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Abstract

A class of binary efficiency-balanced (called GB-EB) designs are shown to be D and Eruptimal amotyg all Bock
desigms with given replication numbers. These designs have very high A- and D-efficicncies among designs with given r, b
and &. Under cerain condifions, it 15 shown Ihat the GR-E1 desions can be used to obtain optimal rew-column desipns.

Kepwnords: BIR;, PRIB; B3, GB-EB designa; D-, £ -optimality; 4., D=cfficicney; Bleck designs: Bow-columm designs

1. Tatroduction

We consider a hlock design J with ¢ treatments and b blocks of size & each, which is said to be proper.
For it, let R =diaglry,....re) F=(r,....5) and Ny ={ng;), the usual ¢ = b incidence matrix of Jd, where
Hay; is the number of times the ith treatment occurs in the fth block and r, is the replication number of the ith
treatment, for 1 =1,...,v and j=1,...,& Under the usual additive homoscedastic linear model, the coefcient
matrix of the reduced normal equation is given by Cy— R — £~ Ny} which has zero row sums. A design
is said to be connected if rank (C)=w» — 1. For a connected block design d the non-zero eigenvalucs of
R™'C, are called the camonical efficiency-factors of d. A connected block design J ig said to be gfficiency-
balanced {EB) if and only if the canonical cficiency-factors of d are all equal. A necessary and sufficient
condibion, duc to Wilkams (1975). for a proper connected design 4 to be EB is that ils incidence matrix
satisfies the equality MyN;=#&(1 — )R + (e/birr’, where O<e=1 is the unique canonical efficiency-factor
of d. The simplicity in the analysis of EB designs has been noted by various authors but, with the availability
of computers, this property alone does not seem to be very attractive and further statistical justification, through
optimality considerations, is called for. It, however. appears that not much work has been reported oo the
optimality aspects of EB designs, especially in the non-equireplicate case, except for iwo recent papers — one
by Mukerjee and Saha (19907, in which the optimality of EB designs has been studied in classes of competing
designs with unequal replications and unequal Wlock sizes and the other paper by Das and Dey (1991} studies



iR A Dar ! Saristics & Prababiliry Letfers 39 7J903: 317 324

optimality of some non-binary proper BB designs. The present paper investigates optimality of {generalized)
binary proper EB designs.

A proper block design such that mg;, i— 1., 5 f—1,....h, can take one of two possible values, x and
x + 1, where x =[k/r], Le. the largest inteper not exceeding kv, is called binary when x=10 (or k<n) and
genevalized hingry when x =0 (or £=t). Such designs have 2 significant role in theory of optimal designs
since they maximize the trace of the C-matrix {see Shah and Sinha, 19893, Here the generalized binary
proper OB design iz denoted by a GB-LB design. A binary and proper EB dewign is a baluneed incomplete
block (BIB) design. The optimality of such a design is well known {cf. Kiefer, 1975). Kageyama and Das
{1991) showed thal a (GB-EB design has at most two distinet replication numbers, There is a large number
of equireplicate GB-EB designs which are in fact balanced block designs (BBIY). Again the optimality of
BBD is well established {cf Kiefer, 1975) However, the optunality of GB-EB designs with two different
replication nuombers has been an open problem since their charactenizations and construction were obtained by
Angelis et al. (1994} and Das and Kageyama [ 1994 ).

For the sake of completeness, in Section 2, we reproduce some results on construction of GB-EB designs
from Das and Kageyama (1994), In Scetion 3, first. optimality of GB-EB designs is shown. Then for GB-ED
designs we obtain the 4- and D-efficiency lower bounds, considering a broader class of competing designs, In
Section 4 we give some remarks and provide a table of GB-EB designs along with their 4- and D-efficicney
lower bounds. Finally, in Section 5 we show how EB row-column designs can be obtained from GB-EB
designs and establish the optimality of such EB row-column designs.

