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Abstract

Let Xi o SX20% - £Xe: . denote the order statistics of a random sample X7, Xz, ... X, from a probability distribution
with distribution function #. Similarly, let Y1 £ ¥ 05 - £ ¥, denote the order statistics of an independent random
sample ¥y, ¥o..... ¥, from . The corresponding spacings are defined by L., =X, — X ,ad V., =¥, ., — ¥y 0
for i = 1,2,....n, where Xy., = ¥o., = 0 It is proved that if X is smaller than ¥ in the hazard rate order sense and
ift either F or & is a DFR (decreasing failure rate) distribution, then the vector of L. s is stochastically smaller than
the vector of .. s If instead, we assume that X is smaller than ¥ in the likelihood ratio order and if either F or 7
is DFR, then U)., is smaller than V., in the hazard rate sense for 1<i<n. Finally, if we make a stronger assumption
on the shapes of the distributions that either X or ¥ has log-convex density, then the random vector of L. s is smaller
than the corresponding random vector of V.. .'s in the sense of multivariate likelihood ratio ordering.

MEC: primary 62N05; secondary 62E10

Keywords: Likelihood ratio ordering; Hazard rate ordering, Stochastic ordering: Multivariate stochastic ordering; Multi-
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1. Introduction

In the case of nonnegative (skewed) random variables, the notions of stochastic orderngs and variability
ordermgs are itimately connected. For example, two exponential diswibunons with different hazard rates are
ordered stochastically as well as according to variability ordering. There are several notions of stochastic
ordermg as well as of vanability ordenng of different degrees of strength. The differences i the variabili-
tics in probability distributions are reflected in their samples in the form of differences in the lengths of the
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comresponding sample spacings when random samples of the same size are drvwn from them. IF one probability
distribution s more dispersed than the other then the sample spacings for that distnbution will be compara-
tively larger in some stochastic sense. We shall make this satement more precise later. Note that almost all
well-known measures of dispersion, including sample mnge, sample variance and Gint's mean difference are
functions of sample spacings.

Spacings are of great importance in statistics and life testing A large number of goodness-of-fit tests are
based on functons of sample spacings. In the life testing context, imagine n items put on test. Then the
spacings represent times between consceutive failures.

In this note we obtain connections between varous types of stochastic orderings between two probability
distributions and their corresponding sample spacings when mandom samples of the same size are drawn from
them. First we review some well-known notions of stochastic orders. These can be found at one place in the
book by Shaked and Shanthikumar (1994).

Let X and ¥ be two random variables with distribution functions F and G; and survival functions F and
@, respectively. Let F~! and G~! be the nght continuous inverses of F and G, defined by F~'(u) = supdx :
Fix)=u} and G Yu)=suplx : Gx) zu}, we [0 1] We shall denote by 7 and g the densities of X and ¥,
respectively. Throughout this paper the term increasing 1s used for monotone nondecreasing and decreasing
for monotone nonincreasing.

Definition 1.1. X is said to be stochastically smaller than ¥ (denoted by X< ,F ) if

F(x)=G(x) for all x. (1.1)
It is well known that Eq. (1.1) s equivalent to

E[diX )| =E[M¥)]  for all increasing functions o @ 3% — &, (1.2}

for which the expectations exist.

Definition 1.2, X is said to be smaller than ¥ in the sense of hazard mte ordering (denoted by X =, ¥ ) if

Fi:
_{‘ﬂ is decreasing in x. (1.3)
(rix)
In the continuous case this is equivalent to
rplx)sre(x) for all x, (14)
where rp = f/ F and rg = g/ G are the hazard (or failure) rates of F and G, respectively.
Definition 1.3. X is said to be smaller than ¥ in the sense of likelihood mtio ordering {denoted by X<, 1)
if
fix)
glx)

15 decreasing n x. (1.5)

We have the followmg cham of mplications among these partial ordermgs of distnbutions:
Ay =sXsyy=sAsyl

The above notions of stochastic dominance among univariate mndom variables can be extended to the multi-
vanate casc.
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Definition 1.4, A random vector X = (X, ... X, ) is smaller than another mndom vector ¥ = (¥,....F,) in
k|

the multivarate stochastic order (and wntten as X = ¥ )af

E[d X)) =E[¢¥)] for all mereasing functions ¢ (1.6)
for which the expectations exist.

