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Abstract

Consider the class v B, p.g) of connected designs with ¢ treatments and b =# blocks of
size at least p and at most g. Let Dol e, B, pog)yC e, B, p.g) be the subclass of designs with the
minimum number 1 =v+ & — 1 of observations needed to estimate the treatment contrasts. It will
be shown that, in general, the D-optimal design in Dy(e, 8, p.g) with & =« blocks and v +a—1
observations has higher D-efficiency than the D-optimal design with #=a + 1 blocks and v +a
observations. Thus, in general, the addition of an extra block parameter cannot be outweighed
by the addition of an extra observation. Similar results are shown for A-optimality. For the
subclass Dy(v, B, p.g ) INe, B, p.g) of designs having one more than the minimum number of
observations, it is shown that the design with fewer blocks is better under the D-criterion unless
(p=2a=2v=gq+1)m{p=a=2v=3wip=2a=Lvsg— 1) (p=a=Lv=4)

AMS classification: 62K035, 62K10
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1. Introduction

We consider a situation where up o 8 blocks are available for an experiment, but
not all of these need necessarily be used. For example, m a drug trial, the blocks
typically represent subjects, and each subject used in the trial may entail an additional
cost, mmplying that the number of subjects should be kept as small as possible. On
the other hand, each subject receives a sequence of drugs throughout the tnal, and
because of the high dropout rate, 1t is wsually thought advisable o allocate w each
subject a sequence no more than three or four drugs depending upon the natre of
the tnal. Similady, in industry, each block may represent the use of a machine for a
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certain period of time. The maximum block size would be restricted by the number
of observations that can be taken m the tume perod. Since the use of a machine for
an experiment precludes its use in production, the number of blocks would need to be
kept small

Suppose that the number of blocks selected for the experiment s A< 8. The jth block
is allocated &; weatments where £; 15 some number between the minimum block size
p (p=2) and the maximum block size g (j=1,....h) inclusive. The total number of
observations is fixed at n. We consider very small experiments where n is either fixed
to be the mmimum possible number of observations (v+b—1) or fixed to be one more
than the minimum number (¢ + b)) of observations needed to estimate the treatment
contrasts adjusted for blocks. For references and background material on such designs,
see Dey et al. (1993). For details on optimality criteda see, for example, Kieler (1975)
or Shah and Smha (1989).

In this paper, we investigate, in terms of the D- and A-efficiency of the design,
whether it is always better to use the smallest number of blocks possible, or whether
the addition of an extra block pamameter can be outweighed by an extra observation.

Let e B, p.g) be the class of connected designs having o treatments and h< 8
blocks with block sizes at least p and at most g. Let ny; denote the number of times
that treatment i is observed in block j. We use the standard intra-block model

}"J_'."-'\- — # + IH.I. + T + L-J: i { ]_ :]

where pois a constant. f§; is the effect of the jth block, and 7 1s the effect of the ih
treatment (i=1.....05 j=1.... 00 Wa;z1, then Yy, is the response associated with
the sth observation on the ith treatment in the jth block, and £, is the corresponding
error random variable with mean zero and variance o7 (s =1,....ny5).

For a design d € D, B, p.g) with b [ £8) blocks, let Cy be the mformation matrix
for estimating the treatment effects adjusted for block effects under model (1), 1t is
well-known that Cy 1s given by

Cy =Ry — NaK7'NJ,

where By and K, are diagonal matrices containing, respectively, the treatment replica-
LONS Fyp... .. Fge and the block sizes &y, ... kys. and where Ny s the incidence matnx
with (if)th element n;;. We denote the eigenvalues of Cy by A5, A dg o1y 0.

