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PRZFPACE

In this thesis the resulis of the research vork dons by the
author in the field of sample surveys are presented. Scme problems
of estima’eian in sempling from finite populitions were taken up for
research. A brief summary of this thesis is given below,

In chapter 1, the author has developed & generalized theory of
getting unbiased estimators for & certain olass of parzmeters in
sampling from finite populations, The cluss of parsmeters considered
aye those which can be expressed zs the sum of gsingle=valued set
fmetions defined over & class of sets of units belonging to = finite
population, A techniyue of generating unbiased estimetors for this
class of parameters is given for any sample design. This is of
importance, since so far unbiased estimutors for any sample design hsve
been suggested on 'a priori! ond intuitive considerations and not as
a result of generaxting technigue, It is of interest to note that 2
particular general estimetor given by the generating teechnique happens
to include, as purticular cases, most of the estimators commonly used
in practice and this estimator may be taken 88 & treasonsble estimator!
whenever there is doubt as to which estimator is to be uased.

The technigue of interpenetrating sub-gamples, introduced by
Prof. P.C.Mphalanobis as long back as 1938, has been shown to have
tremendous possibilities in estimating the bias of a gertain olass
of non~linear parzmetrie functions. In oﬁapter 2 is given a technique
of getting (almost) unbiased estimators based on independent inter-

penetrating subesample estinates for parametric functioms which can
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be expressed as non-limear functions of pérametnrQ which can he
unbiagedly estimated using the technigme given in chapter 1.

In chapter 3, it is shown that in casge of sampling from a
finite populatien without replécement, corresponding to any estimator
pased on the order of selection of the wnits in the sample (ordercd
extimator) there exists a more efficient estimztor which ignores the
order of selection of the units in the sample (unordered estimator). The
ordered estimators suggested by different authors have been improved
upon using this technique,

The technigue of getiing (2lmost)unbinsed estimutors developed
in chapter 2 is applied to the case of ratio method of estimation in
chapter 4. It is 2lso shown that for :ny design the conventional
bissed ratio estimator and the unbiised rutio estimutor based on &
glightly modified design are equdlly efficient in large sarples to
second degree of cpproxim.tion snd that the lutber is more efficient
than the former to the fourth degree of approximation under certain
assumptions,

A new metiod of estimstion, termed 'product method of estimation!
is introduced in chepter 5. This is similar to the ratio method of
estimntion and in fact this may be counsidered to supplement the ratio
method., Xt is shown that in large samples, product method of estina-
tion would be more efficient whemever rstic method of estimatiom is

inefficient, The guestion of estimating the binms of estimotors of
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product of several parameters is &1uc‘;:?‘cmai'dered.

The efficiencies of ghortecut methcds of estimating variance and
co.fidence interval are sonsidered in chapter 6, It is shown that the
loss of efficiency in estimuting the variance and eonfidence intervul
on the basis of independent interpenetrating sub=gample estimutes
decresses more rapidly for initial incresmses in the number of sub=gamnles
than for further inereases, The estimator of variance built up from str:ta
subesample @stimotes is formally shown to be more efficient than thot
based on the subwstmple estimates pooled over strata without any assumpe
tioms,

A procedure of determining the samplc size, which can be oonsidered
a8 more rational than the conventional procedure, has been suggested and
a specimen table showing the sample sizes for different situations iga
glven,

The question of making a sample design self-weighting at field
and tabulation stages has been investiguted. The advantages and disadvane
tages of different methods of meakins sample design selfeweighting are
considered in chapter [,

In chapter 8y an attempt is made to give 7 comprehensive treutment
of the theory of survey errors including both sampling and nonesamp 1i ng
er-ore., Tne use of 'conditional approach' has Considerably simpliiied
the derivation of a number of resulte in this field, fThe technique of
interpenctrating sub-samples (introduced by Prof, P. C. Mahalanobis) und

its various uses in large scale surveys are discusszed,
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Chapter 1

G WERALIZED UNBIASED LSTIMATION

1. INTRODUCTICN

From times immemorial the concept of generalizing from a
tpart! to the 'whole! has been used more or less subjectively in
daily life, But not until the later half of the nineteenth
gentury, objective methods of gemeralizing from & tpartt! to the
twhole! seem to have received much aitention. In this case two
yuestions arise - (i) how to select the 'part! from the ‘whole! ond
(i1) how to generalize from the selected part to the whole. The
problem is one of finding that combination of selection and estima~
tion prooedures which would mmix;xize the risk involved in ceneralizing
from the part to the whole per unit of cost. Alternatively the
problem may be viewed as one of finding that combination of selection
and estimation procéedures Which wou)d minimize the cost, ensuring at
the same time a specified precision for the inferemce from the part
to the whole.

The earlier developments in this field relate to the second
question posed above and the result has been & fairly well developed
theory of estimation and statistical inference based on the simplest
of selection procedures, namely, equal probability sampling with

replacement., Sinse the last two decades, a number of selection and



estimation procedures have been given in sampling from finite popula-
sdemtions, Some attempts have been made to give generalized estime-
tion procedures which would cover, as particular cases, the estimators
oommonly used in practice (Midzuno, 1950, Godambe, 1955, Murthy,
Nenjomma and Sethi, 1959). Goodmen (1953), Murthy (1957) and Basu
(1958) have given teehnigues of improving upon certain types of estima-
tors.

In this chapter, it is proposed to develop & generalized estima=
tion procedure on the lines considered by Murthy, Nanjamma and Sethi

(1959) and give = technique of generating estimetors for any sample

design. This technique is useful as it puts at our disposal a mumber

of estimators. So far, the estimators in oase of different sample

2

designs have been suggested Ly various authors on 'a priori! and intuitive

an
considerations and not as a result ofzgenerating technique., Of course

the problem of choice among different estimators rem2ins aﬁd in most
of the cases extensive empirical studies would be necessary to arrive
at the best or near optimum estimators. This 1s because there Joes
not exist a uniformly unbiased minimum variance estimator in :he none-
perametric sense in sampling from finite populations, as has been shown
by Godambe (1955).

It is interesting to note that a particulsar general estimator
given by the generating technique happens to include, as partiocular
ogses, most of the estimators commonly used in practice and this estima-

tor may be taken as & 'reasonable! estimator whenever there is doubt



a8 to which estimator is to be used.

Before actually giving the generalized eatimator and the technique
of gemerating unbiased estimators for any ssmple design, it is proposed
$o define the terms 'sample design' and 'sampling sckme and to give

the technigues of improving estimators mentioned above,

2. SAMPLE DESIGN AND SAMPLING SCHEME

A 'sanmple design! may be considered as the specification of
all possible samples with their probabilities of selection or of the
probabilities of inclusion of the units or combination of units in
the samples A 'sampling scheme' may be taken as the prooedure of
selection r;f the sample in stages by units or combination of units,

A sample design is completely specified by 2 list of possible
semples including all possible permutatioms and repetitions of the units
in the sample with their respective probvabilities of selection. In
such a ocase it can be seen that there 1s a unique sampling schéme which
gives rise to the sample design, 23 has been formally shown by Hanumantha
Reo (1960). Examples of partial specifiocation of sample design are
(1) specificatien of all possible samples without considering the
permutations and repetitions of unite in them with their respective
probabili‘ties and (ii) specification of the probabilities of inclusion
of the units in ithe sample, In case of partially specified sample design
there is no unique sampling scheme giving rise to the sample design,
Instead there are & mmber of sampling schemes which satisfy the partial

specifications of the sample design., In such cases the problem is to

&2



=2

find that selection procedure which minimises the variance of a given
estimator,

For inatamc, in case of & partially specified sample design
vhere the probabilities of inclusion of the units are spaotfied, =
aimpls selection procedurs which is likely to be more efficient than the
others is to select the sample with probfability proportional to the
probabilities of inelusion gystematicelly afier some suitable arrangement
of the units (Murthy, 1960). The procedure consists in Zirst obtaining
the cumulated totals of “1'8' the probvabilities of inelusion,
(@i -0,y + Ry 1= 1, 2, eeey N) snd then selecting the units
sysiematically with a random start from O to 1l and with 1 sas the

. - K e \",ﬂi IS ~ 4 Fi T .
sempling intervalewny F2 oo K Hirks ok teo-

3, IMPROVING OF RSTIMATORS

Three teochniques of improving upon certain types of estimators
have been suggested. Goodman (1953) has shown that if ¢ is an
unbiaged estimator of @ anmd Y(t) =K 92 , vhere K 1is known, then

a more efficient estimator from the point of the risk function

A@ E-05r@>0 (3.1)

is given by
i = t/(t + 1)0 (3:2)

An example of such a situation is provided by the estimator

2 S -2
= z - LR
n-1 9, i ¥) (3.3)
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of 02 in case of 2 sample from & normal popul-tion. Since

'(.2) - na. . 04

a better estimator of 62 is given Wy

2 1 2 2
ot evT 7 =7 (3.4)

In oase of sampling without replacement from finite populatioms,
scme estimators have been given by Das (1951) and Des Rej (1956), which
depend on the order in which the units are seleoted in the sample,
Murthy (1957) has shown that eorresponding to any esiimator based on
the order of selectiom of the units, there exists & moye efficient
entimitor whieh does not take into account the order of selsction of
%he units in the sampls. The former may be termed ‘ordered estimator?
and the latter ‘unordered estimator!, The teohnique involved in
improving the ordsred estimator oonsists in taking the conditionil ex=
pected value of the ordered estimator over &1l peseible orders for a
given unordered sample of units as the wnorderad estimetor, For
instance, in case of selecting 2 units with varying pro&ﬁliti@s
without replacement, one of the ordered estimators given by Des Raj

is
Ty
Pi

A b §
f- (g Gen) e -;g-(x -9 ] (3.5)

where the order of selectiom of the units in the sample is (ij). The

sorresponding unordered estimstor which is more effieiont than the



above estimator is

N J J

T, - [~ (1-p) +=(1-p) ] (3.6

n 3 P i
2"91"’3 i J ‘

Thig teshnique is considered in greater detail im chapter 3.

In ease of sampling with replscemsnt, Basu (1958) has shown that
corresponding to any estimator which tekes account of the number of
repetitions of the units in the sample, there exists 2 more efiicient
estimetor whieh is based omly on the distinot units in the sampla without
taking into consideration the number of repetitioms. The procedure of
improving the estimator is similar to that explained eurlier and consists
in taking the conditional expecled walue of the estimator over all possible
repetitions of the given set of distinct units, FPor instance in the
case of simple random sampling with nplacomonﬁ. the. #auple meian based
only on the distinet units in the sample is more efficient than the mean
of the unite in the sample ineluding their repetitions., 3Similerly in
ease of sampling with probabili :ies proportional to a glver mausure of
aize with replacement, if A = 1 units turn out ‘o be distinct, then

the improved estimator is given by
d
la — .
Y, G eI G/ ] (3.7)
i=l

where ;' and ;' are the sample mesns of y and p based only onm
the distinot units.
The improved 6utinator¢ obtained by using the above techniques are

in general difficult to caloulate except for certsain particuler cases



and their variance estimators are rather complicated,

4, PARAETRIC FUNCTION

Let 'X denote = finite populstion of N units (“1' 1= 12,000y K)
and let the vector 5__ 1 giving the values of a nunbar of characteristics,
be assooiated with the i1th unit (4 = 1, 2, ..., ¥). Iet A be the
olass of all sets 'a! whose elements belong to X.A In such & set the
same unit may or may not oocur more than once, The oluss of all point
sets and the clasgs of all pairs of units bloﬁging to X sre examples
of the class 'A'.

We shall econfine ourselves to only such psrumetric functions
(say ¥) which can be expreseed as & sum of single valued set funclioms
defined over the olass 'A', That 4s, 4f ¥ ie such a function, ‘hem

P =3 f£(a) (4.1)
a€ A
where £(a) is & single valued set functiom defined over the cliss

tA' and 3 stapnds for ‘he summation over all sats tat helonging to
atlk p

to the class 4!,

For instance, the population total Y for & characteristic ¥y
can be expressed as P in (4.1) with 'a?! as & point set (Bi) and £(a)
as Yo The population variance ¢® cen be expressed 13 F in (4.1)
with 'a! ag & set of two unite (U, Ul snd

£(2) = = (1, - 1,)°

'2

¥ The ourled btrackets ; ) are used to denote unordered sets, thot is,
%!1, Ud”’j and Evj, Uﬂ are the sume.




8imilarly the coverisnce beiween two charesteristics x and y mey be

expressed os i (4.1) with te? 38 2 puir of unite {“1' Wy} end
1 :
f(a) - '—?‘- (ti - !J) (xi - xa)o

It may be noted that there miy be u number of ways of expressing &
parameter in the rorn (#¢1). For instance the popul:tion total mey 88

well be expressed as P with tat 88 & get of n units end

(o) - —o
ety

where y is the mean of the values of W for the units in the set
tal, In such cases, 4% is desirable to define the set ta! over as small
pumber of units of the population 88 possible and in whai follows this

15 assumed to bo 80 unless othervwise stated.

5. SAMPIS SPACE AND BSTIMABILITY

Iat ¥ . be & got of elements of X taxing into asoount the
perxatation’ znd repetitions of t;ha units. The subseripi 'O’ and 'r!
are uped to denote the order and repetitions of the units rospectively.
et 'ﬁar ve the cluss of all sush sels W .. Wor Bay b8 gonsidered
the sample 3pac8.e This together with & spéoiﬁ,ed probability Beasure
P(v@r) dofined over it gives rise to a completely gpecified sample
design. Befobe giving the genernlized estimator for B, two of the -
three prooedures of iwmproving upon gertain types of estimitors mentioned

in saction J are congidered in this eontext.

Pl
If Yy is an unbiased astimator which takes into account the



repetitions of the units in the sample, then a more effiscient estima-
gor whioh ignores the repetitions of the units and is based only on

the distinot units in the sample w is given by

ox
Y =% YT B(v)/ B(¥) (5.1)
"

where v denotes a sample where the repetitions of the wits are
taken into sceount, but mot the arrangezent of the wnits in the sample,
P(v,) and p(w) are the probabilities of getting the samples w, and w
respectively, where w is the sample ignoring repetitions and arrange=

ment of the units, and 2 denotes summation over all samples v
w > "

corresponding to the ssmple We

84milarly if /ie i3 an ws;hiased eatimator of Y based on the
ordered sample Wos tpen & more officient estimator which is based on
the unordered semple w corresponding to w, is given by

t- 3% 1, 2(n)/ B (5.2)
we ,

PX denotes summation over 8ll possible ordered samples w, cOrres=
w ey W
o

ponding to the unordered sample W,

For the stke of conveniense, iat us oonsider the oase where the
sample size is fixed. Iet 's' be 2 set of muite of X with or without
repetitions and with or without arrvangement of the units, ~s the case
may be. The clsss of all auch sets is the somple space S and let

the probability of getting the sample be P(s) » 0. It may be noted
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that 's! is being used here to denote 'or’ LA 'r or w ag the case
may be. Similarly § stands for For' ¥or 'r or W as the oase may be,
Withoui loss of gemerality, it may be assumed that each sample 's! |
oconsists of at least one set 'a', If this were not so, we can redefine
the sample space and the probability measure such that this is so.

THEOREM 1 3 The parasmetric fumction given in (4.1) oan be |
estimated un“bia;odly from the sample if and only if eaech set 'a' is
econteined in at least in one sample 's!,

Proof 3 That the condition is sufficient can easily be seen Yy

considering the estimator

T=3 £(a) § (s 2) / Be) (5.3)

acs
where $(s,a) is some function of 's' and 'a'. The necessary und suffi-

cient condision for this estimator to %e unbizsed for P is that

S P (sea) =1 (5.4)

8>a

for B(F) » 2 L 2(a) p(myn)
g &8 acs

-2 f(a.) & ﬁ (503)0

a € A L BT )
There sre & number of functions sasisfying (5.4), as can easily be
verified. The nscessity for the ecndition oan be proved zs follows,
Suppose ts'ome set 'a' is not included in any swmmples Then the coeffie
cidnt of the corresponding f£(a) in l(i‘) given above will be O and not 1,

Henoce the necagsity for the eondition,
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PEEOREM 2 3 An unbiased estimator of the variance of the estimator
? given in (5.5j can be obtained if and only if every set (aud) is
contained in ért least one sample 'st,

Proef s Por sstimation of the ﬁriame of f? unbiagedly, it is

gufficient to estimate ?2 untiasedly, for

E#) = Y(F) + 7
i.0. Bste V(F) = ¥ - Est. F.
P2 can be expressed au |

P2 5 £) ).

a€ A acfh
Prom this it follows thet an unbissed eetimutor of 12 is possible if
and only if every set (aue'} is included in u% least one sauple 's!

(of . Theorem 1).
An unbiused estimator of V(¥) is given by

YE =-F -2 2 £(a) £(a) Y (semat) T/ RKs)  (5.5)
aclhA atlc @

where

% ‘ng/ ('9 a,'ua') - 1. (506)
s -cala

If some supplementsry informetion (say g(a))rel:ted o f(a) is
sveilable for a1l the sets in 'A' and is made use of a2t the selection
gtage, then it is desirable that whenmever g(a) is substituted for
£(a) in the estimator (5.3), we get the population poremeter

6(a) = 3 gle).
af A .

O

X e
= bue 2L M B3
®« T B

<X Carcot Tf;-/



In other words, it is desirable to find p(s,a) in the estimator
(5.3) such that

o /5 (a,a) =1
s_8

and

I e p @) /B 5.7

a_-8

for each sample 's'.

6. GENERALIZED UWBIASED ESTIMATOR

It is proposed to consider the estimator given in (5.1), namely,

N

Fe= S £(a)p (3s8)/ (s} (6.1)
8.8

and o give & technigue for generating unbiased estimators for any

A
sample design. A8 nas boen shown eerlier, F in (6+1) 42 unbiased
for ¥ if and <;n1y if |

5 p(sem) =1 (6.2)

s_ &

One solution for (6.2) is given by

pla,e) = 1/¥(s- a) (6.3)
where N(s- a) stands for the mmber of seamples conbaining the sed 1al.

In that case the estimator is given by

P -2 f(e)/ Me-e) 2lE) (6.4)

ac s .

where stands for summation over all gets 'a' included in the
a8

sample '8',



THEOREM 3 s An unbiased estimator of P given in (4,1) is

given by
FeX f(a) P(s/E,) / B(s) (6.5)

a<e
where Ea is any event concerning the occurrence of the set ta! in
the sample satiafying the following conditions t=
(1) the eccurremce of E, ismplies the selection of one 8o &, and

(i1} the selection of 's! implies E, for at least one ac s,

and P{s/8B ) ir the eonditioncl provability of selecting the sample fts!
given that the event B, has occurred,
Proof ¢ The theorem will be proved if we csn show that ithe condie

tion (6.2) is sutiefied when

4 (s,5) = B(s/E ).

In this cose the condition is satisfied, for

P(O/i'u) - P(W;EG) / % P(s, Ea)v
. Y A>a i

whare P{a, Ea) 1o the probahility of petiing the sample 's! where

the event Ea has ocgurred, and hence

z P(E/Ba) =1,
a=-a .

Sinoce p(a/xa) satisfies (6.2) far all specifications of the event
Ea satisfying the conditions mentioned in Theorem 3, we can get many

estimators by defining the event Ea in diffarent ways. The event

B may be termed the ‘gemwerating event! sinoe it generates estimstors.
For instance, the following specifications of the event may 18 consie

dereds=



(1) the set 'a' is included in the sample 's! = B _ oo
(11) the set ta! ocours first in ordered sample - E ,,

(4i1) the set 'al ocours in the second position in the ordered
sansple = B a2t

and so om. The estimstor correspording to the events Ea"a’ B 2l and

E are given by

a2

o= £(a) / n(a) (646)

2 ac s

where n(2) is the probability of including the set 'a' in ths sample,
gince

2(s/B,_ 4) = P(e) / P(a=8),

~

Fy = }: £(a) P(s/!lal) / P(s) (6.7)
v - 7 £() R(6/5,,) / B (6.8)
8. 8 .

The estimstor EL gatisfies the desirable condition mentioned
in (5.7) if n(a) is made proportional to the supplementary information
3+)related to+1~ o For rubstituting g(e) for £(a) in (6.6) in the

cage we get
| &(a)
p) -G
acs © a)
since 5 n(s) is the number of sets 'a'! ocourring in sample 'st,
8 A N
Similarly the estimatar FB satisfies this condition if onc set

150 is selected with probability proporticnel to g(a) in the first

draw. rFor in that caze we get
e(a)V (s/38)
Z -G
ace 08
vy substituting g(a) for £(s) in (6.7).




It may be noted thet for the estimator to be useful in praciice,
the generating event ﬁa should be so specified that it would be
possible to caloulate the eomditional probability P(a/Ea) from the
information available about the population, the sample and the sampling
scheme, For instance if the event is defined as the occurrence of
the set 'a' suoh that £(a) < f{a') for all a'c 8, 1t is not possible to
ealculate the conditional probability P(s/Ea) since the values of f(a)
are aveilable cnly for the ='s iacluded in the ssuple 'e',

The technigue of generuting estimators given above sﬁom that
given any s2apling scheme, one can derive A mmber of unbiased estimstors
by defining the generatiug event Ea in different ways and choose one
of thease taking into eonsideration coest and efficiency., Ia other words,
this technique gives rise to = variety of estimmtors to choosze from,

As would Yecome elear from the exauplee considered in l2ter sections,
the estimptor obtained by considering the event Ea as the occurrence
of the set tva! first in the ordered somple includes asg part . culer

cuses most of the estimators mey v token ae a 'reascnable estimator!

and used whenever there is doubt as to which estimator to use in partie-
cular situsntioms, It mey be noted that though the specification of the
gemerating avent takes inte secount iz order of seleetion; the result-
ing estimator need not be 2n ordered astimator.

If the distinet wmiis in the e=mple and the probabiliiies of
selecting 8ll possible unordered samples are given, hen ii will be

possible to generate a number of estimators by



(1) specifying different sampling schemes giving rise
to the partially specified sample desigm, and

(41) defining the generating event in different ways,
Po fix the ideas, let us consider & sample design specifying

the unordered samples and their respective probabilities,

71Uy Uygj and my

where . 1
My =y (1ot T-7, ]
|
py's being less than 1 and that 2 Py = 1
i=l

Since the sampling scheme iz unique for a completely specified ssmple
design we get different sampling schemes by specifying different ways
of distributing the probability of the umordered saaple; U,, Uy over

the ordered samples (V,, uj) and (U, “1)‘ For instance, let
Py (Vg5 Uy) = pypy / (1 = py) 2nd By(Uy, ) = pypy /(2-py) (6.9)

P, (U 'e:) - xu/z end P, (U, U,) = x“/z (6.10)
In both the cases
r(u,_.uj) + r(aj, "x) - %y

Ist the generating event be the ocourrence of the unit first in the

ordered sample. Por (6.9) P(s/¥,1) = 1‘/ (1-»1) and the estimator is

7. Y
1 et =1 () + =) ] (6.11)
2-p,-Py i 3

whereas for the same genereting event in case of (6.10), we get



A 4 y
!“-*;L-v-—‘L- (, =2 =

Lo (6.12)

3 :fi”)

Similarly other estimators may be obtained for different specifica-
tions of the generating event.

