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INTRODUCTION

The subject of ergodic theory Which is the mathematical
outgrowth of the gas problem in statistical mechanios and the subject
of information theory which is the mathematiosl outgrowth of the
jroblen of information transsitssion through communication channels have
meny interesting dual features. In ergodic theory we study collectively
and individually the measure eserving transformations of a fixed
meagure space, whereas in inforanation theory we do the same with the
sot of all messures in-variant under u fixed measurable transformation
of & measurable spuoce, The object of this thesis is to study some of
the dusl relations between the t!;o thtertéu with emphasis on the

information-theoretic #spect,

In the first chagter we take up the global problem., !Here the
problem of ergodie theory is to ensur: that t'ore e a lirgo olsss of
ergodic trensformations in any non-atomio measure space. If (X, S, u)
is a finito measure spege and { the group of all one to one vasure
praserving transformations, then two interesting topologies o:n be
agsi/med to G vwhich make it a topological group. In dynaaiesal
problems it is of interest to know whether a particular trunsformation
is ergodio or not. Bven though thia probleam has defiged solution till
now, the existunce of a large class of ergodic transformations has been
shown by the detemination of their category im G. In particular,

Halmos [ 5 ) proved that the set of weakly mixing trensfor:ations



is a dense ob in ¢ under the weak topology. Similar resulta were
proved earlier Yy Oxtoby and Ulam [ /¢ 1o Rokhlin [ 1§ 1 proved that
under the same weak topology in G, the set of strongly aixing trans-
fornations is a set of Cirst ocatégory. Hers the main tool is to show

the density of what are onlled periodic trensformations,

In problems of information-theorstic interest, w hive a fixed
meacurable space (X, 3) and & one~-toe-one both ways measurable mep
T of X onto itself. Here, it .s of interest to know whethor there
are a lot of ergodic measures in the space of invariant probability
measures, In order to stuly this problem, we take X to be a
topological spuga, 3 the orel O=field and T a homecmorphism of
X onto itself. [aking X t0 be a ocomplete and separable metrie
space and assigning the weak topodogy to the space of invariant
probability measures, we show that the set of ergodic measureas is a
GD « Now the question arises as to what are the complate sepurable
metric spuces and what are the homeomorphisms under which the ergodic
measures are dense. This oclussification problen has mot been solved
even in the case of & compact metric spsce. Mut, however, in spaces
of information=-theoretic importance we have solvi:d this problem, 7"hen
X 48 a countable product of complete and separable metric epaces and
T is the shift transformation, we show that the ergodic mensures form
4 dense Gb under the weank topology. In this context it is not

without interest to mote that the ergodic measurcs constitute the set of



extreme points of the convex set of all inveriant probability measures.
BEwsmples are given to shov that ergodic measures need not be dense in

the genoril case.

de introduce the concept of periodic invariant measures and
study their struoture. We show that, in the case of ehift trunsforma-
tion, the periodic measures are dense in the weak topology und thereby
deduce the first ostegory niture of the s+t of strongly mixing
measuras, Further, whenever the periodic measures arv dense in the
waak topology the closure of the sut of poriodic points is of invariant

nedpure one. The conversse problem remsins cp-n;

In the second chapter we introduce the notions of entropy of a
stationary source and yete of transmission of a statiomary channel and
study some of their properties. In the problem of olassifioation of
measurespreserving transformations the fundumental role of the notion
of entropy a5 & metric inveriant has been demonstrated in the recent
works of Ae No Kolmogorov [ 8 1. 1In this connection V. re itokhlin [ 17 ]
pointas out that there is a large class of meamure«preserving tronsfore
mations with sero entropy and hence in such cases entropy happens to
bo & trivial invariant, This is done by examining the eate. ory of
the set of transformations with mero entropy in the spage of all
peasure=preserving transformations under a suitable to;;oio,gy. ¥e have
shown that in the case of shift transformation the set of ull ergodie

probability measures with sero entropy is a dense G, 1in the space of



all invariant probability measures.

Then we stwdy the problem of repressiting the entropy of a
stationsry information source as an integral of the entroples of its
ergodic components, We do the ssae for the rate of transmission of
o stutionary input distribution through & stationary communicition
channel. The continiity properties of different funotionils ussociated

with a chamwel are disouseed.

In the last chapter we study the applieations of the results
obtained in the first and second chapters. We prove that the stationary
and ergodic ocapacities are equal for an arbitrery stationary chamnel,
“his has been proved for channels with finite memory by I. Fo
Tearagradsky [ 22 )» Ae Peinstein [ 4 ] and L. Breimanl'lde then
study the problem of echievement of eapacity for channels of finite
memory in the sense of Feinstein, Finally we give s limiting form of
the famous Feinateirs fundamental lemma which throws some light on the

assuaptions under which the leuma is proved.

1, ERGODIC, Pii.XODIC AHD 3THONGLY MIXIRG MEAS #-3

1.1, Prelsinaries

t (X, ) be any measurable speoe and T a ome %> ona both
ways neadswrible map of X onto iteself. ‘henmaver the apsco X is a

topological space, wa take @ to be the 3Jorel G-fiald an! [ a



homeomorphism of X onto itelf. Ry a measure or a distiribution, we
slvays mean a probability measure. We demote ¥y N , M. wmd I,
the apace of all inveriant, ergodic md strongly mixing meusurvs

respectively, For these definitions we refer to [ 5 1,

Apoint x & X will be oalled periodic if for sowe im?ger k,
7 X @ Xxo The smallest k for which the equality 7% x . Jia called
the period of x., A measure U & N e said o be pericdic if for some
integer k,u(a N Tk A) » u(A) for a1l sets A € S e “a ghall denote

by P and P@ the olase of all invarisnt pericdic measurce and the

clasas of all ergodio periodic meusures respectively.

#en X 4is & topological space, we sesign the week topology to 1
\y means of the following convergence: & not { i | ia N converges to
u if and omly if [ £du => J/ £du for every bounded continuows function
defined on X. This topology csn sgtually be defined for the apece of
a1l probability messurss. 7hen the spaos 11 ocan then be viewed upon
az & glosed subset of the epaos of all prodability meagures, In the
ca3¢ when X is a separable metric space the following theorem (which
is o impediate eonsequence of Prohorov's result [ 17 1) conourning

the topulogicnl nature of Y 418 of fundamental importance in our study.

7heores l.l.1. (Frohorov [ 17 1)s ¥men X is & separable metrie
spaoe the weak topology of VU beco.es separeble and metric. If further

X is eomplete thaen Y is also complete,



“he following result concerming the weak topology of U {s

well known,
Theorem leled. Sets of the type

[ w “‘(Gi) > "‘c(“a) -8, 1e1,2, .., k)

[ s 'A(ci) ( “0(01) + ‘1. iw= ll 2! sosy k}

where Gl’ seey Gk are opan sets in X, cl. Ca. esey Gk ars closed
sats 1n X, W, is s fixad meagure in M md 1 denotes 'ny general

{nvariant meapure, form a neighbourhood system at Boe

We shall now give & brief deecription of the way I which ergodio
meagurys are construoted from ceriain simpler measures and thoe invariant
measures are constructed from ergodic measures, In the suse wimm X
is a ocompact metric space and T is a homeomorthism of £ into itself
Krylov uand Fogolioubov { 9 | have obtuined some important results in
this direction and Foain [ /5 1 generalised them to the cam of a
complete metric space. A detailed account of this is givun in COxtoly
[ /3 Yo We shall just state the results which will bo used in the

sequel.

Let X be & complete separadble metric spece. If f£(x) 4is a yeal

valued function of x<X, let
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and

4Ly X) = f"(x) w lm (£, x, k)
k =) m

in case this exists. A Borel subset E of X 4s said to have inve=
riant measure one if W(E) = 1 for every invarimmt probability measure
n. Ist C(X) be the space of all real-valusd bounded continucus

functions defined on X. W introduge the following delinitions:

Definition 1l.l.l. Apoint X i X is said to be guasierogulayr with

yespsot to the spsce X and the transformetion T if

(1) the mean valus K(f, X) exists for each f & c(x)

and
(2) for every € > O there is a compact set K « X wuch-thet

such that (A X) > 1 = &, Ky being the charecteristic funotion

of Ke
#ith the above definition of & quasi-regulsr point wo have the

following theorems.

Theorem  1.1.3. lst X be a complete separable metric spece, Then,
associsted with every quasi-regular point’\t!wra is & mnique 4invariant

probability messure 1, defined on the Borel field S such that

(101.1) n(f, x) - / £ 4 ﬁ‘

for every f € C(X).



Theorem lel.4. The set of gquasi-regular points is 3orele

measuradbles anxd of invariant zmeasure one.

Definition l.l.Z. Apoint x is sald to be regular if it is
quasieregulsr snd the associsted measure u_ given by (l.ldl) is
srgodic.

ist R be the mat of all regular points. Then we have

Theorem lelS. The set H of regular points is orelemsasursble

and of invariant measpure one,

Theorem 1l.1.6. For any ergodic measure U, the set of regular

points x such that ax-u is of u-mesasure one,

Theorem 1l.l.7. For any bounded 1orel measurable funotion f om X,

[t’dmx is a Borel measurabls function of x om R, and
Jfday =« [ /2an]dux)
R

for svery invarisnt norel meagure U.

Theorsm l.l.8. For any Borel set © < X, ux(‘f) is Horel measura-

ble om R, and

B(g) = {x ue ) 4 u(x)

for evary inweriant Borel measure H,



The above theoreams indicate how the invariant measures are Wuilt
out of the degenerate measures in complete and separebls metric spaces.
we hawe to take an arbitrary point x oand construct the sequence of
meagures § vhere i has mass -i-" at the points X, TXjy e.. ™1,
If this sequence of measures is compact in the weak topology then there
exists a unique limit W which is an invariant probability neassure.
Under the weak topology we take the closed convex hull generated by
all neasures of the type “x' X being & regular point, This convex

hull is precisely the olass of all inveriant probability nns:}rn.

It 48 well known that in the case when X is & coupl.::i f:rif spaocs
and T & hameomorphism )thu claes of all invariant measures io a
convex set whose extreme points are precissly the ergodic neasures,

These points will be made use of in the seqwel,

snother important fact which we shall make use of is the following
result duwe to Varedarajan { 23 | concerning wmiformly continuous funo~

tions in & sepsrable metric space.

