁjlng FiX: 0% denote the per-ohservation Fisher informa-
tion at #, which is assumed to be positive for every # c &, Also, let Ly, =
Equ{((8/8M1og £ 807}, Note that both T and Ly 14 arc hmctmna of #, The fol-
lewing lemma will he useful in the sequol.

Luiwma 2.1, Let T3 and Ty, be distinct members of © such that = G+ n-lge
and T, = # + n-lG with G* = d* {81+ o, (1) and @ = dif) + 0,01}, under 8. Then,
for each @ such fhat &700) 2 A8,

Po{|Ty 8 << Ty — 0]} = 1+ (3)2mn)" V22 sqn {al6) — d*(9))
s

+
{ (&Y + %8} - ;-I_EL[L-]} +D{tn_l"’ﬂ’]|.

Lemma 2.1 iz similar to a reault in Severind (1992), who considered hinsed
and bias-corrected estimators of a one-dimensional intercst parameter with
bias defined in the usual sensc of expectation. For ¢ such that &i9) = o (8, this
lemma can be proved if one notea that, by conditions 1 and 2 {periaining to the
elags (), Po{@ = @} = o(n~Y?), and henee,

Po{|T3 - 0] < [T, 8]} = Palty > O} + o[n™14%),

where £, = (a0, — 1 + {1/2(n~ "DV + 4*(#)}, and then employs an
Bdgeworth expansion for the distribution of ¢, under #. A similar prool holds
for (0} = d* ().

Lemma 2.1 doca not cover the casc of 9 such that &(#) = d*(f) since then
neither Po{@ < @*} nor Py{@ = @} may be o(n~ '), in peneral. For zuch #,
1t may be possible to discriminate between T, and T even at the first order of
comparison. For cxample, under the univariate normal model with unknown
menn 8 (2 K) and variance 1 (known), let T* = # and T, = 0 + n=162 + n~¥%gg,
where J iz a congtant which is free from n. Then 458 = 0, J(8) = 2 and
cd{#) = d*{#} only when & = 0. At # = 0, it can be shown that im, _ .. Po{|TZ 0
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< |Fp 0|} can assume any value between 0 and 1 depending on the choice of
2. Anyway, in the sequel we will be comparing estimators with distinguishable
stochastic expansions up to opln~!) |Le, with distinet d(-)|; for this purpose,
Lemma 2.1 plays a vital role.

TucorEm 2.1, Let Ty, and T, be distinct members of € such that Ty, =
i+n Qi and T, = A+ nT1Q with @ = di¥) + on(1), Ro = dolff) + 0p(1), under
f. and

(2.1} dp(sy = (5172110
Then, for each @ such thot d08) £ dy(F),
(22} Po{|Ton — 8] < [Ta— 81} = § + (3)(2mn) IMH|dME) — def)] + 0(n 1),

so fheal

(2.3 n]lamcsc HLI‘;Z{PE{ITHN T ':?l < |1 — al} _-1"};2}]

= (5)(/2%)*1d0) — do(@)] = 0

The proof ia a direct conaequence of Lemma 2.1, and henee is omitted.

Let us diseuss the implications of Theorem 2.1 by introducing the notion of
seeond-order Pitman admissibility, An estimator T, = 6 + n 1@ (= €}, with
& = diih + o,(1], under &, will be called sccond-order Pitman inadmisaible
(B0PT) im € if thore cxists an estimator T% = A+ n g (c ™), with @ =
d*(0) + 0,010 under £ and J%(#) not identically equal to d(), such that T iz
superior to T, with regard to the second-order Pitman closeneas in the follow-
ing sense, Lot o (8) = Bo{|T5 81 < T 61 1 and anelf) = n%30,, (). Then
Cad Uy, e 283 = O, for each & for which the limil exista, and (b} lim, _ .,
e (9} exists and im, , __ay108) = O, for each # for which lim,, |, aq008) doos
not exist, the inequality being strict for somae & (- @) cither in (2 or (b)),