1. GB-EB designs

We consider GB-EB designs with o=+ {1y =0, i =1,2) treatments in which v treatments are replicated
v times and v: treatments are replicated pa times, 7 7 r2. Without loss of generality, lar /) <r;, Since we are
in a generatized binary set-up, ry=by and rp=hix + 1) Lel n =br+s,ra=bix+ 1} —fszlbizls+rabh,
x=1k

Here, we denote by & the Kronecker product of matrices, f, the identity matrix of order v, and by J, 5 the
nx m matrix of ones. 1, =0, and J, — .5, .. A BIB design with parameters (¢, bk} is denoted by BIB(v, b, 1)
and a Z-associate class partially bulanced incomplete block (PBIB) design with parameters o, b, &, my,ng, A1
and +'*! based on any association scheme is denoted by PBIB (1,5, & nj ns, 201, 2121,

For definition of BIB and PBIB designs we refer to Shah and Sinha (1989),

The GB-EB designs can be classified into the three classes as (i) EB desipns with 022 and 2= 1; {ii} FB
desipns with 1 =2 and < 1; and (#i) EB designs with =3 and e <1. The EB designs of {i} are orthogonal
designs and their incidence mateix is given by (x1; . (x+ DI Y1y with oy —o(x — 1} — & and v =k ux, The
EB design of {i1) is given by the incidence matrix as

i GEDYT L Bt

DL xll (Px(x b 1)+ 5(b — $)}

The EB designs of (iii) are based on certain BIBR and PBIB designs. We first give s necessary condition
for the existence of such LI designs.

Lemma 2,1. A (B-EB design with v { 23} treaiments, b Blocks of size k coch and e< | exisis only i there
are Fy=hy + 5 and ro=6(x + 1) — ¢ such that
(1) &=e,
(i) l=s<min{(h — 1 372,508/ - x) ble + 1 — ki) — 1},
f1ii) & =d < min{2e b — » bl + 1 — &/e)},
(V) de(hk — oMt — sh=5{b— )Wk —2x — 1},



A D | Stanistics & Probahiline Legrors 39 (J995) 317 324 ilg

(v} (wrs — Bk (r2 — nY =), an integer,
{wi} for o £ L bxix + ey fra = 4y, an integer,
(vii) for v Lo — L Be(x+ Lirafr = 42, an integer,

The three theotems below give construction methods for the EB designs of class (iii} along with an infinite
series of designs for vy #1 or v — L.

Theorem 2.1, Let vi=v + ), b hkry and r satisfy the necessary conditions in Lemma 2.1, Ther the
incidence matrix of a GB-EB design with porameters m=lwm=n—1bkrn—tx+sr—Mx+ 1) - wnd
e=Fx(x + 13/(rir:) is given by

Xl (w1,

with b =h — 5 and b: =3,
Ni4+xd N +xS

where N is the (v 1) = by incidence matrix (§ = 1,2 of cither o BIB design such thal N\ corresponds 1o BiR
(6 1, b5 k—ux) and Na corresponds to BIB {v—1,5.k—ex—1) or a PBIB design such thatr N. corresponds to
PRIB (v— |, b—s.& —tx, 0y, na, AV, A and No corresponds to PBIB (p—1,5.k—1x— 1 m, na, A=A, -2
with A=4Az —x(2b — 2r + xb), Az = bx{x + Vo Pased on the same association scheme, for sorme tegers
wyag, A and A0

Theorem 2.2, Let vi=r + m)hkr and ry satisfy the necessary conditions in Lemma 2.1 Then the
incidence matvix of o GB-EB design with parameters ¢y =t — Ltz = Lbkr =8y t5,ro=Mx + 1) -t and
e=8yix | 1) is given by

Mo+x  M+xd

1 e+ 1)1 with b=t and b =% 1.
i Irs

where N s the (0= 1) = by Incidence matric (1 =1,2) of either o BIB decign such that N\ corresponds to BIB
(v— 1. 6.k —ux) and No corresponds to BIB (v—1,b—t.k—uvx— 1) or @ PBIB devign such that 1 corresponds to
PBIB (v — |tk -, my.np, A A2y and Ny corresponds to PRIB (o—1,b—4k —vx— 1,0, 00,4214 212
with i= i) —x{xb+28), 4 = bx(x+ 1\ /r: based on the same association scheme, for some integers m,na, A"
ard A2,