Another method of obtaining unbiased estimators using the
above technique is to express the parametric funotiom in the form
(4.1) in & mumber of ways Ly adopting different definitions of the
class 'A' of sets 'a'. For instance the population total Y can

be expressed as

!‘z(‘;n)/ (::i) m=l, 2y eney . (601})

where ¥ n is the mean based on a combination of v units from
¥ wnits and 5, stands for sumpation over all combimatiomns of =
unite from X units,

Thus ve see thét if a sample of size n is taken, then ™
possibly different estimators can be obtained Yty taking different
values of m ( = 1y 2y eeep M) in (6.13). The estimators will be of
the form

=5, T Ases) / (g ) Bads (m= 1y 20eees 1)
(6.14)

where Zka stands for summation over all combinations of m units
from n units in the sample and 'a' stands for a et of n units,
Po summarise, it may be noted that a number of 'mbiaged

estimators may be obtained from (6.5) by different specifications of



(1) sexpling sofime,
(i1) generating event and
(1i1) tbe set 'a' |
A number of estimators genmerated by the techniques explained
in this section in case of different particul.r situations are

considered in the later seotions,

7. VARIARC: ESTIMATOR

In section 5 it has been shown that an unbiased estimator of the

A
variance of F 1s given by

Y@ =F -[2 I 2(a) 2(a?) (s, aar) )/ B(s) (7.1)

808 a'cs
vhere

X Y (8y avat) =1 (7.2)

8 _-aual

Now we give a technique of gemerating unbiased varimmoce estimetors

by giving & procedure for obtaining & number of solutions of (7.2)

To start with we may take
(st al') « }/K(s-a Lat) (7.3)
where N(s_ala') stands for the number of samples containing

the set (a ! at) and this gives rise to the following unbisged esti-

mator of the warisnce of F,

&1(5-).?.[2 T f(a)e(at)/M(s= acat)p(s) 1 (7.4)

acs a'os

18
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A number of estimetors can be cbtained by taking

¥ (8y alat) = P(’/naua' ) (7.5)

where P(s/E ) 4s the conditional probability of getling the

a '\ at
ssaple *s! given that the gensrating event comoerning the occurrence
of the set a _a'' in the sample has ococurred. It can be easily

verified that this satisfies (7.2), for

P(8/B, 1) = B(8) By La) / R P(s, B, )¢
e _a_al

Paking up the illustration considered in section 6, we see that

unbiased estimetors of Ya for (6.9) and (6.10) are respectively given

2 2
y y A
L ," (1-93)4-'-;1-(1-»1) Je2 =24 (1.6)
2"’1"’33 i J 1)
and
r 72: ey
X + gt 2 x ) (7~7)
1 J 1

It may be noted that for each estimator, there are a number of
unbiaged variance estimators genexated Yy the above technique.

As mentioned earlier it is proposed to consider in the next
fow sections the &ifferent estimaiors and their variance eatimators
this techmique gives rise to when it is applied to some commonly
used sampling schemes., For tlw sake of simplicity, oanly ‘he quesiion
of estimating the populatiom total Y of the charasterisiic y and in
some oages estimation of the populatiom variance 62 on the tagis

of a sample of fixed size with or without repetitions and with or



without arrangenent of the wnits in the sample as the case may be
i8 congidered., Of course, this teshnique of generating estimators
oy be applied to get unbiased estimators of a mumber of other
paremetric functions, such 28 moments, which can be expressed in the

form of P in (4.1).

8, SINPIE RANDOM SAMPLIRG

8.1 Vith replacement schom@, Suppose a sample of n units is

selocted from a finite populrtion of N units with equal probability
with replacement and let ¥y, (£ = 1, 2, «osy B) be the value of the
1th wnit in the sample. Here two cases arise, (i) estimators which
$ske into account the repetitions of the wmiis in the sample and
(41) estimators based on]y; the distinot units in the sample. 48
mentioned earlier, eorresponding to any estimator of type (i), there
exists a more efficient estimator of type (ii).

If '8¢ ig a sample of n units selected ﬁth equal probatility
with replacement where the repetitions and arrengement of the units
in the sample are taken into consideration, we have

P(e) = /¥
¥(s.1) «np?
with the interpretetion thot N(s = 1) is the number of repetitions

of the ith wmit in all pessible sarples,

P(s/Ey) = B(8/Bgp) = «ecl/m B,

26



Hemoe we find that the different specificuiions of the gencrating

event considored above lead to the following estimator

tMMB

9 = N; -t 1 11)/“ (8.1)

|

In this case Ei o8 is difficult to define, since repetitions
of the units in the sample are h taken into ascount in the
egtimator, Since
n "n-z
P(./nijl) - V(z) ’
on unbiased estimator of the vuriansce of }' is given by

LORE S E SRR A VAR

- '2.2 / n (302)
2 3 -2
vhere s° = I (y, -7)" / (a-1).
il ‘
Suppose we consider only estimators based on the dlstinct units
in tt® sample. In this case, we have

P(s) = 2(4) P(s/a) = P(&) / (})

where P(d) is the probabi.ity of getting 4 distinet wnits in
the ﬂanpl@,

H(s= 1) = ¥ n(4)

where n(i) is the probability of inclusion of the ith unit and

is given by



x(1) =1 - (1-3°
and B(s/,)) = PafEgg) = -0 = B(&) P(5/8,,0)-2(8) / (g y)

The estimators are
A - - i
xl-za,dy'/[l-(l--i) i (8.3)

~ ~ -
r, - I4 m e = I y' (8.4)
where 3' 4s the mean based on the d distinot units, Inoidentally

the estimator (8.4) can be obtained from (8,1) by using the technique

of improving estimators considered in seotiom 3. The estimator (8.3)

i8 the ome suggested by Dodsabe (1955). Since

P(s/8,,,) = P(4) P(3/4,8,5) = P(@) / @) or 1=

131
- p(d) / (‘4) for 1 4§
an unbiased estimator of variamce of the estimator (8.4) is given

by

, d N(¥=-1) 4
o By - (A 3 5
Rk A R Y ’i"zmma)i ¢
- H(N-d) s°/d (8.5)

2 ¢ - 2
where 8** = 3 (y' =¥ ¥/ (a-1).
i=1 1

8,2 Witbout replaceuwent o schene, In sampling n units from 2

pogulation of N units with equal probebility without replacement,

we get for vn unordered sample 's!
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p(s) =1/ (3)

el
n-1 )

w{i) = n/¥

P(a/E,,) = V&), @12 e )

ms=1)= (

fore we see that all the estimators generated by different solutions
of (6.2) oonsidered above lead to the following estimator

| ¥y (8.6)
whore 7 is the gample mean, It oan be easily vorified that an

unbiaged estimator of the variance of this estimator is

#v(x 7 ) - x(n-n)-zln (8.7)
2 2 2
vere & = I (yg ~ N/ @=1).
. .
Since & =3 % (1, = Yj)z / & end B(s) = 1/(:),
i=1 »i

P('/E“ﬁ -1 (::2‘;)

an unbiased estimator of 62 is given by

Is

2 2 2
-3 3 - » ¥
Fedy g T
- (Ne1) 8%/N (8.8)

where 8% is as defined in (8.7).



9. VARYING PROBABILITY SAMPLING

9.1 ¥With replacenment scheme, Suppese 2 units are selected with
probwsbility proportional 40 a given meagure of size with replocement
where the probvebility of sempling the ith unit at each draw is
A (4 = 1y 2y eoor K). Ist 8 be an mordered sample of & distinot
anits obtained by the above procedure taking into eccount the repetitioms
of the units in the sample and let Py pe the yzobahuity of select~
ing the ith distinct unit in the ssmple 's'. In this case we got

nl

P(’) - ‘ ee rd Pll pzz aes pa

[

where T, 4s the number of repetitions of the 1th unit in the sample,

(nel)V -
P(s/Byy) = T2 piiTe. Py
LR i (rivl) Laes 72 2
(m - 1g2|-o0, n)o
Henoe we got the estimator
!3 - !4 - gea ™ Y - ("Z S?i/pi) (9‘1)

An unbiased estimtor of the variance of this estimator is given by

¥y 2

V(‘!) = -(-*T— --"' - 1') (9.2)

since an unblaged eglimetor of 12 $8 in this caee

z 5 (¥ / PePy) Gy
11 $>i g3/ pg) /)



If we toke the sample 's! as oonsisting of only the distinot
wnits without taking into sccowmt repetitions or arrangenent of the

units in the ssaple, we get the estimators

~ e n v
I, = :El 35_/ - (1‘*’1) ] (9.3)
sinoe x(i) = - L-Q- p,_)n:
o 4
Y, = P(s/B ) .
1’5 El £ ('/ n)/P(.) (9 4)

The expression for the eonditienal probability P(s/= le) of getiing
the gample 's' given that the ith unit has been selected first is in
general rather esomplicated. Te 1llustrate the situation, let us
consider the case where there are nel distinct wnits in the sample

of n units selected with probability proportional to size with repluce-

ment, Then
) ni n=l
P(e) =  TUTT o AT 28 Pafz ¢t Ppal 1?;1 Py
=l
(n=1)8 ( 5% Py )
P('/Eu) * 3011 ... 11 21 7Pz *v° Ppay
Py
(n-1)8
+ 1T o 11 P2 ot Ppay
P(s) nel
1 + o
Hence we get the estimator n~1
n=l y 4
~ 1 . i 1
- 30 2 + ) (9.5)
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Inoidentally this is the estimator obiained by improving the
estimator (9.1) by using the technique given in section 3 when there

are (n-l) distinot units in the sample.

9.2 without replscement solwme, In sampling with varying probabili.
ties without replacement, the generalised estimstor gives rise to a
nunber of different estimators for different specificatiins of the
generating event £ ooncerning the ocourrence of the ith unit in
the ssmple., For the sake of simplicity, let us consider the case where
the sample size is 2.

Case (i) pps and pps of the remeining, Iet the selected unordered

g

sample be {U;, U,) and let the initisl probabilities for these wits
be p, and Py In this case

P(s) = “13 - Pipd(z “Pg - PJ)/(l“Pi)(l’Pj)

H(s= i) = N=)

R(1) = LA ﬁi Ty

P(s/12) = 5/ (1-p,)
P(s/12) = p;py / (1 = py)(x;-p,).
Unbised estimators of Y corresponding to the different solutions

of (6,2) considered above are given by

5 Iy 71 .
Yl (51 713 (9.6)



a Y b 4

!2 - K: + "'x'j"' | (907)

A Y J y

5 mmy | R Oy el 6

A 1 L £ y

Y, - [ ==\(1 = p,) -—‘L;', (1-p,)
4 (2 - »- pj) ( L] Pi) Pyl + ("J PJ pd ]

eer (9.9)

It 48 of interest to note that (9.6) is & particular case of the
estimator suggested by Midzuno (1950), (9.7) i the estimator
suggested by Horvits and Thompson (1952) and (9.8) was obtained by
Rurthy (1957) by unordering one of the ordered estimators considered

by Das Raj (1956). The estimator (9.9) is a new estimator. Thus we

27

see that 2ll the estimators commonly used in varying prohuhility sempl-

ing without replacement can be generaied by the technique introduced

here. There are two other estimators, namely,

A

Tg = 3 + Ty) (9.10)
which are obtained hy unordering the ordered estimatore
¢ (Q=py) 75
./\I' ,. " 1 J ( )
- e - 9.12
p, W1 Py 7
LS IR
X -m + )P (9.13)

where the crdered sample is (ij) and Pl(i) and P,(J) are respectively
the unconditional probabilities of getting ith unit in the first

drav and the jth unit in the seeond drew, The estimator in (9.12)
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was suggested by Das (1951) and that in (9.13) by Des Raj (1956). Here
we see that the unordered estimators (9.10) and (9.11) corresponding
%0 (9.12) and (9.13) are nothing but linesr combinations of the
estimators generated by the technique under coneideration. One may

as well consider other combinatione of the estimators given in (9.6)

to (9+9)s That is, we may consider the estimators

A!7 - (X, + 1) /2 (9.14)
§3 =(+1) /2 (9.15)
§9 - (T +15) /2 (9.16)
N (L +T) /2 (9.17)

The estimators corresponding to (9.10) and (9.11) in the general case
where the sample size is grester han 2, are derived in chapter 3,

It is of interest to note that of all the estimators given
above only }3 satisfies the desireble econdition given in (5.7).
For in that case, if we substitute Py for Yy in the estimator,
we got 1 which is the totalfthc initiel probabilities of all the
wnits in the population.

Unbiased estimators of the variamces of the estimators given
above can e obtained, if wnbiased estimators of !2 are given, In

this ocage estimators of
X
R

i=l



ean be got by substituting yi and y§ for A and 73 in the
above expregsioms. An untiased estimator of
|
‘i 3%1 X
is given bty
271)'5 / Ry e
Thus we ses that for esch estimator given above there are a number

of variance estimators, For instance,

2 2
o A * J ———L’ 4
Vl(tl) - !2 [ x-l . * 2 KL ] (9.18)
2
A
'2(!1) ; [ % + xd + 2~ s ete.
Similarly we get
2 2
R R & y b %5
nm)-? (s + 2=t ]
13 L
2 yz T4
i £
2 2
Y, I )
=2 =) e g (A mg) e 2Ty (e
i J 0

B% (9.195 \

whioh is the variance estimator proposed by Horvits and Thompson (1952)

for their estimater (9.7),
ey o ;' Y 3.7 ;
v5(T3) !2 2-p1~p3 1’1 )

(1-p, )(2=p,)(1=p,=p,) ¥
(2; -p g" —L ¢ pi '_51)2
1"Py 1

(9.X220)



which is given ly Murthy (1957) and so enm,
Empirical Studies, To compare the efficiencies of the above

estimators y, to im empirically, the following small populstiom is

considered,
unit oY v, 33 L
value of p 0.1 0.2 0.3 0.4
value of y 0.5 1.2 2.1 342

This populatiom wes considered hy Yates and Grundy (1953). The
sampling scheme oonsists in selecting 2 units with the specified
probabilities without replacement. There are 6 possible samples.
The estimates for these samples apd the variances of the estin&tm

are given in Teble 1.

Table 1, Showing the estimates for all possible samples
of 2 units in case of different estimaters,

sample y; Y2 Ys Y4 ¥s
1 12.0044  4.8514 5.5294 4,3082 8.7669
13 11.3724  5.5844 641250 5.0711 8.7487
14 11,1000  6.6021 6 .8000 6.2828 849500
23 6.8443  6.1714 645333 5.8313 6,6888
24 6.2860 7.1891 7.1429 7.1833 6.T144
34 4,T563 7.9221 T.5306 8.3427 6.1474

V{¥)  6.5037 _ o0.8281 0.3168 1,5649 1,1123
12 4.9188  B.4276 8.1563 51904 4.5798
13 5.5980 8.4384 8.2218 5.8547 5.378
14 6,5414  8,8510 8.6914 6.7010 6.4424
23 6.1823  6.5078 6.3378 6.3524 6.0014
24 7.1631  6.7376 647346 1.1660 71862

]L » 60 6. 4 L] 8.1 2
EZ‘}‘» 0.8243 __ 0,8650 0.3325 0.5417 1.5933

8



gabla 2. Showing the different unbiaatd estimates of the variance
of the estimators 71, 72, yi, y 4 obtained by estimating

yz in different ways.

STREE A () CACN) XN AN
12 106.7469 114.3527 113.6937 114.8395
13 81.387 93.4566 92 .4099 94,4688
14 62.9340 79.0373 78.04T1 80,3256
23 543472 4.9688 4.2816 5.6236
24 «10.0933 «10.9720 ~11.1195 «10.7077
34 26,7134 «35,1184 ~34,1342 «36,2282

B[V 71 6.4939 6.4956 6.4954 6.4959

sample ¥ (y)  Y%0,) Vs(Y,) v,
12 -13 08226 -6 02168 "6 08758 "“5 .6800
13 "16 075“ ’406394 "‘5 07%1 "506?72
u "16 06385 "005350 -105752 0.7033
23 = 5.,4110 -3.7894 -4,4766 «3.1346
24 2.0761 1.1974 19.0499 1.4617
34 13.4239 540189 6.0031 3.9091

x[’ﬁ(yaj] 0.8169 0.8187 0,8185 . 0.8190
sample V(@) %0y Y5y Y4y
12 -6,7844 0.8214 0.1624 1.3582
13 ~10.4285 1.6407 0.5940 2.6529
14 «~14.0360 2.0673 1.0771 343556
23 - 608132 0:6084 0.1212 lo%y
24 1.4139 0.5352 043877 047995

| 71:4941 ~0.5103 0.0739 =2,0201
E[v(y, 0.3084 0.3103 0.3100 0.3105

:h o 9;,.*' Al,) 1 U

2 -13.79§§. -11.19:):' 3 -11.8%13 -10.6555
13 «22,2280 «10.1588 ~11,2055 - 941466
14 -20.8024 - 4,6991 - 5.6893 -~ 3.,4108
23 -~ 9.4931 - T7.8715 - 8,5587 - 742168
24 1.9927 1.1140 0.9665 1.378%
34 20,2648 11.8598 12,8440 10,7500
Eﬁ?"(y,i) 1.5735 1,575 1.5750 1.5T55

81



Prom Tables (1) and (2), we see that the estimator 95 hos the least
variancz arti fhﬁl ?5)@ has tho leaat Iitxﬁa?ili’.ty. Incidentally
3(yj) is the /unbiased varianoo .fatmtm considered here,
The estimators Yl to 710 have also been studied for the following
population, whers 2 units are selected with probabilities proportional

to x without replacement for estimating the population total y,

unit “1 v, 1.13 ] 4
x 2 2 4 6
y 2 6 6 10

This population has been considered hy Goodmen and Hartley (1958).

Pable 3, Shoving the estimates for all possible samples
of 2 units in cage of different estimstors.

sample "1 Y2 Y3 Y4 Ys
12 56,0231 24.1837 27.9992 21,2801 42,0112

13 25.4699 16.12% 17.8181 14,6122 21.6440
14 22,4090 19.5049 19,6000 19,1090 21,0045
23 38.2044 28,2151 30,5452 26,2145 34.3748
24 29,8784 31.5968 30.7995  31.8716 18.3389
34 13,8168 23,5363 22,2963  24.89% 18,0566

V(y) 116.8106 22,3495  22.07%  25.7334  49.7024

sample ¥, 2 Ve A Y10

12 24.63% 40.1034 38,6516  26.0914 22,7319
13 16.2152 20,7966 20.0410 15,9706 15,3677
14 19.3545 20.9569 20.75%  19.5024 19.3070
23 28,3798 33,2098 32,2094  29.3802 27.2148
24 3143356 30.7376 30,8750 31.1982 31.7342
23,5978 18,6765 19,3580 22,916 24,2178

fé} 21,8895 42,9926 _ 37.63% 21, 23,




"
From Table 3, we see that though 35 has the least variance of
the 4 estimators generated hy the technique, some of the combinations
of these eatimators are more effisient.

Gase (11) s pps and srs of the remAining, Suopose cne unit is

selected with probehility proportionsl to a given meagure of size in
the firsgt draw and the other unit is seleoted with equal probehility
without replagement in the second draw, Then the estimators oorrespond-

ing to (9.6) to (9.9) are given hy

»

Y=Yy g+ 7/ (o ¢ py) (9421)
: yg ¥ (1 =3,

—i,.0 s 14
2R TR 4T (9.22)

Y, - p‘;—;;{,.i 1~pi*’é'f:5;] (9423)

since

P(’) - (Pi + PJ) / (""1)

N(s_ 1) = K=l

P(s/il) = 1/ (N-~1)

P(a/12) = p; / (1opy).
Of these estimators only (7.21) satisiiee the desirable condition mene
tiomed in (5.7), for when w substitute p, for vy in (9.21), we
get 1.;

Case (iii) s sre und pps of the rewdiniag, Por the sake of

complet mees, lot ue onzider the case where one unit is selectsd
with equal probability and then another unit is selested with proe

babiiity proportiomal $o « given meagure of sisze without replacement,
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In this case we get

Py P
P(ﬂ)- ""( l“PJ +-i-:g-i-)

¥(s- 1) = (§-1)
n(i) = Ry =2 P(s)
I
P(‘/il) - PJ / (l‘Pi)
Py 1
1-»-17).j x, - /¥

The estimstors in this case corresponding to thess in (J.6) to (9.9)

P(-/ia) -%

are

1+ TR (5.2
A ¥,
o e (9:25)
N Xin(l"pj) + ’j!’i(l‘",‘)
RN R EEN e (9.26)
LS 7
Y, = -/ py(1-p,) + —ig—-,,j, ¥ Py(l-py)

(9.27)

py(2=py) + py(3ep,)
None of the above estimators sutisfies the desirable condition (5.7).

In gll the above three e¢ases, an wnbiased estimator of the popula-

tiom variance 02 is given Ly

2
(yi - yj)

¥r

i3

Series of estimstors, In the generzl case ths estimators

(9.28)

correaponding tc those eonsidered above for the particular cage of

n = 2 can be written down. Of course the axpressions for the estime~



¥ors in the general case would be rather oomplicited in wany coges,
It is of interest to note that the unardered estimator corraspording
to the ordered estimator proposed by Des Raj in sampling with proba-
bility proportional to a given meagure of sige without replacement

tums out to be
~ n
Ty =2 y, P(s/11) / P(s).
3 Py i

Purther such an estimator is obiained by unordering the ordered
estimator given by Das when the sampling scheme congists in selecting
one wnit with probatility proportional to & given measure of size in
the first drew and then selecting (n=1) wnits from the remaining units
with equal probadbility without replecement, This matter is discussed
in greater detail in chapter 3,

S8ince the populatiom total Y ean be expressed ss

T = !.1) Z (’11 + T+ eee + yu). (m =2,2,.,.n0)

( ;=1
where (11, 12, vesy im) stands for a specific combination of n wits

out of N units and Z“h stands for summation over all combinations
of m enits out of ¥ units, we get the following unhiasged estimators
of Y based on & sample selected with probability proportional to

size without replacement with the initial probabiliiies P, (1 =1,2,.0,, M)

2 ¥4, P(s/1)
17 »(s) )
20y + 755) P(s/1,4,) )
27 T aRG) )
’ %(’u + yﬂ + eeey ’h) P(’/xliznaa i ) (9029)
S =
.‘. . Yn.-o-rﬂ-r e ‘0"“ )
" (XY pe) )



where P(l/’.lﬂ, eos 1')’ (I -], 2’ eray n) stande for the oo

probability of gotting the sample 14¢ given that the unitg (11,
have &lready been selected,

L T4
] T

Tiq + 7,
| Nt Ku 12

1 ’il + ’12 + see ’in (901

)

)

)

)

. — — )
)

)

)

. 1 yu + yﬂ + see P yin
" e n i
(nal) 11 i2 *° 4y

Unlike the previous set of estin-tors, thege ostim tors are funotioﬁn
of not only the observations and the initial prodabilities of 8election
of the units in the sample, but also of the initial probatilities of
all the units in the Population and hence are diffioult to calgulate
in practice, 1Tt ¥y b observed that the first estimator of this set
is that given by Horvits amg Thompson (1952) and that the 1ags estima.
tors of these two sets sre the sane as thet Proposed by Midsuno (1950).
In sampling n units with Probability Proportional to a &lven
Refsure of sime without réeplacement, scme of the wnbiaged eatimators

of the population varianoe 02 aré given by

2 N-1 2
", =n (ry ~ 5,) =
Oi - 2 E N:g“ = : 7 (9.31)
1=l 351w ne2 ) P(s) 1\,\’, )
/\2 n ~ (yi.yj)z
02 = 3 i —— (90?)

=1 351 f K“
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YR S ¢ A rd)z P(s/131)
a§ -3 3. (9.33)
=1 Pl ¥ p(s) .
10, SYST MATIC SAMPLING
10,1 Equal probability scheme, Two types of simpls systematiec

sampling ere considered here - linear and eircular. In linear systematic
sampling of n units from a finite population of N units, a2 random
start is teken from 1 to k (= N/n) and every kth unit is selected in
the sample till the lsst unit in the population is orossed. In this
case there are k possible uncrdiered saamples., In clroular systematiec
sampling, the random stert is selected from 1 to N and every kth unit
is selected proceeding eyclically till n units are gelected in the
sample, In this ease there zre N pourible samples and one is selected
at mndom. These two procadures are equivalent wher N is a multiple
of n, |
Ist us equally distribute the probability of selecting an unordered

samploiﬁrer all poasible arrangements of the units in the sample, Then
we have in case of linear systemutic scmpling,

p(s) = 1/x

¥(e_41) =1

n(4) = 1/k

P(a/ihy) = 1, (m = 1, 2, ceey @)
In this case the different specifiocations of the genorating event

considered above le2d to the ssme estimator



& =k § A (10,1)
i=1

The veriance of this estimator oamnot be umbiasedly estimated in this

¢80, sinoe somé pairs of the units are not included in any sample.

In case cf circular systematic sampling with equal probability
the probability of selectiom of the wmordered -anplf.aji)nay be distributed
equally over all possible arrangements of the units in the sample, In
this case also the different specifications of the generating event

lead to ome estimator, nanely,

N n
Yo = 5 ¥y (10.2)
n 1l i

sinoce
P(s) = &/%
N(s-1i) = n
n(L) = /N
P(s/im) = i/n, (m = 1, 2, ..., n).