Theorem lel.9. If X is a separebls metric space, then there
exists an equivalent metric d such that the spaos U, (£) of
funotions uniformly continuous with respsot to 4 is separable in the

uniform toyology.
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l.2. Topological nature of ergodic messures in & separable metrie
apece,

In this section we shall prove the following theorem.

Theoren led.l. If X 4is o separobls metric space and T is a
honecmoryhism of X onto itself, then the met ", of sll eryodic
meagures 16 & G, in the spaoce M of all invariant measures under the

weak topology.

Proaf's It is olear that the olass of all Norel sets S with the
proparty S = TS forn & O-field J . Let C (X) be ths apice of all
rea) valusd bounded continuous fumotions defined on X. KFor any fized
measure ¥ and any f € C(X), we denote by By (£ 1) the conditional
expesotation of f£(x) given the C=field ‘J . It is easy to see that

% is ergodic if and only if y (£ 1 J ) is s constant with provability
one for svery f € C(X). This condition can be expressed by the follow=

ing equations

(1.2.1) V(r.u)-/[a”(rm)lz‘u-(/rau)‘"‘.g

for every £ € C(X)s It is emough if (1.2.1) is satisfied for every
bounded uniformly continuous funoction, This is beosuse of the faot that
any bounded continuows function f 48 & pointwise limit of 2 uniformly

bounded sequence of wniformly comtinuous functions and the conditional
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dominated convergenoe theorea is applicable (see Doob [ 1o pre

By making use of theorem l.1.3 we osn take the spsce U(A) of
bdbounded umiforaly continwous functiona to be separable in the wniform
topologye ¥e take a dense sequence fl(x), fz(x), eeey dn U (X).
Thus, in order that an inwariant measure J Dbe ergodic it is necessury

and suf ‘icient that
(1‘102) V(tk’ P‘) - 09 Kea 1. 2, e

int

£ (x) 4000t T (‘l'nal x) .
(12e3) YV (f0 W) = [ [ S ¥ au - ( f tan)?.

From the mean erwodic theorem it follows that

(1.2.4) v(fk. We Mm vV (fk. B) = lim inf v, (£.0 W)
n ey m o =) o
For each fixed k and n, Vn(tk, ) 4is a continmuous functionsl in MU

undsr the wesk topology. Froa (le2.2) snd (l.2.4) it foliows that

o oe “ oo

. n 00 n 1
(22.3) me " kel rel mel nea [P Vp(few) < T
The contimuity of V n(fk' B) implies that the set
[ue vn(tk' B) € %] ie open in the weak topology., This together with

(1:2.5) implies that T, 18 & G,.
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1.5, Measures inveriant under the shift transformsation in & produet

) . with b Bov " s"-}iJ'J Aewel<d :;‘7 5
let (M, 8) be & sepurable metric spsos, and (X, o ) b the Wlateral

produsts of eountuble mumber of coplus of (M, S). X oan be written as

+
8

X‘_f__g uij 3(‘-2 (i‘o--'l. 0,1--. )
and
o
é .h si. 8‘.‘ 8 (i L X Y .1' 0' 1' LX) )

Ay point x € X oun be represented by

Xm (o.o 51. ‘0, 31. sas )’ :1 & ﬂlo
e introduce the shift operator T by means of the following definition:

aeye= ( eece Il' ro’ yl' L )

,1 - x1’1 (i . o3 -1. 0' 1' ese )0

T is obviously & ome~toe-one both Ways measursble map of X onto itself,

In the space !{ of measures invariant under T, we introduce a topology
i Wy means of the following oonvergence : & ssquence of neasures

W, e M oconverges to u if and only if w(a) => u(2) a8 ney o

for each finite dimensional measuradble subdbset 4,
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Theorem l.3.1. Under the topology ‘] im N the set 7, of ergodic

meagures is everywhere dense in M

————— .

Proof Ist § e any measure in M7 and u: the restriction of

¥ to the Oefield

; r(2n+1)+n
1 .- 1 8¢
iny (2nel)en

and )V , the product asasure given by

n

i

which 4 defined on | | G, = & . Then Y, is dofimed on © snd i
P - a0

invariant under the trapsformation !2’“1 which is also oneetoeone and

both ways measurable. It is sasy %0 verify that Y, is ergodic under

ML | gow we write for mny set A& O

’ T‘nl ¢ Tml i % sosd VY {‘
(1.31)  u (a) = nlT O+ % :**: (oo 0es ¥ (T7R)

Froa the inverianoe of Vn under ‘13 ”"1. the inwariange of w under
T follows immediately. Ist now A be any set in D) whigh is inwariant
ucder T, 4.0. A= TA, Then un(a,) - Vn(A). Since A= T*™1 ,

and Y, is ergodic under pénrd

it follows that Vn(") « 0 or 1 and
hence W (A) = 0 or 1, 1.0 % (A) 18 ergodic wder T and hence
belongs to M, . W whall now prove that W, oonverges to U under

the topology Te 10t
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o X,
(‘-’k - ! !s‘g knlggg L X R

Copieh fff

be the Gefield vhich is the 2kel -fold produst of 3. T, oan be
considered as & sub O=fisld of 5 . From the construstion of V. ,

it s olear that ), sgrees with B on G, . Istnmow Ac L, . Them

TM Ay Tm*l Ry wes w A hm to ﬁﬂ e Thue
(1.3.2) A (7 &) » n(a) for ek T  nek
We have from (10301) mda ()..3&).

V(T eeser v (T°0)
@33 Ia ) - W) 1) =R g

Thus B (1) => B(s) &8 n =)= for every A€ T, o The inequslity (1.3.5)
shows that not enly there is setwise convergence in ths O«field (:'"k
Mt there is uniform converypence. Sinoe this s true for euch fixed

Ky W, @ ¥ in the topology 7 « This completes the proof,

The following theorsm 18 slmost an immediute aorollury of theorens

1.2,1 and 1l.3%1.
dh”

gheorsn 132, If X« L1 Wy M=M ($eceely 0l
fue o

where ¥ is & complete and separable metric spsoe and T is the shift
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transformstion in X, then 7T, is « dense G, 1a 70 under the weak

topology and henoe (-7, 4is of firet category.

Prout, The first purs is an immediate consequence of theorems
1.2.1 end 1.3.1 and the faots that 17 4is a complete and separeble
astric sproe under the weik topology and comvergenos under U  implies
wenk convergenoe. The second pert follows from theoresm l.1,1 snd Baire

category theorem.

Bemorks,. A ddasposition towards the method myh:d in proving theorem
1.3:1y may already be found in the works of I.P.Tsarwgradsky [ 22 ) and
A, Peinstein [ 4 | in a differont context, e shall have occasion to
usé this method in later ohapters. i rosult less gensral than theores
1.5.1 hss been proved rwoently by M. ¥isic | | ) wy ar eatirely
different procedure, The rosults we have proved hers are conteined in

a paper by the suthor [ 1t 1.

If in theorem 1.3.2 N 48 & compsot metric spaow, then the space
of all totally finite invarisnt messures b:comes & oompuot convex set
with 71, as the set of extreme points. rrom theores 1,%.2 4t follows
that 11, s a demse G, in V1. This i one of the mecy exsmples to
show that in the infinite diwensionnl oase the structurc of the set of
extreams points of & compeot omvex set in & topologioal wector spaoe is

different from that of the finite dimensional situation,

Theorem l1.3.2 states that in the space X with the ghift

operator, in some sens¢, the eryodic measures vepressnt the genaral oase.



This oan be considered s « dusl prodlem of . D. Birkhoff's comjesture
that, in scme senss, ergodio trapsforcations represont the junerul oase,
Aut theorem 1.3.2 48 mot true in the general cagse when J is eny
coaplete separable metric space and T any hossomorphie: of X onto

1tself, Examples are given at the end of the chapter,

le4. Jeriodic measures
i shall now prove the following theorem conseraing pericdie

invariant neasures

+ o0
Theoren l.4el. I Xe | 1 0W ( o seep =Ly D¢ by eeo Do

fwe o

M - 4, where ¥ is u oomplete sepurable metrio spage wnd T ie the
shift tramsformation, then the set of periodic messures is donse in the

set of all srgodic measwres wnder the weak topelogy.

Proof . 3ince the conditions of theorems l.1.6 are fultilled, for
any orgodic messure § there exists & point x ¢ A wsuch tihat the

segquence of neasyres

.. n ‘“!ml’*"“‘ﬁ
n

an + 1

converges weakly 0 i, », being the degensrute meagure with maes one

at the point X. ¥e shall now approxinate LN by menns of periodie

ssagures. The point X osn be repressnted by

16
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b ( oo lﬂl' ‘{}. xxg vee )

‘1 4 Ei. (1 » se "1' Gp 1. o.-)

%o write

:ﬂ - (lotc\ ’.1’ yGO ’1 run )
,t(ml)él‘ - X, for ks ... =1, Uy ) PPN mstSn

Then =2 is & periodic point of period 2nel. We consider

» *+ R T ess v+ B
T i s 2
dn + 1

fince ‘13"’1 x° - x". vn is & periodic measure. FProceoding examotly
as in the proof of theorem 1,3.1 it is not diffioult to show that for
evary finite dimensiomsl Borel set A un(a.) - Va(”“) ) 0s This completes

the proof of theorem l.4.l.

Reumarks . Theoren le4.1 o4n be considered as the dunl of the
following well known result conoeraing pericdic :essureepresorving
sransformstions, In the group of all ous to One meusure preeerving
transforzations of a separedbis none-atomic measure spage the set of
periodic transformstions is everywhere derse in the unifom tepclogy. Ve
have proved the dual of this result in $he special oase of shift trens-

formation of a oountable product of oopies of & camplete and nqu:im
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uw 1{;-'\,4:11-1’
metrio spuoe. The fact thut theorea l.4,1 need mot W true is alearly

brought eut by the following

Theorsy leded. If X is 2 complete sepsrable netrie epsce und the
periodie ergodic nessures are dense in the set of ergedic weusures under
the weak topology, thean the compleasnt of tw closure of periodic points

has measure sero for svery invariant measure,
In order to prove this theorem wo require the following leamms.