Theorem 2.3. For a pair of posivive integers x and n. the following N Iv the imcidence maivix of o GB-ER
design with parameters;

t=(x+1im+1, wm=m+1, =X+ 1{x—1m~1},
E=2x{lx+1m+1}+1, r=ten+ D[2e{{x= LD+t 1} 1L
p=dix4 D+ 1 2e{ix+ D+ 1} 4 1],
dxtx + Dz + 1 {(x + I}n_—_|—_]}
xfix+1m+ 1} + 1)
I, & +xd.) o A
{ix+ 1), — I} @1, (10w

N =

Apart from the above series, recently Kherwa and Prasad (1995) have given a new series of GB-EB designs.
An exhaustive list of possible GB-FB designs with ¢ <1 in the paramelric range of 2 <v <% =20 and &= 100,
which satisfics the necessary conditions in Lemma 2.1, originally includes 121 designs. After accounting for
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mudtiples of existing smaller designs, we have a list of 45 designs and their multiples. Such information is
given in Section 4 in a tabular form,

3, Optimality of GB-EB designs

In practical simations. when the use of non-equireplicate design is contemplated, it often happens that there
are restrictions on the availability of the trentment and, as such, a particular replicarion patern has 1o be
followed. In such sitwattons, in additton to the number of treatments, the number of blocks and the block
stees being fixed, the replication numbers may also be fixed & prion from a practical standpoint. Hence, while
studying the optimality aspects of a non-equireplicate EB design 7, it s often natural to restnict attention
to a class of designs having the same number of treatments, the same number of blocks, the same block
stzes and the same replication numbers as 4% We denote by D(x, b k.r) the class of all connected block
designs having v treatnents, & blocks each of size £ and replication vector r. For desipgns having two distinet
replication numbers, we denote by [Ny, &, 8, 1, 1), the class of all connected block designs having r) —
treatments, 5 blocks cach of size & and ©v{v: ) treatments replicated #(r2) times, We first state two results
which follows from Mukerjee and Saha {1990, For the definition of various optimality criteria, one may refer
to the monograph of Shah and Sinha {1988,

Lemma 3.1, Ler a7 be an BB dexign and yuppose

b

[ 5 B
er lZﬂiu -*}’Z"ﬁ IZ”?&: (3.1
=l 1= i=l

i=]

Jor any d € DNv.bk,r). Then d* is D-optimal in D{v,b.k,r) for the estimation of every complete xet of
0 — 1 Jinearlfy independent treatment contrasty.

Lct ¢y denote the minimum elficicncy (or equivalently the minimum non-zero gigenvalue of R™'C7) among
the efficiencies of the treatment contrasts in , where efficiency is relative to the corresponding (unblocked)
completely randomized design with the same replication numbers as in the block design . We will call a
design d* to be Eq-optimal if ¢y =y for any other competing o. In other words, an £, -optimal design
maximizes the minimum canenical efficiency-factor among all competing designs. Note that the E--optimality
criterion ig analogous to the F-optimality criterion and they are eguivalent under the equireplicate class of

designs.

Lemma 3.2. Ler d% be an EB design and suppose the condition (3.1) hotds for anv d € D(v, b,k r). Then,
d% iv Ep-optimal in D{v, b,k r).

We now consider GB-ER designs with exactly two distinet replication numbers. Let &y, G2 be nomempty
scts which provide a digjoint partition of {1.2.... s}, Also let |G| =t and |Gz =v ¢ =t where ||
denotes the cardinality of the set ¥, Let the treatments in &(G2) be replicated ri(raf =r )} times. Before
we come o our main theorem, we need lhe following lemma which is casy to prove.