Karlin and Rinott (1980) mtroduced and studied the concept of multivariate likelihood mtio ordering. Let
§ and g denote the density functions of X and ¥, respectively.
Definition 1.5. A random vector X = (X, .... &, ) 18 smaller than another mndom vector ¥ =(¥,.....¥,) n
Ir

the multivanate hkelihood mtio order (wotten as X = Y )af

Filxdgr) = flx Ayigixvy)  for every x and p in #", {1.7)
where

x Ay = (min(x, v ). ... mn(x, v,
and

x Wy = (max(x, ¥ Do omax(x,, ¥y )
It is known that multivanate likelihood matio ordering implies multivanate stochastic ordering, but the converse
is not true. Also if two random vectors are ordered according to multivanate stochastic ordering or multivariate
likelihood mtio ordenng, then their corresponding subsets are also ordered accordingly. It should be noted
that unless the components of random vectors are independent, component-wise stochastic (likelthood mtio)
ordering between two mndom vectors may not imply multivanate stochastic (likelihood ratio) ordenng between
them. See Chapters 1 and 4 of Shaked and Shanthikumar (1994 ) for more details on various kinds of stochastic
orderings and their inter-relationships.

One of the basic crteria for comparing variability m two probability distnbutions s that of dispersive

ordering.

disp
Definition 1.6. X is less dispersed than ¥ (X = ¥)af

Flo)—F w6 (o) -G u)., Yo<usv<l (1.8)
This means that the difference between any two gquantiles of £ is smaller than the difference between
disp
the comespondmg quantiles of &, It is casy to see that in the continuous case, the relaton X = ¥ can
disp

be cquivalently expressed as rp( G u)) = re(F~Yu)), for all 0=u=1. A consequence of X = ¥ is that
[X) —X5| =£4]Y) — ¥5| and which in turn mplies var(X )< var(¥) as well as E[|X] — X3|] = E[|Y) — Y4|], where
XX (YL Ys) are two independent copies of X (V). For details, see Scetion 2.8 of Shaked and Shanthikumar
(19947,

Bagai and Kochar (1985) proved the followmg result on connections between hazard rate ordenng and
dispersive ordering under some restrictions on the shapes of the diswributions.

isg
Theorem II (a) IF X =Y and either F or G iy DFR (decreasing failure rate), then X = T,

B

digp
(b)Y i X = Y and either F or G i IFR (increasing failure rate), then X =, Y.
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Let Xy, =X, --- =4, denote the order statistics of a random sample X4, .. X, from a distribution
with distribution function F. Similarly, let ¥y, Y5, = --- £ ¥, denote the order statistics of an independent
random sample ¥, Y.L ¥, from a distnbuton with distribution function . The comresponding spacings are
defined by U;., =X, — X, and F =Y., — Y fori=12.. n where X3.,= Y., = 0. We use
U and V to denote the vectors of spacings of the X -sample and the ¥ -sample, respectively.

diagy 4

Bartoszewicz ( 1986) in his Lemma 3(c) has shown that X %] Y = L’;—‘{l V. This observation along with

the result contamed m Theorem 1.1 {a) leads to the following theorem.

Theorem 1.2, Let X =, Y and let either & or G he DFR Then

UV (19)

Corollary 1.1. Under the conditions of Theorem 1.2
(a)
Xiw—XiwSaljn — Y forlsi<jsn
In particular,
X —AlaTalen— Yo
(b)

a )
Sy St 5y

where 53 and 53 are the sample varianees of the two samples.
(©)

Ha Zaly

where
Ay -]
'?X= [(2)] ZZW}I:JI_‘X}:JII
i<y

i the Gini's mean difference for the X -sample. Similarly we define ny.
Proof. (a) The result follows by adding the corresponding components of the random vectors L and V' from

i+ 1 to jand usmg the above theorem.
(b} Note that the sample variance can be expressed as

-"'_i‘ — I_”{ﬂ T ljl_l ZZ{_“Y_I:M _XJ':M }_,

i<

= [ﬂ{ﬂ o ljl_l ZZ{,L{I:JI + 'L'i.l'—l n + + U'-.-I :.II}_’
i
which is an mereasing function of U, Since increasing functions of stochastically ordered random vectors are
stochastically ordered, the required result follows from the above theorem.
(¢) The proof follows from the previous theorem and the fact that, as in part (b), the Gini’s mean difference
can be expressed in the fonm of an increasing function of the vector of spacings.

The essence of the above results 1s that the differences in the variabilities in two probability distnbutions
are reflected in their samples in the form of stochastic orderings between the corresponding sample spacings.
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David and Groeneveld (1982) have wsed expected lengths of spacmgs as a measure of local vanability in a
distribution. However, they have considered a one-sample problem.

We pursue this topic further in this note and show that the results of Theorem 1.2 can be strengthened
under some stronger conditions on the undedying distributions. These results might be useful in studying the
properties of estimates of measures of dispersion.