Ioman 1edels If (Xy 3y u) 18 a separsble noneatouic nessure space
and T i 2 asasure preserving transforwstion of perind k at almost
1

all points of X then there exists 6 neasuradble set 3 of messure Py

suoh that the Bets E, T5, .., T5F £ ave pairvise dtsjoint,

Ipama leded. If T s an antiperiodic asdsure meserving trensforma-
tica of & sepirsble mon-atomic messure space (X, %, u), then for every
positive integer n and for every positive mmber & thoro exists a
mesgsurable set E such thut the sets R, 7%, ..., 't""" T ere paiywise

disjoint end such that WE UTE ... T E) 5 1 e ¢,

Lleam 1.4.3. If X is & ommplete separadle netrio space and 4 is
an ergsdic mensure with peried k, then thero exists a point 'o € X

such that Tkxeuxa and u('{x‘,j Yeu( ;r:’; Yo ..

-n( é!k‘llof )- % .
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For the proofs of leamas l.4.1 and 1l.4.2, we refer to
Pe Re Halmos ([ 5 ] #w@ ppe 70-7/ )s W paes on 0 the proof of lesas
1e.4.3 By theoren 1.1,6 md the remirks nsde in seotion 1,1 it ie clear
that, if ¥ 4is an ergodiec sessure, there exists a point x & X such
that B 418 the wesk limit of & segquence of zessures w, vhere LR
has mass 3 ot each of the pointe X, Tx, ... This shows that aa
srgodio neasure is edther purely stomic or purely moneatomio, In the
atomic osse the lemma is obviocus. In the purely noneatomic osse we osn
apply lemmes 1.4.1 osnd 1.4.2. 4n ergodio transformetion is either
periodic or antiperiodic. Iat us suppose that T is untiperiodio
(slecet everywhere with wespeot to B). Then by lenas l.d.d thers
existe o set B uch At E end T = are disjoiat but W(E) ¢ o
Sinee  W(E ﬁ) e B(E) we arrive st & oontrudiotions Thuse T oan
only be periodic. Hemos by leumé l.4.l. there exists & set E of measure
Ik such that Xy Thy ey "1 & ure dlsjoint. Let Fo i e say
Gorel sete hen F, TPy eey T 0 i wre dlejoint wad 7 JIFJ ...
U L 5 {s sn inveriant set, Since 1 1s ergodis ths seesure of
PUTF U eee U'!k")‘if is either O or 1, Thus the measurc of I 4s
either sere or )/k. Sinoe every Borel subeet of = hau this property

470 mess of the meagure J in the set 2 1is conoentrated 2t o point,

Thie conpletes the proof of the lexma,

Proof of theorem l.4ed. Let P be the set of ali periedic points,
F it olosure and Cw X =~ P Then G is &n open sutset of X, We

shall now show shat, for every ergodic seasure #, W(3) » e Thun an
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appliontion of theorem 1.1.8 apd TonslliePubini thoorem will complete
the proef.

let, if possidle, u(G) > O for some ergodic asssure u. Sinoe
w hyothests ) 1s demes in 70, there existe  sequence ¥ & .
such that LR converges weakly to 1., Since G is epen,
Mainf ¥ () 2 w(G) » 0. Thus thers exists an n such that W (0) > ©
;;:l:m 1.4.3 there sxists & pomt x, such that by u’ - (a being
the peried of W) emd W (x,) ® I/n_. From the fact that ¥,(6) > C»
1t fmmediately followa thut

8 -l
Fo (B)) * Kg(Txg) & eev o Ag(® ™ %))

3
n

where K, is ths ohareoteristic funotion of G. Thus for scwe T,

™, & Co Sinee x, 1s & periodic point we arrive st & controdietica.

This completes the proof.

Remark The conversa of theorem 1.4.2 1i# still fin open prodlem.
It is true, for example, in the case when the aystem (Xo ) 48 le=stable

(woe T 13 1),

1.5. Stremgly mixing weasures
The dual of Rokhlim's first categery theorem for stronily mixing

transformstions [ (& ] is contained in the following

Theorem 1.5.1. dhen X and T are the saae a8 in thoorum l.4.d the

set [1l, of strongly mixing messures is of first category iu )i( under
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the weak topology.

Proof. st O G(%. ”7(%62,0 any retions]l number

0¢ > ¢ 7/2, v sny mtioel mmberin O r £ 1, 7, and P,

two disjoint olosed sets and G eny open set such that ~ :@‘1. e
write

(105!1) E (?1’ Fzg G. t'. Ty b, n) -

- Jweow(r) 28, WE) 26 WG N ™) {r + D,
ken

rg W)

where § denotes any genersl invariant probability aeasurs, Sinoce Fl

and ¥, are closed and C 4 open, by theorem l.1.2, the wet (1.5.1)

is closed under thw weak topology. let

(1.562) 1 (Fl' Far Gy €)= U U . U (rl,?z.a.c,r,a.n)
0£rgl 02 <7/2 nml

It i8 not difficult to verify that

(1e5+3) F (FyoP,eCe8) = U U Cuu(P )y &y u(7 ) 2 €
1"72 ogrgt o< /2" 12 & W26

lim sup u(cnr“a)_gr+b, r‘_uz(!ﬂl)q.”?j?
k =) o
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st Gn be & sequence of open Sects desoending to Flo Since, for a

strongzly mixing measure, lin we N 1“0) - u‘a(a) $t is clear that
k =) o

all strongly mixing measures with the property u(?l) 2 &y u(Fa) >

e long to the set

. (10504) U E (Fll ?z! Gnt 8)

G "Fl

Ve shall now show thnt the set (1.5.4) 1is of the first oiterory. From
(1s502)y (3.5.3) and (1.5.4), it is clear that the set (1,5.4) is &
ocountsble wnion of the closed sete T (Fl. Far Gy €y Ty Oy n)e It 18
enough to show that these cloged sots are nowhcra dense or their comple-

meonts are everywhare dense.

lat Pk be the set of all pesriodic messures of pericd k and

Py = U P+ Since ty theorem le4:l periodic ergodic meusures are
¥ n

dsnse in '”YYZE, it follows that the set of periodic invariunt neasures i
1s dense in /1. Thus P* ie everywhers dense in N o ve sball
oamplete the proof Yy showing that

(1e569) pc W = r (Flt Py Gy €4 7y Oy m).

The inclusion relation (1.5.5) i» satisfied if

B S W= [we m(Ry) 28, w(R) 26 w(e ) T0) gty g WE(R)e )
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1at now u° be any periodic measure of period k. If any one of thw
inequalities n(?l) PN u(rz) 2 & 1is violatad, then we are through.

Otherwise, since ?1 and ?2 are disjoint we have

e B (F) <28 nicn %) « #(0).

Since 0 ¢ D ¢ 7/2, 1t 1s emocugh to yrove thas
(345.6) B () 2 ¥ (7)) « 2L

ginoe OCEChy U ()KL =86 GOF and the Function

x-xzze(l-c)in &‘x_gl-s,()(e(i, we have
m(0) = (1) 20y = (M) 261 -0) > ¢ 0 2L,

Thus we héve proved (1.5.5).

1#t now 8(?1, Py £) denoto the class of all strongly mixing

meusures with tke property

We have proved that s(yl. L €) 1s of first oate ory. Now we Rake &
dense sequence of points md consider &ll closed spheres of ratiomal
radii with centers at these points. We denote this oluge of sets by A.
Then 2 is a countadbls olass, It is clear that the set of all mone

degonerate strongly mixing measupes is the saue as
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() U a(ryy 7y €)
Fog#, & A O
1 ?n FJ_: ,# £ n.:zt[onaf

Sincs the set of degenerats strongly mixing measures is of first oategory

OWR.

and any other strongly mixmsﬁia non-atomic, we have compluted the proof,

Remarks =od Exmmples
¥ shall nov give some exmmples to show that theorem 1.3.2 need

not be trye {n genersl,

1) st X, be a compact group with & least one periedic element
and t.ﬁa transformation To be thw translation of X Wy a periodie
slemsnt, Thea the ergodio probubility measures form a closed set under
the weak topology.

2) let (X, 'rg) be as obow and (X;, '21) be the product space with

the shift trensformation, It X = Xo x XI and T = 'i'° x 7y, be defined

1
in the ebvious mannsr, If £, o a complete separadis metric space, then

the set of ergodic medsures is neither ¢losed nor dense.

It vas originally conjectured Yy the author that the denmity theorem
(theorem 1.3.2) should be true whenever there exists 2 dense orbit.
Howaver, in the exsmple discussed by Oxtoby [ /4 ), there exists a dense
orbit and nevertheleas the ergodic messures form a clowed set, Thus it
would be very interesating to get a oharacterisation of all those
honwomorphisme of a complete sepirabls metric space for which the density

fheoren is trwe. Nothing is known in this direction evon in the case of
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a compaot metric space.

From the proof of the first category theorem l1.5.1., it is clear
that 1t holds good as lém as Jg is dense in . in te wesk
topology. Thus arises the problem of obtaining necessary and suffie
oient conditions on the homecamorphism 7T so that the periodic measures
say be dense., This is true, for example, in the case when the aystem
(X, T) 1 Ieetable [ !5 . A necessary condition is given Ly theorem

l¢4.2. It ie conjectursd thut the oconverse of this result iz true.

In this ehapter we shall introduce the notions of entropy and

rate of transmission and study some of the properties of invariant

meagures in this context.