10.2, Yarying probability scheme, Now let us eonsider the cage of

probability proportional to sige (pjﬂ) systemstic sampling. Suppose we
wish to select & gample of n units such that the provabilities of
inclusion of the units in the sample (“1") proportional to & givea
meagure of size (Xi, 1=1,2 o0y N)» The procedure of pps systematic
sampling consists in cumulating the sizes (e = ¢, 1+ %) (1=1,2
eeey N) and then selecting a eystematic sample of n units with a

R ST ST PIIEIVOUONRY PV ) Weds
rendom start from 1 to k (-Ol/n) and with k 28 the sampling intorval,
That 1s the units corresponding to the mumbers

(R + §), 3-0,1, 2, ..., (n-1)
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are to be selected, R being the random start. The unit U, is

i
seleoted in the sample if

C, .~ R +3kx01

i-1
for some J ( = 0y 1, 2, eeep (n=1))s If C, 1is mot a multiple of n
wé may seleot a circular gystematic imph.

Hore agein let us distribute equally the probability of selecting
an unordered sample over all possible arrangements of units in the

sample., In this we get
-
B(e) = /%, (L= 2 X, )
B(e_ i) = Xi
x(4) = n Xi /] X
P(l/il) - I/Xi

In this cuse also 21l the above mentioned specificatioms of the

generating event lead to the same estimator

. X n yi
Y - = (10.3)
T ]

This estimator satisfies the desirable condition (5.7), for when we

substitute xi for ¥y in it, we get X.

11l. STRATIFIED SAMPLING

Suppose there axre k strata and let n, units be selected from

N

without replacement. In this case we get

units in the ith stretum (i = 1, 2, ..., k) with equal provebility



k lJ
Ps) =2/ x ()
=1 3

ye By (B
K(s 1)) = (ni-l ; j:;l nj )
n
i
SRR,

e 2. ¢ .| "'1\ » 'j . -
x"‘\./lj&) L l/ ( ni""l" L S n ) (ﬂl = 1, 29 eoey ﬂi).
17 Jel J

(obraa LI u Y rpeeeds et Vi 3O Ak U iia v
These specificatione of the generating event lecd to the same estimator

St

S !
i=1 i J=1

We could 2s well have got this estimetor considering sampling in the
etrata sepersiely.

Ist us consider the sampling procedure suggested by Murthy,
Nunjssame and Sethi (1959). The procedure gonsists in selecting one
unit from the whole populetion with probability pruportiomal to x (say,
vm) and ‘hen selecting (n.~1) units from (N, - 1) units in the ith
strotum ond n, units from the N, wmits in the §th stretum (341)

with equal probability without replacement, Wwith this sampling scheme

we got 1‘231 N X,
Pe) = — " :g)

¥,-1 ¥,

X(s=1)) = ( a,-1 )::1 ( l,;,)

R-1 | 3
o/ =Y () x ().

The unbiased estimator corresponding to the above gpscifications of

the generesting event is

4



k -
2 Ny
o 1

x k.
2 KX
ja1 +1

The estimetor involving x{1i) ie not considered as the exiression

for it turns out to be complicated and hence this is not lixkely to be
very useful in practice.
R, TWO STAGE SAWPLING

Suppose we select W first stage units from N first stage
units with equal probebility without replacement and from the ith
gselected first stage units we select hi second stage vnils with equal

probahility without replacement. With this sampling scheme we get
a
X
)=y (D (3D)
=1

ﬁal ‘x‘l n '

- J

H(e-1)) =

(s-13) = ( a~1 )« 31,1 )J;i ( nd )
n

W) -
.l l‘-l. |

P(a/131) = Y/ ( pop) -1 Y ( ,,j).

fane I A S AR SRR &

All these specifications of the gemerating event lead to the some
estimator
~ l n
Y- = 3 (12.1)
iw
It may be easily verified that for the sampling scheme where one
second stage unit is selected from the whole population with probebility

proportionel to & given meusure of eize (x) (eay v, :j) and (l’ii"l) second



stage units from (li—l) second stage units in the ith first etage

wit and =n j second stage units from KJ second stage units in the jth

selected first astage wmit with equal probability witkout replecement

an unbiased estimator is given by

(2 .

‘ X (12.2)
¥oME

oy 371

where ;i and ;i are sample means for the ith first stege wnit, since

noo_ CFel DN
P(e) = ( o Ny X J
(s ( 1.11 1)/ (n-l ) g—l (nj}

p(-/un-z/("‘)(’x“)n ( ’)
#¥io%

In general whatever be the sampling scheme, P(s) and P(s/131)

ady be written in the form

P(s) = (8) /1(8)

P(s/131) = Py(8/131) By (o/130)
where subsoripts *1' and '2/1% denote respectively the first stage
sampling and the second stage sampling given the selected first stage

units, An unbiaged ntimatormis glven by
oL

on L Vi ¥ (s/131)  Py(s/il)
r== 0 (s) ] P(s) (2.8

i=l P h



13, CORCLUSION

The techmique of gemerating unbiasgd estimators is inroduced
in section 6 and this technique hes bdosn applied 1o & number of pazrtie-
eular situations in the list few seotions, This teohnique gystematizes
the guestion of getting unbiased estimators, This is likely to bs of
much help ir deriving unbiased estimators in ozse of complicated
sampling schemes, Lue her point of inlerest ir -his generaiized for-
mulation of the problem of unbiased estimation is that it helips in
getting unbiaged estimators nol only Tor population toial, tmt also for
second and higher order memente and oiler pdrameiric Tunctions which
can be oxpressed ds & sum of single veélue? set fumciions defired overx
a clr8s of sets of uniis in the population,

We have meen that the genertl) estimator obtained by defining the
generating event as the ocourrence of the set 'al first in the stmple
has been foumd to hav§ soue wpecial significance as it covers, as partie
cular 0ages, the commonly used estimators., Purther this general estima-
tor satisfies the desirable oondition (5.7) whenever the pps selection
is adopted in the first draw,

The treatuwent in {his chepter hes been confined to only parsmetric
functioms whioh ocan bhe expressed as & sum of single valued set functions
defined over a olass of sets of elements belonging to the population,

In the next chapter, we consiler the problem of geiting unbicsed estima=-
tors for parsmetric functions which oan be expressed -s non-~lineur funo-
tions of parameters whioh can be estimated unbiasedly using the technique

developed in this chapter,

4
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Chapter 2

ESTIMATION OF RIAS

1. INTRODUCTION

In the last chaptdr we considered the question of providing
unbiaged estimator for a dertain olass of parameters and suggested
a technique of generating unbiased estimators for any sample design,
The class of parameters was taken to oconsist of all parameters which
can be expressed us & sum of single valued set functions defined
over 2 class of gets of units belonging to the population under
consideration., 4As illustrated esrlier, the population total Y amd

the population variance 02/ which c8n be expressed as

X
Y -3y
a1
and
¥
o= 23 I (1)
¥ 1=l Pi

respectively, are eéxamples of such parameters,

In this chapter, we shall supplement the generelised theory
of unbiased estimation given in chapter 1 Wy giving a procedure of
obtaining ynbiased (or almost unbiased) estimators for the claas

of parameters which can be expressed as single valued non-lineer
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functions of paremeters each of whioch can be expressed as a sum of
single valued set functions defined over a olass of gets of units
belonging to the population, Bxamples of unqh parameters are
given by retio of population totals of two charaoteristics, popula~
tion standard deviation, correlation coefficient, ete,

The procedure of obtaining unbiased estimator eonsists in
estimating the blsas of an estimator, whioch is taken as the same
noa-linesay function of unbiaged estimators of the parameters as the
paramstric function umder consideretion, on the basis of independent
interpenstrcting subesample eatimates, This procedurs is & genersli-
zation of the technique used by Murthy and Nanjemma (1959) in estimat-
ing the bias of a ratie estimator and by Marthy (1961) in estimating
the bias of & produot estimator,

The procedure given in this chapter is likely to be of much help
in survey practice, since the estimation of relationships between
characteristies and between parsmeters, such as & ratio of population
totals of two charecteristios are usually of muweh interest in sample
surveys, So far & the procedure h:s been to take biased but oonsis-
tent estimators of such puramsters and no general procedure wes
availsble to estimate thex"ﬁ in such estimators. In this chapter, it

is proposed to fill up this gap in the field of unbiased estimetion.

2. PARAMETRIC FUNCTION
Ist the parametric function £(@) be a single valued non-linear

funotion of the paraneters (°1| °2| esey 9’!)’ where Gi (1'1,2...., k)




can be expressed as in (4.1) of chapter 1, namely,
& = Z fi(q-j (2.1)
ag & Ay
vhere fi(.'i) is a lingl; valued set function defined over the
olass ’Ai' of sets "1' consisting of units belonging to the popu~
lation X.

Suppose we have defined the sample space 'S! of samples 's!
with a suiteble probability measure such that it is possible to
estimate the parameters (01, 8 eeey ok) unbiagedly using the
procedure given in chapter 1. That is, it is assumed that the
sample space is so specified that esch a, € 4 (i =1, 2, ceer B)

cceura in at least one ts' and that eaoh !'a' sontains at least

Y

one set "1. in ‘Ai' (£ 21, 2, 400y k). Then a generalized unbiased

estimaior of ©; (i =1, 2, eees k) 8 given by

LA 2,(a,) By(8sy) / B(s) (2.2)
&i\i

where

Z ﬁi(.' li) -1,
8 a.i

In fact, we oan meke the above formulation more general gy roiaxing
the agsumptiom that @;'s (i =1y 2, «.0y k) are estimated from the
same samplef, In other woids, O, (L =1, 2y seey k) may be

estimated on the basis of the same, overlapping or non-overlapping

samples drewn with the same or different sample desigms,



let (tl, ty0 oo tk) be unbiased estimators of the parameters
(015 935 «ens 9). Then an estimator of £(@) can be taken as f(t)
If £(8) 4s & linear functiom, obviously f(¢) will be unbiased for
£(@)s But here we are %taking £(8) as a non-lincar finction of
(919 635 ecos 9k) and hence f£(t) will, in general, be biased for

£(e).

3. BIAS AND MTAV SQUARE ERROR

In this section approximate expressions for the bias and
the mean square error of the estimator £(t) are obtained Ly using
Taylor series symbolically. It may be noted that in statistical
practice one is interested not 80 much in the eonvergence properiies
of the infinite series representing a functiom, but in finding out
whether the first few terms of that series will give & good appro-
ximation to the function., Boocause of this, the question of the
validity of the application of Tayler series expansion to the case of
& finite population estimator will not be considered here, However

¥ -013

i
i< 1y
e -

especially for estimators occurring in the denominator of the

it will e assumed that the estimator ti is such that

function £(t) so that the first few terms of the expension can be
exgiected to give a good approximation $o the function. This latter
statement has been empirically verified in the ocase oi‘ applying

this expension to a ratio estimator,
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i

t, -0
b

i i
If the sample eize is fairly large, the aisuvabbion T—G-—_;% <1
i

will be valid, It &, = 9, (1 +¢,), (1 = 1,2.0, k) snd

i
‘t- (tlytzg saay tk)' o= (319 02. ceny Ok), L (‘1’ 02’ eeey .k)o

Expanding f£(t) in a Taylor series about t = @ and neglecting terms of

degree greater than 2 in e's, we get

>

k . g
ol s %
t(t) bad f(G) +* 1;2..1 01 €L( WE“:-* )i" o
k - k -
4 2 2 i ¥ w3 3 Ea f
+3[Z2 @ o (- .- )+2 2 3 @ 0.8 (= - )
Chaer 2l T Per G gy LS el ;]

oee (3.1)

I% may be cbserved that for certain parametexrs there will be no
torms of degree gresier than 2 to neglect. in example of such a
parameter is the product 01 62 with the estimstor tl t,. Tsking
oxpected velus of £(t) in (3.1), we find that the bias of f(t)

correct to 'he sesond degree of approximatiom is given by

5 (] 5 3 (L
B[£(t))] %[El ( o ) | &vz(n) + 2’:1 ‘;31( ) ng(ia)]

oee (342)

where

uz (13) = 5 (ti - 01) <tj - a)!(/ihj ® 1y2)0009 k/‘

The mean square error of f(t) to the second degree of approximation is

given Ly . f S -
. . ¢ o . : [T A S
Eooy Lo L. p o N S PR 3.3
: g R TP N L :
Sy £ +




4. BIASES OF TW) 'STIMATORS

Suppose the sample on which the estimate tyof 6, (1«1,2, ,sak)

is bised is selected in the form of n independent int serpenetdating

sub-pamples., Iat ti. be the unbinged estimate of 01 baged on the
sth independent interpenetreting sub-gaaple (i = 1, 2, ..., k),

(8 =1, 2, .u0y n). In this case let us consider the following two
estimators T) and T, of £(8).

N ..-z f(t) (4.1)
Bm]

where t’ ™ (tl'. ta“’ senyg tk')' (3 - 1' 2’ sesy n), and

T, = (%) (4.2)
n

1l .
where t - (t 2' tray k)’ ';f.l ‘“’ (j. = 1, 2, veny k)

Applying the result (3.2) to T, in (4.2) we got
k ~ g ~t
- b3 = i1) + 2 Z Smem
W =42 (L)) u,( ) + 31 2 (o )
vhere 1, (1]) = B(%, - 0,)(%, - @,) =~ 7
ore 1,(13) = (s, - o, 37% " T I By
B, (13) = Wy, - °1)*ju - o:).

That is
k .
B(? ----A '53 1 b ‘ |
B, = 3(7,) o2 oy [ ( )n (1)+21.1§>1( _, .),
L n > 0]
" ’;:':*1 B [£(¢,)]. (43)



The blas of the esviwator T; in (4e1) is given by
i o
B #+B(1) = T2 . B [£(%,) ] (4+4)
B

Comprring (4.3) and (4.4) we find ~het the bias of the estimator

Tl is n times thet of the estimator rn.

5. FSTIMATION OF BIAS

A8 observed in section 4, comparing the bisges of th. estimetors

!1 and mn’ we geot

Bl =R Bﬂ (501)

Using this result we can derive an unbiaged estimetor of the bias

Blt

E(T,) = £(e) + B,

E(?,) = £(0) + B,
nemom(ml-wn)-nl-nn- (n=-1) B.

Thus &n unbiased estimator of Bn is given Yy

. T, -
S 1 n
By = nel (52)
The variance of the estimaior of Bn is given by
o V(Tl) 2 ¢
V(B ) =——"7(a ~2"2+1) (5+3)
B (ae)
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[ 4\

vhore a° = V(‘!‘)/V('Zl). and / is the correlation coeffioient

between thw esiimaiors 7y and Tpe 2or most of the sample designs
a2 and [/ will send to 1 28 ‘he sample size increases and hence
the variunce of the bias estimator will ‘end to O as sample sige

incroases, I may be observed hat on wnbisged estimator of the

bles of Ti is gives by

. n i
By =07 (Tl -1,) (C.4)

64 (ALMOST) UNBIASED ESTIMATOR

Sinoe an unbiaged estimator of the bias of the estima‘or Ta
bas been obtained in the last sectiom, the estim-tor Tn ¢an be
corrected for its bias, therehy obtaining an unbiased or almost
unbizged estimitor of £(8) according as the “nird and higher degree
terms in 'e! beoome 0 or not. In the latter otse,the estimator is
said to be almost unbiased since it is unbizped only to the second

degree of approximatien. The estimator correeted for its bias is

given by -
Wt w )

* n
To - Tn - Bn - ?n - (n..l) - (h"'l)m (bgl)

It may be noted thrt this is the corrected estimator w8 get, oven if
we correct the estimator !1 for its bias,

The veriance of the corrected @ estimator is
V) ..
V(Ty) = i)z (@7a” - 2" a4 1), (6.2)

The g2in in precision in using P o ingtead of Tn iz given 4y



22 .
N, - V(%) na =-2n'a+1l ]
o(2,) - X ' (11--1)2.‘(a2 +'12) (6.2)

whero :2 is the ratio of the square of the bias of '.1‘1 to the

variance of '1'1. If ‘he sub-sample size is large :2 will be negligibly

small, Neglecting ‘2 in the above expression, we find that the gain

in precision will be positive if
2 .
(2n-1)a” =28 ‘'a+1<0
which wil? be true if 'a' lies between the roots of the quation
2 ‘
(m=1)a" =20 a+1=0 (6+4)

For given values of a and f’ s the minimum valus of n which makes the
correctad estimator morz officient and the value of n vhioch maximisesx

the gain are yespectively glven Yy

(1)
{ 2a - i ] + 1 (6.5)
and
l« a (6.6)

3\ ‘=8

Table 1 3 Showing the mininum and maximum values
cof @(T ) 2pd ‘he correaponding values
of n for different values of ~ and & ( ' > a).

ST a minimum Raxinum

no. / n G(To) n ﬂ('l‘o)
i 0.6 0.7 6 0.0089 10 0.0192
2 0.8 3 0.0556 4 0.0988
3 0.9 2 0.0889 3 043056
4 0.T 0.8 4 0.0113 1 0.0266
5 0.9 2 0.1020 3 0.1684
6 0.8 0.9 3 0.0469 4 0.0486

(Source s Murthy, M.N. and Nanjamma, N.8. (1959) 'Almost
unbiased ratio estimates based on interpometdsting sub-
sarple estimates', Sankhya, 21, 381~392).



7. ILLDSTRATIONS

In this partioular section, thé resulis derived in the
previous sections are appiied to some particular cases. The applicae
tion of this technique of obtaining unbiaged estimators to product
and ratio estimators are considered in detail in chapters 4 and
respactively,

Cage (i) 1 £(9) = gk. let i W an unbissed estimator of ¢

based on sny sample design, Them the estimator of £(9) is given by
k
£(s) = ¢, (1.1)

The MM bias 3nd mean square error of f(t) oorrect to the second

degree of approximation are given by
B£(t) ] = 4 x(k-1) 0* £(a) (7.2)
qﬁwJ»tszfw>f (7.3)

vhere 0% is the relative variance of & [« V(t)/6°], sinoe |

2
am 25, (k1) $572,
at?

The wlas relative to the mean square error is

2 = .
~B LEG) % (k.d)zcz (7+4)
M fe(s)]

From (7.2) and (7.4) we sec that the bias of f(t) end i1te con ribue

'm:i = k tk“]'

tion to the mean square arror hoth decresse sg +he sanple size ine
¢reases, sinoe for most sample designs 02 decreses with increage in

sample aize.



. &

ey (e=1,2,,.,,, n) are undbiased estimates of @ based on

A independent interpenetrating sub-ean}lu, the following two estimators
T, and Ty o £(8) oan be considered,

o

n -3z . t (7.5)
and
- 18
CRRRNCES SN (1.6)

We have seen that the bisg of Tl is n times that of the bias of

!n‘ Hence an unbiuseq ostimctor of the wias of T, 13 given by
. ?" ik o ' ;‘1
sey B
B(i‘n) A1y - (7.7)
&nd the corrected estimator is é—.tven by
2 - LK
Rt .7
-l ®
 J -
n(n-1)

’ (748)

It may be noted that E expression for bias sng ‘he corrected
estimator wili be complotely unbi-sed if k in £(@) is 2,
Sese (11) s Qorrelation Goef'ictent ( ). The carrelation coeffi-

cient between two churaoterigtics x rng ¥y is

Cov(x,y) (7.9)
, - 149
Vvl
In this caee the paremetrie function is of the iorm
!
£(0) = (7.10)

o, o;
and the eatinmator is gives by




&t
<

1
£(t) » e (7.11)

t, by
where tl’ tz and ts are unbiaged estimators of 01, 92 and 93

respectively. The bias and mean square error of f(i) correct to

the second ﬁme approximation are given by
B(t) 1 = L8 [3(vyp 4 vgg) = 4vyy + ¥1p) +2v,,]  (112)

and .
[2(e) 1°
M [2(t)] = ——— [4vyy + (ryp + vy35) = 4lvye 7)) + 2v),]

ors (7013)

where

B(t, - o) (t, - °I)
Vid - 01 9:’ .

Iet ., (1 =1, 2, 3) be whizsed estiua'as based on the sth

independent interpenetrating suh-sample (s =1, 2, ..oy n)o Then

wsing the two estimators i tis
nex e 1
3 = s 3a
t
T, = : s (7.15)
23
we get the following corrected estimutor of |
n Tn - 'i‘l
? = ey (7.16)

gase (1ii) : Regression Es imator, Ist y «nd X pe unbiamed

egtimitors of the popnlation totals Y and X respecrively und let

b be congistent estimator of the regression coefficient olbiained



L
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by taking unbinsed estimators of the covariance between x and y
and the varisnce of x, The regression estimator is /Y = ¥ + b(X=x). (T.17)
The estimator in this case is of ‘he form

t

£(t) = by o+ 1;" x - t4) (7.18)

The bias and mesn square error of this egtimetor correct to ‘he

second degree of approximation are § given Ly

B{£(t)] = B X (vgy = ¥Vp,) (7.19)
and

M£(t) ] = V(y) - 2B Cov(x,y) + BV(x)  (7.20)

By defining the two estimators T, and T on the basis of n QJ
indepenient interpeneirating subestmple estimutes, we get the

gorrected estimator 2@

nf - P
n 1
L

Case {112 s Skewnees
, W
(532 = 'ég':—)

The parametric functiom is ol the form
9
£e) = —3~
)
2
and an estimotor of £(@) is given Wy

t
) 1
f(\:) - ......2—..
t2

where t, and t2 are unbiised sstimators of 91 and @, respectively.

1
The bizs and the mean square error of f(t) correct to he second



| vl ]

degres of approxization axe given by

Bl 1=8 G- 1 )
and RIS O Y YO

where

Defining suitably the two oectimators Tl and 7 n 07%ed on n independent

interpenetrating sub-sanple éstimates, we get the sorrected estimstor,

a8 before, as
: aft

n 1

8. ESTIMATION OF BIaS (GENER AL case)

Suppose £(@) is the purametrie function of the parameters
(le “29 csny %) and f(t) is

estimators (tl, tz' ceop tk) which are unbiased for the parameters

o ] %’ seny %)' h‘t i - i 4+ hi’ i = J-’ ‘, saey kt A\ppbln&

Taylor series ezpazmioxv to £(t) avout ¢ = 9 s,,mbolioally and neglect-
ing terms of degree greater

‘kan p in hi'a, w2 got

an estimator of £(9) besed on the

£(t) = £(8) 4 f, i Z

(r o b, )
J.]' J’ 11i12’¢0013 11 12
J
( dt d:f d¢ ) (8.1)
h LT,

Taking the expeoted value of (8¢1), we got the bias of £{%) as



&t
[F»]

P 314
B[t(t)] -2 —3‘? E /‘3‘(11' 12l ses ij)
J=2 11 12’...’ "3 .
ale
[ dat dt at ]? T (8‘2)
11 12004 13 i 4

Suppoee tu 4s an unbieged estimate of 8; based on the sth
independent interpenetreting sub-sample (i=1,2,..., k, 8 = 1,2,...n),

is% us consider the following p estimators of £(9)

T. - ‘(’%;‘Zf(t‘*).(m 1’ 2. sesy pﬂlg n) (803)

where
t(2) = (4y(m), ty(a) 4 cony { ().

?i(m) being the mean of the estimate t, based on a combinaticn of m

subegamples taken from the n independent interpenetrating sub-samples

and 7 denctes summation over all combinations of m submsamples formed

out of n subesamples.

The biass of T to the pth degree of apyroxination is given by

B, =B (T)~ . B[ £(¥(n) ]

")
1 P
= iB[2 572 (b, B, «uo b
G =T ok 1)
;;\';i
( Y w;:.: )! L (8.4)

u
S 1 - . .
where hir - L-l ‘ir g * After simplificatiom the bias of T

may be expressed in the form



P A
Bn - E “"%‘:i' (l - 1.2, sy P‘l)n) (8'5)
ind, )

L

where AJ 45 a funotion of the jth order moments snd product moments

of the estimators (tl, tys eees tk) and of “erms of the form

ot

]
[ at, dt, ...at, =@

i]. 12 11'

From (8,5) we sse that in the series of estimatore T B (T ) < ®)

Since 4 E(T‘) = £(8) + B,
2 1
ve got B(T, -T) =B, -3 = :5,.2 - :3‘:{")% (8.6)

let D, = (?1 - '2-). The equaiion (8.6) oan be written as
B(D) = A~ (8.T)
,3)

wvhere D » (Dag D3| “ssy np-l

A= (Azi Ajo sony A’po-l’ Ap)

’ : 1 1 )}
'1"*’ 1’;-:01‘?.11 n~l

1 i 1 1
2 l = 52 esn 1= 2 la= 2
2 ‘ - (p-1) fa-1)

1--—}--—-»1-”}—-—-."1~m 1l - 1

2?1 @i (1Pt (a-1)P
It may be noted ‘hat in (8.7) we have (p-1) equaiions iu (p-l)

wnknown®. It m8y be obssrved thot we are econsidering p estimators



since there are (pel) A's and £(8) to be estimated, Solving (8,7)
for A we get
A= E(D) " -1 (8.8)

Paking B 28 B = (Bz. By aees Bpﬁl' Bn), we get

B'A(. +4") (809)

whare et is 2 (pel, pel) matrix whose elancnts are all equal to 1,
Jubstituting in (8.9) the solution for A obtained in (8,8) we get

undiaged estimators of the biasve of the estimators, nanely,

B -3 ,‘(-1. - D,
That 1'.
Z J 3 1~ Dy (3 =2 3 ..0y p-1,n),
(m = 2, 3 eesy p=1, ») (8,10)
3n_1 - Sp-l where Sj ia the sum of the elements in the Jth row of

Particulsr cases

(1) » = 2,

This is the case considered sarlier, In this 8280, the following 2

estimators of £(9) may be considered,

n

1.
- -g, f(t
1 Jﬂl )

!n - f(t)n

T

B, = &/my (m=1,n),

: 1 oon n
Since - (1-3, Sl ? By aop . we get



B "ol (!1 - ’n) - (‘!1 - 5’m)

- (?1 - !‘) / (n-l).