In Section 2, we derive inequalities which will be our tools m proving the optimality
results. In Section 3, we look at the Deefficiency of designs with the minimum and
one more than the minimum number of observations. In the first case, the D-optimal
design with fewest blocks is always preferred. In the second case, this is not always
true. In particular, when p=2 and the maximum block size 1s g = v — 1, the D-optimal
design with 3 blocks 1s D-better than the D-optimal design with 2 blocks, and when
g=v+ 1, the D-optimal design with 2 blocks is D-better than the D-optimal design
with 1 block. In Section 4, we show that the A-optimal design with fewest blocks
is always preferred under the A-criterion in the class of designs with the minimum
number of observations.
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2, Inequalities
The following theorems will be needed throughout the paper.

Theorem 1. Let g2k 2hz - 2k 2 p be integers satisfving Z:",:I ky=n. Then
] ] . ’
{HH_,. | -‘H_,.-=| k., and

{(2) Z'f’ '_fﬂ Z'f’ | .ff. where ki =ki = ---=k'=q. &' | =n—Hg—p)—bp+p.
kia=-=k=p,
g—p

and [a]™ denotes the largest integer less than or equal fo a

Proof. For two integers r and 5, where p<r<s<g. rs=(r—1)(s+1) and r*+s* <(r—
1)? + (s + 1)*. Consequently, ['_, k; is minimized and 3°7_, k} i maximized when
hh=k=---=k=q k= =k y=pand ky=n—tg—(bh—1t—1)p, for some
integer £ Sinee &y = p, where p s the minimum block size, we have ¢ < (n—bp )/ (g— p).
and the result follows. [

Theorem 2. Let bz p =1 and x; 20, j=1.... b be real numbers such that Z':.;I X
— 1. Then, .

b fr
1 (ks +xp etV k. @)
=1

i=l

Proof. We can wnte,

& B I I B
H {A_.l +.T_..'}I = ( l_[I ;l.l) ( HI (1 +-T_.l'.-';;f,l' }) -4 ( l_ll ;l_,u) ( l_ll (1 +-1',|F})
= J= s e g

or, since geometric mean is less than or equal to arithmetic mean,

Hl:',—l “l.l +x;) L ; p—1 p
ot e (1+x/p)< (14__) ) (4)
I & o ph
Now, (1 +(p —1)/ph)" is an increasing function in b (b= 1) and so,
P 1 I P 1 I
- Pty - _ php—1)p
g ) s et s ®

Therefore, from Egs. (4) and (3), we have,

Hj',=l '[';‘.' +x; ]/ Hj',=l ;l,. = oo g £ B
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Corollary 1. Let bz pz1 andx; 20, j=1.... b be real numbers such that Z‘{.;l_t_,-

= p— 1. Then,
(@) [T G + )<l & for p<(1—Ina)™!, 1<a<e
(b) [Tj= (ky + x) eI, Ky for p<oo.

Theorem 3. Let bizpzl and x;200 j=1.....0 be real numbers such that

Z_?:II.IEP_ 1. Then,
1] ; B 3
'_ZT‘{JL-_,- +x)y=2p(p— 1)+ '_ZIA-_,..
i= =

Proof. We note that

] i B

I B
ZI"[-.."I." + Zl—: = Zﬂf + EPZI..I' % ZITE
=

i=1 i=1 =1

I B
(k; +-T.."}2 =Z'k_f +2
=1 J=l

4=

4

d

Now, since minZ‘;;,_r’f such that Z“:.;'.r_,-;p— lis when x;=(p—1)/b, j=1..

we have
] g B B o
Y+ - E2p(p— 1)+ YA 22p(p — 1)+ (p — 1.
i=l i=1" =1
But, 2p(p — 1)+ (p —1)*/b is a decreasing function in b(h=1). So,
min{2p(p —1) +(p - 1) /b} = Jim {2p(p — 1) +(p - 1) b}

=2p(p—1).

Therefore, from Egs. (7) and (8), we have,

B I3
Z% R aye= }:Iﬂ-f =2p(p—1).
= 4=

(6)

.

(7

(8)

Corollary 2. Let kizpzl and x;20. j=1....0 be real numbers such that

Z'f’ x;=p— 1. Then

=l
] | B
IT G +x) % elr—1¥e [Tk
A 4=

anied

] g B 5
| (ki +x)y=2p(p— 1)+ '_ZIL-J..