2.1. Entropy of finite sghemes and sources

st A Do a finite alphabet consisting of & symbols 01.02....,9.
and 1ot a prodbablility distridbution be defined over A suoh that the

of
wﬂunnt}/‘ ‘1 is ’10 Then Pizo for i = 1, 2, seep & and

a
Z P, = 1o Then we write
iml]

a
H(A) =« 2 » logp, .
inl
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(a1l logarithms will be with respeot to the base 2), The quantity
H(a) 4s ealled the entropy of the fimite scheme under the distributionm
’1. ’3. s 0y ,‘o

If A= (91. .2. seep 0.) oand B e ( ‘7“‘1. sz' snny ‘Pb) ars

two alphabets and a joint distribution P(Oi, 93) is defined over the

produot alphabet AB such that
() P(9,) = p,

(2) P( ‘Pj i “i) - P’.J

then the conditional entropy HA(B) of the scheme B given the scheme

A 18 defined by

EA(B)-- %’15’13 log P“‘

| od
AI L] h A’.’ ﬁ = Ay (i= ... wly Oy 1y oa.)
h—n

be the product of the alphabet taken over all integers. Let T denote
the shift transformation introduced in the last chapter. aseigning the

disorete topology to A and the corresponding product topology to A,I

I

we make A a compsct metric space. Ist P A be the Porel Cefield $n /v

space AI apd "“r’)’“(A the space of all probability messures defined on
FA and inveriant under 7T, Assigning the weak topology to %2;1 nakes
i¢ a compaot metric space.
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Definition 2.l.}, If B E n, 4is sa inverient probability measure,

then the air [AI. u] is oalled an information soures.

It [Ax. #1 be an informetion source. We shall denote Yy

{‘1 ’ #iag se vy xtk] the oylinder set of all points X in AI for
1l
th

whioch the iih, seey 4 oom~oriinates are x‘l' xla. soey xik respecs
tively. Sometimes we refer 30 11, Ly0 o0c &8 tims points, The class
of all oylinder sets [!x. Xy eees &n} of length n constitu'= a finite
scheme if we restrict the distribution to the nedimensional oylinder
sets. ot EH (M A) denote the entropy of this scheme, Then

B, (¥s 4)

n

vouree during the tine pericd 1 to m. If the last of (e 4)
n

exists 33 n =) e it may reasonably be called as the rate at which infore

ean be 0alled the rate st which information is emitted by the

mation is omitted by the sourcd or the entropy of the source, (ne of

the fundsmental results of information theory asserts the following:

Theorem 2e141 m(outrgw of a sourcs is slways well defined 4.e.
B (W A
the limit lim ————— exists.
A «) @

gereafier we shall deacte by tH(uy A) the entropy of the scurce

{Axt ule

P 2N m“ !&’_5 5T !s mv

X

The specs A together with the shift transformation buvcames a
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empot dynimionl system vhen A" 4is oonsideresd as & coapsot wetrie

space and T as & homeomorphiss of AL onto itself. One of the
important problsns in tle theory of dymanical systems is t0 find the
oomplete set of inwerisnts for & dynamioal aystem with an finveriant
mesgure. (8% us consider the olase of wessures dafined on ¥ A and
invariaant under 7T. let W and % be two suoh meusures., Ue suy
that (%, u, 7] end (aT, 1 7] are tecworibic 1f thers exiets a
one=i0w.0n8 nedsurabld trensformstion U of ,a‘! cate 1tsalf such that
U e TU and the 1uduoed messure N, U 1s the sume &s . From the
resulte of - 2, Ko Kolmogorev [ 5 ] 4: follows twat 1f [«f, u, )
and [afy w,, T are isoworshie then H(k, A) = H(Wy, A)e This weans
that entrogy 48 & metric invarisnt. #e shall now show that there e a
large class of inwariant metoures with aero satropy. In such oages
eutropy is & trivial m-pt. This ie & dusl %o the vesult of
Rokhlta [ (1 ] concerming meamvre preserving trensformsifons in a

Iabesgus space.

Theorem 2.4,  1In the space A' with the shift transformation the

sat of ergodic measures with sere entrojy is & dense G, in M, wnder

the weak tepology.

Proofs Let us first prove that the set of distriduticns with sere
entropy is & Gy. It U b any invarisat messure and H(u, A) ite
satropy. Ny definition 2.1.1.

28
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L} (u" A) H (u’ A)
(242.1) By 8) @ lMm —E-———s lUn iaf N
B =) o R =) o

where 8 (1, 2) is the entropy of the finite seheme obtuined hy
roaprioting 1 to the nedimensionsl cylinder sete (starting from the
time point 1 md ending with time poiat n). H n(’" 4) 1s & continuous
functional om the spaoe f‘rﬁA wder the wehk topology. Ry neking use
of (2.2.1), the set of messures with sere sutropy oan be susily verified

0 Y the sme As

x - “ 4 (ﬂ .,l)
A U {u:-—”-—-;;:-- < ;‘;]

=l ﬁ-l Den

(e )
sinee o (W A) is & contimuous functicasl [ms ———p— <

"t
i

is open

g tous

in T, o+ Thus the sed of measures with sere entropy ia » G, » The

fact that the sat of all ergedic msasures is a LY tmplies th=t the

set of ergodic measures with serd eniropy is & ea.

In order t0 prove she density of measures with sero eui:Ypy, we
note that the set of pericéie ergodic messures is everywhers deuse (mee
theoren 1.4.1) sad prove thet every pericdic ergodic messwre hat 8610
eutropy. N lswms 1.4.3 wo wes that, for sny periodic ergodic neasure
u of period k, there exists a point X such that U has nass 1fk
at the points ‘e' b 4 Koo oy l‘h" X, o The complemsnt of tiw sect of
points X, T X s eoco "} x  has messure sero, PFor sufficiently large

°
n, ﬂn(a.k).log k ad hence



B, (8 A)
u. "‘2“"“"‘"“‘"" w O

n e) o »

This comple‘ms the proof of theoeres 2.2.1.

3.3, properijes of

§e shall now stuly the eontinuity properties of the entropy
functiomsl, The following yesuit was obeserwed by the agthor and
einan | 1 independently,

Theorem 2+3:3c  If (W 5 16 & Sequence of measures in i, mnd
W, oconverges weoskly to W, thea

Mu owp  H(W, A) € B(Hy 4)
)] .) [ ]

1.0, the entrogy is an wpper semi continucus functional in the weak

sopologr.

30

Proofs To prove thw uwpper semi omtimuity property of & funotional

it is enough 10 show that it im a limit of & momotonically decressing
sequencs of funotiomdls. 7o this purpose we use the following well
known inequlity (see [ 7 1) foremy ue ', -

(2.3.1) nn“ (B, A) L4 ﬁn (uy 2) o 3' (e 4).

Pron (2,3.1) we hawe
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1, (w) B ey (W
i P il

zk zk"'l ' | 2, ” (XX
L TY
2

&

and H . (b A) 1 & continuous funotional om My « This conpletes the
2

Mo

T™he entropy H(p, A) of W is the limit of the sequence

Remark T™hat entropy is not necessarily a continuous funotionsl
follows from the fact that the set of messures with ero untro) 1s everye
where dsnde

T™he following result was first noted iy Bretman [ | Yo Cus proof
18 slightly d4ffervent.

Iheores 2.5:2. (Bretimsa [ | ). Ir Beaw s (1ea)u, vhere

B By and R, A&re invariant measures on AI 34 0¢gs 1y then

iy A) w & “(“1' A ¢ (1= n)x(uh. A).
Proef, % X = (coe X 10 %o Xip oo ) % any peint in Af

and le% {'1' Xy eeer X ] denote the oylinder set of peints whese first
R o0=0rdinotes are 'l' ’2’ vee 'n respsctively. st

(2.%.2) fn(!) » -% log [‘1' 323 aseyp !n".

Then by ummillsn's theorem [ 7 ], the sequence of funotions f, cenverges
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alnest everyshere t0 & funotion f(x) whoss expectation with respect
to U 1is preciesly the entropy of u. Thus

(2.%.3) H(Wo A) » E nlt.;” --& log WX,y oouy x’

If a2a0 or 1 the thecrem is obvious, ist therefore O ¢ ¢ 1.
™hen

c-'l log p[xl. sesp ‘lt } - ‘% log (Gﬁl + (“)%)gllgoatg l“‘ -

\ pone t.‘_
'.% 1“ H[‘x'oco. xn}'.% m (.Q“(“) %:‘:%‘z:w)

Purther the extstence of the limit

1ia 5 [‘1""' ‘!T

T TR

as & function integradle with yespect to ”1 is a comsequanee of Doob's
martingsle thworsm. fiince & 3 G, we have

(2.3.4) s -diegufm,iix). Jn - - aog Wneeex) e ()

Be)m-

Similarly, sinos (lea) > O, w have

(2.3.9) .1::“ - % log u[:l;'..., ’a] - n::g“ -% log “2("1"”"5} “'"(“2)



Thus (2,3.3)y (2.3.4) and (2.3.5) fmply that

Bk A) = a8(1y0 4) + (2en) B(W,, A).

Thus v haw @woved that the entropy is an wpper seai-continuous
linsar functional in the spacs 70, , We shsll now prove samethirg
more in the sense thet this linsar funotiomsl 1s motually de ined
through sa integral. fTo this end we shall introduce the following

notations.

Lot r; e the Dorel Oefield gensrated by oylinder sets
[1‘1’ seey “k] where ‘.1. YEY ‘k VAYY over negative ictogers enly,

Ist 2 n denote the oylinder set of points with seroth soordinate
equal $¢ 1, Correspomding to my finite measure | we consider the

following conditiensl probability funotion ¢u(x. a) given Wy
(2.3.6) WE N 2Z)e { 8,(xy a) du(x)

for any Sorel set  4n F; « %e sball now prove the following
smeres ooneeraing g, (x, a)e
Theoren 2.3.5. Ir u, By, sad W are invarient measures in AI.

p-sp1+(1-u)vz (0Oga 1) and ¥; d W, are orthogunal, then

., (% a) » 5“1 (%, =) a8, X (“1)
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Proof: Sinoce “1“‘"3 are iavariant and orthogomal, the
oritioul sets in which their nesses are comoentrated oanm be taken to be

invariant and henoe in F A " It is then immediste froa the definition
of conditional probabilities that

Cu(‘t a) e “"1 (xy «) 8.8, X (“l)
Thooren 2.3.4. If w is an invarisat prodabilisy measure, then
€, (% a) = ‘“, (%, «) B.e. t(u')

for almost all p(u), vhere a’ is the ergodic measure asvociated with

the regular point p in theorsm].!3

FProofs For any invariant sessure i, we have from (2.3.6) und
(2.3.7) WE 0 B) e gy () ) o

r 3 fo®
- 1[! [ £ 6, (%0 2y (x)? anp;
wtere R 19 the eet of regular points (see definition 1.1.2) in Ax.