(i1) p = 3.

let us consider the following three estimators of £(e)
ﬁ.—z £(s,)
8=l

T, = ooy 2 £0@)

!n - f(t).
Az A
B - +-:22-, (mel, 2, n
1
Since l1-% 1. =
1l 1
1 - v 1 a
22 n2
and .
4n2 n‘?'-l ne-l
(n=1) (n=2) n? n
-
ry %
we got after simplification
2
. n
=2 .
B a1 T1 * o2 %"&éﬂﬁa’n
: 1 X n+e2
Bl 0t 2 T2 “(a- 15( Yo

A 4
=11 * a2 T, - in.li%n-zs L

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)

(8.16)

(8.17)

e

9
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Chaptexr 3

ORDERED AND UNORDERKD ESTIMATORS

1., INTRODUCTION

In this chapter a technigue is given to improve upon estimsiors
which are based on the order of selection of units in sampling without
replacement., This teshnique has alrsady bun‘mnticmd in section
3 of chapter 1. In sampling without replacement, Das (1951) =nd Des
Raj (1956) havé given certsin estimators whioh take into account the
order of selection of the units in tne eewple, Such estimstors may
be termed tordared! sstimators. Roy thdhnrj (1956) has shown that
one of the Yordered! estimators suggested ty Des Raj is more efficient
than the estimator for ssapling with replacemsnt, Another advantage
of this estimator is that it admits & of 5 non-neg-tive variance
estimator,

In this ohapter it is shown thet corresponding to any biased
or unbiased 'erdered! estimator there exisis an 'unordered! estimetor
which is more efficient than the former for eny convex risk functicn,
By “onordered! estimator is meanfan sstimator which ignores the
order of selection of the uni s in the sample, The technique of
'mordaring' an ordered estimator is illustrated, This method is

spplied 'to the set of ordered estimators of population total given
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Yy Das and Des Raj and also to the unbiased variance egtimators
congidered by them.

It is shown that the teclmique of wmordering pressrves the
desirable properties of one of the ordered estimators menti ned above.
In sampling the first vnit with varying probability and the rest with
egqual probability without replacement, unordering of Das! ordered
egtimator yields the familiar unbiased retio estimator, JIU is of interest
to note that the general forms of the unordered estimators crmsidered
here oan be generatsd Ly ‘he technique of gemeraiing estimators

introduced in chapter 1,

2. UNORDERED ESTIMATOR

In saxpling n wnits withoui replacement from a finite populatiem
of N units, there will be (:) unordered samples (s)., Oorresponding
to any unordered sampleg (s) of size n umi-s,  here will he nb ordered
saaples (a1)s Let X, [0 =1, 2y euu (B )1 =1, 2, erey M (=nt)]
be un estimﬁor of pepulation parameter @ based on the ordered sample
(si). Consider & scheme of selection in which the probebility of
seleoting the ordered sample (si) is p, . Then the probability p
of getting the unordered sample (8) is ‘he sum of the proiauili ies

of getting the ordered samples correeponding to (s)

u
w2 Pag®
121 84




: A A 0
THEOREM 1 + I£ @ = X, aud 9 « 7
11

are estimators of the populetiom parametier @, then

{
:81 p;i (when Pgj = pai./’-)

(1) B(oy, ) = B(0. )

end (1) V(0u) ¢ (e, )

where E and ¥ stand for expectation and variance respectively.

. 5K
Proof 1+ E(0,) =% @0 = L I Xy By =B, )
gul g=]l i=l

A A
The variancez of the estimmtors @, sud @ are given by

' ‘r
@)= I 2 (% 2
v(0.) = - X , - b Yoz P..) (2*1)
1 1uX 8i tai sl fwl si “*si
(l) )
(A ) n ' M ' )2 (\n/ ' 2
Y@.)= 2 3 x.p P (2 2 =x=_,3.) (2.2)
it Sl iel 38 *8i s Sl inl 81 *sai
I‘

. n M q 2
Therefore, V(Oo ) - "(au ) - 2 2 <x31 - 2 xsi p;i) pSi . (2'3)
Sl i=wl 1=}

This shows that the verience of ‘he unordered estimator @ is less

than or equel to that of the ardered estimetor @,

Corollerys
(i) 1£ Q, (0-) = v,y is &n ordered estimator of v(e. ),

~ A
then v, (@.), 2n unordered estimator of V{6, ), which hss = leaser

moan square error than i’e (é,» Y £4 given by

-~ A u )
v, (8, = 25-1 Vei Poy- (3.4)




(11) The mean square error of 9\, is less than or equal *o
that of bc »

(i4i) an estimaier V‘ (8, ) 2 the variance of OL is given by
- { - '”’2 ¥v 2 t
V(0 )= &) -2 (x, =-v,)p, . (2.5)
i=)
(iv) fhe 2k-th roment of @, is less thas or equal to that @ .

That 15, E, 0~ E(6,) ¥ <& o, - 8(0,) . i

It may be noted that estimator bused on m(m = 2, ..., ¥~1) ordered
samples drawn from the M ordered samples corresponding tc the
unordered semple (8) with prebability proportiomal to the sum of their

probabilities will be more efficient than the ordered es im:tor Go ,

3+ UNORDEL ING OPF DiS RAJ's TSTIMATORS

1ot a sunple of alze i be drewn from a finite population of W
units with warying probubilities without replacement., Suppose the
probabilitiec of seleciiom at the lirs. draw are

R .
By, W=l 2y ey W), Py>0 2 py=1 . (31)
Jml
The soiwme of selectiom of & wni- at a particular draw depends om
the uniis alread; drawn in the sanple and not on the ordcr in which
they were drewn, For instance, the probabilities of selection ot
the third drew given that the k-th and le:h units have alreudy been

chosen in the firat two drrws will be given by



Iat (’1' Ta0 eees :n) and (pl' l,2. von ,n) be the values of the units
arranged in the order of selectiom in the sample drewn according to
the above schems and their respective ini ial probabilities. Des Raj
(1958) oonsidered three sets of ordered estimators one of which was
originally given by Das (1951). Ome of the sets of estimators given

Wy Des Raj is given by

7,
Tz = N+ (1ep)

Ean " T+ T+ o0 + 7, 1+( )(1 “P-p-

20e = pn.l

Eaoh of the above estimators is unbiased for the populatiom total,

&nd, therefore ’

e 1 a
1" 2 ‘E 213 (3.3)
is also 80, Ry making use of the faot that x a1 1.1' (3 A3

are momlatod, Des Raj was able to get a none-nsgative estimator of

the variance of x.‘ vhioh is given hy
v (x 1) -V -z}—i-y % (x " -x )2 (3.4)
Vs n(n- jul [ 3 8] i

By applying the earlier theorem to”i'“ and v, we get more

efficient estimators of the populstion total and ‘he variance of



X4 regpectively.

THEQREM 2 ¢+ Unordering of the ordereéd estimator

. n n .{1
°° - ?,10\1‘"3/‘?,1 (3a =1, 1'13 YT A eee t ’j-—l + Pj le P -

see PJ-']-)’ (3‘5)

yields an unordered estimator which is independent of the set

n
oy > oy = 1 | namely,
J=1

n

z R4 P(s/3)

(3.6)

?(s)
where P(s) 4s the comditional probdability of getting the unordered
sample (s) given that i-th umi: has been selected at the first drew and

p(s) is the unconditicnal probatility of getting (s).

Proof ¢ 1s% P(s/¥, g, -~ . ) dcnote the conditionsl probebility
of getting the unordered semple (s) given that 1y-th, f,=th , ..., id
th wnits have been selscted in the first J draws,

The eccefficient of ', in the estimator got hy unordering Se in

the usual wey (Theorem 1) is given by 5%3 iimes

3



The coefficient of ¢, im the abo'e expression is p(s/1).
e theorem will be proved if we show that the coefficient of

¢ is equal to that of oy in the expression (3.7).

del
The first (J-1) terms in both the coefficients are the same.

The j=th and (J+1)th terms in the coeffici at of o jol reduce to the
J=th term in the coefficient of e f because of the equality
P‘,J
P('/i xl 12 see lj-l) - Z
1.'! (1 - ’1 - Pll" ere p¥3~1
L4 Fe Ly L |

P(ﬂ/l il 12 so ey 13)0

%‘17 1P ( ‘/1)

Therefore N )
O =% P(s)

The estimator given in (3.6) is 2 special case of the generel estimator
obtained in chaper 1 by defining the generating event aa the occurrence
of the leth umit in the first drew,

Sinoe the umbiased estimators X1y apd Xgig0 (3 f 3) of the

population total Y are uncorrelated, we get

‘N

: § <

2 2 (%egy Tagg) Py = g
s=l i=1

is this is true for all the » pairs of the n estimators.

70
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1

!

n X -
-§1‘ :El (de' b x'“:* i " 2 v

Henoe &an unbilased estimator of !a is given by

(’2) -3 }f.ﬁfm “stgr) Pay (3.8)
Prom this it follows that mn wbiased estimator of the variance of x,
” n

v, ()5 “:"/' %-1 ( 3:):' a1y Sagyr) Py

- m[r(s)]z [ %_1 B(s/1)  P(s} = P(s) rf + 2' tl‘;:if r(a/l)r(-/lf)-r(-)y(./n.)

The varianes estimstor may bde expressed as

A %
30 i B R, L0 Oy (57
o . v EA .. £ Ay Aici P iy
for STPrale) Pl ~Riay 9=, 58 EN R SRR (ERAVEART R
Tt v
bl‘}b'( ;/'L j.& S‘,
F5?

It is rather diffioult to show that (3.9) is non-negetive in gemersl.
Wo shall show that this is aenuuogativi forn =« 2 and 5 and it is
expected that this will be 80 in gemeral, For a = 2, the variance

estimator will be non-megative if



P(s) P(s/13) - P(s/1) P(s/3) { O

if 2= - .
PPy (2 - py - By) L/ EE S
(1= p)Q1 = py) (1-py)  (1-py)

i (1-p = Py) €0
which is true, Similarly in case of n = 3, it can be shown that the vari-

ance estimétor is non-megative for in that case P(s) P(s/1j) - P(s/i)

P(s8/j) reduces to x

(1-35) (-p =py)

(l'pi-pj -pk) + (I'Pi) (I'PJ) (l-Pi“pJ)
whioch is non-negetive.

The following porticular cases of eguations (3.6) and (3.9)

will now be considered,

(1) Simple random sampling without replacement, In this case the

estimators ‘:l:l.’ i. and their variances are given by

) R :
b 4 - = > (N+n l-2 3.10
si =n 3.1( * ?)’3 (3.10)
n
- ! —
" a %*_1 £ (3.11)
02 na-l
Y(a.i) a-—;—-:!(ll’-n) g (3.12)
and _ dz
V(i) - = 5 K(Nen) (3.13)
where
j §
2 1l 2
0“ s =— 7 (y,~-7)
-1 1l i
Therefore ' (3.14)

L
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Compariscn of the above expressions for the varianmces shows that

V(X)) ¢ V(x;,). This is otherwise obvious also as Ny is known to be
i gt

the first unbinsed linesr estimator of Y. It is interesting to note

that the variance estimator of X given in equation (3.9) reduces to

the estimator commonly used, namely,

« .2
Yy (%) = B(¥ - n) = (3.15)
where
2 1 2 \2
=T 2 Oy -7)

It may be pointed out that the divergence of Des Raj's estimator
from the best wnbiased linear gstimator 1l8d to a seareh for a more
efficient estimator,

(11) Sempling of two units with varying probabilities without
replacement,

This osge is of importance &s in actual practice one will, in

gensral, be choosing two units from each stratum in stratified sampling.

In this case 'i.i and "’x’. are given by

Xy % (1+ p)) T (1-p) S (3.16)
and
4 J.
, 1 2

.

Phe sampling veriances of these two estimators are given by



[ |
2 y Y,
l o 1 72,2
V(‘f‘i) - 4 f-], Plpa(z Py ?2) ( p]_ PZ) (3'13)
1 S
and v(i)-“:g:n -(—--——7(”1’2) 3.2y Gag
s sl 1%2 2-p1-p2 P Py
Therefore, W 2
; E (Pl"’Pa) yl yZ 2
Vix,) - Vx) =2 I pp, ")
8=l (2p,=p,) 1 2
12
(3.20)
In the osse of simple rendom ssmpling without replacemont the expressionm
(3.18) above beccmes 2
)

v(_&i) - V(‘f.) =TZ

which i3 = perticular ocase of the expression (3.14).

The egtimator of variance of ;si given Wy Des Raj is,

1 2,1 Y2 .2
'°(x°i) - vli. - ‘4' (1"?1) ( ;’1' - ;'2"' ). (3’21)

By applying thLe earlier theorem tc this Vei? @ get a more efficient

estimator of the variance, namaly,
¥y Y
- 1 1 2 \2
v, ( 31) 4 ( Pl) ( Pg) (pl v, ) (3‘ 2)

and this also is non-megative, Substituting the relevant values in

equation (3.?) we get an unbinsed estimator of the varicnece of Xy nsmely
(1-p;) (1=p,) (1=p;-p;) ( y ¥ 2

. (2'P1‘P2)2 12 Py

v, (%) (3.23)

whioh is always non-negative,



4. UNORDZRING OF DaS! BSTIMATORS

with the notation adopted in section 3, the set of esf imators

proposed by Das is given by,

x !

J
1

- (=)
8il Py

x % - 1 (1“p1) yz
842 h!—ls 1 2 P,

)

(19 (1py9p) voe(1ByBy= o+ = Pn)) y
x ’ = ‘ng)
am (I-l) (3-2) se e (“n"l)plpao . opn-l \pn

e ns (4.1)

Esch of the above estimators is unbiased for the popul “tion totel Y

and so is their mean

e} b o !
X, = = 0 Foaa, (4.2)
83 n a1 8i)

An unbizsed estimator of the variance of 'i’.’ i is

T (Eyy) = Vay = 21 'l"";}{'g (g3 ) + !?:'}'% (xg15 ¥ ).
B Jal P! 9

(4.3)

PHEORFM 3 s Unordering of the ordered utiqator.;
. n |
z ! = ']":‘ s: xt

sl n 3_1 i)

ylelds the wmordered eatimator



where P(s/i;, i,... 13) is the sonditional probability of getting
the sample 's' given that the uniis (11. 3 eeer 13) have occurred in
the first J drawe an :3 stands for sumation over all combinations

of j units out of n units,

Proof. In unordering "i"-lthn coefficient of y, occurcing at
the j~th drew is
O ",r B

where T denotes summation over all possible ordered samplecs where

y; occurs at the jth place, Simplifying this, we get

1 1 -t P(l/i s 1,y seay i )
P — 7 1’ "2 40
n ( g.}.) P(ﬂ)

where 5! stands for summation over (11, 1,5 ecor 13_1). Hence we

get

It may be no'ed that the unordered estimator in this case is the

76

mean of all the egtimators obtained by defining the set tat in different

ways, '™e generating event considered here is of ‘he = type E al given
in ohapter 1,
In sampling the first unit with varying probability and the

remaining (n~1) wmiis from (N-l) units with equal probability without



replacenent, the estimator ‘x;i bacopes
R

241 Iy
X = “;' 3. (4-5)
i n I
1
Applying the Theorem 1 to t;;is 'i: g v get the unordered estimator
LTy
A L2 S (446)
L] n
%P
=1 3

This showe that the above wnbiused ratio estimator is more efficient

than he estimator given by Das., Ishiri (1951) and Midgumo (1952)

have given sampling procedures which lead to the above estimstor,
Substituting the relevant vulues in equation (2.5) we zet an unbiaged

variance estimator of i; nmmely, n n

5 yj)z ~(Wem)( 7 yﬁ)
- S W
- = [{Nel M
v (x,) * (N=1) =Y, g} PJ) -

3=1

5. URORD:RING OF DES RaJ's SuCOND SET

Another set of ordered estimators is obtained using the wmeonditional
probability of & umit ocourring in a particular draw, The estimators

are given by

A . 71
8il pl(l)
211 - yz Ao
8i2 pZiZ) 2.
Yy

1] =

Xy Pyl

11 In

Ysin " pnfn)



where p j(i) is the unconditional probability of getiing y; at the

j=th draw, The combined estimator may be. taken as

n
11 1 o 11
xsi " 3%1 xsij (5.1)

THEOREM 4 ¢ Thordering of i';’}_ gives rise to the unordered

n
satimator Z: yip(ﬂ/“)
-x—ll 1l iml
s  n

VB

(5.2)
J=1 . P(s) ,

where P(s/1j) is the condi ional probability of getting the sample

# given that the i-th unit is selected at the j-th draw, The asiim
forg: 12
,eo0efficient of oscurring 2t the jeth drew is given by

! .

B

vy g P
oo b T

where P(s, 1]) is the probability of getting the sample 's! with y,
at the }-th place, Since ¥4 ecan occur in any one of the n draws,

we got

P(s/ij)

enpd

=]
as the coefficient of ¥y in the unordered estimator? Hence we get
Ly, P(s/i,)
~11 n T J

¥ " n ,131 ( P(s) )

It may be mme noted that in this case the wnordered estimator is the
mean of the estimators obtained by defining the generatins ev.nt o8

the occurrence of the uni: with value y, in the jeth draw (j=1,2,...n).
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6. NUMERICAL EXAMPIES

Po study the relative performance of the ordered and unordered
estimators, the following population given by Yates and Grundy (1953)

will be considered.

unit P y ¥/p
1 .1 0.5 5
2 .2 1.2 6
3 o3 2.1 1
4 o4 3.2 8
total 1.0 7.0

This was deliberately chosen by them 28 being more extreme than will
normally be eneountered in practiwe., The object is to estimate the
populution total by selecting two unite, Two schemes of selection will
be considered,

Gase (1)s first unit with varying probability and second unit
with equal probability without replacement,

Case (ii) s both the units with varying prob bilities without
replacement.

Por the purpouse of comparison, the eslimator and the variance
estimator proposed by Horvitz and Thompson (1952) together with the
variance estimator given ly Yates and Grundy &re also considered,

Por the sake of convenience, the exprepssions for the different
estimators given in subsequent tables are given below, Suppose
(70 ¥,) i the ordered sample drewn from & finite population of ¥

wnits,
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‘falf | - Unbiassed Estimaterof error variance oase (i)

T ACA R B R B KA A X i

12 20 1.88  1.87  45.80 18,40 14,48 1,11  1.51
13 81 2,37 2.30 114,20 28.93  14.85 2.2  4.33
14 6,50  3.48 3,25  241.80 45.38 14,58  6.45  T.34
21 2,72 1.88  1.87 4.84 18,49 14.48 1,11  1.51
23 .56 .48 44 15.64  3.44  1.62 T W
24 5.76 2,16  1.94  34.20 263 -4.09  3.95  3.05
31 2.89 2437 2.30 51 28,93  14.85 2,27  4.33
" 42 48 .44 -4.70  3.44  1.62 J1 W
34 5.52 2,69 2.60  ~13.59 20,01 ~21.20  3.01  .J2
Al 2.2 3.8 325 -3.02  45.38 1458 6.45  T.34
2 36 2,36 1.94 =135 2.63 = 4,09  3.95 3,05

43 +56 2,69 2,60 -24.82 ~20.01 =21.20 3.01 T2

true
error 2,223 2.22% 2.103 5.701 9.701 0.363 2.884 2,884
variance _

variance

of esti~

:::;: 1.9912 8357  .T543 2583.03 491.72 194.3% 4¢7317 5.5115
varisnce ‘




Unbiased estimatc:of error variance oase (ii)

o0
2

mle V(%) Vo(Ry) To®) V(£ V) Tix) TuGu) Trlg)
R «20 .18 17 93.20  49.60 42,05 =6.20 41
13 .81 .63 59 114,20 48,17 34,12 4,70 1,52
4 1.8 1.2 1.08  134.60 x;?:iz 27439 = W58 2,79
21 «16 .18 17 10.84  49.60 42,95 «6.20 o4l
23 .16 14 .12 11,78 255 1,71 ~3,79 .36
24 .64 «48 39 16.38 =3.07 =503 1,21 1,08
31 49 .63 29 =3.18 48,17 3412 ~4.70  1.52
P J2 L4 12 2552 2,55 1.1 «3.79 .36
34 12 .10 0T  =12,80 =15.07 <«15.25  5.02 .18
4 81 1,22 1,08 -~ 9.9  47.92 27,39 .58 2,79
4 36 .48 39 =13.15  «3.07 «5,03 1,21 1.08
43 «09 .10 07T  ~1T.01  =15.07 -15.25 5,02 .18
e 0.%5 0.3 6.2 5.435 5437 1,107 0.823  0.823
variance

variance

of esti~

mated 0,1575 1.1236  0.1004, [SH24Y 606,18  350.73  14.86R  .6811
error

variance
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¥ <9

V(%) = Vy(Zgq) = M"'"’f"a (1-p,) (%, = %,) *_'(1‘1’1)("32 -x)"  (6.18)
. ¥ y N P
Tgm = (*‘;’"’) +l-f-) where m;, = p; 1+ 2 (—-)
1 2 el l-pj
N P
and ey, 1+ 3 ) (6.19)
J#2 1"‘PJ
) = ) CE s - By, 2N %,
Yy - =T ——) & - K ey, et ) (| —
e HY 1 "i 2 "g "12 ny n,
whare
 IENCES R
312 -
‘ (1"?1) (1‘1’2)
. X, B, = 7 b 4 v.
1" M2 N1 2 \2
Vo ae) = o ¢ ", ) (6.20)

The resulis given in “he abeve t&bloh-s‘n‘l;’é' that for this populatiom
wordering of Dast estimators in he above two cases, yielde cstimators
which are much more efficient than the corresponding ordered estimbe
tors. Of the three unordered unbiased egtimators of the population
total, namely , X » ia and yom x" in case (i) and'i: in case (ii)
have the least variance., It may be noted that in both the cases the
estimator obtained by defining the generating event as ‘the cccurrence
of 2 trdit in the irst drew has turned out to be the most efficient.

It can 2lsc be seen thet it is possible to improve gubastantially on

‘he ordered varisnce estimators by unordering them,
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Chapter 4§

RATIO M:THOD OF ESTIMATION

1. INTRODUCTION

In practice estimation of the ratio of two population parameters
ia of congiderzble importance, For instance, in socio economic sur-
veys, one miy b@ interested to sstimate such ratios as inocome or
expenditure per household and per person, proportion of unemployed per-
sons, proportion of expenditure/ zl!fferent items, Estimation of yield
rate in & crop aurvey aand of input output retic in an industrial sucvey
are of imporiince. In estimating such rutios, the comucnly used pro-
codure has boon G take the reatio of unbiased estimators of the numere-
tor and the denominstor of the population ratio as 2n estimator, Further
ratio method of estimstion is 2lso used in practice to improve conven=
tional estimators with the uze of supplementary information on a related
charaocteristiv,

A very satisiectory trestment o the question of bies and mean square
error of rativ estimators is not yet available, However, in recent years

the guestion of bias o. & rativ estimator has received considerable

attention, Hurfley and Ross (1954) suggested 2 ratio type estimator which

is known., In this chapler we shull generalize this ratlo type estimator



to any sample design using the independent interpenetrating sub-sample
estimates.,

Murthy and Nanjamms (1959) have given & technique of estimating
the bias of a ratio estima£o£%any given degree of am approximation using
independent interpemetrating subwsample estimates, The estimate of
bias may be used to correct the estimator for its blas to any given
degree of approximution, therely obtaining an talmost! unbiased estinie
tor, It may be mentioned that thie technique is a particular case of
the gencralized technique of obtaining (almost) umbiased sstimators for
non~linear functions of parameters considered in chapter 2, In this
chapter, we sn=ll apply ihe Techmique ol getiing unblused estimators
developed in tae-3est chapterpto the question of ratio eatimators and
derive the resuits obtained by Murthy and Nanjsmms (1959).

