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Abstract 

Suppose it is desired to have an optimal' resolution III fraction of a Z factorial in N runs where N ~ 2(mod4). 
A design for this purpose can be obtained by adding two runs optimally to the n x p matrix derived by a suitable choice 
of p columns of Hn, a Hadamard matrix of order n. Alternatively, one can think of deleting two runs in an optimal manner 
from the (n + 4) x p matrix derived from Hn+4. A natural question then arises: do these two strategies give designs that 
are equally efficient in terms of a well defined optimality criterion? We show that for p = 2 or 3, the design obtained by 
deletion is as good as the addition design under the A- or the D-optimality criterion. However, for p ~> 4, the performance 
of the deletion design compared to the optimal addition design is rather poor as per the D-criterion, especially for large 
values of p. Under the A-criterion, the addition design is always better than the deletion design for p/> 4, but the loss of 
efficiency using the deletion design is not too large for moderate values of p. (~ 1998 Elsevier Science B.V. All rights 
reserved 

A MS classification: 62K15 

Keywords." Resolution III fractions; Optimality 

1. Introduction and preliminaries 

A fractional factorial design is said to be of resolution III if it allows the estimability of the mean and all 
main effects under the assumption that all interactions involving two or more factors are negligible. In this 
paper, we consider resolution III fractions of 2 p factorials. We assume that the Hadamard conjecture is true, 

i.e., there exists a Hadamard matrix of order n > 2  whenever n 0 (mod 4). A positive integer n 0 (mod 4) 
will be called a Hadamard number. A Hadamard matrix of order n will be denoted by H, and we shall assume 

(without loss of generality) that the first column of Hn consists of only + l ' s .  
Suppose it is desired to have a resolution III fraction for a 2 p factorial in N 2 ( m o d 4 )  runs, which is 

optimal in some sense. A design for this purpose can be obtained by first deleting the first column of all ones 
from an Hn or //,+4 and retaining any p columns of the remaining columns to get an n x p or (n + 4) x p 
matrix and then either (i) adding two runs optimally'  to then x p matrix derived from H,, or, (ii) deleting 
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two runs optimally from the (n + 4 ) ×  p matrix derived from Hn+ 4. Do the procedures (i) and (ii) give rise 
to designs that are equally efficient according to some well defined optimality criterion? In this paper, we 
attempt to answer this question with respect to the two commonly used optimality criteria, viz., the A- and 
the D-criterion. 

Cheng (1980), among other things, showed that adding a single run to a 2-symbol orthogonal array of  
strength 2u with rn - 1 runs or, deleting a run from a 2-symbol orthogonal array o f  strength 2u with rn ÷ 1 
runs gives an m-run resolution-(2u + 1) design for a two-level factorial that is optimal according to a wide 
class of  criteria. Mitchell (1974) while discussing his DETMAX algorithm for finding D-optimal fractions of  
two level factorials o f  resolution III suggested that a D-optimal fraction with N 2 (mod 4) may be obtained 
by adding two runs to an orthogonal design with N -  2 runs. See also Payne (1974), who considers the 
problem of  maximizing the determinant o f  AIA where A is an n × p matrix with entries 1. 

Let X0 denote the n × (p  + 1) design matrix corresponding to the resolution III fraction of  a 2 p factorial 
in n 0 ( m o d 4 )  runs. The columns of  X0 correspond to the mean and p main effects. Then, it is easy to 
verify that XdXo = nip+l, where Im denotes an identity matrix of  order m. Let two more runs be added to the 
design in n runs, and we call the new design in n + 2 runs an addition' design. Let the 2< (p  + 1) matrix 
of  the two added rows of  the new design matrix be denoted by Xl, that is, the design matrix of  the design 
with n + 2 runs, say Xa is 

x . =  x~ ' 

so that 

XtaYa = Y d Y  0 ÷ Y ( Y l  = nlp+ 1 ÷ Y ( Y l .  

The eigenvalues o f  X~aXa are therefore n + 2i, where for i = 1,2 . . . . .  p + 1, 2i are the eigenvalues of  X[XI. 
Since the nonzero eigenvalues of  X(XI and those of  XIX[ are identical, it is easier to work with the 2 x 2 
matrix XIX[. Let the added runs, each with two distinct entries, differ at t coordinates. Then, it can be seen 
that 

X1X[=( p + l  p + l - 2 t )  
p + l - 2 t  p + l  " 

The eigenvalues of XiX[ are 2t and 2 ( p +  1 - t ) .  Hence the eigenvalues of  YatXa are n with multiplicity p - 1 ,  
n + 2t a n d n + 2 ( p + l - t ) .  

Now consider a design for a 2 p factorial in n + 4 runs derived from Hn+4. We delete two runs from this 
design to get a design for a 2 p factorial in n ÷ 2 runs and call this design a deletion' design. Let the design 
matrix o f  the (n + 4)-run design be denoted by X2 and let X3 denote the design matrix corresponding to the 
two deleted runs. I f  Xd denotes the design matrix of  the deletion design with n + 2 runs, then 

x3  ' 

so that 

X~Xd = X~X2 - X~X3 = (n + 4 )]p+l - -  X~X3. 