An estimator T}, (= £) will be called aecond-order Pitman admiasible (SOPA)
in € if it is not S0P in & An implication of Theorem 2.1 is that the estima-
Lor Ty, considered there iz SOPA in ¢ as a referes suggests, Tho can as well
be interpreted as represcoting a subclass of € consisting of estimators having
the expanaion 7+ n=Ldo(2) + (131, under f, where dp(0) ie given by (2.1 In
particular, it follows that the estimator 0 + n~do (7 (< €) is SOPA in C. Note
that Ty, considered in Thearem 2. 1, is second-order median unbiazed in the
sense that Py{Ty, = #} = L +aln V%) for every # © 8, as one can prove by
using an Edgeworth {‘X[JE.HE:-II:ID for the distribution of (nI)"/4( Ty, — &) under ¢.
Henee, the sceond-order Pitman admissibility of Ty, is comparable with the ex-
act findingas in Ghoah and Sen {1989}, who proved, under certain eonditions, an
optimal property of median unbiased estimators with regard toe Pitman close-
ness. It #lso follows from Theorem 2.1 that an estimator 7, = 8 + 2~ 1 (= €,
with 6 = d{f) + op(1) under 4, and {5 #dy(8), for each &, will be SOPI in €.
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Thus, Theorem 2.1 yields a class of SOPA estimators, namely, that represented
by T, . and provides a quick way of identifying SOPT estimators.

REMark 1. Under suitable conditiona, like those in Johnsom (1970}, to-
gether with an assumption regarding the existence of an ng such that the
posterior distribution of # given X1, ..., X, ia proper, it can be shown from
Theorem 2.1 thal the pestorior median of § under the Jeffreys prior is SQOPA in
¢ fe.f Welch and Peers (1963)]. Thia frequentist result may be contrasted with
the findings in Ghosh and Sen (1991) on properties of the posterior median in
terms of poslerior Pitman closcness,

Remark 2. The property off T, depicted in Theorem 2.1 is in fact much
stronger than the second-order Pitman admissibility. It implics that a rival
estimator T, = 6§ = n7'Q (¢ &), with @ = d(8) + 6,{1) under ¢ and (4} not
identieally equal to g4}, will he inferier to Ty, with regard to second-order
Pitman closcness, for each & satiafving o(f) £ (43 Incidentally, for @ such that
i) = dolh), additional regularity conditions (c.g., asymptotic ancillarity) may
be required to depict clearly the relative picture.

REMary 3. Under squared error loss, Ghosh and Sinha (1981) charac-
terized second-order admissible cstimators (SOAE) of the form # + n 'd(#),
where o(-) is continuously differentiable. Many examples, hke the following
one, indicate that neither a S0PA estimator in our sensc is necessarily SOAE
in their sense nor a S0AE in their scnse is neceszarily S0PA in our gense.

Exanmrrr 2.1, Let fix; &) be the univariate normal density with mean 4
and variance #, where § £ B*. Then I = 31‘5'_2_,3:'.]_ 11 = 144 ¥ and, by (2.1),
dnlfy = (T/274. Let Ty, = #(1 + 7/27n) and 7, = (1 — 1/91). By Theorem 2.1,
Ty 15 B0PA in € while T, i3 not so. On the other hand, proceeding as in Ghesh
and Sinha (1881}, we obtain that T, is S0AR in their senae, while T, is not,

REMARK 4. A multiparameter extension of Theorem 2.1 can be formulated
along the same line. However, in such a case, a quadratic norm involves a non-
negative definite (nnd) matrix, and, in general, the dominance results depend
on the choice of such a matriz. Sen (1986) incorporated the Fisher information
matrix in this formulation (albeil in a first-order sctup), and recently Sen (14984)
has shown Lhat this result extends generally to a larger clags of loss funetions,
It scems gquite natural to formulate analogous sccond-order properties, and we
would like io pursue the same in a follow-up study. In the multiparameter
cage, one necds to take into account the clasaical Stein phenomenon [seo, Scn,
Rubokawa and Saleh (1958)], and the picture beecomes more complex.