Marthy, Nenjumma and Sethi (1959) have suggested simple wodificae
tions of many of the sampling schemes comwmonly adopted in practice,
namely, equal probability sampling, varying probability sampling, stra=-
tified =2nd multi-stage senpling, whiceh, while retnlning the form of
the ueuval ratic estimators, meke them unbissed. In this cly pter, the
efficiencies of the unblsved raiio estimator snd of the bissed ratio
estimtor huve haoen compired from the point of view of meun square error,
In ciher words, the variince of the unbl sed estimitor is cumpared with
the mean sguare error of the blised ratic estim-tor. It is showm that

in large samplas the two ¢stimators are 2qually afficient to the second
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degres of approximation and that the wnbiased estinator i8 more
effiocient than the corresponding biased & ratio estimator to the
fourth degree of approximation in laryge samplis, if the estimators
of the nwmerator and the denominator of the patio are distributed in

the bivariate normal form for the original sampling sohems,

2. BIAS AND MmN SQUARE TRROR.

iet y 8nd X be unbizsed estimates of the population totals ¥ and

X baged on any sanple design. Then the estimator

R= - (2.1)

of the popaloiion ratio R{(= % ), is consistent but bi sed, Ist
y = Y(l 4+ 8) and x = X(i + at). Assunling that “, - uad apgplying
the Taylor sericc exprasicn gymbolically to R af (y = Ly X = X), w
got
2 2 3
Rea[ 14 (e=0')+ (21" = oat) + (e 0t -0 Y # eee )
(242)
prom (2.2) it can te shown that the bias of the estim~tor to the

seocond degres approximation is given by
BR) =R { 7. ) (2.3)

and that the mesy square ¢rror cormeet S0 the fourth degres “pproxi-
notion is given by

m(ﬁ)-az{(z Y2 (@ )

+ 3 - )] (2.4)



\ m(t--x)2 (r«)")'j
moa T T

X -
It may be noted thet the »ssunption I--—-z-}-' I ¢ | 18 likely to be

valid if the staple size is fairly large.

3, COMPARISCN OF TWO RATIO ESTIMATORS.

1t (v 0 %) be unbizsed estimaiss of the population totals ¥ und

39

X from the stn indepenient interpeneirating sub-sample (s = 1, 2, «.., n)e.

the following two estimators san be tuken to estimute R,

n
1 # ‘
()R, = =3 - (3.1)
\ F4l »
1 n el x,
Yy # ¥, + sas + Y
1 2 n .
(i) R, = (3e2)
n xl + xz + e0s ¥ xn

From the resulie of chagier 2, it cdn be easily seen thet the bias

of the egtimatbor Rl is n timeas that o the estimator Rn' That is

¥ now conpire the mean sguare @rrors of Rl end Rn to the foarth
degrea of aporoxtmation, =scuming that the subesomple sizea are the

gime (28 i the cise gensrilly) so thud
i

Xy

B

B

H(xi)n}iforn.l_i.

By applying (2.4) to R, and simplifying, we ottain
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]

-]
S
+

jeo

l‘(_2" g )

. n?"’" G . - - )
n

™ % - n;2 A (304)

where 4 = R°[ 2(2 e GE ST

-206 D)

r-

From (3.4) and (3.5), we get
n-l
M= M + n-;. A+ Bz (3.5)
n

n

Comparison of ll and un ig difficult in general? If it is assumed
that x and y are distributed in the bivariate normal form, we get

B=RC (6, ~— " )

2 2 2 2 2 2
I-R[(cy-z‘cxc +e ) (14 %) + 60° (o) = 0)7]

4 y

2 ) 2 :
vhere o , = o0 © ¥y  O2and  1is the correlation coefficient



(I o¥)
b

2 2 2 2
between x and y. FurtherA-mox[(gy-z o+ ) +

y
2
2(03- oy) > 0.

o'+ The mean square error of R, is greater than that of R‘h’
Thus Rn is better than Ry from the considerstions of both bias

and mean square error,
4, CSTIMATION OF BIAS
Proceeding exactly in the same way as in chapter 3, we get
E(R,) =R + B,

m(nn) =R +B
ER, - nn) =B -B.
Bm Y\Bﬂ - ‘B’)

"+ B(Ry-R) = (n-1) B,

«"« An unbiaged estimator of the bias B, is given by

R =
o 1 %
B = ol (4.1)

The corrected estimator in this cage is

R, - By
< T3

Rc'Bn’in' NCSVE (4.2)
This estimator may be oonsidered as 'almost! unbiased since it is
wbizsed only 1o the second degree of approximtioﬁ. The conditions
under which this will be more efficient tham Rn will be the same

a8 those derived in chapter 2,



o
g}

5. BIAS UPTO RD DEGREE APPROXIMATION

et ( 4. “ ) be unbizsed esﬁmatea of Y and X based on
the sth independent interpenetrating sub-sample (8 = 1, R, ... n)
If it is required to estimate the bias of the ratio estimator
upto third degree approximatiom, the following three estimetors

nay be considered.

R, = }- ""n;' —{-’-
1 n s=1 s
1 yi + yL

- Z 3
2 1%
}"1+32+ ¢0"‘“yn

n. zl+12+...xn

where 22 denotes summation over combinatiens of 2 subesamples

taken from n sub-semples. Applying the theory develioped in

chapter 2, we get the unbiased eastimators of biases of Rl’ 82

and R" as )
n=2 4

,, n
By=1t Rytaz B - (n=1)(n=2) %

: 2
1 ne2 n P
Bea1 Wit na & - a(a)
1l i -
Bl B 57 R - e Y B

Henoe the almost unbiaged estimator in this case is
2

1 n
R =ae1 By~ Rt (n=1)(n=2) “n’




6. AR ILLUSTRATION (I)

The technigque of making & retio eatina‘l;;:r unbisged using
independent interpenetrating subesample estimates has been applied
to the estimstes of yield rates of cereal crops, For this study
the estimstes of crop production and crop acreage given in Report
Number 38 of the Kational Sample Survey have been used, The estimates
Ry» Ry and R, have been obtained. The number of sub=samples is 2 in

this 333.,( k. Lony Ry



Table 1 « Showing the values of the yield rate estimators
Rl’ R2. Rc for different cereal orops hy zones

(tons/acre)

zone ne, of

sanple By ) B By ) R

villages*
(0) (1) (2) (3) (4) (2) (3) (4)

rice Jowar

North India 445 0,3917 0,3926 0.3995 0.1672 0.1510 0.1548
Central
India 692 0.2451  0.2451 0.2451 0.2746 0.2771  0.2796

East India 721 0.3220 0.3211 0.3202 0.3586 0.3006 0,2526
South

India 529 0.5163  0.5164 0.5165 0.2816 0.2819 0.2822
West India 676 044045 0.4041 0.4037 0.2978 0.2975 0.2972
All Inddis 3063 0.3562 00,3559 0.3556 0.2852 0.2852 0,28%2

bajra ragl
Norih India 445 0006 33 000644 000655 - - -
Central
India 692 0.2418  0.2406 0.2294 0.1666 0,5000 0.8334

Bast Indis 721 0.3004 0.2254 0.1584 0.4303 0.4462 0.4621
South

India 529 0.1745 0.1753 0.1761 0.4570 0.4514 0.4458
West India 676 001664  0.1657 0.1650 0.2972 0.2996 0.3020

" maize wheat

North India 445 0.6042 0,6041 0.6040 0.3978 0.3978 0.3964
Central

India 692 0.3326 0.3285 0,340 0.258 0.2579 0.2576
East Inddis 721 0.3861 0.3976 0.4091 0.1944 0,1943 0.1942
South

Indiz 529 0.5144 0.513%  0,5120 0,1930 0.2400 0.2870
west India 676 0.5367 0.5379 0.5391 0.2%6 0.2361 0.2%6
All Indda 3063 0.4776 0.4760 0.4744 0.2930 0.2929 0.2928

barley seven cereals

Gentral

India 692 0.2318  0.2352 0.2386 C.2580 0.2580 0.2580
Bast India 721 0.2204 0.2238 0.4272 043174 0.3166 0.3158
South India 67§ Gv2696 042647 042598 0.3639 0.38% 0.28%
st India 676 0.2696  0.264T7 0.2598 0,2870 0.2870 0.2870
All India 3063 0.2379  0.2383  0.2387 G.2910 042909 0.2908

* Crop cutting in all seasons and land utilization in autumn
ssagon only in one-third of the sample villages.



T» RATIO TYPE ESTIMATOR

In oese of ratio method of estimaton for estimating a population
toizl using the data on a guitable supplenentary variate, Harvley and
Roas (1954) have obtained a ratio=-type of estimator which is unbiased
in cage of simple random sampling, Suppom.(yi, x 1) are the values of
the variates y and x for the ith unit in the sample selected with equal

probability without replucement (i = 1, 2, ..., n). The bicg of the

estimator
no ) n y
1 (7.1)
1=1 %
call 29 expressed s
B(Y) = « ¥ cov ( "% sy X) (1.2)

Sinee cov ( ‘%. X) cen be unbiusedly estimated, the estimstor given
in (7.1) can be currected for its bias and the corrected estimator
is given by
r=rx+ Eugory (1.3)
n-1 %W * *

If the sampling is with replacement the fuctor (N~1) is to he replaced
by N.

Goodman and Hartley (1958) have shown that for large samples,

this untizsed ratio-type estimator is more efficient than the usual

combined retio estimator ( %X), i the slope o th= pepulation regression

line of y on x is closer to -;f‘- hX Ty than to %. However this
i=1 X
4 .

condition is not in general satisfied because one would ordinarily use
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a ratio estimator only when the regression coefficient is expected
t» be near Y/X. Hence the above condition is rather restrictive and
the proposed unbirged ratio estimator may be less efficient than the
usual eombined ratic estimator in large semples,

It may be mentioned that tiis technijue of getting an unbizsed
ratio estimator is applicable only if the value of the denominstor of
the population ratio iy known, which is the cose when one is uging the
ratio method of estimavion for estimating the popul-tion mesn or tot-l
using a suitable supplementary variate. But in case of estimating a
population ratio where usually the velue of the denominstor iz mot
known, 1%t is not possible to use this technique,

The above method can ensily be generalized to the case whoars ¥y
and X, (4 = 1, 2, ..., m) are unbiased estimators of the population totals
Y and X based on m interpenetrating subesamples of the same 8i.e
selected according to any specified sampling design, In this czse an

unbiased ratio-type estimator of Y is siven hy

- B e
MerXe——r (F-r3) (7.4)
— 1 2 ¥ !
where r =« = 3 x 2d y =nd x are means of the subesample estimates
i=1 7%

of Y and X respectively, It oan te easily shown with the usual
aseupptlons that this estimator and the ordinary ratio estimator are
equally efficient in large samples. This is not so for the estim=tor

(7.3).
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8, BIASED RATIO ZCTIMATOR

Suppose ¥ and X are wnblased estimetors of the popul:tion
parameters Y and X based on any probability sampling design. Then an

eatimator of the ratio R(=Y/X) is given by
B‘n = /X (8‘1)

where the subscript to! stands for the eiginal sumpling scheme, This
estimator is biawsed, I%s bizeg and maan square error oan he ohtained
a8 follows writing y = Y(1 + e) and x = X(1se'),

Y

EQ (RD) = R L """‘h‘;""' - 1) \802)
2
M, (R -8 p( 22 1+e' - 1) (8.3)

wheze Eo and l(o dsnote the expeoted value and mean square error lor the
original gsamling scheme.

Under the zgsumption thnt | et | ¢ 1, the bies @ad mean square
error gsn e derived in the following nmamers. This assunption means
that for all samples, the velus of the estimator x lies betwsen 0 and
2X which is usually the case if the semple size is failry large.

B(R,) = REo(e-e')(l-e' + e —et?, L, )

cRig [ (e -e1)+ (mz - set) 4 (ee*z- a*’) PO
- R [{vzo -vy) + (v - 750) + (v410 ""31) + eee |
(8+4)
and M, (R) - & s (e - e') (i=20' + 3002 - 4003 L., )

2 2 2 : :

- B L [ e = 208! A ) -2(-%‘ - 200t° +o'3) + oo
2

‘R(Q'zo‘z'u” )-2(712-2v21+v05)

+ }( n + 740) ere ] (805)



where
1 i @)
i3 xiy" o
If the sample size is fairly large, the relative momenis of order

grecter than t6 2 may be neglected,

Q¢ UMBIAZED RATIC TSTIMATOR
If p i3 the provubility of seiscting = given sumple in the

original sampling scheme, the estimator

R = & (9.1)
whose fom is exactly the sowme as that of R, glven in (2.1), can 1o
made unbiased for the population ratio by nodifying the original
sampling scheme such thut a given sample 13 selzeted with provability
proportiongl to Xp., For in that case ihe expected value of the raiio

eaticstor is
P L = L
i, Xp
where the subsoript m stands for the mcdified simpling scheme and 7
stands for summation over all possible eumples. Af merti~ ned aarlier,
Murthy, Nanjamma and Sothi (1959) have g given szuple modifications in
the original selecticm prodcedure which mske the probability of selecte
ing the sample proportiocnal to xp,
The variance cf the estimotor B.. is given by
(8 = E,8)° - B°
n'fe/ = ByiBy
- (L ) 2R g2
x( x ) X R
1 7. .2
X%, %) -8

Now writing y = ¥(1 + e) and X = X(1+e') as before wa get



L")
(< w

)
v (®,) -8B (ﬁ—f—?,-)-- 173,

Under the assumption that e' 1, we get

VR) = B E [ (20 = 1) + (¢° = 2000 4 01) -

3 4)

(ozo' - 2000% 4 0'5) + (020'2 - 200!

e ]

2
R [ (vop = 27y + Vo) = (¥ = 27y + V) +

+ o

("'22 - 2751 + 740) - s ] (9.2)

vhere 713

large, the relative monents of order graster than 2 may 18 neglected,

ia es definod In {8.5). If the ssmple size is fairly

10. COMP/RISON OF RATIO ESTIMATORS.

Comparing the mean square error of R given in (8.5) and the
varizace of R, given in (3.2) we see that the two estimators are equally
afficient to the second d.egree of approximation if the terme involving
moments of order grester thun 2 can 1A negleotad. This will be true if
the sample sige is fairly isrge., In fact, for ¥ith replacement sample
ing schemes, this would mean neglecting terme involving (l/nz) and
higher powers of (1/m), where n is the smple size.

Subtracting (B.5) from (9.2) we get to any specified degree of
approximation

v (R) ~ ¥, (R) = R [ (v ~2vy; + '50) -2(r,, - vy + v40)
ces | (10.1)

In genersl it is diffioult to compare the efficiencies of these two esti-



mators. Assuning that the estimators y and x are distributed in the
bivariate normel form for the original pampling scheme, we get correct

upto the fourth degree of approximation

v (8) - K, (8) w2/ ) G -6 003 ¢t 1 (10.2)

where  is ithe correlation coefficient between the estimetors X
and y and O and Oy are the coefficients of variation of the estim:tors

x and y respectively. Simplifying (0.2) we get

N 2.2 : , 2 .
v (R) - M (Ry) == 2RC { czy (1= )+ 3(c, - cy) 1 (10.3)
which show that
Y
v (R) <M (R) (10.4)
Thus we see that the wbiased retic estimator is more efficient than

the oorresponding bissed ratio estimator if moments of order greater

than 4 can b3 negieciad.

11. A¥ ILLUSTRATION (II).

e efficiencies of the two ratio estimators, comprred in
seation 10, heve been studied empiricslly using the plotiwise informé-
tiom on geographiotl area 2nd ayee under prddy in a few villages in
west Bengal. The study relates tc systemstic sempliung of 6 plots
and the following three prcoetures xx® have been studieds

(i) lineur systemstic seapling ¢nd the ucual unbissed estimator

(i1) linear syctemustic sampiing cnd the blased reti. estimator

(1i1) linear systematic campling vith probability proportional to the
total size of the sample nnd the unbiased ratio egtimator,



In prosedurs (1ii) ore plét is selected from the whole population
with probability proportional to geographical area and the linear
gystematic gample containing this gelected plot is selected, With
this selection procedure the usual biased ra¥io estimator becomes
unbiased, The results of this empirical gtudy are given in Table 2.
Though it has been ghown that the unbiaged ratio estimator is more |
ef ficient than the viaged ratio estimator in cese of large samples,
from Teble 2 it secus that this result is likely to be true for smell
samples 2180, though the gein does not seem to be substantial,

Table 2 = Showing +he meeyn sguere @ITOTE of the estimétorl

vamed on the three procedures gconsidered in the
empirical siudye.

vilicge no, of geogre- 3TR& bias of mesn 8QUATS @ITOT
serial plots phical unler Tratio unbise Yiased unbiased

number srea paddy estimator sed ratio ratio
eatima~ eptima- estimator
] e tor o
©) (13 (2) {3) (4) G (6) (D
paddy variety (1)
1 10 396.71 51.35 1306 353 815
2 122 586,12 48.10 1020 894 846
3 167 873.31 4.69 1136 153 131
4 103 652,56 92425 1186 2687 2439
5 53 370.47 104.11 1111 1235 1059
6 a2 152,30 34.3C 31 191 163
paddy variety (2)
1 70 396,71 146.99 3214 3391 2917
2 122 536,12 417+95 5513 8536 8356
3 167 813,37 445,06 6741 8047 6413
4 103 652.56 129,03 2988 3497 2985
5 53 570.417 99415 1229 1167 1043
6 22 152,90  40.%2 332 9 (&}




12, ILLUSTRATIONS (1LX).

The efficiencies of different selection and estimation pro-
cednres consicdered here have been studied for sampling 2 units from
the small population of 4 units given below. The results of this

ptudy are presented in Tavle 3.
' . P 2

Table 3 ~ Showing the efficiencies of different
seiection and estimation prooedures,

a1, seleation procedure estimstor biss @meaD cffi~
no. of ¥ square ciency
error
1 ppe and srs of the rancining F/x)% - Ce34 88
2 equal probability withoud Xy - 5.44 6
replacenent B
4 " " " b - 0.60 50
P
3 ppe systeuatic 57 ! - 0.30 100
. i=1p
i
B~1 :
Y = K+ 377 a{y - rx )

o study the efficiency o the Tatin estimotor aupirically, the
village~wise crop acresre dats for threz police statione (edministrative
unite which ure groups of vitlagee) were uusd. The seogrophical area
ju taken as the grgplenaniery variate and the cparaciesistic under con-
aiderstion wa ihe L1es under & crop. Suppose the crop syea is to be
estimited by selecting & grnple of villages. The s=wpling schemes GO~

griered are



(1) sivple random sampling with replacenent
(ii) prolability proportional to 'ares sempling with replecencut
(i14) ratio estimation in c¢ase of srs with replacement
The variances of the estimstors in the nhove three cases saleulated
by using the usunl formulae. The varicnces are of the form ¥ where

n
n is the sample size and the values of ¥V ure given below,

Pable 4 - Showing the vaiues of variance per unit
for the th ee ostimators under consideratioan,

arop polioce vurisnce per unit (0CQ) sr8 ratio
gtation T8 rps estimator

Jute Harinzhata 1390 755 638

Hal&ENAXL Honskheld 4640 3565 2%
S0l pur 12450 3620 8702

Aus Haringhata 43270 17986 22639
Hansichala 304338 80102 4516
Sautipur 166255 43283 13994

Aman Huringhatea 50973 43125 49974

From the akove table, it way be observed that the ppes and retio
eatinators are egually efficient and that they are more efficient than

the srg estimotor,
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Chapter 5

UNBIASED PRODUCT ESTIMATORS

1. INTRODUCTION

In this chepter a technique is developed to estimate the bius
of an ordinary estimetor of product of two populatiom parameters on
the weis of independent interpenetrating subesample estimates,

This estimator of bius is used to correct the produgt estimator for
its bias, theredy obtaining an unbiased product estimator, The oone
dition under which the unbiaged product estimator is more efficient
than the biased estimator has been considered, This technique has
alsc been extended to the case of estimating the product of several
porameters unbinsedly. Incidentally the conoept of using the produet

mthod of estimation to improve upon conventional estimators is

introduced,

Though the problem of obtaining unbiased ratio estimators has
received conslderable attentiom in recent yvars, the questiom of
getting unbiased estimator of produst of population parameters or
that of making produst of unitdased estimators umbissed for the popue
lation paramster his received much less attention., There uire a
number of situntions where the latter problem becomes important,

Por inetance, in case of orop surveys, the estimate of production



i{s obtained as a produot of the crop acreage estimator based

on a suitable probability sample and the yield rate estimated
from & subesample of this sample.  Another situation where
product of estimators is used is the construction of cost of
living index and such other indices, This problem occurs free
quently in case of sulti-phase sampling where a ratio eatimator or
& chain of ratio estimstors is uswelly used for estimating the
population parameter.