Lemma 3.3, Lef O<x €x2% - - $x, be integers such thar 30 | X, =t wheve n and 1 are some given positive
integers. Then the pinimum of 30 | x! is obtained when n(m ~ 1) —t of x's are equal to m and t — nm
of x's are equal to m+ 1 where m— [t/n] — lavgesi integer comtained in tin. The minimum ralue attained i
H2m 4+ 1)—mmim+ 1)

We now show the optimality of GB-EB designs.
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Theorem 3.1. Let d* be a GB-EB design in D{vy, va, b,k vy e Then d* is D- and Eq-optimal in D{(vy,v2, b,

korL,rd

Proof. For every o = D{uy, v, 8,k ¢y, 7). we have nsing Lemma 3.3

It ]
D IS DD AT ) I
i—1 =1 1= rT L= PR
2 e {r20r ]+ 1) — blrB)(Lr ib] + 1)}
+ry en{ra(2fra by + 1) — Blra/bl([r2ib] + 1)} {3.2)

MNow since ry2by. rasb(x + 1) and r <r, it follows that [# /5] =x and [r2/b]=x or x + 1 depending on
Fr<blx 4+ 1} or /o =Bz + 1) Hence, from (3.2} we have, for r; < Bz + 1},

Zr‘llnd. P(2e 4 13— badx £ 1)} 475 oo dra(2x = 1) — br(x + 1)}
o IVI Zznd'u ?"2 ZZ"&"U
] i f

and, for r-—hix + 1}

I
Z iy 2y e n@x + 1) = bxlx + 1} 475 o {bix + 1)}

= r] ILL”‘*"-‘—FhIZLn“'“"

I LR

MNow appealing i Lermmas 3.1 and 3.2 we pet the desired result. [

It may be of further interest to see how the GB-EB designs * perform in a broader class of designs
where the replication vector is arbitrary, Let D{0, b k) denote the class of connected block dx:sig;ns with »
reatments, & blocks of each size k. For a block design ¢ D{e, b, &Y, let 0=zy <2y Szgp 5 £25:.) be
the eigenvalues of Cy. Also. let dhy(d)= 3. ,_ ]' z‘;'( A-value of &) and ¢pld)= ]_[,:_,J = [—D—value of
). A design is A-optimal (D-optimal) if it minimizes ¢rg(d ) dnld)) over all the designs in 2{r, b k) The
A= and D-efficiency of a desien o 1s defined as

ed)=chalds )/ (deld))

and
enl(d) = {dppldp) (dn(d )y} o1,

where dq(dp) is the A-optimal {D-optimal) desipn in D{v b &) Cheng and Wu {1981} have obtained the
A- and M-efbiciency lower bounds for designs with given parametres o, b, &{ < o). Their bounds were attained
anly by BIB designs, An improved bound taking into account designs with £>» can be gbtained on lines
similar to Cheng and Wu (1981). The following lemama mves the 4- and D-efficiency lower-hounds for any
design o £ v, b k).
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Lemma 3.4. The A- and D-efficiency lower bounds for a design 4. Din b)) is given by

)= il )’ =
A= B0 — 6 e+ 1 atd)’
enld) = e — 1)

Blk(k —x) — (k — oxMx + D)} {@old)}ie 10

where n=—|kiv]

The efficiency lower-bounds of Lemma 3.4 are attained by BBDs.
We now give the ¢y{d™) and ¢n(d™ ) values for an EB design 4*.

Lemma 3.5 Ler d7 be an ER design with parameters v, b kv and efficiency factor e. Then
11
. T pl
L ZI .
and
bk
Pold* )= — —e—
pold”) ve” V][ 7
Proof. First note that the C-matrix of an EB design ™ i 0y- —e(R — pe'ibk ). The éy(d™ ) is now obtained
using the fact that the sum of the variances of all elementary treatment contrasts equals ¢ Y z;.",, where

2i=1
" is the por ohservation variance. The ¢ofa™ ) is obtained by working out the product of the non-zern
gigenvalues of & — w'/b as follows:

Tt can be shown that the charactenstic polvnomial of R - re'fhk s

[ v ?’2
Fluy=det(pf — B —#'ibk)= (p— ) (I + e -—) :
1_-[ ; Bk —n)