From theovem 1.1.8 and (2.3.8) we haw

(243.8) we N zm) -/ u’(g 0 za) dp(p) =
= [ () a0 aup)

vhere B is any set in ?;.
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For any inverisnt set A for shick u(A) is neifher sere nor ons we ean

write
Bealy o (3ea)y

viere &« u(2)s Wy(E) = WE 7 a)/u(a)s amd W (B) = W(ENAT)/0(a?)
for any Borsl set K, Then Y and W Are inwariant and orthogomal.
Hence Yy theorem 2.5.5%,

&, (& «) = "‘1(" «) a0, x(1))

Sabetituting W, for ¥ in (2.3.7) snd (2.3.8), egquating the two
expresnions snd making yee of thecrem 1.1,7, we obtain

oJe ™ & -
@39) [ 1] oy (50 o) @) 4800) = [ [ &, (50 cde (aTHS00)

for any invariant sst A md smy sst E in 1?;. Sines thw funetiome
of p within the square bawgkess in (2.3.9) are inveriant and thue
meossurable with vespect to the C«finld of invarisnt Serel sets, we have,

for all cylinder sets £ & r‘ ané almest all p{u)

{ 6 (2 a)in(x) = £ u&’(x. «) “,(x)o

he required result is nov an immediste conseguence of the fuot that
the Radeansiiykodyn o derivetive {» wmiqwe.
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Theorem 2.3.5 s There exists a funotion h(p) defined ver :he wet % of

regular puints in _Ax suwh that for every invariant prob:bility measure u,

H(ppa) = é b(p)au(p).

Proofs For agy p.int x @ (eee X 10 Xos Xp» ees) in &x. let

hu(x) - %(x.xg)

whore &, is derined by (2.3+6)¢ Then by Noaillan®s taeorem ! 71,

- log h“(x) is intograble with respect to U, and

A(uyr) » « [ log by (x)du,
Define

B(p) = ~ [ log g, (x)dn,(x)
p

shere a’ 1: the erxgodic meusure asscoiated with the regulsr point p Wy

means o theorems 1.1.3. By theorem 2.3.4

hu(x) - hu;x) 2.0, x(up)

for aluost all p(K). Jince = [ log by, aup is fintte for alicst 81l p(n),
P

by theorem l.1.7 and Fubini'a theorem we have

H(ByA) @ « [ log b (x)dy = « 5[/ log by (x)dp (x)Yau
=« [ [/ log by (x)au (x)Mau = [ n(p)du(p).
R P R

™is oun-lstes the proof,
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Remsrks ¢ Theorem 2.3.5 was proved by the suthor {151, Theorem 2.3.5 oan
be consjdera! as a dusl to *hat of Rokhlin {191 #ho expresses the entropy
of Sny messure pressrving ‘runsformation of a lebesque sace s an integral
of the entropies of its fmotor sutomorphimme. Th:t Shooren 2,3.% is trwe
for any u-peresemi ocontinucus linear functionsl waa recently emmuyfpd
to the author Yy K. Jaoobs [ ([ 1. This has be:n further gencralised by

K, Jaoche [or zemercl compsot subsets in locally ounvex topologiocal veetor
u:noes, Sinc: our interest is confined tw information thwz::;féc not go

int s these details any further,

2.4 iate of tanssd a6 lon through & channel.
o shall now briefly discuss the concept of a ohannel and efudy
tre projerties of some functionals &ascoliated with & ghanmel,
£ind: 2.4.1s A chwmel [ay V o B] sonsists of tuc finite alphatets

4 and i, oklled the input and output alphadbets respectively, and a
collection of probabilit; distridbutions Vx. where 7/x s 2 meseure

en F‘B assoointed with the poimt x in ﬁx and possessing tic astationarl'y
property, vise, V‘(F) - V,nx(‘i‘i’) for any Jorel set 7 in ’*I, T being the
us 21l shift operator. For @ach {ixed 3Jorel set F 3I e function V‘(P)
is assumed to be medgurable.

I

y invariant aessure on the space A° will be o= ted an input

me aUre e For any iRJR me sure Y, e define

(24401) WE X F) - é v (Flan(x)

(2.442) - 9(F) - { vy )au(x)

A
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where £ is &ny eet in P‘A and 7 ie any set in D‘B. w 4a gallsd the joim:
fnputecutput distribution and 7 the out ut distribution correspomding to
the {nut U, The sp:ice AI X BI oan be conaidered, in wn siwicus manner,
9 & o.unt ble produat of tiw produst awlyhabed AB and W as u stationary
distribution, Thus we now have the folliwing thres sourcas corres-onding

to sny input mweasure U

[Axo ul, {&1 x B s @)y {Bl. fyl.
let 'ueir entropies be H(ByA)s H(w, A3) and B(7, B) respectively, Then
we have ‘he following
Defind iom 2.4.2. Th. functionsl R(W)w H{Ry4) + H(7,8) « 11 ©, sB) 18
oalied the rate of tranmeission through i® channel (A, v:,ﬂ, toy
she iapul peamre Y.
Hoa wve susll prove 'he foliow.ng representation tiworem,

Theorom de4ele or sny onannel [A. Vi B] and any input mecoure u,

R(n) » {; R(nJan(p)

vhare uy is thw argudic neasare 2ssooiuted with any ragulur ;gciutn

ptne‘..x

apd 2 ia the set of all regular points in AI.
Proof s Oy theorem l.1.8, for Gny Borel set E,

(2.443) w(") - f u,(‘zs:)&u(:r)‘

1) Forthe defimi‘im of a regular point sn' the a socisted ergodic
necsurn see definfition 1.1.2 wnd theoremse 1alal und 1.1%.
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s wp and 7’ be the joint inputecutjput and out ut measures

soryesponding $o the input measure U o If © and 7 ere ag in (2e8e1) 8nd

P
(20413)’ then (20‘05) gives

(2.4.4) wEx?)sf w o(F % Pav(p),

(2.4.9) 7(8) = [ 7, (P)an(p).
mn appliontion of sheorem 2.3.5, (2.4.4) snt (2.4.5) give
&(w) « / R(u )an(p).
This completes the proof,
1a%

(2446) (Mo BIA) » = % / 108 ¥ [yyeee 7,18 0(%s7)

whare is the joint inputeoutput measure corpasponding to the in ut W,
Then we have the following

Theorem 2.4.2, The limit

1im
pmy s0 BplMe Bl4)
extate and if it is denoted by i{y, %ja), then

H(ie BlIA) » [ B(x)du(x)
R

vhere

(2e447) H(x) = = [ log g(xy)a » (y)



aad

P{” sesg ¥
(20448) sley) = 1 2 o) 0t Yo

gty "( 1,':)
Vely -(ne1)*"" 7!

for oversy X.

In order ‘o prove thia theoren @ mquire sevorsl lauiug,
luman 2e4ede It uy be any probsbility ssasura (not nocessarily
invariuan:) on & 1

g X s r €=~ log gn(x) < rel)

Ny
whare
{2.4.9} gn(') . ‘3° [xQM)Oo . w{g‘! .
;ia[x“(n‘n. .o I'l]
Then

-/ 1o g(xaw (x) g a(rs1)a™™
bﬂ'r
Jouan 24448 Civen L ) Oy let ey L be the wet of all goinis T tor

wiich = log g (X) > L where g 1w given by (24¢9)e Themy siven € ) O,
A I‘t:b ® 1'9(‘) onn be found such that for t>to.
= [ log g,(x) au (x) < 6.
*ay1

Lomms .e4e3. Given & ) Oy &0 > O ovn be found msuch thity Jor * € F,

and uo( ) ¢d

- f Log &.(l)ma(x) 4 ‘. Re (4?.. 3 noi’:jﬂ
B
Jonns 2.4ede Tiw limit Junotion

g(x) = u_l:.“ &, (x) aeee x(u.)
is well defined.

40
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Jommn 204:5¢ The function «log g(x) ie integrable with rospect to R

whare g(x) is ng 1in leams 2.4.4.

Lo 2edebe ) - l 1 log sn("‘) - log g(x)iau, = O were

.4.
5(:) ic as in Jemma 20404-

The proofs of lemmes dsiely Ze4.2 8nd 2,443 ore iden dcul with the
proofs of lemass To3y To4 5nd 7o5 on pages 6768 of Khinc:ints Took r.
lanan 2.4e4 iv & conpeguance i the well knmowm martinsiiv  corem. Isaass
2e4e5 4nd 2,4.6 cre imaedis o conse uendes o7 lemmad level G dededs e
reaark th t te assum;‘ion of sta'ionsrity is nowhere m:d: :ive of in the
ool of lewsas Tu3 to To7 in pages 67=T0 of [ 77,

aeplsoing the alphsbet & by the alphabet &, fixin .o point x and

wrl in: uﬂ - Vx {n the abova iemmas we have he Follocing lemma

lemaa 2.4.7. Lot »
’}/_5(,3'.(‘,!)’ ese J’J

1
x {Y‘(n.l)g e f.l j

Kn("v)’) - -

iim .
E(xoy) = 5w 8 (%) seve (V)
is wollederined for each fixed x and

,,_) /1 108 g () = dog g(xpy31 ¢ Y {y) = ©
for all 2, In particular e log a{xey) 12 1ntegrabie =it » 20t %0 he

BROA8UTD 3’; for every X.
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Proof o theorwm 2.4e20 ™ write
o= = [ 205 Y [yie eeeyy) d0(s0y)

bn-n

ani to the sequence H n(u, BIA) (wee (2.4.6)) we apply ‘e following
wel. known result : if s and ba aye two sequencsa such ‘het hn is

monotonis and b“ =) 0 a8 N «) v ‘hen

B =8

L™ ‘n s n

-
De) @ bn ne) s b“ - bn-l

whenever the sec:nd limit exists, Thea wo have

Vv [I vee ¥ 1
lim iim 1
(24e20) TR W (m,BIA) = = [ Jog X B dulx,r)
Tel¥yoe ey

provided the limit on the right side of (£.4.10) exiets, Using the

stationarity propsrty of '!» channsl and the mesaure W, we cuan write

..(n.;r oo ¥}

e 1)

lim

itn
(2oe2r) J% 6 (aema) = L0 - 20g -“

1 dew( xyy)