In case of ratio method of estimation, Murthy and Najemma
(1959) developed a technique of obtaining 2n almost unbizsed ratio
estimstor based on interpenetreting sub=csmple estimates, This
technigue has been gencralized in chapler 2 with a view to obtain
(almost) unbissed estimators @ for non-limear paremetric functions,
In this chapter this technique is applied to estimate the bias in
a product estimator and this estimator of bias has beoen used to
obtain an unbiased product estimator. It is interesting to note that
almost all the results derived in the case of ratio estimators hold
in this case also, First two types of product estimators are com-
pared fron the points of view of bias and mean square error, These
two types of estimators are used in estimating the bias of the
product estimators. The results obteined in the oase of a product
of two estimators have been gensralized to the case of product of
gaveral estimators by considering a series of product estimotors

based on independent interpenetrating sub=cample estimates. It mRy



ve noted that the greatment given here 1is quite general and vpplies
drewn in the form of
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2. BIAS AD MEAN SCUARE RRROR OF PRODUCT ESTIMATOR

gtimators of ibse population para=

1t tl and *’2 e unbiaged @

apd T, respe

ctively paged on any probabili’cy sample. The

meters Tl
dered &8 an egtimator of the

product $1%; (=P) is veuwally consi
bnt bi&@a,

produst 74T (=), This estimator is consistenty
1+ 01) and ¥, wo get the bies and

the product estimator

writing ¥, = Ty - 2,(1 + )0

square error of
B(p) = B(%y%; - 7)

P a8

the mean
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=2B [ (1+9) (1+e2)-1]

=Tv,=T"~ ¢,C, (2.1)
and
. 2
u(P) = 2(%,%, - T)
? 2
- .:3(01 + 02 + ﬁlez)
-1 (v + 2V + Voo * T+ B+ V)
wh‘m [ XN J (2.2)
i 3
B(%, - Tl) (t2 - '1‘2)
T g (2.3)

Cl and G, are coefficients of variation of the estimators tl and tz
and ; ig the correletion coefficient Letween tl and tz' In cese

of sampling scheme2 guch as simple rzndom sampling and vorying
probubility sampling with replacement, the bins and mein SCUATE error
of the product estimator P become

1 ¢}

B(E) = 1 — (2.4)
ﬁ(P) - TZ ["'3';' (v&o + 2vY + 762) +* ""?"i' ('.12 + "'21) +
11 n
1 i
----—n3 v, + (n-l)wzo 762] (2.5)

where v'tj stands for i3 given in (2.3) for one sample uait and n

is the semple sise. This shows that if the sample size is large,



then the contribution of bias to me&n square error wouod be negligible.
-
If n is large the terms involving n  and n"5 in the me2an Squsre may

b neglected and (2.5) reduces to

M(P) =5 (Wt a' * '.02) (2.6)
If %y and %, are uncorrelaod, then the bias is gero and the product

estimitor P is unbiased for T, Under the assumption that tl and tz

are bivaricte normally di stributed, the mean squareé error of P Leoomes

2 2 : 2 2
n(P)-rz[c1+2,‘c102+02+(1+2; )01323 (2.7)

3, PRODUCT METHOD OF % 3TIMATION

It is interesting to note that the product method of estimation
may be used to improve ghe estimetor by using a suiteble gupplementary
variate just as in the case of ratio method of estimation. Suppmw'r2
is the parameter valu® corresponding to the supplementary kvariate and
is known., Then the product estimator of T, which uses the supple-
mentary information is given by

T - bt (3.1)

2

The bias of the estimator is given by
and the mean square error to the gecond degree approximation is

2
x(ml) = T (v + 291 + "02) (3.4)

Jor large semple the bins in this estimetor is likely To ve negli-
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gible and this estimator will be more efficient than the estimatbr

tl it
. 2
H(Tl) < Ty Yo
that is, if
C,
. 1

This shows that the product estimator is more efficient than the
ordinary estimator if the estimators ¢, and tz are negatively correlated
and if the correletiom coefficient between these estimators is less
then the expression given in (3.4). This result is of interest because
1t shows that the product estimator is likely to be more efficicnt
wherever & ratio estimator turns out to 1@ less efficient than the
ordinary estimator. In fact for a given supplementary variaie, one

can decide whether to uge ratio estimator, product estimator or ordi-
nary estimetor depending on the value of the correlation coefficient

bvetween the estimator of the variate under eonsideration and that of
t.t

the supplementary variate. That is, the estimators «-%—-2- ’ tl
2
t
and :E}-i'a are to be chosen according as the correlation coefficient
: Sy Oy
betwaen ¥, end t, is less than =% T 1ies between - %-—-é- and
0 "fi w1 P i + ’ ""' z - z
+ E -é-‘-i ‘This will lead to better utilisation of the available
p

aufplomntary jnformation in improving upon the ordinary estimator,



4. COMPARISON OF TWO PRODUCT ESTIMATORS.

Suppose in a survey the sample is drawn in the form of n indepen=~
dent interpenetrating sub-semples. Ist (tn ’ tzx) be unbizsed esti-
mators of T, and T, based on the ith subesample (i=1,2,..., n). The

following two estimators can be congidered to estimate the product

7,T, (=1).
1% =
1 n

Applying result (2.1) to Pjy wo get

B(Pl) -3 = ﬁn
, . p

since %,, and t,, (§ f# 1) are uncorrelated, Henoce we have
n

l o
The bias of P, is given ty
1 B
KEy) =By = 33 Bltyy tpy) (4.4)

Comparing (4.3) and (4.4), e see that the bias of P is n times the

bias of Pl' that is,

B(Pn) - nB(Pl) (405)



If it is assumed that the sub-ssmple sizes are the same (as

ia gencrally the case), we get
B(ty, %) = B

u(tu "21) =¥

Ve (tu '621) = v, for all i,

— 'r'
v - - ' ’r.lizl "0,1,2,1‘+5¢2,3
8 n’ 44 )
1l
=ad Y22 =5 M2+ () Vo2 Voo 4 2 v . (446)

By applying the result (2.2) to P, end making use of the results in
(4.6) we get

2
ue@,) =1 [ (V0 + 231 + Yoo) + z (v2y + 32)

i

*53 Vo + (B-1)(vy Yoz 11) 1 4.7
n=-2

- 8-
n

where

2 n+l 1 2\
L= T2y, + vy ) 4= m v = 320 Y + 1)) (4:8)

The mean Sguare error of Py is given by

M(R,) = i, = B(P, - )’ [ ($14 o4~ 0}’

-l 2
- ‘:'4' 'E;“" B (409)
From (4 '}) and (4.9), ve have

n=-l 2

K =M+ 2 == 3 (4.10)




Comparison of % and ll in generzl difficult, Assuming that tli

and %,, are bivariate normally d.istributod, we get

21

A= T‘(1+2 f‘) ci cg »0 (4.11)

This shows that the m-an square errcr of Pn is greater than that of

4 2
Pie Sinuul-\'l-o-Bl aml!navn+3n,weget

V. =V, + --‘3-"-1-‘-(A - 32) (4.12)
n 1 n2
¥ Under the assumption of hivariate normal distribution of tli and
b0
A-Ba'l'i(l"' )cic§>o (4.13)

which sho¥%s that Pl is more efficient than Pn even fronm the point of
view of variance, Thus we see that Pl is more efficient than Pn
from the points of view of bias, mean &quare error and variange,
Since A and (A-Bz) are independent of n, the difierence between the

efficiencies of Pl and Pn decreases with increase in sample size,

5. ESTIMATION OF BIAS OF PRODUCT F3TIMATOR.

An unbiaged estimetor of the bins of the product ectiwators Py

and Pn eonsidered in section 4 can be obtzined as given below,
E(Pl) =T+ 3B (5.1)
B(B) =T+ B (5.2)

Subtracting (5.1) from (5.2), we get

113



E(pn - Pl) =B =B = (n-l)Bl, since B = nB). Hence an unbiased

estimator of the bias of Pl is given by

(5.3)

and that of P a will be nBl. The variance of this estimator of bias
is given by
1 L
v(3,) = vy (Va+7V, - 2f‘/ AR

o
where / 1is the correlation cosfficient between the estimators P

and P . Using (4.12), 7(31) may be written as

A 2
V(B)) =2, (s =2 ‘a4 1) (5.4)
(n-1)
where
2
el al+ ”";‘ -Biv’*-‘- <1.
n n

6, UNBIASED PRODUCT ESTIMATOR

The unbiased estimstor of bias of P, obtained in (5.3) mey be
used io correct the estimator Pl for its hizas, therehy obtaining an

unbisged produst estimator Pc given by

np, « P
) n
PG -« n.], (601)
The variance of the corrected estimator is
v
V(p,) = "'L'i pa% - 20 - 8+ 1) (6.2)
(n-1)

where a2 is as defined in (5.4). The guin in precision in using



P, instead of Pl is given by
22"

M, - V(®) n%a° -2 a4 1 )
G(P ) - -] - (603
¢ ) (n—l)z(az + 32)
2 B‘z 32
vhere 3 = 3 el B and V being the bias and varisnce
ay
n

of the product estimator based on one sub-sample, 5 sufficient

ocondition for Q(Po) >0 4s
(xa-l)za2 - (nzau2 -2n7/ a4+ 1) >0

that is, if
(2:1-1)5;"2 -2n a4l <0 (6.4)

whioh will be true if a 1ies befween the roots of the equation,

(21'1--].)&2 -2n a+1=0,
The table showing for given vilues of  amd 2y the aminimum value of
a required to make the guin positive, the optimum n and the mexizam
gain, given by Murthy 2nd Nenjamma (1959) is reproduced below for
ready re erence.
Table 1. Minimum «nd maximun velues of G(P ) with the

corresponding values of n for dif?erent
and a where '> a,

Sr.no. a /of ninimum Baxirum
n G(Pc) n G(Pc)

(o) (1) (2) IO (6)
1 .6 0.7 6 0.0089 10 0,0192
2 0.8 5 0.0556 4 0.0988
3 0.9 2 0.0889 3 0.3056
4 0.7 0.8 4 0.0113 7  0.,0266
5 0.9 2 0.1020 3 0.1684
6 0.8 0.9 2. .0.0469 4  0.0486

It ma; b8 noted that thie tabie has been worked out neglecting 12 in

(6.3).
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7. BESTIMATION OF PRODUCT OF SEVERAL PARAMITERS o

Suppose ti is an unbisged estimator of ‘the parameter T "

k
(j. w1, 25 esey k)o An estimator of =« Ti is given by
i=1
k
P= Tt (7.1)
i
This estimstor is biased and the bias is given by
k k
B(P) =B(gt;= w, )
L T

writing ¢, = 7,(1 + e,), ve got
Kk
B(P)-‘r[n(l-roi)-l]
i

- T( La ei + 31‘3 + ona )
k

Henoce B(P) =T 7 . P vi i ... 1 (7’2)
™m2 T 172 T

where . eitande for summation over combinstioms of r estinators

and

v -:B(t -7 )(t -7 )ooo (t - T )o
1112 sse ir 11 il 12 12 i 11'

b

Suppose 13 is an unbiaged estimator of Ti based on the jth independent
interpenetrating subesample (J=ly2yes., n). Iet the muaber of sube-
sguples be n multiple of 2, 3, oeey ke1¥, Using the different combie
notions of the subsample estimites, we o2n construct, the following

product estimators.

1 B k
P2 [ (1.3)
® ? rel i=1 N
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for m= 1, 2, +.s k=1, n, It may be noted thet there are a number
of ways of partitioning n sub-sémples imto m partitions of n/m sube
samples each and that the mean of the product estimators based on
the1 may be taken as Pm'

The bias of P! is given by

k
B(P ) m B =7 Z T—— !‘1,2,..-, k"l, a (704)
n B r=l
=2 ()
k=1 » A1
- P i B Yr+1o yﬂl - r
ral n

R(Pm) - T "‘ B‘, B = 1’ 2’ .o k-l'n
ke~l

o r
E(Pﬂ - Pl) = Bﬂ - B]. - !;.l(n -'l) ’r+1, mw2, 3 ... kel,n

LS (7.5)
* | 4
Writing D, = B =~ P,, e got from (1.5)

BD) = () ()

where
B (DZ. DB’ s Dk""l’ Dn)

Y= (T Tgp rer ¥y, )
A m2el 3al., (kel)el nel

2%.1 % (kel)e1l n%-1

)

4 % 4 A 4t
\é - 1 3 - l PO 4 '



1138

¥ = (D) (1.7}
Fron (7.4) vwe have
| @=wC ) | (7.8)
where
(B) = (ﬁz, Bgy eeer B g0 B,)
and - is 2 (k-1) X (k=1) matrix in which all the elements are unity

(8) = (D) + E(D)

where + is glven hy
B1 al LN X 2 .1
52 32 PP 82
8 Bgel **° ka1

where L is the sum of the elcuents in the mth row of « An unbliased

estin~tor of (R) is given by
)=+ M (- Jo= @+ @) (1.9

where (S)' = (-1, B0 sees “k-l) and (1) = (1, 1, e.sy 1)» Hence

nel £

.Bn,_,. 0: 9333.1 + Dﬂ' J = 2’ 5, sney K"'l. n, 8
J eee (7.20)

for m = 2, 3, sewy k"l. n, Hence the corrected estimator 1is !;iwn by

P «P =3 (7.11)

Particular cages:

() k=2 P =t



115

R
By=w, = ghpn=Ln

R e R =)

Hence

By= (B =B+ (B = 7)) (n-l) - (: 1y (Fa - P1)

and since B, - B =E(?, - P;)» Bl -T—-T-
(ii) X = 3. 1In this case we consider the following three

estimators,

o
o
]

P

]

1 -
P mo 2, t L t
non Y 14 24 "3

Subﬂt‘itu’cing the relevant values$ in appropriate expressions in

section 7, we get the following estimators of the bias of Pl’ P, and
P
n (n+l) n 2

B, » = P+ P, ~- P

1 in—ls 1 in-25 2 n-l)(n=2) "n

(a-1) .

B=- Z Dh *2m) R = D) (2) 'n

B == 2 _p + P Alns P
n in—ls 1l in-Z) 2 * Tn-1)(n-2

Hence an unbiased estimator of T is given Yy

P 2n P. - n P 2
6 Zn-l) 1 2n~25 2 in-]_ﬂn.z) B“
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8. RATIO CUM PRODUCT ESTIMATORS

In the previous sectioms, the problem of making a producst of
two or more unbiaged estimators unbiased for the population parameter
has been disaussed., In this section, the question of making the
product of an cordinary ratio estimator &nd an unbiased estimator unbiased
for the parameter is considered, As has been pointed out earlier,
this type of problem arises in estimatiom of crop production. 1In this
case the production estimator is a ratio cum product estimator since
it is obtained as a product of the crop aoreage estimator based on a
probability sample and the yield rate estimator based on a sub-sample
of the original sample. The yield-rate estimator, being a ratio is
baged, This situation also ocours in multi-phese sampling where &
ratio estimator is used.
Suppose tl, t2 and t5 are unblased estimators of the p;ramtora
T,, T, 8 T, Tespectively snd it is intended to estimate 'Ei- 7,(1).
An estimator of this is given by
¥
P! = ‘—%;- 163 (8.1)
This estimator may also arise in case of two-phase sampling where

4+, is unbiased for Tl and t2 and tB are unbizsed estimators of the

1
supplementary variate parameter T, based on the second and first phase
samples respectively, In this case T, and '}.'5 would be the same,

Writing t; = Ti(l + -1). 1=1, 2, 3 e get the bi s of P' as
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=12E [ (o +05a02)+ (e +e) 0, =00, —333)

+ terms of degree greater than 2,
assuning that }oai < 1. If the sample sizé is large, terms of degree
greater than 2 in e o, and 05 jn the above expreseiom may be neglected
and we get

B(P') = T(vy00 + Y101 ~ Y110 ~ Yo11) (8.2)

wvhere

v mE M- (e T 2 (45 - 19"

1et the sample be drawn in the form of n independent interpenettrat-
ing ﬂubﬂﬁgvmple. and let tij (i = 1, 2s 3, J = 1, 2y veay n) e the
estimator of T, based on the jth sub-ssmple. Using these subesample

egstimates we can construct the following two estimators,

R’

1
P'I--T;-tj (8.3)
t
1 o _u
Pt = = Z t (804)
n n 3 )‘21 b8

Prom (8.2) the bias of P!y correct upto the second degree of &ppro-
ximation ie given by
5(e'y) = M0 + Y101 = 110 ~ Yoo

where

k
Yisk Ty)

=B (t - 7,) (t - Tz)J(t Ty
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n
1 b
Honce B(p*)) = 21 (00 * Y101 ~ "110 ~ Yo11)
n t
1 2 11
n® 1 ty A

The bias of P', is given by

%14

an
Bety) = g B30 tyy) (46)

Comparing the biases of P'; and P! given in (8.5) and (B.6)
wa see that

8(P')) = n B(P,) (8.7)
to the second degree of approximation, Hence and unbiased esti-
mator of B(P'l) to the seocond degree of approximation is given
by

t - PO
Pn Pl

B(P! l) - (e.8)

(a-1)
Using this estimator of bias of P'l an eatimator P! o 0an be obtained
which will be unbizused toc the second degree approxim:tion, The esti-

mator P'o nay
npt, - P!
1 n
P.G - (n»l) (8.9)

may be consigered almost unbizsed for the parameter under ¢cnsidera=~

+ion,

9« AN ILLUSTRATION.
The techmique of making a product estimator unbiased using sube

sample estimates has been &pplied to the estimates of crop produstion
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and orop acreage given in Report Humber 38 of the National Sample
Survey., "The sampling design in ﬂt::::wy consisted of a stratified
two-gtage designfor the lénd utilization survey where villages were
the first stage units and clusters of ten plots were the second

stage units, The crop-cutiing survey wes confined to only one-third
of the total semple. The crop production eéstimate is obtaincd as a
product of the yield rate bused on the cne-third gample where crop
cutting experiments were conducted and the crop acreuge estimate based
on the whole sample. In the report estimates of crop acreage and pro-
duotion have been given for two independent interpenstrating sub-gamples,
Suppose a,, &, apd R/ are B the estimates of crop acreage and

yield rate baged on sub-samples 1 and 2 respectively, then the two

estimators given in section 2 are given by

P, -% (8 + 8) 7y +7,) (9.1)
P, = ,i?‘(alrz + 3212) (9.2)

Phe astimator corrected for 1ts bius is given by
P, = (2P} - P,) (9.3)
The combined estimator given in the report (P, say) has been cbtained
from the sub-ssmple estimates®p by weighting them by the mumber of
surveyed villages at stratum level,
The values of the estimators Pl’ Pz, Po and P are presented

in Table 2 for differcnt cereal crops at zonal level, From this
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table 1 iz clear that “he vias in the estimator P is negligible

except for oertain minor crope.

Teble 2 - Showing the vaiues or the crop production estimators

Pl’ P.z, ?0 and Pe ('000 tons)o

Zone no, of

gample * 1’1 Py Fo P I,1 Py Pe P

villages
(0) () (2) (3) (4) 5y (2) (3 4y 05

rice jowar
North 445 841 845 839 841 305 294 316 297
India
Cmtral 692 3P 338 B 30 2598 262 BU 2383
Esst India 721 12264 12229 12299 12360 52 44 60 47
South
India 529 1553 7555 7551 7639 2%07 2910 2904 2634
vast Indie 676 3551 3448 3554 %59 838 8320 833 8515
A1l Indds 3063 27578 27552 27604 27709 14183 14188 14190 13876
% Crop cutting in all seasons and land utilizgation in satum
seagson only in one~third of the villages.
bajra ragi

Forth 445 1257 1278 1236 1279 = - - -
India
Camtrel .o 1276 1270 1282 1288 1 1 1
India 1l
East India 721 33 25 41 25 328 340 316 381
South Indin 529 758 162 156 53 950 938 962 936
wst Inida 676 1978 1970 19856 1978 829 836 822 65
411 India 3063 5301 5305 5297 5323 2117 2114 2120 183




pable 2 (Contirmed)

(o) (1) (2) (3 4 (5 (2) (3 (4 (5)
madze hwheat

North ‘

Indie 445 2709 2708 2710 2703 428 4320 4336 4458

Central  ¢op 3218 1202 1234 1224 5200 5194 5208 5239

Indds

Eest Indie 721 581 598 564 554 378 3713 378 276

Sﬂuth P - LY - ¥4 «

Toais 529 156 156 156 153 10 12 ) 12

vost Indda 676 630 631 629 63 %9 971 %T 968

All Indic 3063 5314 5296 5332 5266 10879 10876 10882 11053
barley all cereals

North 445 €49 652 646 637 10103 10096 10110 10215

India

Cemtral g 1636 1660 1612 1661 1538 15327 153

Best

Indie 721 332 337 27 345 13984 13950 14018 14088

South ‘

India %) - - - - 12337 %34 12340 12127

ma 676 9 9 9 11 16286 16284 16288 16528

A1l India 3063 2654 2659 2649 2654 68005 67991 63019 68064

Source of data on which this
(1960) 'Seme Eesults of the land
Experiments® , Report Humber 38, issued by

Government of india).

tohle is based s National Semple Survey
Utilization and Crop Cutting
the Cabinet Seoreturiat,
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10. EMPIRICAL STUDY.
The plotewise Jata on geographical area and arce under paddy in
a fow villages in West Bengal 2re utilized to study e‘npirioall,y the
efficiencies of ratio snd proiuct estlntors.s The study relabes to
system-tic sampling of 6 plotas and the following three estim2tors have
been studied:~
(i) simple wnbizsed estimator

(ii) ratio estimator with geographical are& as supplerientary
information

(1ii) product estimator with geographical area X as supplemenicry
infom&tim,

The results of this study are given in Tabla 3.

From Table 3, it can be seen that there are cases where ihe product
estimator is more efficient then the ratio estimator. This exaiple is
given more Wy way of jlluetration than 88 8 suggestion for use of
product estimator in such gitustion. It @iy be noted that in cuse of
crop survey if net cultivated sres for & previous yesr j9 used 1s supple-
mentary information, then & ratic estimators for major orops and product
estimators for minor orope &re likely to bo more efficient than simple

wnbiased estimators.

MURTHY, M.N, end NANJAMBAA, N.Se (1959) s Almost mbiased ratio estimates
based on interpemetrating sub=-sample
estimutes, Sankhys, 21, 381-392.



Table 3 - Showing the mdn square errors of the three
estimators mentioned in the earlier page.

ville no, of geogre~ aréa bias m8n Square error

——

plots phical umder ratio pro- unbiased ratio produst

8r. a0, axe duct
1 2) (3) (4§ (5) (6) (1) (8) (9)
Paddy variety (1)

1 100 657467 230.34 7.87 0.34 2859 4286 5687
2 132 804.58 238,57 -1.94 6.30 6590 4362 10782
3 212 1495.26  163.87 30.66 -8.91 11681 19773 11541
4 172 1116.85 260.94 10.12 ~0.96 11380 14117 13122
5 79 389,12 78.44 0.05 2.20 1821 1670 2302
6 48  274.26 50.94 ~0.15 1.49 536 408 852
7 91 570.22 100,30 1.54 1,36 2031 1942 3141 4
9 162 B864.40 146,31 5,22 =1,18 3526 4071 4231
10 178 923.62 339,97 0.57 =1.55 8669 1863 12429
11 172 1195.00 227.43 9.78 =5.45 10855 14261 9713
12 233 1158.01  613.25 17.17 ~4.43 42698 49170 48837
13 114 680.80  288.56 2.96 2.T5 15803 14636 20250
14 118 73773 286,03 =5.47 12.49 14727 9458 23629
15 53 319,54  126.87 =0.65 1.00 2791 2718 2943
1% 98 910431 354405 1435 11403 24496 19849 49586
18 57 33%.(9 105.41 Qe62 2.8 1290 989 259%
19 57 461.67 222,21 «0.19  1.87 3544 2846 3928
20 232 1322.83 704.258 112 24473 596 32 38740 152154
21 115  677.62 395,52 2.45 8.11 11784 8886 29383

Paddy variety (2)

1 100 657457 60437 ©e86  0.87 1108 1118 1282
a 172 1116.85 53,58 1.15 2.11 1361 1315 2861
5 79 38%.12 122.41 ~1.20 4.93 2472 1594 4336
6 48 274426 14,91 =1.59 2,22 225 125 429
7 9N 570422 35,33 4.98 ~3.91 2845 3915 2172
9 162 864.40 216.67 3.92  3.30 3910 10676 8516
10 178 923.62 135.45 «0,69 1,24 5142 3714 6567
11 172 1195.00 383,87 =0.87 4.18 21167 16570 32173
12 233 1158,01 3.16 =0.38 0.54 % 60 159
13 114 €80.80 1.33 =0.17 ©.21 33 15 31
14 118 73713 181,01 5.05 0.70 5799 7053 1164
16 98 Y1031 9,02 0436 ~0.08 82 100 74

17 79 543.21 13,55 0.95 0463 228 282 207
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Chapter 6

VARIANCE AND CONFIDENCE INTERVAL ESTIMATION

1. INTRODUCTION

Some of the results of the investigations on (1) methods of
estimation of variance of estimate and (ii) methods of setting up
confidence interval for a population parameter are given in this
chapter. As there is an abundance of literature on these two topics,
it may not be out of place here to give a brief review of the work
that has already been done. This review i8 by no means exhaustive.

The aim here is to study the efficlencies of methods of
estimation of variance and of setiing up confidence intefvals which
are operationally convenient. Invariably such methods are less
efficient than the conventional m=thods involving much caleulation
at the stage of analysis. Sometimes it may be possible to strike
a balance between the efficicncy aimed at and the labour involved.

In this chapter a procedure of determining the sample size
is given together with some speoimen tables giving the sanple sizes
for different situations. The idea here is to fix the sample sise
in such a way that the probability of the length of the confidenoce
interval for the parameter associated with a specified oconfidence
coefficient being less than & given value is a prc-npooiﬂod'quantity.
The tables giving values of the sample sise for different valuss of
the constants involved are under preparation. As mentioned earlier

some specimen tables are given here.



2. METHODS OF ESTIMATION OfF VARIANCE 129

In the case of simple random sampling from a normal population
the variance of the estimate of /*, the mean in the population invclves
the parsmeter 77, the population standard deviation. let a ‘lilpli
random sample of size N be drawn from a normal population vith mean /
and standard deviation -, Let the gbservations be xl. Xz eevae X,.
The minipum variance ‘utiute among the class of unbiased estimates of
» 18 X, the sample mean and its standard error is ~AM, A 1ist of
estimates of < available in statisticel literature is given belovw,

T _
R (X, -X
5131( 1 )

5 = 5 (2.1)

- y
. =& Al (2.2)
2 L2 »

g
n .o
-1
s S - (2.3)
3 02 Jd
’32 - 1

.5 = uz - ul (205)

where X is the mean of a sub-sample of sise m,
;i is the mean of the i th random group with m observations
guch that nm = ¥, (1 =1, 2, esee B);
¥ is the mean of the ranges inv@ sub.groups of n elements in esach,

*, and ., aye two numbers to be properly chosen

ulmduzmginnby

3
!



where p and q are proportions of the observations less than

and between - snd respectively,

e a2
2 = Tl
and a4, =
vhere o and x, is the smallest

obgervation in the sample.

As 18 to be expected of these estimates, 8, is the most
efficient and the wost difficult to calculate. In sampling from
Normal population, the estimates s, and L have the same efficiency.
Hansen, Murwits and Madow (1953) have compared the variences of the
estimates of the type 03 and -g and observe that a§ is more or less
precise than a‘;‘ eccording as  1s less than or greater than 3 where

. The expressions for the variance of lg and .§ e

R

v = ( -Eh (2.6)

a
'( 2 n-3 "‘u\f )
D= - (2.1)
where | . Hemce it follows that V(s2) V(.g)

sccording as 3.