5 i=

4
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3. D-optimality

We can represent a block design & by a bipartite multigraph f; with two sets of
vertices defined by the treatment labels (7, 75, .. 7)) and the block labels (8,8, ..,
B3), (see Harary ( 1988) for a discussion of bipartite graphs). A pair of vertices (T 8;)
is joined by ny; parallel edges, where ny; 1s defined above. If the design & is connected,
the comesponding graph A, is also connected. The number of spamning rees (i.c.
subgraphs having no cycles and covenng every vertex) in the gmph M, is called the
complexity of Hy) of the graph. Following the discussion in Dey et al. (1995), it can
be shown that

v—1 B
A = vl Hy) / [H lkd"| . 9)
i=1 J=l

In Section 3.1, we discuss designs with the mmimum number of observations, and
in Section 3.2, we discuss designs with one more than the minimum number of obser-
vations. We note that in the first case, n=v+hb—1> Z_“:.;Iifd, =2bso b=v—1, and
in the second case n=v +h=2h, so that b=<r.

3.1 Designs with the minimum number of observations

Let Dy(e, B, p.g) be the subset of designs in D v, B, p.g) with the minimum number
n=uv+ h — 1 of observations needed o estimate the treatment contrasts. Dey et al
(1993} argue that, for any design in this class, the complexity of ;) of the associated
multigraph 15 1. Therefore, from Eq. (9), all designs in Oy(e, B, p.g) with a fixed
number & of blocks and a fixed set of block sizes k... . kg are equivalent under
D-optimality. Similarly, the design &% € Dy(e, B, p.g) that is D-optimal amongst designs
with a fixed number b of blocks sansfies

& B
[Tks-; = 1Tk, (107
=l

mimn
de Dyl pogl i

Let the number of blocks in design d € Dy(v, B, p.g) be by where by, < by < by, Here,

B (Big ) 15 the maximum (minimum) number of blocks and is given in Lemma 1.

Lemma 1. The minimum and maximum number of blocks possible in a design d €
Dy(v.8. p.q) are given by

9 — + § — ==
Boin = [L 1] and by = min (E, [ i ] )
g—1 P

where [a]® denotes the smallest integer greater than or equal to a.

Proof. The number of observations in a design d € Dy(v. 8, p.g) 1s n=v+ by — 1,
where

physv+by — 1<gh,.
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Therelore,
r—1 <by< r—1
g—1 p—1

and, noting that £ blocks are available for the experiment, the result follows. ]

For b fixed, define

B

b= mi k
{H ) deﬂ.m'.lg.rhqr}_,'l;ll %
A
= ki ="'~ 1 = bp — D= tsa = P) + 7 Y
i=
where
[u— 1 — b p— 13]_
= |—""""— ‘
g—p

The RHS of Eq. (11) follows from Theorem 1. Note that by Eq. (9) and the fact that the
complexity of Hy) 15 1, D-optimality is equivalent to minimizing b)), In Theorem 4,
we show that the D-optimal design with b blocks is D-better than the D-optimal design
with &+ 1 blocks, so that the design with fewer blocks 15 always prefered.

Theorem 4. Let (b)) be defined as in Eq. (11), then dib)=<dib + 1) for by, =b=
llrJ':|I:'|;.=us =1,

Proof. From Eq. (2) with ny, = v+ by — 1, we have

[u—l—buu{p—l}]_
Ip, = g

qg—F
Therelore,
TR SRR TR O W RN oy G R TR Y R
m=[¢] 3[ ( P = oyt (12)
g—F g—F
Now, from Eq. (11) and Theorem 1,
L]
(Hb}= .l_[|lkj'l-"’t."
1=
where
. ]-gjg-f."h
k=4 v—1—-Hp—-1)—t(g—p)+p j=th+1, (13)
_Pﬁ fﬁ,+2€j€b.
Also,

Bl

i
b+ 1)= 'HIIL-;”’+ iy = P _l_ll'k;{."ﬂ- 1y
i= i=
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where
kaps1y
'8 1€j££ﬁ+|¢
=4 tv—1—(b+1p—-1)—tsplg—pP)+ p j=th +1L (14)
P th +25jsh+1.