- n:;'“ - [ log &, (%07} €0 k7)o

Now applying lenma 2.4.7., we have

(2.4012) 11y BIA) = ;‘_;". Hy(by BIA)

= [ 1og &(xey)a ¥ (r)du(x)

= [ a(x)du(x)

ware 7(x) is given by (2.4.7).
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Remnrks, inother me'hod of defining the rate of trunmaiszion through e
ohannel for sny input mesamuwre P is by meana of the ollowing functionals
R¥(u) @ (7, B) = B(uy BiA) wnere 7 is ‘he corresponding ouiput measure amd

n—l;.m Hn(u’ Eh&)t

The existence of (Z.4.13) is sasursd by theoren 2.4.2. I! i no: knom

(2.4.13) (g 214) »

wvat-sr R(p)e R*(u) for any arbitrary ohanmel. It is not di fioult so
prove that R*(4) 3 R(k) fur ali u, However, for what ire .nown xe ohanncls
witt: finl e memory in e sense of Khinchin (w:.ioh sa s all introduce
in the next ohapter) the t»o definitions of rate of treneni: ion become
identical,

the following theorea is on immedisée corollary of thworens 2.4.2,

25495 and 101.7-

Teores 2.4.3, H*(u) = éé(“y)&‘(’)

wvhove B » is ‘he ergodic mensure ssscciated with any vegular point p and

i 49 the est of all regulur pcinta., In particulur,

H(}y BIA) » [ K(!tp. Bia)au(p).
R

to shall now study some of the oontimuity proper:ies of the fumotional
11(4y BIA) dusootated with » chennel {4y ¥ 7). 7o this und we require the
rollowing lenmas,
lomma 2,4.8, Iat Ay Dy C W8 three finite schamen, BC i@ joint soheme
caatsining B and C and KB(A) and Hm(:x) the ¢ nditionsl entropies(ese
section 2.1) of A giventhe sonemes B and BC res;ectively, Thom 1:23(9,) 2 s;m(«).

For proof w8 refer t: thinchin [7 1.
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Jomnad 244.9. The sequence of functioms

Y { bee ¥ ‘
(2.4414) H(x) w=s v [I w1} 7 1 log X Ha—l} °
. [I{ﬂ'l)."yql x (‘ ) ° )}l[l(llOl).’. 111

{n=2y 3 000)
ie nmonotionioally decreasing for eso!: fixed x,

Proof, Keeping x fixed and hence the probability distriiutica < fizeq,
w gee hat [y ], {I(n-l)“’ L) e (g ) aretiree rinite schemes, If

we donci'e ‘hem by A, B and O reapeciively, we seae that

B (x) = By(a)s Hy 4(x) = By (4)
ani henoe sn applic tion of lemma 2.4.8 completes thw proof,
Thoorem 2e4e4e The fumctional H (ByRiA) is upper seai coulinu ue in
L1 woRkik $0:0.08).
Prexfe o prove this theoran it 18 emough to show thn’ (py Eia) s the
liait of & sonotémically decresaing sequence of contimwous functionals.

From (204011). (J-‘uu) and (204-“) w have

iy 7A) = 0 S 8 (x)au(x).

S¢nce [ H.(x) du is contimuous in n (in the weak topolugy} an ajplication

of lemma 2.4.9 completes the proofi

sheoyen 245 The sequence Enw’ E“’i)z)

ia monctonieally dooressing,
¥a define U (x) a8 in (2.4.14) for n = 2, 3, o.e 2nd iil(x) as

- 1 VK] e Yly,). ve srite

[ve)

1) For the defini'ion of “a(‘" BiA) see (2.4.6),
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/ v [’ e 1
i) = = L Vlry een,) log =222
100 V) Velyyese ¥4

J BL(x)u(x) = [ B ()u(x)y B 1, 2 e
further

] n
= 1 Jix)an(x) LT A (x)an(x)
1 (s BI2) = £l - - = .

3ince the sequunce [ H  (x)du(x) is monotonicslly deoressing it fol ove
thrt # ‘(u. 314} 1s monosonically ecressing.

jesarks, It 1o mot known that under what minisum oconditions on tie
chamwl the functional il(iy BiA) is continuous in the woak topolo. .y,

In the naxt chapter whea #» digouss the propertise of ohamnels wit® finite
aenory in the sense of Feima‘ein we shall prove the cuntiauity of

A(1, BIA) in trde special ciae, In this context we recali that tie

entropy is not & ccntinuous functional eventhough &t is wu;psr semiec:ntimaous,

3o APPLICATICNS
In this chiapter w aiall deal with eous of the applicati ns of
+he results of the earliier ohaplers to problems of Information thwory,
e introduce different dsfini:ions of eupacity of & chunmel and prove their
squivalance in the gcaww of channels with finite semory. e study the probdlem
of aghiavessat of capacity, the cmtinuity properties of the Jumotionsl
R{u, 3i4) associated with & channel with finite memory and finally state

a8 problem about sdditive noiwe ochamwls,
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3.1 Capmoity of s chanoels

Definition 3el.1¢ The ergedic ospasity C_ of a chanmel { 4 Ve SRl ™

defined by

Cg= wp  R(n
H=argodio

pefinition 3.ls2e The stationary osyscisy C_ of & channel [4y ¥ o7% is
defined Yy

¢ P sup &(u),
u=atationary

mother poseible definiticn of ergodic and stationary osyuoiifos
is obuimdwgzrgjg?a) by R*(1) in the above , Iet the corresponding cipacities
be c: and c; +» " shall refer to these as atur ocapaoitiew,

in problemes of information theory the quantities (:' and Co play a
fundanental role, It has been clearly pointed ocut by Khinohin that
in proving thc converse of Shannon's “undamenisl theorems for ¢tunn:ls with
finite nemory (see defini:ions 3.2.1 snd 3,2.2), warlier authors ::ve leemn
careless in definins ‘he c¢a.a0i-y of & chamnel, /& pointed out 'h:t, in
the cass of ohannels with finite memory, the Tundamental lema: of
feinstein is valid only when we take c‘ &8 the capasity, The ccaverse of
Shannon's theorems becsns clear when I.P, Tearagredsky [2:) and
Ae veingtein [4 ] provedthat C_ = C, in tids special cuse, By wiiin: use
of the integral rejresentation theorem £.3.% shich we have proved in the
lret chapter we shall give a very simple pro.! o the fseet that w ergodie

and stationary capacities of an arbitrary channel are equal,
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Theoram 3.lele ¥or any ohanml O = C j G5 = CQ o
Psoefe Tia prosf Lo identieal in both the cages, %e shall prove

that c. - c.. For any stationuryy measuxe it on Ax. we have by theorem L.4.1

(3.1.1) A1) = lﬂ(u,) au(p)
R

whare H 1s hs set of regular oints in Ax and v,p ig the erpodic uewsure

associated with p by mesns uf theorez l.l.3. Thue

’(p) £ ;g Ii(up) €y

Teking supreaus of the left side over all u & 'WA. ¥ have

Co$Cqe
That C K G, is obvicus, Thus C, = G, e Roplucing g{(n) by 8*(u) ever here
re gat the seoond part.
pefinition 5.1.3, The common value C‘ «C,=C will be callel tho
oapaoity of the ohsmnel., Ths corresponding value C* = c: - c; wiil be
oslled the atar oapacity of the channsl,.

Mo har consequence of the rejresentatim (3.1.1) 4s the following
Thecrsm 3.1.2¢ The set of stationary messures ut which the cspacity mey be
attained 1a & convex set wi'h ergodio extrome points. In par-iculur, if
the oapagity is atiaiped 5t some meagsure U then it is aitained st sn

ergodic me.suxe,
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Zenarks. IV is not yet known shether the capacity 0 a ochanael iv alwayse
attnined, Yo s'ml) later give sufficient conditions for the o ; vii, t9
be a‘tained, This inoludes all ohannsls which sre of finite memur; in the
senee of ‘einstein (see definition 3.2.2).

pefinition 3.2.1s A ohannel [ry 'y B] is ssid %o '@ of finlte ..:ory m

¥
in tbe semoce of inehim if, for may eylinder set [y ..y ] 4n %)

-~}

‘dlTyree vl m Vdyyees )

a8 ROoon Ag the coeopdinuates of X &nd x’ agme 4t the timw polnts einel),
'(N)' XY '1. e 1; ves R

Definition 3.2e2e A channel [ Ay gt 5] 18 #aid to ve o finite . wor, m
in "he sense of Feinsetein if it is of finite = mory m in the m‘m w

Khinohin snd

ﬂ"/ x{’I' seer It Fgaed® Tieme2® ’a.‘

= plryeee e Vol ot Turmea® ot Y,
for all eyliniers of he tym [71s sces Nr By o1s ooor yu'_!.

AR ths and of this ohup e ww snéll desoride a alass of chsnmals with
finite mewory in the senee of EKhinohin but not in the senee® o (wius ein,
for wnjoh the ‘einszeins fundsmentel lecmé wnd henow Shannoa's L .wor ue
are valid, #8 now prove the equivalenoe of the two definitions o. » . of
transaission through ohamels «ith findte mesory in the semew i ancihin,
Theorem 3.2.1¢ For otsanels with finite aemory in the sense ol « .ucidm

R{n) = p*(n) for every input messure U «nd henos C = %,
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pProof, For the imput measure i, let 2 and 7 be the corresponding joint
tnputeoutput and cutput neasures rempmotively, It x e (... X3 Xg0 Xy eve)

and y » (eee Tart Yo N1 ves) bo potnts in Az and BI. Then we have

tJ [x.(ad)n. %’ "(.-l)no! ,n‘ S 20 {"(!l-l)’ Y “’ 3’1000 yn}

4 e [xlcno !n. J’l ses ’u]o

¥rom this inequality 1% 4s easily sean that the eadropy H( '» 23) is given by

) .
(5.301) :3{ 0 ’&B) »n i e log.v Lx~ <1)7 *e X 4 Yy 00a Y 1
ney e B {m~l) a' N1 n
where the exieetation s taken #ith respact io the distribution .

fron (2.4.6) ori definition 3.,2,1 w have

1 .
ST SECRICHENERERFAPRFAR

.