The values of e, and c!22 are tabulated for different values of
m and n in ASTM manual (1951). If the size of the sub-group is small
(about 7 or 8 observations), then the loss of efficiency in using s,

instead of 8, as an estimate of 1s not large (Pearson and Haines



(1935) ). Pearson (1932) has tabulated the mean, standard deviation
and percentage limits (0.5%, 1%, 5% and 10%) of range in samples from
a normal population for ssmple sizes 2(1) 30(5) 100. Cadwell (1954)
has giysn an asymptotic expression for the probability integral of
renge of ssmples from & symmetricel unimodel population and has
studied 1ts acouracy for the case of mormal parent populstion and for
sanple sises 20 to 100. Stevens (1948) suggested the estinate 8g
and he has talulated the efficiency of this estimate as eompared to
that of 8, in large samples for different values of  and

- , while sampling from a normal population with mean f"" and
standard deviation .

An empirical study wes conducted to study the efficiency of

o as compared to that of 8y for a sample of sise 100 from a normal
population. For this purpose the samples from the normal population
vith mean O and standard deviation 1 given by Mshalanobis and others
(1934) have been used. There are 104 samples of size 100. For eash
of these the mean, standard deviation and frequenscy distribution have
been given. The mean and variancs of the sample standard devistions
are 0.9887 and 0.0049 respectively. Taking % and 2, to be -0.3 and
0.5, for each sample g was calculated, The mean snd variance of 8g
turned out to be 1,0009 and 0.0193 respectively, Hence sg can be
considered to be upbissed for this sample slsze and the efficiency of
sy a8 compared to that of 8y is 25% which agrees with the figure given
by Stevens, The efficiency of sy can be increased by taking the values
of and ~ nmear sbout the mean on either side of it



8. INTERPENETRATING SUB-SAMPLES

In e stratified sampling design where n independent and inter-
penetrating subsamples are taken from each stratum according to any
sampling design, estimates of the variance of the estimate can be got
by using (1) the subsample estimates of total or (ii) the subsample
estimates of strata totals., It is of interest to get an expression
for the loss of efficiency in using the former in preference to the
latter,

Let there be k strata and n independent and interpsmetrating
subsemples in each stratum, For the sake of simplicity let the sub-
sanples sises within each stratum be the same, Suppose iié is an
unbiased estimate of the j th stratum total 7',’ from the i th subsample
(L ® 1,2 eoese B J = 1,2, ooeo k). The two estimates of the variance
of the estimate iot the total y are

@ v (1) =gy -1 (3.1)
1 k n 2
and (11) v, (1) = m1§1 AR TER? ) (3.2)

= ¥ 1 3 £ y=L2,

It can be easily verified that the ebove two estimates of the
variance are unbiased. The variances of the two estimates are given by

1 k 2 k
v Vl( ) zmk ’§1 (n-1) 4 + (3-%) 23 + 4,321 %;j

(3.3)

G4
&2



oo, 1 k 2
and V. Va( Y) ﬂ—-(-—'; ’ * (n=1) " + (3«n) 23 (3.4)

vhere '” and 45 are the second and fourth momenis of the
estinate y“. From the above expressions it follows that V 71( Y)

V V,(X) . The loss of efficiensy in using Vy(y) instesd of
Ya()') a8 an estimate of V(¥) is given by

VV;SI) 'vvg(t) o2

L= V V(1) n-1°
£z
=13 4 3 (3.5)
§ ( R =3 ) 43
§=1 §° n=1’ 2§
vhere . j = ___%L . If the distribution of the estimates within
i 2’
each stratum can be assumed to be normal, then jﬂaterallj.
Hence L becomes
: 2
L S B 2__ .1 (3.6)
2 k 3
3=1 ' 23 321 23

k

vhere = 32;'1‘ 24 + I1f the coefficlent of variation of the estimate

in each of the strata cemn be assumed to be equal, then L is given by

.7 12 R
i3+ 3 (3.7)

=
Instead, if it is assumed that the variance of the estimate in each
stratum is the same, then L is equal to k=1, It may be noticed that the
loss may be mbitmtial if the number of straba is large.



4, CONFIDENCE INTERVAL ESTIMATION
If a sample of size N is drawn frem a normal population with
moan - and standard deviation » then the confidence interval for
/M is given by

P Xaot— X+t o= =1a (4.1)
N A

where 1~ - 1s the confidence coefficient and t  4is the % point
of the dstribution of = /i . In practics ons has to estimste
~ from the sample itself by cne of the procedures given in &€, ' °
if s, is taken as an estimate of -, then it is well-known that
the statistic -
¢ = —L-f;‘#—-l /i1
is distributed as Student's t with K-l degrees of freedom. Of course
for large semples the above statistic is distributed normelly witk mean

0 and standard deviation 1. Similarly the statistic

! = ...(.j..‘.‘..__l and t¥ = (X-')

8
‘2 3

are also distributed as Student's ¢t with (m=1) degrees of freedom, where

m is the number of groups or subsample sise and and are conastants.
Daly (1948) has proved that x and w, the mean and range of sample

of N independent observations on a normally distributed variate x are

statistically independent., Lord (1947) has given the 5% and 1% pointe

of the distribution of the statistic

u= ( X;- ) dﬂ /;: (4.2)

where n is the sub-group aize and m the mumber of sub-groups.
Patnaik (1950) has obtained an approximatéon to the distribution of ¥ .
and making use of this has derived the distribution of u., Jackson and



Ross (1955) have transformed the tables of Lord so as to provide the
percentage points of the distribution of the statistic

g= - (4.3)
v dp/nm
Hoether (1955) has considersd the statistics
G = S...E.;..t__). and G = i 2 , (4.4)
1 v 2 wil

where ¥ 1 1s the mean of the ranges of all subgroups of both the
samples, and has given the percentage points for 61 and Gz so thet

confidence intervals for and ( - 2 ) can be set up in the

1

form
P .f - v § + é‘e . v L (4.5)
- - s . W '
and P (X -X,)- v T - (4.6)
vhere and  are the . points of the distributions of GJ.

and G,. Purther he has tabulated the values of ay, for different
values of n the subgroup sise and m the nusber of subgroup (nm = N)
which when multiplied by the sum of the ranges in the subgroups
provides us an unbiased estimate of .

Let Xy Xy 0e0ee X be independent observations on a variate x
with some distridution function arranged in the increasing order of
magnitude. Thompson (1936) has shown that

P(X, M X 4uq) =1=21  (nk+1,k) (4.7)

vhere M is the median in the population and Ix (p,q) is the incomplete
Beta function , . © which has been tabulated
by Kaxl Pearson. If the distribution of x is symmetrical, then the
above expression gives us the confidemce region for the population mean,
Kair (1940) has tabulated the values of k which give us confidence
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intervals vith confidence coefficient greater than or equal to 0.95
and 0,99 for values of n = 6(1) 81,

In vhat follows the efficiencies of the confidence intervals
based on s, and s, vill be compared., For the sake of convenience
let us redefine ai and .§ as

2 1 | - 2
2 1 2 -2
and 5 = W) 1§1(x1 - X) (4,9)

vhere Xy Xy eeses Xy aYe the N observations drawn from a normal
population with mean  and standard cbv.tatih and n 1s tho

subsample sise. It is clear that N(N-1) --1- and N(n-1) ...3..
are distrituted as with N-1 and n=1 dsgma of freedom rnpoo-

tively. Hence it follows that the statistios
( X - ) ,' and tz = ( = )
®1 %

tlﬂ

are distributed as student's t with N-1 and ne1 degrees of freedon
respectively, If ¢ and tz are the limits of the

distribution of t, and tz' then the lengths of the confidence inter-

1
vals by the two methods will be

L1 =2t . and L, =2t, s, (4.10)

A number of criteris can be suggested for comparing the
coefficiencies of I‘l and I‘z' I"l and Lz nay be said to have approxi-
mately the same efficiency if E(I.z) and V(Lg) are nearly equal to
E(I‘i) and V(Ll) respectively, It is to be noted that E(Lz) and V(Lz)
tend to E(Ll) end ‘V(I.l) respectively as n tends to H. fut the
convergence after a certain stage becomes alow in the case of the

expected value, The expected values are given by
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E(I‘l) =2t . [-—p%- if ¥ 1s large ( 25) (4.11)
and E(L,) = 3t, C} F vhere G} =y —d—g (4.12)

If N is fairly large ( 100) then t, = 1,96, for in that case
tl is distributed normally with meen O and standard deviation unity.
Table 1 gives the values of the ratio E(Lz)/E(Ll) for different
values of n, assuming N to be large.

Table 1 « Values of the ratio of the expected

value of Ly to that of Ly for dif-
ferent values of n.

22 4 5 6 Y & 9 10 15 20 &

5,172 1,946 1.496 1,831 1,248 1,198 1,164 1,141 1,123 1,075 1,054 1.042

The confidence intervsl I‘l and I‘z may be sald to have approxi-
matsly the same officiency if L; ie nearly equal te L; vhere L; and
L; are given by

= 0,95 (4.13)

- %

PI-lL
PL2L

This oxiterion 1s defective in the sense that even if Ly is nearly

*

= 0,95, (4.14)

L)

equal to L; at this level of confidence, this may not be true for

some other level. A better approach may be to compare the distribution
functions of L, and I.‘2 for different values of n., Here also it may be
observed that the conwvergence of the distribution function of Lz to
that of L1 is likely to become very A slov for values of n greater
than a certain value, Teble 2 gives the values of Ly and Ly for dif-
forent values of N and n, Table 3 shows the distribution function of

Llfori=1oeanamtofnzfornsio,aoandw.
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Table 2 - Comparison of the values of L; and I.; for
different values of N and n at 95% confi-
dence level. '

¥ L* values °Z g
n=2 n=38 n=4 n=s n=g n=g b mELL oy

96 0,223 2,559 0,750 0,514 * 0.380 0,332 *
120 0.198 2,278 0.680 0.469 0,880 0,349 0,306 0,283
200 0,150 1,761 *  (.363 0.302 * 0,237 0,219

¥

Table 3 -~ Comparison of the distribution functions of
Ll and L2 for N = 100’ n= ‘,5,10.% and 40

i p(L, -4) P(Ly 1)
n =4 n=§ n = 10 n =20 n = 40

0.22 0.0000 0.1294 0.1298 0.1053 0.0599 0.0200
0.24 0.0040 0.1644 0.1734 0.1701 0.1379 0.0882
0.26 0.1128 0.1998 0.2191 0.3541 0.23570 0.2304
0.28 0.5902 0.2352 0.2709 0.3541 0.4111 0.4551
0.30 0.9522 0.2760 0.3278 0.4591 0.5772 0.6930
0.32 0.9991 0.3218 0.3833 0.5631 0.7252 0.8655
0.34 1.0000 033663 0.4416 0.6641 0.8401 0.9547

48 1t is easier to compute s, then 8, the objeot should be to
find subsemple sige required to give ug Ly which does not differ much from
Li. In other words the subsample sise should be so chosen that the varis-
tion of L, about Ly 1s not much keeping an eye on the labour involved,

I.:i Bay be said to be approximately as efficient as I‘:L’ if

L
P( —E-_ ) (4.15)

L
is falrly large vhere  i1s a small quantity. To find thig probability we
Tequire the distribution of (La/iy).
Theorem: 1If R RO Xy be N observations on a varigte x whioh is
normally distributed with mean ' and standard deviation ’

then the distribution of



n = 12
R
2 = : (4.16)

g -2
131(‘1 - )

vhere X, is the mean of the first n observations and iﬂ
is the mean of all the K observations is that of a Beta

variste vith parmmeters %1 and o
Proof:

1§1 (x, = %p)® = 1;:1 (x - %)° +1£,1<x1 - Sy ) (0) Gy 3y
e 3, Ry 1a%+1x1 .
oo 3, = nini"%g-n) ¥ N-n

'i-’ﬂ';ﬂz%(in'iﬁ-n) and il-n';ﬂ"pciﬂ-n'.iﬁ)
Bemce (%, = 507+ (- w5, - 500 = 2 (5 - 5 )0

which 4s a *~ ~ with one degree of freedom, for

Jm (F -3 )  1a¥(02)

n N
Further T (x =% )° amd = (x, =% )% are - - with
AR e e S

n=1 and Menel degrees of freedom respectively, Z can be written as

™
n=1
Z= ; (4.17)

"nel T Eem

In this case and are independent. Hence the distribution

of Z is a Beta distribution with parameters 1 mmd 5"53 .



o
T~
-

& 2
L t
¥ -z- = P i = P.% n-1 . ...11‘
;1 2
= . ‘;(PtQ) (4018)
£2 .
5 p e
where x = :Zlotz , pnT' q&-—z—- and
2
(2 + )

= 4.1
x PV = T (4.29)

Table 4 ~ Giving the distribution function of

for ¥ = 100 and n = 10,20,35. Ly
L
P
1
n=10 R=20 n=25
.2 0.0002 - -
- .0011 - -
.6 .0184 0.0018 0,0003
.8 .1083 .0498 .0825
1.0 .3198 .3579 .3692
1.2 .6184 .8190 .8793
1.4 .8593 .9870 .9968
1.6 ,9639 +9999 1,0000
1,8 9944 1,0000
2.0 .9998
2.2 1.0000

s, STRATIFIED SAMPLING
Let us now conaider a case whers the population is divided into
strata and from sach stratum n independent and interpensirating sub-
samples have been selected, Let yﬁ be an unblased estimate of j*
the j th stratum total, from the i th subsample (3] 21,2 veee k3



1 =1y 2 eees n). The object is to set up eonfidence interval
for = J§1 g the population tot;al. For this two methods
have been suggested and their efficiencies compared, Let us
assums that ’13 is distributed normally with mean j and
standard doviation J « Then an unbiased estimate of . is

given by Y = L 2 2‘. Y In fact y is distributed normally

Bymam 4
2
with mean and variance 3‘ 12_3.1 j° The following two estimates
of this variance can be considered.
(1) of 7’—; (1,-1, ) (5.1)

1" j= 1»1 4

2 H
ad (1) o= ;é_—_g 3 (L, -1) (5.2)

Y Y S

vhere Y, = 131 L,; ad Y = qu L,

The variance of these estimates have been compared in section 3,
2

2
. 8
e J = for all j, then n(n-1) ;—-Jzi- and n(n-1) -;:-2—5 are
datribtuted as © with k(n~1) and (n-1) degrees of Sreedom.

Hence the statistics

I- and tg—z...:......_.
"

will be distributed as Student's t with (n-1) k and (n=1) degress

‘51=

of freedom respsctively, Ift andt are the percentage
points of ¢ distribution with k(n-1) end (n=1) degrees of freedom
respectively, then the lengths of the confidence intervals based on

8, and 3, are given by



.11 = %1 .8 and ﬂ.a = 2t2 . 8,

If k is fairly large t.‘l .= 1.96 and the table 1 gives the ratio
of E(iz)/h(li) for different values of n,

6, DETERMINATION OF SAMPLE SIZE
Let ¥ be normally distributed with mean ' and standard
deviation - . Suppose a sample of N units is dravn with equal

probability, Then the mean il based on the N observations is

normally distributed with mean , and standard error

/X
Let 53 be an unblased estimator of . 8 bassd on a sub-sample of
n units,
n
:_ A s = 2
8 = z ( ! - ! ) .
Dl i=1 i n
It is well known that the statistic
¥,
t =
s/ /R

is distributed as Student's ¢ with (n-1) degrees of freedom.

Using the tabulated values of the t-distribution, we can set
up a confidence interval for et any specified level of confidence
(1« - ). That is, if t . is the - . point of tl then

Y-
P m

The length L of the confidence interval is given by

t . = 1 - N , (6.1)

L=g¢ B (6.2)

v |
Suppose the sample sigze is to be so fixed that

&

P L = 1lae (6.3}



whore k 18 @ pre-specified quantity and (1-, ) may be taken as the

second level of confidence, the first lov_ol of confidence being

(- - ) in (6,1), It may be noted that P (L k ) is a function

of the sample sims end incresses with increass with sample sisze.
For finding the ssmple size which would satisfy both the

levels of confidences given im (6,1) and (6,3), we may proceed as

follows:
P L k = §-
1‘30’ P ‘ - = 1w -
2 2
(1“‘)’ P (n"l)ﬁ k K(nﬁ'l) T 1e ‘} (6.‘)

2
where C is the population coefficient variation end -m:é‘h-' is
a » with (n-1) degrees of freedom, Redusing (6,4) to an

ineomplete ' function which is alresdy tabulated, we get

P L k
vhere
2 frm—
2 ? 0 4248

For given values of (i- ), (1. ); ¢y n and kt"' oan

first get the value of u such that
I (up) =1~
and then get the required sample size

¢ 43t (6.6)
kz v nel

= u



The values of N for different values of =, ¢, k and n are belng
ecaloulated, In this chapter only ;specinon tables giving the value.

of N for 1= - =0,95, 1-' =0,95, ¢ = 1.0, k = 0,01(0.01)
0.1(0.02)0.2(0,05)0.50(0,10)1,00 and n = 2(1) 30, are being given.

So far, the procedurs of determining the sample size consisted in finding
the value of N such that ¢ ;_‘-__—- is equal to a spscified value.

The proposed procedure given muthia chapter is an improvement over

the previous procedure, since in the proposed proecedure, the

variation in the length of the eonfidence interval is also taken

intc account,




Table -~

95% when the population coefficlent of variation is 1.0.

Showing the sample size required to provide a 95% confidence interval
whose length relative to the

ter 18 lesz tham k with.probability

k

- 0.01

0.02 0.03

0.04 0.05 0,06 0,07 0.08 0,09 0,10 0312 0,14 0.16

R B R bRl EEbEBoen aauvews

2481 3176 620 3294 275 70171580824 992527 689255 506391 387706 306336 248132 172314 126598 96926

221 8193
105 5211
73 1487
58 5444
SO 2797
44 9770
41 2437
38 4762
36 3539
34 6616
33 2780
32 1425
31 1425
30 2787
29 5683
28 9103
28 3215
27 8057
27 3445
26 9327

55 4548 24 6466
26 3804 11 7246
18 2871 9 1276
14 6361 6 5049
12 5699 % 5866
11 2443 4 2975
10 3109 4 582%
9 6191 4 2752
9 0885 4 0393
8 6654 3 0513
8 3195 3 6976
8 0264 ' 359673
7 7856 |3 4603
7 5697 3 3643
7 3921 3 28%4
7 2276 3 2127
7 0804 3 1458
6 9514 3 OBYE
6 8361 3 0313
6 7332 2 992v

138637
65951
45718
38590
31425
28111
25777
24048
22721
21664
20799
20066
19464
18924
18480
18069
17701
17379
17090
16833

88728
42209
29259
23418
20112
17991
16497
15391
14542
13865
13311
12842
12457
12111
11827
11564
11329
11122
10938
10773

61616
29312
20319
16262
13967
12494
11457
10688
10098
9628
9244
8918
8651
8411
8213
8031
7867
7724
7596
7481

45269
21535
14928
11948
10261
9179
8417
7852
7419
7074
6791
6552
6356
6179
6034
$900
5780
5675
5581
5496

34659
le488
11429
9148
7856
7028
6444
6012
5680
5416
5200
5016
4866
4731
4620
4517
4425
4345
4273
4208

27385
13027
9031
7228
6207

23182
10852
7315
5854
5028
4498
4124
3848
3635
3466
3328
3211
3114
3028
2957
2891
2832
2781
2734
2693

15404
7328
5080
4066
3492
3123
2864
2672
2525
2407
2311

2163
2103
2053

1967
1931
1899
1870

11317
5384
3732
2987
2565
2295
2104
1963
1855
1768
1698
1638
1589
1545
1509
14735
1445
1419
1395
1374

8665
4122
2837
2287
1964
1757
1611
1503
1420
1354
1300
1254
1217
1183
1155
1129
1106
1086

1052



eI RY

RRERBBRER

5355

1508
8648
5706
2610
0334

5526

NN OO on?

6339 © Y494 16585
5477 2 9101 16369
4662 2 8739 16166
3927 2 3412 15982
3227 2 8151 15807
2584 2 1515 15646
2237 2 7661 15559
1381 2 7281 15345

10614
10476

10228
10116
10013
9958
9821

7371
7275

7185
7103
7025
6954
6915

5279
5218
5161
$109
5081
5011

4146
4092

3995
839582
3911
3890
3836

3276
3233

3193
3187
3122
3001
3073
3081

1843
2654 /,mu
26197 1796
2586 1776
2557 1756
2529 1738
2508 1729
2489 ' 1705
2455

1354

1336
1320

1277
1270
1253

1087
1023
1010
999
988
978
972
959



k

n 0.18 0.20 0.25 0,30 0.35 0.40 0.45 0,50 0.60 0.70 0.80 0.%0 1.00
2 76584 62033 39701 27570 20256 15508 12253 9925 6893 5064 3877 3063 2481
3 6846 5345 3549 2465 1811 1386 1095 887 6186 452 347 274 222
4 3257 2638 1688 1172 861 660 521 422 293 215 165 130 106
5 2258 1829 1170 813 597 457 361 293 203 149 114 090 73
6 1807 1464 937 650 478 366 289 234 183 120 91 72 59
7 1552 1257 804 559 410 314 248 201 140 103 79 63 50
8 1388 1124 720 500 367 281 222 180 125 92 70 56 45
9 iz73 1031 660 458 337 258 204 165 115 84 64 51 41

10 1188 962 616 428 314 40 19¢ 154 107 79 60 47 38
11 1122 809 582 404 297 227 180 145 101 74 57 45 36
12 1070 867 8§55 385 <83 217 171 13¢% 96 71 54 43 35
13 1027 832 532 370 272 208 164 133 92 68 52 4l 33
14 991 803 514 357 262 201 158 128 89 &6 50 40 3%
13 261 779 498 246 254 195 154 125 87 64 49 38 31
16 934 757 484 336 247 iss 150 121 84 62 47 37 30
17 913 739 473 329 241 185 146 118 82 60 46 37 30
is 892 723 463 321 236 81 143 116 80 59 45 36 29
12 874 708 453 315 231 117 140 13 79 58 44 35 28
20 858 695 445 309 237 174 157 11 77 57 43 34 <8
21 844 684 438 304 223 171 135 109 76 56 43 4 27
22 831 673 431 299 220 1é8 133 108 75 1] 42 33 =7



a 0.18 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.60 0,70 0.80 0.90 1.00
P 819 663 424 295 317 166 131 106 74 54 41 33 27
24 808 655 419 291 214 164 129 105 73 53 41 32 26
25 798 647 414 287 & 162 128 104 72 33 40 33 26
26 789 639 409 284 209 160 126 102 71 52 40 32 26
27 781 632 405 281 206 158 123 101 70 52 40 31 =
28 718 626 400 278 204 156 124 100 70 51 39 31 =~
29 768 622 898 77T 203 156 123 100 69 S1 39 31 =~
30 758 614 393 273 200 154 121 98 68 50 38 30 -~
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Chapter 7

SELF-WEIGHTING DESIGN AT FIELD AND TABULATION STAGES

1, INTRODUCTION

A ssmpling design is said to be self-weighting if the weights
to be given to the values of the selected sampling units are the same.
The technique of meking a design self-weighiing at field stage (that
is, selection of units for enquirxr in suoch a way as to make the
woights the same) is used in many of the surveys because of the
considerable saving in tabulation time. Further it is also believed
that for many of the situations commonly met with in practice, a
self-weighting design would be more efficient than a non-self-
weighting design. Hansen, Hurwitz gnd Madow (1953) have considered
this technique in detail in their bdook.

In this chapter, it is proposed to present the technique of
making a design self-weighting at field stage and to discuss its
implications in large scale surveys. The present author has investi-
gated the question of making a design eself-weighting at tabulation
stage in collaboration with Mr. V.K. Sethi and the results of this
investigation are presented in sections 8 and 10 of this chapter.

A number of procedures of making the design self-weighting at tabula-
tion stage have been considered. The effiociencies of these procedures
are studied empirically and the results of this study are also given

in this chapter.
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2, SELF-WEIGHTING DESIGN

In sample surveys the estimators commonly used for esti-
mating the population total of a variate ave of the fomm
| S MYy
where Yy is the value of the ith seleoted ultiimate sampling unit
with w

i
The weight v depends on the selection and estimation procedures.

as its weight and _4is over all the sample observations.