2. Main resulis

In the next theorem, we assume likelihood ratio ordering between X and ¥ oand strengthen the results of
Theorem 1.2 from stochastic ordering to hazard mte ordering.
Theorem 2.1. Let X =Y and let either F oor G be DFR Then
UrinsneVion Jﬁw' l=i=n {_2-1}
To prove this result we shall need the following lemma from Kochar and Kirmani (1995):
Lemma 2.1. Let fyix, v) and alx, v) be positive real-valued functions such that
(i) for wi <y,

thalx, o )
il vy )

(i) for vy =y,

v nondecreasing in x,

glx, y2) i
s nondecreasing in x,
(. y1)
(m) for each fixed x,
gnlx.y) o
is nondecreasing in v,
(2. ) R
Then for funciions |y and @2 satisfving the above conditions, Z) =22 implies
Elyn(x, 23 )]

iy [ncreasing in x, (22)

Elra(x.21)]

provided that the expectations exisi.

Proof of Theorem 2.1. We shall prove Eq. (2.1) assuming that £ is DFR. As shown in Kochar and Kirmani
{1995), the survival function of V., is

Hg. Ax)=C(i : ﬂ]lf" [Glx +w)]" ™ G ()
(]

= cr{_j . H}E[t}‘l’l{_x:‘ }.-J'—| fi—1 ”1: {_23}
wherne,
g R il
) e T i
ihix, v) =E"_I+I{\x +v)yand ¥ ..y 15 the maximum of (i — 1) Lid. ¥'s
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Similarly, the survival function of U, 1s

Hp i(x) =C( : m)E[(x.Xi—1 -] (24)

=a—it]

where, a(x, ¥v)=F {x+ v)and X;_y . is the maximum of (i — 1) Lid. X's.
We have to prove that under the given conditions,

Hp . lx) s Elfni{x Yy )]
He. {x)  EDb(x X0
It is easy to see that X <, Y implies that X, ;< Y;.; for j = 1.2,....n. By identifying X;_.;,_ with Z,
and ¥;_q.;— with Za, we notice that the required result will follow if conditions (1), (i) and (111) of the
previous lemma are satisfied.
Let us vernfy them one by one.
Condition (1) s satisfied since

IS Inereasing in x. (2.5)

- n—it+1
da(n ) [Fa+p)]"
Walx.y)  [Flx+y1)
15 mncreasing in x for y = » as F 1s assumed o be DFR.
Let us now venfy conditon (ii).

t,'.lf|{.T, _'l-‘}_::l _ E{__T =S _Vz} ai—i+1
ta{x, vy ) Fix+ vi)

will be mcreasing in x for vy < v if and only if

s [r.in{x*_vz}

& LWt )

15 mereasing m x for vy < ye. Differentiating both sides with respect to x, we see that this will be true 1if and
only if

] =(n—i+ 1}[k}gﬁ{x + ) — Iug?{.t + w)

(n—i+ )[relx+ ) —relx+ y2)]=0 forall x and for y) < s, (2.6)
Now Eq. (2.6) 15 true since

rglx + wlsrelx+ p)srelx+n
for vy =< y» as rp<rp and F 15 DFR.

By using the same kind of arguments as above, it can be shown that for fixed x,

H‘,’I {‘_T, _1-‘} [ﬁ{‘_\f < _1-‘}:| n—i+1

thalx, v}

15 INCreasing in y.
Hence the result. [

Fix+y)

It is known that the spacings of a random sample from a DFR distnbution are DFR (cf. Barlow and
Proschan, 1966). Using this result in conjunction with Theorem 1.1, we get the following cormllary.
Corollary 2.1. Under the conditions of Theorem 2.1

disp
Uiw= Vi fori=12...n
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In the next theorem we assume mnstead that either F oor & has log-convex density, a condition stronger than
DFR property, and establish multivariate likelihood mtio ordering between the vectors of spacings U7 and V.
We shall need the concept of supermodular functions as defined below.

Definition 2.1. A real function ¢ on #" is called supermodular if

)+ ppIsdixv ) +dxny) forall x.p e @

It 15 known that a function ¢b i1s supemmodular if and only if all its second derivatves are nonnegative (cf.