From Egs. (12)—(14), it is clear that
kj#-“ﬂu‘ 3'JI"J'::."=+IJH' zp, j=lL...b (15)
Let x; =0, such that
kioy =%ipry tx F=l.ub (16)

Then

]

B I b
Z'k;{."rj.l' — Z'k;i.l'=+|j.l' e ET_."
= =1 =l
or
I
> x;=np —(Apy1 — p)=p— 1. (17)
4=l

Now, from Eqgs. (13)—(17) and Theorem 2, we have

I I
EJEP{_bJ —_— 'l_[|£.-;“,u - l_[ {""J{."’+| W + ‘x-'}
= o

=l

I3
dp—1Y B
= el o _l_llﬂr.l'li-'"+|l'.-"
J=

b
=P _l_ll'ﬂ'-r::{."r+| W= f}[’{_b + 1) O
=

Theorems 1 and 4 imply that the D-optimal design in Dg(e. 8. p.g) has
F i o
-
g—1

blocks, where ¢ of these blocks are of maximum size g, and (h—1—1) of the blocks are
of minimum size p, and the one remaming block is of size (v—1)—b p—1)—t{g—p)+p
where

=[”—1—b{_€‘_1_}!]__ (18)

Example 1. Let p=2, g=3, v=4, B=3, and n=v+bh—1=5h+3. Now by, =3 and
by = 2. There are only two non-isomorphic {under treatment permutations ) connected
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designs with by, blocks, shown as o and d below with blocks as columns. There
is only one connected design with by, =2 blocks (upto treatment permutations). This
15 shown as dy below

di: 1 2 3 da: 11 1 ds: 11
2 3 4 2 3 4 2 4

The information matrices of these designs are easily caleulated and are not given
here. One finds that the non-zero eigenvalues (4,42, 45) of these information matri-
ces are (02929, 1.0, 1.7071), (0.5, 0.5, 2.0), and (0.4226, 1.0, 1.5774), respectively.
HL' .:.J._I 15 2.0, 2.0, and 1.5, respecuvely. Note that the first two designs are equivalent
under D-optimality as mentioned in the introduction.

3.2 Designs with one more than the minimal number of observations

Let (v 8, pg) C e, B, p.g) be the subclass of connected designs with h< 8
blocks and one more than the minimum number of observations needed to estimate
the treatment contrasts adjusted for blocks, that is n=v + b. Following the proofl of
Lemma 1 with n = v + b, the minimum and maximum possible numbers of blocks in
design d € Dy(v, B, p.g) are, respectively,

4 _
Boin = [ 5 ] and by, = min (H, [ 5 ] ) :
g—1 p—1

From Egq. (9), the D-optimal design in Dy(v. 8, p.g) 15 the design that minimizes
H':.’=| gy and maximizes e(Hy). Dey et al. (1995) argue that the complexity e(fHy ) of
the multigraph H, for a design d € Dy(v. B, p.g) is in the range 2 <c(H,) <2 min(b. v).
Here b<<v, so we have 2 < o(Hy) < 2b. Funhermore, when n=v+ b, for given v, b and
block stzes k..., & we can always construct a design with of H,) = 2h. For example,
we can construct a design with of ;) = 2b, where the b blocks are generated in a eyelic
fashion as follows. Block 1 contains treatments 1w & Block 2 contains reatments
ky ok +k — 1. Block 3 contains treatments & + 5 — 1 to & + &2 + & — 2. Continue
in this manner with the last treatment i block b being treatment 1. Note that the first
treatment m any block is the same as the last treatment in the previous block. Obviously
permuting treatment labels in the design descabed above will also yield a design
with o Hy)=2h. As a result, we see that the D-optimal design % has o(Hy- ) =25
Consequently, the D-optimal design in Dy(e. 8, p.g) with a fixed number b of blocks
satisfies Eq. (10) and from Theorem 1 has f, blocks of size g, b — 1 — 1 blocks of
size p, and one block of size v — B p— 1) — flg — p) + p, where £, is given in Eq.
(2) with n=v+bh, ie

i [EEe—1) "
’ g—p '