3. A case with nuisance parameter{s). We proceed now to consider a
more general case where the density £ -) involves some nuisance parameters
{in addition to the parameter of interest), For the sake of notational simplic-
ity, we deacribe the results with a one-dimensional nuisance parameter (along
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with a mme-dimensional parameter of interest). The treatment for & multidi-
mensional nuisance parameter will be exactly similar, and only the notational
system will become meore involved.

Consider a sequence {X;; ¢ = 1} of iid. rv'’s with a density fix; @), where
8 = {#.4;) . 4 is the parameter of intereat and #y 15 the nuisance parameicer, It
is assumed that # € @ < E?, and other repularity assumptions are very similar
to these in Section 2. Let us furmulate the per-obaervation Fisher information
matrix at @ az

Ey{(2/98) log f(X;0)- (2j08) log £, 80} =T = (T)), ,_,,

and assumec that J is pesitive definite at cach # ¢ B, Since ¢, ia acalar, we may
suppese (without any loss of generality) that global parametric orthogonality
holds, that iy, J1u = 0 =5y, for all 8 £ @ [zee, Cox and Reid (19877, Let

Sp11= Ea{ (I log fEX;L’?}}U} and Sy = Ea{{DJJE log F{X;00 ]f:

where f); ia the operator of partial differentiation with reapect to 8, { = 1,2,
Note that Iyy. Fpe, 811, and S99 arc all fanetions of 6.

Based on a sample X1, .. X, of sizc n, let § = (5, %) be the MLE of 8. As
an analogue of the class € considered in Section 2, we consider here a class €
of cstimators of #; of the form T, = #; +n '@, where the following held:

1. @ = di#) + 0,(1} under @, d(-) heing a continuously differentiable funetion
whoae functional form is free from n;
2. for each positive =, froe from n, and each 0,
Pyl —dit)] =z} =o(n~t?) asn — oo
Define them [analogous to (2.1
{2.1) do(@) = (815} 18411+ (21 Tpy) '8ymm.
Then, analogously to Lomma 2.1 and Theorem 2.1, respeciively, woe present the

following results. The proofs are omitted to save space. They involve an Edge-
worth expansion and rest on computations of certain higher-order cumulants.

LEsMMA 3.1, Lel T and Ty be distinet members of OF, such that T = ﬁl +
n 1@ and Ty = 01+ n~ '@, with @* = d*(8) +0,(1) and § = d(0) + 0p{1), under
@ Then, for cach 8, such that (84 d*(8),

4. Pﬂ‘{lTr: 7= .fi'-]i < T — |} = |J.'"2 + {f]_l_,-"'ﬂi':n}”z sgn{d(gj _ ff*(ﬁ']}
| x AAdB) +d™(8) - 2do(6)} +o(n~17),

where dq(#) iz defined by (3.1,
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TUEOREM 3.1, Lef Ty, and Ty be distinet members of € such that Ty, = 51
+n @y and T, = 8 + n~ 1 Q with Gy = dyid) + o1} grd B = dif} +o,(1), under
8, where do(f) is given by (3.1). Then, for each @ such that di@)F dy(f),

(3.8} Pg{|Ton — o] < [Ty ~ 1]} = 1/2 + (L11/8n) " (@) — dol®)] + 0 (n~22),
so that

o Jim [P Ton < T aul} - 172]
= (I1/87) Fidi0)  dyl®)] = 0.

It can be shown that an estimator Tp,, as introduced in Theorem 3.1, i
aecond-order median imbiased, that is, P {To, = &1} = 1/2 + o(n—1%) for cach
#. Lemma 3.1 is a powerful tool for comparing eatimaters in C°. In the presont
setup, defining SOPA and SOPT estimators in B along the lines of Section 2, it
follows trom Theerem 3.1 that an cstimator T, as introduced in the theorem,
is SOPA in &%, Also, an eatimator T, = §; + n~ 1@< £*), with § = d(A) +a,(1)
under &, and d(8)Fd,(#), for each @ € &, will be SOFIL in €°, In continuation
of Eemark 1 (in Section 2), under suitable conditions, it can be ghown by using
Theorem 3.1 that the posterior median of ¢, under a prior with dengity propor-
tisnal Lo IHQ [where the constant of proportionality may involve #5 but not &4;
cf. Tihshirand (19891], will be SOPA in &°.