Shaked and Shanthikumar, 19977,

Theorem 2.2, Let Xy,.. . X, be a random sample from F oand et Yy, ¥, be an independent random sample
Jrom G, Let X =Y and let either F oor G have log-convex density. Then

It

U<V. (2.7}

Proof. Let us assume that f is log-convex. The proof i similar for the case when g is log-convex. As in
Kochar and Kimmam (1995), the joint density of U= (U, U0 18

n i
by, .. 0y =n!H_,|" (Zu,-) . =0, i=1,...,n,

=1 =1

and that of F = (F. oo Fyon) 18

o i
ho(vg,....t) =n! Hg (ZL‘,-) . =20, i=1,....mn

=l i=1
To prove Eq. (2.7), we have to show that under the given conditions,
hp(mhg(v) <he(o AoeYhg(e v e) forall me e #" (2.8)
Since under X =Y, g/ f 15 nondecreasing, it follows that
ho(uV ©) _ o)
hp(w v o)™ hp(e)

for all w.v e #",

which in turn implics that
hg(v)
hp(v)’

bl edhp(o foe)z=he(n v e (o s {(2.9)

for all w v & 3",
Now Eq. (2.8) will hold if we can prove that under the assumed conditions
hp(mdhe( )= helu Aovdhe(u v ), for all we e &,
or equivalently if
" ¥l i i
Z log (Z u,-) + Z log f (Z L',-)
Ji=1 =1 =1 =1
" i " ¥
<Y logf (Z{u,- v L',-}) +Y logf (Z{u; A 11,-}) (2.10)
=1 1=1 =1 1=1
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for all w.v & 3", Let

P(X1a ) = Z log fix) +--- 4+ x:)

i=1

It 15 easy to see that the function o 1% supermodular since f 1 log-convex. Hence
() ) sy ¥4 al(x Aoy (2.11)

for all x,p € @, thus proving Eq. (2.10).
This completes the proof of the theorem. [

3. Examples

Example 3.1. Let Flx)=exp|— {x+ x+e ™ — 1)} 0= 0, be the Makeham distribution with hazard mte
re(x) =14+ 1 —e™*) and let G(x) = exp{ —x}. be the exponential distribution with hazard rate rg(x) = 1.

diap
Then for 0 =0, X =, ¥ and ¥ is DFR. It follows from Theorem 1.2 that m this case X = Y. Corollary 1.1
is now applicable and it gives convenient bounds on the moments of measures of dispersion for the X-sample
in terms of those from the exponential distibution with mean 1.

However, it can be seen that in this case X £, ¥,

Example 3.2. Let ¥ be a mndom vanable whose distribution is a mixture of two exponential distnibutions
with density function
Lids /() + ds)[e > + e~ %], x>0,

where A; = 0, J; > 0 are the parameters. Let X have exponential distibution with parameter &= (4, + i2)/2.
Then it 15 casy to prove that X = ¥ Since ¥ has a log=convex density, the condinons of Theorem 2.2 are

It
satisfied and as a result U= V. This result gives lower bounds on the moments of measures of dispersion
in sampling from a mixture of two exponential distnbutions in terms of that from an exponential distribution
with parameter £

Acknowledgements

The author 15 grateful to the referce and the associate editor for their helpful comments which have greatly
improved the presentation of the results.

References

Bagai, 1., Kochar, 5.C., 1986, On tail ordering and comparison of failure rates. Commun. Statist. Theor, Meth. 15, 13771388

Barlow, BLE., Proschan, F., 1966, Inequalities for lingar combinations of order statistics from restricted families. Ann. Math, Statist. 37,
1574-1592.

Bartoseewicz, 1., 1986, Dispesive ordenng and the total time on test tmnsformations. Statist. Probab. Lett. 4, 2E5-288

David, H A, Groeneveld, B.A., 1982 Measures of local variation in a distribution: expected length of spacings and vanances of onrder
statistics. Biometnka 649, 227-232

Karin, 5., Rinott, ¥., 1980, Classes of omlenngs of messures and related cormelation inequalities | Multivanate totally positive
distributions. J. Mult. Anal. 10, 467498,

Kochar, 5.C., Kirmani, S.N.UA, 1995, Some results on nomalized spacings from restricted families of distributions. 1. Statist. Flan.
Inf. 46, 47-57.

Shaked, M., Shanthikumar, 1.G., 1994, Stochastic Onders and Their Applications. Academic Press, San Diego, CA.

Shaked, M., Shanthikumar, 1.G., 1997, Supermodular stochastic order and positive dependence of random vanables, 1. Mult. Anal. &1,
B6-101.



	on stochastic ordering-1.jpg
	on stochastic ordering-2.jpg
	on stochastic ordering-3.jpg
	on stochastic ordering-4.jpg
	on stochastic ordering-5.jpg
	on stochastic ordering-6.jpg
	on stochastic ordering-7.jpg
	on stochastic ordering-8.jpg