(19)
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Define

1.8

H r.l'_.l H "'u’{.":j.l

=b"q“ﬂ"*‘"[v—b{p— 1) —tslg — p) + pl. (20)

A design with complexity 26 and which minimizes ¢¢(h) in Eq. (20} is D-optimal,
which follows from Eq. (9) and Theorem 1. In Theorem 35, we show that the D-
optimal design with & blocks 1s D-worse than the D-optimal design with b+ 1 blocks
when (p=2b=2v=g+ 1) or (p=2b=2v=3) or (p=2b=1lv=g — 1) or
(p=3bh=1Lv=4) In all other situations, the design with fewer blocks is always
prefemred.

dy(b)=

min
de{n g, pgd b

Theorem 5. Let ¢y(h) be defined as in Eg. (200, then ¢n(b)=dy(b+ 1) for ((p=2,
b=2v=g+ or{p=2b=2v=3or(p=2b=lvEg— D or{p=3.b=10v=4).
Otherwise dnib) = @b+ 1) for by bbby — L.

Proof. From Eg. (19) we have

Also, from Eq. (20) and Theorem 1, we have
1.5
gib)= E_l:ll;fix-u
e
where
q. l=j<t
kipy=sv—bdp—-1—-t{g—p)+p. j=f+1 (22)
P fh+2<j<h
and
Bl
¢'|{b+11= H b1y = b+1H i+ 1)
where
4. 1< ftpns
Kipry= v —(b+1p-D—tilg—p)+p. j=thn +1, (23)
p. o +25i<h+ 1

From Egs. (21)—(23) it follows that

'k;mt,u }ﬂu'ﬂ.l'=+|j,u zp. j=1l...b (24)
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Let x; =0, such that
kawyy = Kigpryy T F=1a b (25)
Then,

L] I I3
EI:"'-JU:LI' — Zl'kjib+|j.l' + ET_."
i= i= =1

or
i)
v+b=(+b+1)— p+ >x;
=1
or
b
Yaj=p— 1 (26)
=l

Therefore, from Egs. (22)—(26) and Theorem 2, we have

1.2 2 1.k 2
b)) = 5 [Tk, = B [ (Kigpi1y +5)
=1 i=l

L iy
= Ec‘.f (B _l_['ku'{."’+|j.l'
i=1
- b{al‘“{”""”’q&.{b+ 1) @7)

Now, define £ = ¢ (b)/¢gh (b + 1). Then Eq. (27) implies

Eabf;lc‘f"”’f’. (28)
We consider the following exhaustive cases separately.

(1) p=3. b=2,

(2) p=5. b=1,

(3) p=2. b=5,

(4) p=2, b=3 or 4,

(5) p=2. b=2,

(6) p=2or3ord h=1.
Case 1: pz3, bz=2 We obtain from Eq. (27)

(J[H{_.I’J‘} = {_b - ]-}c{_r.l—lj.'_r.l =  max {.b + l}c{p— Lyp P 3“}’23 =198
(b +1) bp bx2pald bp 2x3

e, di(b)<di(b+1).
Case 2: pz35, h=1. For b=1, from Eq. (27) we have
gi(b) (b4 1) iy, 26070 2ele—Nip ) 2648
FoEn T B T - B umlL o )5 e
e, di(b)<di(b+1).
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Case 3: p=2 h=5 For p=2, from Eq. (27) we have