=1

O,
flw= f[f,u -n) - Z I% [Fu—r.
i=1 i=| F£F

Since 0 is an eipenvalue of R — w'/bk we can write f{p) as
SOy = gl = gl = - o(p — oy )

where pe.....Hy_- are the non-zero eigenvalues of B — we'/bk. Since /()= alp) + pg'{p) we get F{0)=
g0y=( 13 "I @ oor TEC =0 10 'f't0). Differentiating f{x) w.rt. u and putting p— 0 gives the
result. [

The 4- and [}-cfliciency lower bounds lor a GB-EB design then follows from Lemmas 3.4 and 3.5, Thus
we have

Theorem 3.2, The A- and D-cfficiency lower-bounds for a GB-ER design d* with parameters v, 02( =v—ry),
bk, rr and e = Malx = 1y(rr) is
Sivie —1)xls + 1

ACRE v o gy g v ETY o P g v
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el

A Ad* Chk(e - Lie(x | D) RPei (kA0
Ehy )= {i{,ﬂ; —x)={k = txMx 4 1]}!’]?’1 :

These lower bounds to 4- and D-efficiency for the GB-EB design @ with #<1 have been computed and
presented in the table. It is apparent from the table that the designs, apart from being D- and Er-optimal in
oy, va, b, &, L2} have high A- and D-efficiencies {among designs in 2(v,5,k)) as well.

For any given ¢ b k( =p) there abways exists a GB-EB dexign with e= L. Tt follows from Theorern 3.2 that
these GB-EB designs d* with parameters v, =o{x+1)—k, 22 =k —en. bk, r —xb and r; = (x+ )b have the
A- and D-glficiency lower-bounds as e’ (d*)=ko(v  D(x | L) {0RE = x) — (k= o )x 1 Dp3(e(2y + 1) —K)}
and e (Y =k{e — D{x"(x + 1k P kik - x) — (k —ex)(x + 1)},

4, Remarks and tabulation

Das and Kageyvama (1994) observed that for given v, b & if there exists two GB-EDB designs (say &, ) with
different sets of replications (ri4,F. ), §=1,2, then efliciency-factor ey, =e,, provided ryy, + rug, >rg. +
rau,. Also, from Theorem 3.2 it follows that £,{d, )= el(ds) provided rmy, b org, <rg, + re . A completely
reverse trend. This implies that with the increase in the value of the efficiency-factor, the lower bound to the
A-gfMivicney decreases and vice versa. This is a clear indication that the efficiency factor is ynable to throw
any light for comparing designs — ar least in the above setup. 1t follows that for given v, b, k, non-orthogonal
GB-EB designs with ¢< 1 is always 4- and D-better than orthogonal GB-EB designs with e= 1.

In Table 1, an exhawstive list of GB-EB designs with ¢<1 are arranged in the ascending order of £
within the parametric range 2 <v =% <20 and »<100. The designs marked with asterizk has additional prop-
erty which is mentioned in the end of Section 5. The table has columns corresponding to the parameters
v, bk, 1=_,ug._r5,rg,ej.fd*} and e,(df™). The emtrics under reference column refer to the solution of designs.
Here a2 BIB (1 cy, k) is denoted by {n, k). pie. k) refers to p copies of the BIB design. pBIBg refer to
(= 1) comes of the BIB design with serial nymber g listed in Hall (1986; Appendix). BIB® stands for the
complement of a BIB design. Ry, B'g, Ty, T'q and S refer to PBIB designs or their complements in Clatworthy
{1973). Aix.») stands for designs obtained in Theorem 2.3 belonging to the series with parameters x and ».
KP stands for design series of Kherwa and Prasad (19953 Finally, the figure a in the last column shows a
copies of the desiga within the same scope of parameters. They have the same efficiency bounds, Ouly one
design has an unknown solution indicated by a dash (—) and is retained in the table to inspire researchers for
atlempling a soluion.