Examerr 3.1, Let fix:8) represent the univariate normal density with
mean fp and variance &, so that # € B x B7, Under this parameterization,
the global parametric orthogonality, as mentioned before, holds, Here Iy =
(263) 1 Ty =0, 1. 8110 = #, " and 81y = 477, s0 that, by (3.1), do(8) = (5/3)0,.
The MLE of &y based on X|,.... X, is given hy &, = n bzl 0. - X, 2, where
X, =n 1¥7_ X, is the MLE of &. Allicd to the MLE T, = # is the usgual un-
biased estimator T8 = atn — 1) T, = #,(1 + {n — 1)~1), whereas the median
unbiased estimator of ¢, is given by Ty, = nim,, 3 175, where m, | is the me-
dian of the central chi-aquared distribution with # — 1 degrees of freedom, Tt s
well known that, for large =,

(3.5) g = it — 23 + (32/406n) + O(n~%),

so that wo may even replace my, _ by n — 5/3, and define Ty, = E-'}(l+5f3n]l. Note
that all these estimators belang to the class €, and T, 18 the Pitman closest one
in the sense of Ghosh and Sen (1989, 1991). Moreover, the unbiased cstimator
Ty ean as well be obtained by maximizing the conditional likelihood of Cox and
Reid (19871, We have then To, = B +n Q0. T = B +n7'Q and T% = iy +2-1@"
with @y = dy(B)+0,(1), @ = (6} = D and @ = d*()+a,(1), where dy(#) = (573}
and *{#) = ;. Moreover, both {8} and #*({) are differcnt from cach othor and
from dol@), for cach #. As such, we eonelude from Theorem 3.1 that T, ia SOFA
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in & and both T, and T are 80PT in ¢* and are dominated by Ty, (under the
sccond-order PCCY Next, in order to compare the MLE T, and the unbiazed
version T {under PCC), we write

ﬂin‘gfﬂ:' = n'll."z{Pﬂ{ lT:I- — ﬁ'] <. |T|||_ = I':-l'] |} =7 1."'2-}

and from Lemma 3.1 we obtain that
{3.6) Jllil]l eral@) = TH12,%) = 03291 (= 0) for cach 6.

This shows that 7% i superior to T, with respect to the second-order Pitman
closeness. Exact computations are not hard in this cxample, and the exact val-
ues of oe,e (A forn = 3.5, 7 and B can be seen to be equal to 0.3443, 0.35372, 0.3346
and 0.3333, respectively, for each # [cf. Rao (1981)]. Since even for amall values
of i the values of a.(f) are quile cloge to the asymptotic value in (3.6), the
asvmptotic results in Theorem 3.1 appear o be reasonably good Indicators of
the small to moderate sample behavior of the estimators in this specific case.

In general, each of our results is based on a sceond-order Edgeworth ex-
pansion which 1s used to approximate the probability that a certain random
vartahle ig lesa than 0, Since Edgeworth expansions tend to be very accurate
in this ceniral part of the range, this may cxplain why, as observed in the last
cxample, Tesults for small to moderate samples have a tendeney casentially to
follow the pattern expected from asymptotic considerations.