pi(d) (1) gy, (BH1D) n (b+1) o] _ 6e"?
T | e R =g T SpENTa T Eas

Le. gulb)=dgdi(b+ 1)
Case 4: p=2, b=3 or 4. For simplicity of notation here and below, let &=

k% For p=2 and £ =2, from Eqgs. (19}, (200, (22) and (24), one can show

a4 1 My 410
¢u(d) _ k+1)b {k+1)b
G+ Wb+ 1) m“ { }

B k+D(B+1) _ 3x4
_m“{ % b }

BT

kxl

Case 5: p=2, bh=2

Gib) _ (k+1)2 3k +1)
d(b+1) 263 4

Now, ¢(B)d(b+1)=1 ifF 3k +1)y4k =]l orif k=3

This is true unless d(b+ 1) has one block of size g and two blocks of size 2 (which
implies that g +4=0v+3, 1e. g=v— 1) or unless d{bh + 1) has three blocks of size 2
{which mplies that v =3 and g =3). Such designs for v=3 are,

db+1): 1 23 di(b+1)=5x2" =267
231
d( b): dr(b)=3 x 3 x2=30

Lt P =
— s

Case 6 p=4 or 3 or 2, b=1. In this case, we have q[r|{2}=;_p.k {resulting from
two blocks of sizes p and &) and ¢f(1)=4 + p— 1 (resulting from one block of size
k+ p—1). Henee

g i) 2Ak+p-1)

(b +1) pk
For p=4, E=2(k+3)/4k =(k+3)/2k. Now, E<1 il (k+3)/2k <1 or if £ =3 which
is true.

For p=3,

. Ak +2)2v+1)
S 3{u—1;1“{"

Now, E< 1 if 2(k +2)/3k<1 or if k=4
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This 15 true unless d(b + 1) has two blocks of size 3 and d(h) has one block of
size 5 (which implies that v=4 and g=3). Such designs are,

2

dib+1): 1 3 b+ 1)=3x3" =45
2 4
31
d(b): 1 Pi(b)=1x5=50
2
3
4
4

For p=2, E=2(k + 1)/2k=(k + 1)/k. Now E >1.
Here dib 4+ 1) has one block of size v and one block of size 2, and d(h) has one
block of size v + 1, e, g=zv+ 1.

Example 2. Let p=2, g=35, and v =4. Then by =4 and by = 1. Here g=v + 1
and, therefore, we expect the D-optimal design with 2 blocks to be D-better than that
with 1 block. D-optimal designs with 2 and 1 blocks, have ¢,(2) = 5' w4 %2 =40 and
q[r.{l}=—: x 5=35.0, respectively. Thus the D-optimal design has two blocks and 1s

d(2):

4. A-optimality

Smee the form of A-optimal designs with one more than the minimum number
of observations and unequal block sizes (k;=2) is, at present, unknown, we only
consider the class of designs Dy(v, 8, p.g) C De. B, p.g) with the minimum number
of observations. We wish to deternmine an A-optimal design in this class. For each
possible value of b and set of block sizes k.. .., &, it can be shown that an A-optimal
design is the design dib: k... . &) m which a particular treatment, say treatment 1,
is allocated once w each block, and the remaining v — 1 treatments are each allocated
to one of the remaining E(k; — 1) expenmental units. (The proof follows the lines of
the proof of the comesponding theorem for equal block sizes given by Mandal et al.
(199170,
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Lemma 2. For a design (B k.. k) defined above, the average varvianee of the
least squares estimators of the pairwise comparisons T, — 1; is

g 2 : . B 2 3
L€ v 1;2L+1}{L—11+b—§|£_,. o, (29)

Proof. 1t is stmightforward to show that the least squares estimators of the pairwise
comparisons 7; — 7; have variances

24

Var(#; — ;)= 4 26, if i and j are in the same block, 2<i<j=<n,

i=1, j=2,....0

E

407, if i and j are in different blocks, 2<i<j=p
Consequently, the average vanance of the pairwise companson estimators for design

d s

4=l

! 2 y x 'k..l'_l
P{d}—m |?{@-— 1}+EZ( 2 )