1,
+a 5 log © {!"(..l) o ln!
and henoe
(3e242) H(uy 282) = H{ 0y 2B) « H{upA)e
The definition of &* (1) and (3.2.2) give

a(u) » §*{u).
This completes the proof, Thus we have the following
Corollary 3elele Por @ granrwl with finite mezory in the senss of

Khinchin
c“e‘“c:‘e:-e.
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Zariier we have proved that ths emtropy funotiomal H(u,r) and the
functional A(u,BlA) sesoccisted with & ohannsl are upper semi oontinuous,
However, we noted th-t entropy is not contimuous in the weak to,ology.
¥e ghall nov prove the contimuidy of H(M, BIA) in the special cuse of
channels with fiaoite memory in the ssase of FPeinsisin,

Theorem 3.2.2. For channels with finite memory in the senwe of ‘eintein
the funotional H(H, BIA) is continuous in the weak topolagy.Pur hernore
Un sp | n‘(u. Bla) « H(1y BiIA)|= O

ne)o Uk A
Proof, Ve have proved the upper semi continuity of H(u, BIA) in theor

2.4.4, For ohannels with finite memory, we have hy (3.2.2)

H(uy 814) = H( © 44B) = H(uya)

where « 1is the joint inputecutput distribution corresponding to the imput

distribution Hs %o shall now prove its lower seni oontinuity Ly showing
that H(uyA) = H{ W ,A8) is the limit of & monotonically deervasing scguence
of continuocus fmetioml/:. #o now follow Breimsn [ ) J. Let the aouory f
the channel bo m and let n = Kk(£+a), k> 1. Let x, y be polats in «
and BI respeotively and %*. Ver ¥y s the parts ¢ the x and y se_ usnoes
as in these diagrems

1 ] "

~

Xyo ee Tpl b Bagad 00 Ta(mel) ' 0 Fed)(mel)sd® ** Ne(mt)

v

wx 11 ;4,3 v&
N p = ~

Y,

sl see .rz » ,Y“Y 1 sos y“’e . Py Iz<“( ) Y see ymsé peeep
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kel "

"(k;-l)(u DTS Al ’m(&-l)z * Yiem(ke1)ied *°° Tie (me ; .

w pequencas ax¢ of lemgth ymy  sequensec of length I apd v = geuence

of langth me Frax the ataticnmarity of the chsnnel snd (2.4.6) w0 hswe

- "wa' ﬁ"(u’ Bir) =

i - «e
“a L. P go¥ye voe Veope ilTy ore Mo "o
AT

Iﬂ! P( h;.ng oooq"k"l ves 'k)

where P( 1 172 e Ykar? w I¥q oo 'k) siands for [y, eeo yn'?.
(sinoe the ehannel is of fini‘e memory m this dejenis only o8 ¥; «se wk).

Purther roa dafiniii.a 3.1.2 we have

log ?( A 1* '10 . "k.la u k"l ees 'k) i log l‘( ”‘1' "2| oss Akl'].."‘k) .

Therefare
(3.2.9) -‘m au(u.nu) £ 'R'TLT A ;;"P( Ili)u(ﬂi)log #{ f(‘lw‘)
e b5 R ieuey) J0g B vy -
 Lhb
- {i. a({m)(u. BiA)
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Lat now
G (1) = - ‘5;-'51 B, g (W Bl8)

The insquality (3.2.3) shows that the sequence 60“(35)‘; has & monotonio

decressing subsequencs (ainoe { is arbitrary). Purther

lim Gn(’"‘) e H{uga) = H{ 2, AB).
) oo

This shows that E(n, A) « H( ©, AB) 1s upper seni continuous uni honce
comple ies the procf of the first pari,

As reaarked esrlier the space 'WA is & coupect metric spuice «nd
the contimuous function H(k, BlA) is the limit of « monotonioa!ly deoressing
sequence i (U, 812) (see theorem 2.4.5). Henoe by & well known ‘heorem of
Mnt it follews thad H'(u. BlA) converges to H(M, BiA) unifomaly,

Utilisin - the amtinuity property of an(u, BiA) we shall no: :row
tha following thacrem Jus to Breinen,
Theorem 3.2¢% The ocupasity of & o-ennel #i 'h finite memory in tihe sense of
Veinstein is a<tained at some ergodioc me-oure,
Proof. Prom theorems 2.3.1 and 3.2.2 it 1o olear that the rate of
trunsaissica R(u) is an upper semi o atimucus funotiomal on the spuce I,
mGer the wmeak tcpologye. 18t ©C % the ospadity of the oh-anel, liy definition
there exists & sequence of neasures |, I'WA such thay

C = lim '
. R(w,)
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By the compaotness of " R follows that there existe a subse u:nce

» such that lim 3§ = ¥ exists, Hy the upper ssui ocontinuity of
B>

1K(u) we have

Ce iu &K Je 14m swp KW ) £ KW < C
nkw)ﬂ nk nku>m x :

Thus ¢ = R(1)e 3imce the capuoity is atiained at s messure u, an appliestion
0" theorem 3.1.2 shows that here exists an ergodio neusure Ty WU that
Cw ﬁ(uo). This completss the proof,

Benmarke, Prou the proof of the atove thecrea it is olear that the cujacity
C is attained for all those chamnels for which the fumotiomal (i, 242) is
coninuous in the weak topology. There is as yet no precies ohurscterisstion
of thase ohaancls,

The above thecrem ahows that the oapasity is attained at = ersodic
messuré. Is it trus that the caaoity is attained at an a-d= wndant
stationsry messure ?(Ay sn m~dependent stationery me:sure we nemn that meraure
for whioh the corpesjonding stochsstic ;rooess (ees X ;, X, x, ese) is
stationsry and the aolleoti ns of rendom veriables (... X,y X ) ond
(‘ml' X 02’ ese) are independont). It is well known that the ou noity of
chagnels with sero memory in ths sence of Peinstein ia attained st o produot
meagure, Thero is ze yet no motiod of computing the ospacity and Lhe nessure

at which it is attained,

Let us denocde YWy W an arbitrery oylinder [xl. Xy eeo l‘} oo lencth m
and eall it an U =ssquense) Lat v deno'e oylinders of the type

['ml' 714-2' sew 3“] obsained by taking nem longth segquenoes in 31. Then the
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well known Feinstein's fundamenial leams asserte the following s
Theorem 3.3.1s If C is the oapacity of & channel | A, x.a] with finite
memory in the menes of Feinstein, then, for &ny £ ) O and suf{iciently
large n, thers exist . «sequences Cqp e eee LH and cots 31' seey n&
of vegequences such thad

(1) B, 1B = $, 143

@ 7, (3)>1-¢

(3 1y 26

The following result is & iimiting form of ‘he abowe t:eorau wan the
length of the sequences becomes infinite. Here the glotel etructure :f the
fanily of al: org.dic mensures brings to light the oon-ent of tne gonditions
wder whish F.instein’s lemms is proved, The cruol:l jroverty of the family of

ergodic meagures that cumes into play here is the w08 that thwe violo spaoe

AI osn be partitionsd into ergodic sets unt & set of invariast mensure

3010, (Se0 theorens 1.1.5 and 1.1.6)
Theorem 3.5.2¢ lat [, Y B) be & channel with finite nemory m in the

songe of Yeinstein and non sero capacity. “hen there exists an uncounieble

nusber of noints (x| in AI and an wnoountable oumber f sutuslly disjoint
.y

norel subsets Bn't} in st such that ’V‘ (na) - 1.
’ x
ryoofs From theorem 1,1.6 W ges that, associated with every ergodic

peasure } on AI. there exists on invarient set ¥ such thag x&("‘u) = 1 and

"
all the sats R” e autuklly dtejoint, B“ can be taken to W the wt of
all regulnr points p in Ax suoh that the sescclated erg 410 esavure

u’. He The aot ¥ 1s called the ergodic set of u, A sizmilar result holds for

B
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ergoiic meaguras ~. @ i%I. let ¥ be the ergodic et of o Yor vhannels

with finite aauory in the assnse  oimstein it is =ell known thut, ‘or
uny ergodic fn ut meuinurv Uy the curresponding jolnt inj e tout o ond

outpu’ nesures sre ergodic (see [3 1)e The outjut nesswe © i -fven by

(3.3.1) = [ D)

for any forzl «et ¥ in E!I. Fanes 9 have

(50503) 1= (? ) - f ’x (F )‘du(x)l

&I

YLl mhw ra (3.3.2)

£ being thwe orgoito st of 1 . Dimoe O K

!(F ) -l |- 3 - 3 !( "').
Thus here oxizta i lonst o point "‘p ' ”’b gush that

(3+3.3) i xu(? ) =13

f.0, if i tie outimt me-sure correeponding to some fmpu mowsuw U
then there exista s ;olnt X suo’ that (5.303) holds, ‘iinove the r.- e
sets of two digtinct me awes | are ilsjoint it is enough to srow tot
there is an uncountable number °f ergodie neasures which 3w cutyuts of
inut measures on the s;noe :«xI. Thaie probien can e looked upon w ¢ liowet
the ohannel provability .'x(ﬁ‘) sssociazes with every in ut meusurc i an

out put meRsUre Ry moans of syuation (Se3.1)s Thus it 18 & .dnour

transformation of the space A into the aywe e It wangTOTLL OF 0 iC

B

mesgure: into ergodio seasureds ‘he Juestion is whe MY herw i» un
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uncountable num'@r of ergodic wmeasures in the range . *he trang arooiiop
induced Yy the o :npel Jrobaldiity. Je shall now jrove that tiis s
sotually =0,

H a:ume thet »/x(k‘) is not indejundent of x, This ia le¢ 4:in te
ainee the ok Agity is noa 3ero, Lut the penmory; be ze Theny Sur ot loast
SO U e ABIOOE '?ul and y G length B oand one vesequ noe Yo loo, v nem,

we have

b Dl 2
Lat Jul(vc) - Cl, }/'“a{vo} » G, snd g < CZ witihiout 1o0us of jeneriii. ., let
() be a distribution definsd on the syace of ~3eJUENCea, lai: ¢ ouny