Hence, the eigenvalues o f  X~X d are (n + 4 ) - / 1 i ,  where for i = 1,2 . . . . .  p ÷ 1, Pi are the eigenvalues of  X~X3. 
Arguing as before, we therefore have that the eigenvalues of  XdXd are n + 4  with multiplicity ( p - 1  ), n + 4 - 2 t  
a n d n + 4 - 2 ( p + l - t ) .  
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2. Comparison based on the A criterion 

Let 0 1 , 0 2  . . . . .  Op+ 1 be the eigenvalues of  the information matrix X ~ D  of a resolution III fraction D of a 
--1 2 p factorial. Then, the A-criterion requires the minimization of A = 0~ 1 + - . .  + Op+ 1 . From our discussion in 

the previous section, it follows that the value of the A-criterion for the addition design, as a function of t is 
given by 

Aa(t) p -  1 1 1 = - - +  + 
n n~2t t  n + 2 p + 2 - 2 t  

If  p is odd, the minimum of Aa(t) occurs at t = ( p  + 1)/2. The minimum of Aa(t), which we denote by 
Aa(O), is given by 

( p -  1) 2 
A ~ ( O ) -  + if p is odd. (2.1) 

n ( n + p + l )  

When p is even, the minimum of Aa(t) is 

p - 1  1 1 
A a ( O )  = - -  4 -  - -  ÷ - if p is even. (2.2) 

n n 4 - p  n 4 - p + 2  

For the deletion design, the minimum of the A-criterion, denoted by Ad(O) are given by 

p - - 1  2 
Ad(O) = - -  + if p is odd; (2.3) 

n + 4  n - p + 3  

p - 1  1 1 
Ad(O) = - -  + + if p is even. (2.4) 

n + 4  n - - p + 4  n - - p + 2  

If  p is odd, we have 

A d ( O ) -  Aa(O) = p -  1 + 2 p -  1 2 
n + 4  n - p + 3  n n + p + l  

4 ( p -  1)(p 2 - 2 p -  3) 

n(n + 4)(n - p + 3)(n + p + 1)" 

Clearly, Ad(O) ~>Aa(O) for all p ~> 3, with equality if and only if p = 3. We thus have 

Theorem 2.1. I f  p > 3 is odd, the best addition design is superior to the best deletion design on the basis 
of  the A-optimality criterion. For p = 3, both the designs are equally efficient as per the A-criterion. 

If  p is even, we have 

Ad(O) -- A,(O) 

p - 1  l 1 p - 1  1 1 

n + 4  n - p + 4  n - p + 2  n n + p  n + p + 2  

_ - - 2 ( p - 2 )  N 2 ( p - 4 ) + N ( p  2 + 6 p - 1 6 ) - 2 p  3 + 6 p  2 + 1 2 p - 1 6  

n(n + 4)(n - p + 4)(n z + 4 n + 4 - p 2 )  
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Clearly, Ad(O) : Aa(O) if  p = 2 .  For p > 2 ,  it can be seen that Ad(O)>Aa(O). Hence, we have 

Theorem 2.2. I f  p > 2 is even, the best addition desi#n is superior to the best deletion design on the basis 
o f  the A-optimality criterion. For p = 2, both the designs are equally efficient as per the A-criterion. 

In order to see how the best deletion design compares with the best addition design with respect to the 
A-criterion, the values of  el =Aa(O)/Ad(O) was computed for all Hadamard numbers n in the interval [4, 48] 
and for all 4 ~< p ~< n -  1. It turns out that the values of  el range between 99.9 (n -- 32, p -- 4, 5; n = 36, 40, 
4~<p~<7; n = 44,48,4~<p~<8) to 70 ( n = 4 8 ,  p = 4 7 ) .  Thus, the deletion design is nearly as good as the 
addition design for moderate values of  p. A graph showing the values o f  el for 8 ~< n ~< 48 and 2 ~< p ~< n - 1 
is given in Fig. 1. 

3. Comparison based on the D criterion 

Recall that a design D is D-optimal if and only if D maximizes ~J= 0i, where as before, 0j . . . . .  0p+1 are 
the eigenvalues o f  the information matrix X ~ ' D  of  D. Let Da(t  ) and Dd(t), respectively, denote the value o f  
the D-criterion for the addition and deletion designs, as a function o f  t. Then, 

Da( t )=np- l (n  4- 2t)(n 4- 2p  4- 2 - 2t), 

Dd( t )=(n  + 4)P- l (n  + 4 - -  2t)(n + 4 - 2 p - -  2 + 2t). 

The maximum values of  Da(t) and Da(t) are given by 

Da(O) = nP-l(n 4- p4-  1) 2 , 

Dd(O) = (n 4- 4)P-I(n - p 4 - 3 )  2 i f p  is odd, (3.1) 

Da(O) = np-I(n 4- p)(n + p + 2), 

Dd(O) = (n + 4 ) p - I ( n  - p + 4)(n - p + 2) if p is even. (3.2) 

The expressions for Da(O) for both even and odd p are identical to the maximal determinant values of A'A 
where A is an N × m matrix with entries 1, as given by Payne (1974). Therefore, the best addition design 
is indeed D-optimal and we have 

Theorem 3.1. The best addition design is a D-optimal resolution I I I  fraction o f  a 2 p factorial in n + 2 runs, 
where n is a Hadamard number. 

To see how the best deletion design fares in comparison to the D-optimal addition design, the expressions 
of  Da(O) and Dd(O ) were  numerically evaluated for 4 ~< p ~<n-  1 and all Hadamard numbers n in the interval 
[4,48]. It is easy to verify that for p = 2 or 3, both the strategies are equally good. The efficiency' of  
the deletion design with respect to the addition design, as measured by the ratio Dd(O)/Da(O) = e2, say, 
decreases monotonically with p for each of  the values o f  n. The value o f  e2 is at least 90 for 4 <~ p <n/2, 
but once p exceeds n/2, the values of  e2 fall sharply for moderate values of  n. As n increases, the fall in the 
values o f  e2 is however, not very rapid. A graph showing the values o f  e2 for 8 ~<n ~<48 and 2 ~< p ~< n -  1 is 
given in Fig. 1. 
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Fig. 1. el and e2-values for various values of n and p. 
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