#(@)-e-v-5 ()]

2 s T Thd IS
=—D{\L__1} _E{L_H_z_;:ZI( 2 )+4(2)]a

2 2 b : X 2
“w—5 @Y —_E{ﬂ_s—lﬂ_;—z}lln
e Pl -2~+1} — 1) +b— 2| o2
1) (2v [ })_?1 | o

as required. [

By wirtue of Lemma 2, an A-optimal design in Dy(v. 8, p.g), amongst designs with
a fixed number b of blocks, is the design & for which Z_':.’zl .’fjl s a4 maximum and

Z_“:;l ky,=v+b— 1. Thus, from Theorem 1, an A-optimal design with b blocks has
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ty, blocks of maximum size g, one block of size (v—1)—HM p—1)—tlg— p)+p, and
{h— it — 1) blocks of minimum size p, where fr=[(r —1—Hp —1))g— p)]~.
For b fixed, define ¢(h) 1o be

[ & a
ga(b)=  max (b— Z%*’fj,)=b— Z%f’fjusr.
= 1=

a0 8, pgh
=b—tg® —(b—tn — 1)p> —[(v— 1) —b{p— 1) — ts(g — p) + pI*.
(30)

In Theorem 6, we show that da(h) <da(b + 1) for by, < b < by — 1 with

b,m=min(ﬂ,[”‘l]_) and b.m;,.=[“‘1] .
P—=:1 g—1

Thus, under the A-optimality criterion, an A-optimal design with fewer blocks is always
preferred in the class of designs with n=v+ b — 1 observations.

Theorem 6. Let ¢a(h) be defined as in Eg. (30), then dn(b)<da(b+1) for by, =b =
P — 1.

Proof. From Egq. (30) and Theorem 1, we have
B 3
{J[rl{.b}:b_ Zl'kjﬂ.f:t,l {.31]
=

where .ff;”,h,_, J=1,....b, are as in Eq. (13), and

2 L 2
dr(b+1)=b+1— 3 kjp=b+1—p*— '_Zlfw,m,- (32)
=

where ki, .. j=1.....b are as in Eq. (14). Now by the same argument as in
Theorem 4 and wsing Theorem 3, we have

LI
alb) = b — ZT"I‘-;{HI
1=

b
=b- }:T‘{"f;{mw +x;)°
jran

Ir 3
£b—-2p(p—1)- E!"qulp'
J=

=b+1)—(p—1F<dgalb+1). [
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Theorems 1 and 6 imply that an A-optimal design in Dyv, 8, p.g), is the design
d*(byky, .o kg ) with b= by, blocks, where ¢ of these blocks are of maximum size g,
and (b —1¢ — 1) of the blocks are of minimum size p, and the one remaining block is
of size (v — 1) =B p—1)—tig— p)+ p. where ¢ 15 given in Eq. (18). Note this is
also the D-optimal design when n=v+ 65— 1.

In the next example, inverses are assumed to be Moore—Penrose inverses.

Example 3. Consider the three designs o, 45 and &5 from Example 1. The design
does not belong to the subelass of A-optimal designs with 5= 3 blocks. Since trace
C~=Y7  i7', it can be verified that

=1 "
tace O =50, traceCy =45, trace Oy =40

Now d» 15 an A-optimal design with b =3 blocks and 45 15 an A-optimal design
with b=2 blocks in Dy(4,3,2,3). Consequently, the design with b =2 = by, blocks
is A-optimal in Dy(4,3,2.3).

An alternative caleulation for trace €5 and tmee Oy uses Eg. (29) since. for an
A-optimal design, ¥ =2(v — 1)~ race C~. Thus, we have

Ir
dy: trace Cy =v ' |20+ 1o —1)+b— '_ZIA-_;?

=47'(9)3)+3 - (4 + 4 +4))=45

dy: trace €7 =47[(9)(3)+ 2 — (9 + 4)] = 4.0.
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