Veadgquonos sz write

(3.3.4) L V(M) plv) = q(v)
[

where the sumz tion is uver &£1) u gsju.-nces. If p(uz) w1l oanl to rost e
garc, e et %{v‘) - Gy If p(ua) 1 uns the rest are sero, e A‘v‘@fﬁ = C,e
Thus #8 p{u; vouss over all dietrib.tions un t'e 8pace of ueso juuicHs

“('a) takes 4f lomst two different veiues C, vnd C . q(vo) bain -
c.ntinuous lasar ‘unctiin of the yrob-bility distribution p(w) taies svery
vilue botwaen ¢, ond e‘:a as p(u) virdes over al. probadbility distri .44 rg

on the spaoe of uessgu Roes., Lut of every diskribution p(u) w8 buiii the

diatrivution

+
- rj:Lm P,,

by taking the roduct ol distributiona Py wiich e iden doal ¢ s of p,
‘he croduct f& taken wver all intuegers only «nd p* {s de’imsd on ¢ o TPOe
AI. p* io inwvirian’ snd ergodic uader k. transform -tion 'I'n o ulniituting

p* insread of U in equation (5.3.1) we (et u meusure q° whilo: s «iso
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n X ~
invapiagt =nd svy 4.0 under T in the s.ece i, ( rgddedty 72, ¢ -
the faet t-at i) ¢laansel i F find o REmOr, in the sense oF  oin oo nd

, n ) . n
henoe ‘reasforss ce sures srgodic wder T ints ue suros srgodie wnder 7 ),
A Lo dletributien 9(1~} WY Lie uessquenoes variie v coat wn uncuonioble
nual.er of gaisures g*e hie is becuute of the faot that the rastriot ton
3f 9% to wegejuencos gliva 5o unoount bls pumier of digtriouti . ur she

type u{v) (se2 {3.3.4)). V8 nus cunsiruot tws vesnurss

{.i(J ) - ..2?{') A ?”g&i’{) $ ses ¥ E'SE 1 ‘2

1{P) - q{¥) + g*(2F) ¢ een + Q:'('rnﬁl F}
n

It 15 obvioas st 7 1o the ou pud Awasurs core sponding to toe in wt u,
U 1s inveriant =8 ergodic wnder T und 'mnce 7 ia ergodie and ine.riom
under T, Thus @ auped siich are ¢ons rus’ed in the above munies are
in the mm ¢ o) the trensforsction ifeduoed by thy etanael prov .o .,
%o have omly Cu shuw that there is 3n uncountabls aunter of suei TN
If w taks two distributions pli «} an! P, ) over uese. . ¢

w finally arrive at two in,ut nsbsures ul wid iy snl ta eurrg i

output ne wures "j?l and ‘;7‘,. rogpective ly. Lot

iy e B GE) ¢ e e g
[ 4 -



a* (P} & " (TF) * e q‘('!?n’l F)
1,08) - £ . —*

n

Tor any verel ot F ’SBI. Ry two of the sessures q‘i (‘.i‘t FY v Gy 1y 4oy nel
snd qs (’rx’ )9 ™ Dgly see A=l, bRing ergodic unier T, are eitrer i ntics}
or orthogon:il, ilsnce it follova that ?‘l - 7“ if and enly if

Qi (F) = ﬁi (Tr £) for i1 Norel sets F an some fixed integer r i - in
the interval = n { r { n. B RO O buok o the ephoe of dis pin b o
p{u) over uesojuunces An’ rey thot teo distinet llstributioas I S

on u} (oorr s oniine to aome pi(w) 2nd p,(u)) cre equivalent 1 oo el i

the ¢.rres .. i "';71 and ?2 are identtcal l.e, il and ondy i Gy ot
q"‘g (r’ F) for a.. Doxerl sels i wad suse integer r in = n § r  ne s
trhe equivalency clmas ourres ondine 5 a g% Quasiste of q*(fr e

r e ey «(0nljy eee Gp 1y eee B o Jhus @20 sguivalence olas: ¢ %iipne
utsout Lnel ilutributions, since here is an uncountable nue Br [ isirie
butions -f @ byje q* 8nd di fereat '@ GOrres.ond $0 dirarelt vy lence

Cingses it de clear thit 1% 35 possible W gunatruct an uncount D le ombey

of diatinot llstributions of the Yype 7 o 7his cumplelew the oul,

e have digcussed o some Jetail the properties of & ohwuwmel »ixh
finite memory in ths sense of Khinchin, Thw most enemsl onranmel §f .r shieh
‘he Peine ein's lundawental lewcw snd Shannon's “undamental theorecs ..o been
proved 13 the one with {11 aemcyy n Lhe suuse of winstein, ¢ &

Justifie-tion ‘or infroducing chsnneis with indie zemory ia us ane of



29

thinchin «2 suxll discuss here some . Lhe propovtioe of a pervtic L

Th & gy o g e
ARES TN L

ciaps of Ccuanawie w ioh have finil ¢ meeor; in ihe zense of 7
a-t oin the senwe I elnetein., ¢ pow pdee o desoription of S use o e ls,
et tie wlphabet 4 e suwe findte gr up., oo sim lelty &«

tare . $0 b6 an ubeiidn 2 upe. Lot the alshiabet F bes the hwme vy o, Tnoa
I

astuprsl wa w2 soace 4 bpcoste Lo <helian (o roup.e e fomote 1 o = tha

ad-ftian and invarge oparablon in Ltha creup e C0r oy B8t 0 owe vl o

QQXniilzi-};I,iﬁkxﬁ 1,

\
Lot U b8 an invirisn: wessure defined on A%, “hen the ;robabiing)

diatributions

(3.4.1) Vx(?) . u° {Fax}y ¥ & Fﬁ
(unBcg;ated #witn yelints x o 4&..1) dofinc & stationsry oheanal, 7o i ut
et IUPD / corvosponding o dny inmut se-cure B is obtained by ¢ luting
n i ue. f1odp euyy to varlfy the this cramel 18 of 3er0 nosor  in e
goerory of Prine dn and not neoeesarily in the sense of Zglinstein, . o
crannel 'efincd ty (3.4.1) is cnlled a ersnmel with aaditive n.ise.

e 1ot us sup ose thet the 4sfining me.sure 1"}, in erg dic,
Sventhen t@ ¢ il need not be of sere renor: n the wwnse Y LLulteine
I nwed aost e josncsa the sropsrty that the dfoint inmateoud;ut o cure

cavreeadin. to san srpondic oot motaure w ot empadic, Thie o

veonus@ of Loe Lot that thne conwolution of "wo ergudic me sarvs 5w

o
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be ergodio, As an exayple one muy consider the oomwolutiom o7  wo

dif fexent sriodio ergodiec measures with ssme seriod L . (owower
the fundacential lenmk of ywinstein and henoe Shannom's theorers e
vaiid for gannels with additive noiee 43 scon as the definin.
RIGJUPY “c i3 exrgodic,

Iheorem Jedels The capnciiy C of an additive noise channal

[ A - A] dutined by & fiulie gooup A of or:er & and an invie: o4
measure U is equal to log & - 3(;;9. A) whare sf;(ua, A) 18 the @ rony
of Uy It is 6t ained at the ear memsure on the space ',

Iroofs. 3ince the chanmel is of sercepemory the ‘wo definitiome of

rate of tramaisslon e:inoiie, Thus ror an input seusure u with ~trug

meagure ;  =nd jJoint inuteout ut weswure - @ bhave

B{p) » 3% (8) « 8(,2) « 5%, Hia)
whare B eotnoiles with ke It v obviows frog tue Jefinition of

1, BEL) shut

WG B0 @ Ma - 271108 fryeee 30 4 0 (r)uix)

- lim -i' ] an(ﬂ,, Ayau(x) =

Be) o
(u, , 4)
- lim ~ﬂ-‘--9—;-- - H(ua. A)
ne) o

wha re Hn(“‘a' 4) is us 1o toorem Z.d.1. Thus

() = B(, o) = H(uge A)e
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gince H("F) £ log a and aqual to log a when and only winn
/ is the ilnar mcasure, we have

¥{w) € loga - H( f‘-b’o. A)e
If u 8 t!® Haar mesdure then / is also the Haar measure and

henoe
Cwloga « ‘i{(uo.a).

i¢ attained at the Hasr measure,

Theorem 3e4eds FOr any additive noise channel Fas e AY wits
channel probability sf‘x(!?) -4 (F - x) where U, 18 an ergodic
messure the ‘einstein's fundazental lamma ie valid.

1ot us denote the iadr measure by A. The ocutput mossurw
correaponding to the injut wessure A is the sime es . lot the
joint inputecutput msasure curresponding to A b¢ . Ther it is

ensy %o verify that

Cof
m 1, Vg Wy eereY gl
Nejw N %6 -

Ay eeee )

Ha 1 Y
-1ﬂg‘0n‘>m n wﬁ xbl soe yn}.

»wlog s =ty A) = C a0, (7)) ().
~hen a verbatim repetition of the argument which Tekano ) °
uses to prove the Peinstein's fundamental lemme occmpletes ' ho
proof .
Pinslly we stute a prodicu ommearing sdditive nolse chennels,
¥e say that & system of u«uqumu U uz. ene uﬂ af‘ hmgth n

\bh; Jo A% LAY (6 W
and 868 iy eeee By of v-«quema louath Ntz {g. g ‘i or



wonory 3 in Sis semsa of [hdsendn A

() 8g1ny = p o 3£

(‘4} Jﬂi (Bi) > 1~8

In the case < additive uncise channals w9 say that the oode v

a translatory code if in addition ¢ (1) and (&) there exints a
set ? of v sequences of length n (m = O} such that B wF b vy
L » 1,2, ove He The folloving problem remuine open, Does thers
oxist a tranelatory ocode fur any additive noise ocharmel Qefinul

BC-8) ¢ suffiotently

ky an ergodic measwre with R » &
large n 7 Im ©  omeihly t¢ choose W Ws eee Wy 688 o
subgrouy of »ﬁ“ where An is the Cartesian product of & taken

n tines?
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