Acknowledgmeni. The authors arc grateful to the reviewers for their
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REFERENCES

EnaTtacnanya, T M. and Cuoosi, J. B (1978, On the validity of formal Edgeworlh pxpanzions.
Ann, Sietizt. B 434401,

Eryrn. O R, and Parwaw, ¥ K. (1986). Does an estimalory discribution enffice? Tn Proceedings
of the Berbeley Conference in Honor of Jarey Neymeon end Jack Kiefar (L. M. Le Cam and
R. A, Oshen, eds.) 1 4552, Wadawnrth, Monteray, CA

Cost, 10, K and Beme, N (1987 Paramelric cethogonality and approximate conditional inference
(with dizcoggion}. o Hep Stafist, Sor Sen B 49 138,

Coosm J. I (19940 Higher Ovdor Asvmptotice. THMS, Hayeranl, CA

Saosk, J0 K oanpd Biewa, BoOKL (1881) A neeessary and suffieent condition for recond or-
der ulmissibilily wilh applications to Berkpon's hinasaay problem. Ann. Statist, 8
1534 1338,

CGEosH, M, and Sen, B KL (1989, Medisn unbissedness and Pitman closeness, of, Amen Stnfist
Asgoe. 84 108591081,

Onost, M. and Sgx, I, I (19910 Bayesian Fitman cnsenssy. Comem. Statisl, Theorr Methods 20
AG50-367TH,

hommaow, R A (19700 Asymplotic expangions asgociated with pesterinr distributions. Arn. Madh,
Statisd, 41 Bo1-864,

Krarese, 1. [, Mazon, B 1. and Seu, B R (1995) Pitmons Megsyre of Closoness; A Conpoer
turen af Stalistliond Seiimoators. SLAM, Philadelphia.



SECOND-ORDER PITMAN CLOSENESS 1141

Praxzact, 1. and Wereimeyiel, W, (1978} 4 third-order optimum property of the madmem
likelibood cutimator F Moltivoriate Anal. 8 1-29.

Rag, €1 R {19811, Some comments on the minimum mean sguare error ag 8 eriterion of eati-
mation. In Statisfics and Reloted Thpics (M. Csérgd, D A, Dawson, J. N. K. Bao and
A K M B Saleh, eds.) 125-143. Worth-Iollund, AAimalerdam.

GeM. P.K. (1586, Are BANW estimators the Fitman clozest ones teo? Sundiys Ser A 48 R1I-08.

e . . (1992). Pitman closeness of atatiatical ertimatore: 1atent years and the renaizaonee,
In Current fzstes ik Stolistical Tnference: Besayy i Horor of B Basu (ML Ghosh and
P. K. Pathak, eds.! 52-T4, [MS, Hayward, CA.

ew, Po K (1934}, Isomorphism of quadratic norm and PO ordedng of eatimators admitting firet
order AN represenlations. Senkhyd Ser A 08, To appear.

Sem, T, K., Kueokawa, T, and SaLkd, A, I M, E (1989, The Stein paradex in Uhe senes of
FPitman clopenese, Ann, Sfedist, 17 1A75-1344,

Sovenmr, T. A (1881). A enmparnizon nf the maximum likelihnod satimater and the poAterior mean
in the single parameter case, J Amer Stafist, Assoc 86 9971000,

SEVERING 1. AL (19923, A cnmparison of hiased and hias-corrected estimators. Thipublighed
munozeript.

TrEzHIrArR], L {1985}, Noninformatlive peiors for ene parameter of maty Biemelrika 78 604608,

Wi, B.oand Peeks, H. W, (1863, On formulae for eonfidense points hazed on integrala of
weiphted likelihoody. -F Ry Statist. Soi. Ser B 25 318128,

JaxarTa K. GHOSH Pnamas I8 BEx
Duvision or Marneudarios DEBAHPMESTS OF BrATISres
AN HECRE A, STATIATOS AND BIOATATTISTHA
IMNTAN STATISTICAL IKSTITUTE TIXTVERSITY OT
2053 B.T. Roap WokrH CAROLINA
Caneserra 700 Q30 {IHAPEL HITL, NORTH CARGCLTNA 27H4%- 7400
Ixma

Tl MUKERIEER

IRinay Issrrrore o Fanauem N
dcazea, DITAMONT: HARROTR Roan
FoeT OFFICE DBox Mo, 16747,
ALmronE Post OFFICE

CALCULTA TOO 02T

(3 [



	1.jpg
	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg
	9.jpg