5. EB row-column designs derived from GB-EB designs

The row-column designs considered here have b4 experimental units arranged in a rectangular amay of b
columns and & rows such that each unit receives only one of the v treatments being studied. Fur an arbitrary
row-column design 4, the “C-matrix”, under an appropriate model is given by

CRE =R BT INGNS — B MM (B T e =R kTN = BTG - kLM, (5.3)

where R.r are as defined earlier, and Ny(#dy) is the v x b treatment-column (¢ x & treatment-row) incidence
marrix, We denale by O, b, k&), the class of all connected row-column designs with & treatments, £ rows and
b columns,
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Tuble 1

GB-EH designs with ¢« 1 in the puramestric range of 2-2e <k 220 and 5= 100

r h & r| s " rs ) e * 1 el ) Relerence Multiple
4* o & 1 3 12 [4 {4040 (9985 I3 1) 211
5 k2 T 3 2 14 2] 0a717? 19854 ALY 2~8
3 4 7 4 1 33 1t 049991 0.94995 M4+ 34.1) 1~4
3 30 E 1 d 3 a1 (R B ] 1.9926 a3+ (4, 2) 2.3
i 25 % 5 1 12 b (59947 09972 (521451 2 aad
f i @ I A Al ETS (.STR 110 2(5,3]+ (5,23 2.3
7 45 ] f 1 55 75 [.5907 00951 (6,23 — 56, 1) 2

4" (] [#] t 3 5 35 [+.90%5 .9503 i 25N 2t
£ T to L 5 B 124 12775 19895 12{5,43 + (5,3

T 40 L1 L 6 21 63 9027 0.9%66 2{6.4) | B1B4 2
E* 30 L1 5 3 13 ) [+ 2502 1.9713 AlLL2) 2.3

E 42 11 T i 57 63 1.99%] 0.9993 IBIBL +(7.2) 2
g 14 2 4 i i in (13409 1499495 (421 + 241 2.7
B* 2 Z 1 7 28 32 0.549%3 09902 IBIB’] + BIBI 1~d
5 45 13 1 4 Lo Y 115461 (.941 04,31+ 2(4,2) 2

10 &) 13 9 L TH L] {1.9957 09978 ZHIHZ — (9, 2]

4 21 14 1 3 T T4 {0905 1.0000 EVg ey T 24
6 o 14 5 L &8 20 0.9971 09025 12201 45D 2.3
B+ n 14 1 B 28 33 0.9935 0.2970 R136 + 56 24
f =11 15 1 a 1201 124 MR [h.9a00 SN+ HE D) 2

10 54 15 1 9 Tz Ha 1 L (5 IRIN" 20 4+ BIBID

L 20 1= Lo L 27 30 0.00472 (15005 T+ T9 2~ 5
L= 6 15 T 4 60 |0s 09383 05472 AlLLSY

12* 33 15 11 1 40 33 09932 0.9963 KP X3
fi 55 Té 1 b 120 152 0.4993 119969 Y54y +(8 0

* k) 16 1 & 4% fd 09932 01.9968 R6E + R137

14r* T8 16 | G 05 124 9932 11 94968 IBIB°Z + BIB"20

I* T8 1% 5 f Ut 124 (9817 {19405 kP

1z T8 1) a 3 a5 124 [n PEE2 1.09928 -
5 &0 T 4 1 201 216 (1,900 £.9507 H4,21 + W4, 1)

7* 24 17 4 3 51 L] .9534 0095 A2 L) 24
T L] 17T £ 1 143 1501 [+ 5% {.9999 3BIR4 | X(e,2)

10 a4 17 1 Y A 144 (19545 1,9930 0%, 7)1+ BIB2

11 53 L7 1 14 k1 o0 054670 (1,0UKf 3IBIBR ~ BIR27

13 ) 7 12 I 20 121 010474 (.90 HIR4% + BIA4T

4 2 18 1 1 120 122 1000 1.0000 AL 450 .3
5* 2 4 1 4 Tz §1 19983 (9033 404,30 . (4.0 2.4
1 65 18 1 i 150 174 L.9584 (59992 6,41+ {6,3)

a* al 18 7 | LG8 250 0,054 7 h9972 {7.21+ W7 1y

L 25 18 ] 1] 30 42 {1,054 L G 12 —T57 2~4

12 33 18 1 11 d4 a0 00083 [h. 5904 IBIH'S + BIBS 2,1

14 T 4] 13 1 s 17 0.99403 (13905 BIB9S + 3BIH3

14* a1 1% 9 § 95 171 09302 0.2630 AL

] &5 20 5 1 212 240 019053 1.999] 5.2} + W5 1)

B 35 20 H T 2

a4 it 0.9995 {15995 IBIB"1 + ZBIB]

With each row-columnn design o are associated the block designs 44 and dy with incidence matrices Ny
and My respectively, ic., dy(dy ) is the block desigh obtained by treating the {volumns} ({rows}) of 4 as
blecks. Then, from (5.3), it follows that

bl R ol 7 R DT P L (5.4)
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where
Ci=R Kk 'N4N; {5.5)

is the C-matrix of du. .

From (5.4, it 15 clear that C’ffm'léﬂ";, where for & pair of nonnegative definite matrices 4 and 8, A =8
indicates that 4 — B is nonnegative definite.

Now, we quote some results and definitions from Das and Dey (1989,

Definition 5.1. A & x A array containing entries from a finite set 2={1,2,...,¢} of v treatment symbols
is called a Youden Type (YT} row-column design if the /th treatment symbol occurs in each row of the
armay w; times, for i=1.2,.. .0, where m; =r;/k and r; is the replication of the ith treatment symbal in the
dITdy.

Theorem 5.1, Consider g block design with ¢ treatments, b blocks each of size &, and suppose the ith
treatment Ix replicated v fimies for =12, 0 I we write the b Mocky of this design as columns, then
a necessary and sufficient condition for converiing (by rearranging treaiments within colwmns) it imto a YT
row-coftpnmn design is thar riik i5 an nteger, for i=1,2,....0

Theorem 5.2, A necessary and sufficient condition for C_,[,RC} =y is thar d € Din,b.k) is a YT design.

Remark 5.1. In view of Theorem 5.2, it is clear that if the block design & corresponding to a row-column
design dcD{v, b k) is g-optimal according to some non-increasing optimality criterion ¢, then 4 15 also
dh-optimal, provided o s a YT design {An oplimality ctiterion ¢ is non-increasing if ¢{4)= ¢(B) whenever
A—B is nonnegative definite). Thus, in the case of YT designs, the search for optimal designs in a row-column
setting reduced to that in a block design setup.

A row-column design o s said to be EB if and only if C‘;.Rc’ =¢g(R — rr' 6k, with U< e ] ay the unique
canonical efficiency-factor of 4.

Like in case ol block designs, for row-column designs having two distinet replication numbers, we denote
by Divy,va, b kr.r2), the class of all connected row-column designs with o, + vy treatments, & rows, b
columms and vy {ps ) trearments replicated r(r;) times.

From Definition 5.1, Theorems 3.1 and 5.2, and Remark 5.1, the following result is obvious.

Theorem 5.3. The block contents of the GB-EB design d™ can be rearranged to yvield a YT design, provided
rioand rp are divisible by & Further, @1 such a cuse, the YV dexign is o EB row-column design, and s
D- and Ep-optimal in D{vy, v, ke e

Mote that GB-EB designs with e =1 and b=k, for any positive integer ¢/, the conditions in Theorem 5.3
are sabisfied and hence, these desipns can be used to obtain D- and Ep-optimal EB row-column designs.
Among GB-EB designs with ¢ listed in the table in Section 4, the designs {for all or some multiples)
marked with asterisk can be converled 10 2 YT design and hence yield EB row-column designs.

The 4- and D-efficiency lower bounds obtained for a block design hold for a row-column design as well.
The lower bound to 4- and D-efficiency for a row-column design o 15 identical (o those in Lemma 3.4 and
are attained by Youden designs. Note that the EB row-column design, derived from GB-EB design, have the
same C-matrix as the GB-EB design, Theretore, the A- and D-efficiency lower bounds for the EB row-calumn
design are the same as the bounds for GB-EB design from which it is derived.
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