These weights are known as 'multipliers', *'inflation factors' or
‘raising factors' since they are used to inflate the sample obser-
vations to get an estimate of the population total. For instance,
in case of equal probability sampling, with or without replacement
or aystematically the multiplier is common for all the selected
units and is given by -g- y the inverse of the sampling fraction,
whereas in case of pps sampling with replacement the multiplier
differs from unit to unit and for the ith seleoted unit it is

11 where Py is the probebility of selection. In a two stage

n p,
design the multiplier is of the fom L R R B where m, i3 the
n P:l mi pi;j i

number of second stage units selected in the ith first stage unit
and Py j is the probability of selection of the jth second stage unit
in the ith first stage unit.

In large scale surveys where a number of characteristic are
1o be estimated the calculation at estimation stage becomes dif-
fifﬁult and time consuming if the multiplier varies from unit to unit.

Henoe from the consideration of ease at tabulation stage it is very



desirable to have a sampling design which gives rise to a single
common multiplier for all the sampled units. Such a sampling
désign is called a 'self-weighting design' because little effort
is necessary in this oase in weighting the sample observations.
Further it is believed that a self-weighting design which utilises
all the available information is more efficient than other deasigne
since it gives the same chance of selection to the ultimate
sampling units,

It is possible to meke a design self-weighting either at
the field stage or at the tabulation stage. In case of the former,
seleotion of units at the ultimate stage in a rulti-stage design
is 80 arranged as to make the design self-weighting whereas in
the latter case some technique ;s devisod at the estimation stage
to make the sampling units have the same multipliar. Usually it
would be desirable to ddopt the former procedure in preference to
the latter. The latter procedure is to be adopted only if it is
not possible to make the design self-weighting at field stage due
to some operationsl considerations.

Though it would be ideal to have one common multiplier for
all the selected units, there would be considerable saving at
tabulation stage even if two or more common mltipliors}inntead of
one are to be used provided the number of such common multipliers
is fairly small., In the latter case the design may be said to be

partially eelf weighting. It may be mentioned that the latter



situation where a small number of common multipliers are to be
used instcad of one such is likely to arise more often than the
former situation due to the restrictions usually imposed on the

design by operational considerations.,

3, STRATIFIED UNISTAGE SAMPLING
In a stratified simple random sampling with or without

replacement or systematiocally, the estimate of pppulation total

Y i8 given by
L A

y- i.i ;:;“ ;.( Tat (-1
where Ns and n, are respactively the number of units and sample
size in the sth stratum and Yes is the value of ;ho ith selacted
unit in that stratum. Hence the multiplier is -;!- +» If the
total sample size n is fixed, the design can be u:dc self-woighting
by sdopting proportional allocation to the strata, for in that

case

N
- (3.2)

This shows that the common multiplier is the inverse of the
overall sampling frauction.

If no information is available sbout the variation in the
strata, proportional ellocation which makes the design self-weighting
is likely to be the most efficient. Compering the variances of the
eatimator in case of equal allocation and proportional allocation

under the assumption of equal probability ssmpling with replacement



i
&
e

in the strata we get,
k 2

1 - . .
- - - - S
v 2 g=i (k H. 11) N'

v.q orops . (3.3)

whore 2 is the variance in the asth stratum, This shows that
s

mep‘ is boi;sg ‘j:to be less than V.q gsince the variance in larger
strata can be expected to be more than in smaller strata,

It is to be noted that use of self-weighting design imposes
restrictiona on the design. For instance in the above case, the
sllocation has to be proveriional even if we have knowledge about
the atrata variances since use of optimum alloeation makes the
design non-self-weighting. In such a case s deoision regarding
use of provortional allocation and optimum allocation is to be
areived at after considering the rolative magnitudes of the gain
in tabulation cost and of the loss in precision of the estimator,
Further, adoption of ss:lf-weighting design makes the work-load
differ from stratum to stratur which may not he dasirable from
oparationsl considerations.

If the numbers of units in the strata are small, then there
/vodld be rounding off errors in having proportional allocation.

; This can be avoided in a convenient way by selecting the units in
the different strats systematically with interval 1 and randon
strate from 1 to -g- + It may bs noted that stratified proportional
ellocation sampling can be schieved if the sample is selected

syatematically from the whole population after arranging the units



stratum-wise. Approximstely equal work-losd in the different
strate ocan be achieved by suitably changing the ssmpling inter-
vals to be used in them. But when this procedure is adopted the
design can only be partially self-weighting end not perfeotly
self-woighting. In other words thare would not be one common
miltiplier but a emall number of multiplier would have to be
used.

The following example would clarify the points mentioned
above. Suppose there are 6 sirata and 162 units in the popula-

tion. Let the sample size be 20.

Table 1 3 Showing the values of sampling intervael and the
expected values of the samwple size in the dif-
ferent strata for two schemes.

stratua

scheme . 1 2 3 4 5 6
noe. of N
amite °© 52 W 25 @ 12 3
sampling

i) self-wei- interval
ghting but 1

B 8.1 8;1 8.1 8.1 8.1 8.1

unequal E(

vork-load n,) 6.4 1.7 3.1 3.5 1.5 3.8
/1) partially modified

aelf—migh— Iﬂ 16:2 4005 8.1 8.1 4005 501

ting with

equal work- modified

losd of E(n,) 3.2 3.4 31 35 3.0 38

about 3 units
per siratum

From the above table it may be seen that in the first case

the alloocation is proportional and there is one common multiplier
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though the work-load varies from stratum to stratum where as
in the seoond case there are 3 different multipliers to be used
and the allocation is not proportional but there is little
variation in work-load. The former design is likely to be more
effiolent than the latter. But the latter may have to be adopted
if there is considerable advantage in making the work-load
approximately the same in the different strata.
If the sampling interval is not an integer, it is possible
to seleot a systematic sample with this interval by associeting
& suitable number of numbers with the units. For instance if
the interval is 8.1, the interval 81 can be used after associating
10 numbers with each unit. For the sake of simplicity we may
round off 8.1 to 8 or 9 with probabilities 0,9 and 0.1 respectively,
In a stratified design where the units in the strata are
selacted with probability proportional to a given measure of

size x with replacement, the estimator of the pepulation total Y

is given by n
x X, - Tm o)
Y = ————— T c—— 3’4
=1 n i=1
8 a1

with the usual notation. If the ratio ;‘% can be readily
observed in the field or oan be reported ;y the investigator
without mjoh diffieulty, the design would become self-weighting
if the allocation is done in preportion to x‘, the total size of

the sth stratum. For instance, in case of a Crop survey y snd x



may stand for ares under a particular crop and geographical area

b 4
respectively in which case the ratlo ;5-1" is the proportion of

sl
the area under the crop in the sampling unit which may be a
plot or field and can be easily reported., In this case the egti~

mator would be
k s

Y = ,xx;_ ."-1_ ;‘1 Pyt (3.5)
where p i is the proportion of the ares under the crov in the
ith selected unit of the sth stratum, X is the total geographical
area and A the total sample size. In a socio-economic survey
where the single unit is a household y and X may stand for expen-
diture on a given item and houschold size. Then the ratio to be

reported is per capita expenditure for a household.

4, STRATIFIED TWO-STAGE SAMPLING
In a stratified two stage design where the first stage

units are selected with probability proportional to a given
measure of sise with replacement and the second stage units are
selected systematically an unbiased estimator of the population

total Y is given by
. ko 1 . e 3 ‘li
Y = — — '

1
s=1  Ps d=1 Pei Tai gmt

|2

-

where the subscripts s, 1 end j stand respectively for sth stratum,

i1th selected forst stage unit and jth selected second stage unit,



n is the number of first stage units selected M and m are respec-
tively the number of second stage units in the population and
sample respectively and y is the value of the characteristic under

consideration. Hencs the multiplier is

.

(4.2)

)

1
s si si

It may be noted that even if the first stage units are selected
pps systematioally and second stage units are selected with equal
probability with or without replacement the multiplies remains

the same as thati given above, For instance, in a socio-economic
survey one may select the village with probability proportional

to population with replacement or systematically and in the second
stage, seleot the households with equal probabdbility with or
wi.thout replacerent or systematically. Similarly in case of crop
survey villages may be seleccted in the first stags with probability
proportional to the gurvey nmumbers with replacement or sysi-mati-
cally and in the second stage survey numbers msy be selected with

equal probability with or without replacement or systematically,

y To mske the design self-weighting we have to fix L the

P

number of sesond stage units to be selected in the ith first stage
unit in the sth siratum such that the above multiplier is constant
C. It may be seen that for any given constant C the design becomes

self~-weighting if
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sl - (4.3)

From thie it is clear that if C is made large the sample size in
terms of the number of second stage units would be reduced since
my would be small and similarly if C is taken to be small then the
number of second stage units in the sample wopld be larger than the
requirement. Hence C has to be determined so as to 8ot the required
sample sise on the average. If a sample of m second stage units is

to be selected on the average from a selected first stage unit, we

get,

X By X %
s . i ¢ n ,., p *
s=1 i=1 g=1 g im1 sl
and hence
n
“k» LR »,' Mﬂi
S n ‘ p
gwi 8 i=1 8l
¢ = == (4.5)
TR TR D | % ST m RIEEI A S S e . L T T

TR IO SN By A Lo S

Thia ahowa "‘\t;mt the constant C h&uld be 'l;a.l;;n u the ‘i.nv‘\rlo of |

the over all sampling fraction for f£he second stage units since the
numerator in (4.5) is an unbiased estimate of the total nuamber of
second stage units. Onoe C is determined, the design oan be made
self~woighting by selecting the required number of second stage units
frén the selected first stage units using the sppropriate sampling
intervals. If the current values of Mii are not available, the
valu=s of usi for e previous period may be used as an approximation

for determining C.



The sampling interval to be used in the ith selected first

stage unit in the sth siratum is given by

¥
8i
T ™ T2 = Cny Py (4.6)
[ §

In this case the investigator would be supplied with the interval
and the random start from 1 to I_, (and not from 1 to "-1)’ The
sample of second stage units would be selected with the specified
random start and sampling interval. It may be noted that for this
procedure it is not necessaxry to know the M . in advance. Of course

si
the sample size actually obtained would depend on the M.i'a. if I.

i
i8 not an integer, it may be suitably rounded-off as mentioned
earlier,

It may be seen .hat in ocase of stiratified two etage design
where the first stage units are selected with pps and the second
stage units are scleoted with equal probability, th. design can be
made self-weighting with equal work-load in the selected first stage

units by allooating the sample size o the strata in proportion to
the total siratum-size and seleoting the seme number of seoond stage

units from each selected firat stage unit. With this type of design,
the ﬁ;;—load in a stratum can be equalized by forming strata with
approximately the same total sise.

The ahove discussion shows that it is possible to make a given
design self-welghting by suitably determining the sampling interwval

to be used in the seleocted ultimate stage units and to ensure at the



same time the yequired sample sigze on the average. Here also two
or more common multipliers may be used if found necessary from

field operational comsiderations,

5. SELP-WEIGHTING DESIGN AT TABULATION STAGE

One of the mein difficulties in making the sampling design
solf-woighting at the field stage is that the work-load in the
penul timate stage units becomes unequsl which is not desirable from
the point of view of administrative consideration in large scale
surveys. The methods which mske a design self-weighting at field
stage ensuring at the same time equal work-load within penultimate
stage units impose rather severe restrictions on the allecation and
selection procedures. Because of these considerations it may not be
always advisable or feasible to adopt a self-weighting design at
field stago.

Suppose N units have been selected from s pepulation

i
Yy be the multiplier and the value of the characteristic of the ith

sccording to u% specified non-self-weighting design. let w, and

selected sampling unit respectively. Then the estimate of the
population total Y for this characteristic is given by ;31 VA (=Y).
The problem here is to find a technique by which the set of multi-
pliers can be replaced by a smaller number of multipliers such that

the estimate remains unbiased and the increase in variance is not

much or if the estimate becomes biased the bias is negligible.



6. ROUNDING-OFF TECHNIQUES
The following five proceduree of meking the design solf~
weighting at the tabulation stage are considered:

(1) rounding-off to the nearest hundred, thousand or ten
thousand}

(11) substituting each multiplier by the mean of the mlti-
pliers;

(111) optimum set of rounded-off multipliers;

(iv) sub-sampling with probability proportional to the
maltipliers with replacement;

and (v) sub-sampling with probability proportional to the multi-~
pliers systematically.

The procedures (i) and (ii) give biased estimases with possibly
decrease in the variance of the estimate under oertain sircumstances,
while the procedures (iii), (iv) and (v) give unbiased estimates
with some increesse in the variance. It may be mentioned that in
some cagcs the procedures (1) and (v) are being sdopted in some
actual surveys to expedite the tabulations.

Pmmdwe\‘jg;) + Suppose we have a series of four digit multi-
pliers. The usual procedure of decreasing the number of multipliers
is to round-off the multipliers to the nearest thoussnd. Thus the
N four digit multipliers are replaced by a set of ten rounded-off
multipliers. The estimate obtained by using this method will obviously

be biaged. The bias depends much on the rmltipliers as well as the



velues of the characteristics In praotipe it is difficult to get
an idea of the sign and magnitude of the bias unless one works out
the biassed estimate as well as the estimate using the actual
multipliers,

Procedure (1i) s+ If this wethod is adopted, the estimate is
given by the product of the mean of the multipliers and the sum of
the values of the charscteristic. This estimate is also biased,
but tﬁe bias will be negligible if in the sample, the co-variance
of the multiplier and the value of the selected unit is very small.
Por instance in a particular per capita expenditure class, it is
felt, the expenditure on cereals, food and total expenditure of a
household might not depend much on its multiplier. In other words,
the expenditure on cereals, food and total expenditure of a house-
hold, belonging to a partioular per eapita expenditure class are
expected to depend on the household sise, the geographical, the
olimatio and the economic conditions of the locality and not so much
on whether the housshold is in a large village or a small village.
If only the e-tiggte- of expenditure on cereals and such items are
required, the procedure would be to classify the housshold according
to the per capita expenditure class and then find the biased esti-
mates separately for all the classes. The sum of these biased
egtimates will be the estimate of the popﬁlation total and the bias
can be axpected to be small. It may be noted that in this case the
number of multipliers will be equal to the number of per capita

expenditure classes.



In this comnection, it should also be noted that this method
i® not to be used indisoriminately as there may be characteristics
which are related to the multipliers. This method can be used only
if we are fairly ocertain that the value of the {tem in which we axre
interested is uncorrelated with the multiplier.

2xocedure {;L;i} t A general solution will be to round-off
each of the multipliers to s certaln nusber of weights whioh may be
called rounded~-off multipliers with such probabilities that the
expeoted value ies the original multinlier. As thege weights are
at our ohoice, we can choose them such that the incrsase in variance
is mininised, Purther a desired increase in the variance at the
tabulation stage can be gnot by taking a sufficient mmber of
roundad-off multipliers in the optimum fashion.

As tho optimum solution for a specified rumber of rounded-off
multipliers depends on the value of theo chsracteristic in question,
in practice it is qgt nossible to get the optimum solution. Of
sourse some method brhioh will give us a solution near about the

optimum osn be devised. Another diffioulty is that the determination
of the approximate optimuz rounded-off multipliers becomes more and
more difficult as the number of such multipliers is sought to be
increased. This proocdure is considered in detail in section §.
Procedure (iv) t+ The method consists in taking s sub-sample
of n' units from the field samnle of size n with probability propor-

tional to the multipliers. The sum of the values in the sub-sample



multiplied by & constant (the ratio of sum of multipliers to nt)

n
glves an unbiaged estimate of vy The increase in variance
iw=1

at the tabulation stage is given by

" g 2 n 2
= (4 %) T PR AAN (6.1)

o2 £

where Ef is the expected value over the field sample., It ocan be

seen that this method results in rounding-off of each of the multi-

7. Wy
n'

pliers to ome of the set of multipliers (J Yy § ™ 0y1,2yesen!
with ocertain probabilitles such thai the estimate remains unbissed
and the sum of the round-off multipliers in the subessmple is equal
to the sum of the actual multipliers.

If inatead of sub-sampling, we round-off each of the multipliers

o
t0 one of the set of multipliers (J ;,' ) § = 0,1,2, «ou n! with
' v, 3 w. ‘e
probabiliies ( *')( = )3(1 - 2_y%'=J  then the estimate is
J i 'i o '1
unbiaged and the increase in variance is given by
n
1 n n 2 2
B, -  w 2 S oy (6+2)
fn g 1 A i1

Gomparing{(&‘!) snd (6.2) we see thei the expression (6.2) is gréater
than (6.1) since v yi'a gre positive in genersl. Hwmoe sub-sampling
with probability proportional to the multipliers with replacement is
more efficient than the corresponding randcmising method.

Procedure (v) ¢+ In this method the units in the field sample are
arranged in = certain manner, the multipliers are cumulated and a

systematic sample is drawn with the interval wi/n' . As in the
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case of pps with replacement, the estimate is given by the product
of the sum of the wvalues in the sub-sample and a constant which is
the intarval. 4n expression for the increase in variance is dif-

fioult to find in this case. This mothod results in rounding-off of

n' v - v
each of the multipliers (say 'i) to either ——— or
']
n! '1 '1
i I N - with certain probabilities sueh that the esti-
w
i

nate remeins unbinsed and the sum of the rounded-off multipli xs in
the sub-sample 1s equal to the sum of the multipliers in the field
sanmple.

A sort of ‘without replacement' element is present in this pps
systematic selection. For when the units are arranged at random and
are equal, then the above procedure amounts to taking a simple random
without replacement, while in that case ths pps with replacement
procedure will smount to teking a simple random ssmnlo with replacement,
Farther drawi?g of a sub-sample in the case of pps systematic is
likely %o tak; less time than ia the case of pps with replacement as
in the Tormer oczse we need not refer to random number tables more than
once. Alsc by proverly arranging the units and devieing a suitable

balancing progedure the estimates can be improved umon in pps syste-

mpatic method.



7. EPFICIENCY OF SELP-WETGHTING DESIGN
The following notation is useds

¥ &+ number of villages in the pepulation

t " " " " " gample
Hi s " " houscholds in the ith village
n, " » " oo " " included

in the sample
Py s probability of selacting the ith village

hi 1 average household size in the ith village
h

M

3 " » m w " nopulation
b = M
Y i : vslue of the characteristic for the jth household of
the ith village
AR
i = E%i 3‘1 |
: v
- i
R

)
Suppos: the sampling design i3 & ‘wo stags one where the first

stage uniias are gselacted with ppp with replacement and the sacond stage
units are sclected with oqual probability. The following three varias-
tions of tha above design are considered:

(1) n villages are sslected with ppp with replacement and u households
are selected from each seleoted village with equal probability without
replacement.

(11) n villages are selected with ppp with replacement and with

o
na

(where = ) as the sampling interval, the households are

geleocted after arranging them at random.



(111) The sample is sclected as in (1). Then the weights are
rounded-off to two points and = at random where
and
The estimates and the variances in the above three cases are

given by

whers stands for summation over all households whose weights
are rounded-off to - and for summation over the rest of the

sample households.

=

where - 18 the coefficient of variation of the charscteristic in

the population in the ith village and

It is difficult to aompare the above variagnces in general and extensive
enpirical studies may be necessary before one method is preferred to

snother in particular cases.

Empirical study
Data used : 1951 census data for Siruguppa tehsil of Bellary District.
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Characteristics : i) Number of males in M/L class I (y,) 19901

)« oo0oowowonn 0 (y,) 5549

- = 0,70 3 - 1,25
characteristics (1) charsoteristic (11)
c=1 m=1 ow2 me=i e=1 m=1 0=2 m=1
v, -V
- x 100 16. %1 9,26 10.82 T.T1
1
v, -V
'l'—v“"'_l x 100 13.46 5046 8.14 2.88

whare °1' ¢ for all 1.

8. RANDOMISED ROUNDED-OFF MULTIPLIERS
Suppose y, and a (L =1, 2, vosy N) denote the charscteristic
value of the ith sample unit and its corresponding multiplier such
that :, 8, ¥, 1s an unbiased estimate of the population totel Y.

The problem is to find a set of n rounded-off multipliers

bi » i= 1, 2' eney Ny

(n being considersbly smaller than ¥) such that

N N
B r, ¥ - - ay (841)
fe1 i1 o 171
‘N
and v ri ¥y is minimum



where r, 1is a random variable taking the valuel{bi} with certain
probabilities, E stands for the conditional éxpcetation glven the sample
of N units and V stands for the conditional variasnce given the sample
of N units. Further a balance is to be struck between the increase in
variance and the smount of labour involved in obtaining and using these
rounded-off multipliers.

A necessary and sufficient ocondition for the equation (8.1) to hold
for all values of y is that E(ri) = a, for all 1. Suppose the sct of
n rounded-off multipliers bi' is given and the range of this set
includes the range of the original multipliers. E(ri) will be equal to

a, and V(ri) will be minimum if r, takes #nly the volues b and b

i i k k+1

nearest to s, on both sides of it (hk 8, - bk+1) with probabilities
Pt = % 8 - by
Ty sd % (8.2)
k+1 k k+1 k

respectively.

With this procedure of allocation of the rounded-off multipliers
to the original multipliers, the values of the rounded-off multipliers
which would minimise the increase in variance of the estimate are given
by

b,*a.' ’ bn-aﬂ and
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b < (a b 24
) 3e1 €% G (B =)y R
& (7'1) < £ b (u <b Iy
bd < 8y < bj-t-l (bj+1.’ bj—l) I A J+l
(3'2’50”‘$ n"’l) soe (303)

where ay and g, 8re respectively the smallest and the largest multi-
pliers. 1In praotice, all the units having original multipliers
between bj-l and b 441 may be arrenged in decreasing order of the
multipliers. Then the cumulated sums of yi for an auxiliary or key
characteristic are to be determined from the top ajd the multiplier of
that unit where the cumulated total is equal to or just greater than
the value of the middle expression in (8.3) 1s to be taken as the value
of bd' The actual solutioms for bj J=2,3 ... (u=1) are difficult
to obtain if n is greater than 3. Wwhen n is greater thean 3, the follow-
ing iteration process is suggested. Suppose n is 4, First the optimum
set of three multipliers bl’ bz' 'b4 is determined as indicated above,
B, and b, are the smallest snd dargest of the original multipliers res-

pectively and 'hz is the optimum rounded-off multiplier between bl and » 4

obtained from @7). Using (13) the optimum rounded-off multiplier b, bet-

3
ween b, and b4 is determined. Them the optimum rounded-off multiplier
b'2 between bl and b, is obtained, Between b'2 and b4 an optimum rounded-
off multiplier I:o'3 is found out. This process is repeated till two
succéssive values of the second and third rounded-off multipliers agree,
This process can be extended to the case of n greater than 4.

The oriterion for the replacement of the multipliers by a smaller

number of roundsd-off multipliers should be the increase in the variance



of the estimate and this increase is just the expected value of the
|

variance of 2 ryg over the tabulatiom stage. Hence the variance
i=l

of g (riyi) over the tabulation stage is an unbiased estimate of the
ineri;ic in variance of the estimate.

The following practical method would help in finding the minimum
aumber of rounded-off multipliers required to achieve the desired pre-
cision. Since the rounded-off multipliers may be determined one by an
iterative process, we mey start withn = 3. Forn = 3, the value of the
second rounded-off multiplier is found out so as to minimise the varance
using @3). This together with the largest and the emallest multiplers
in the sample would constitute the set of three rounded-off multiplicrs.
The estimate of the inorease in variance is found out from this sample
a8 cvagmbioned . oleve., If this is greater than the value decided
upon; one more roundedeoff multiplier is to be isken, This will be
chosen in that part which contributes more to the variance then the other,
in such & mamer that this contributiom to the variance is minimised,

Phis process is continucd till the desired variénce is achieved,

'S, ILLUSTRATION ( I)

To try out the techmique developed in sectionm 8, the data on
consumer expenditure on cereals colleched in a large scale survey in
Madhya Pradesh were used. Here 8y and A stand for the actual
multiplier and expenditure on cereals of the ith sample unit,

The &,'s varied from 20961 to 78993. Hence these two numbers

were taken as the two extreme rounded-off multipliers bl and b3



respectively. For {inding & guitable value for b,é, a subesample of
size 30 was ’sakcn fpom the esmple with equal prcbability. Using the
techmique developed in section 3, the valus of b, was found o be
57600, The increase in the variance of the estimate of total expen~
ditwre on cereals was caloulated and was found to be 6.67 percent of
the estimate of variance of g‘, N 8,7y ¢ This meant only 3.28 percent
increase in the standard orroi-of the estimate and the samé amount of
increase in the coefficient of variation.

o test the utility of the additional multiplier bz, the increase
in variance was caloulated on the basis of the two multipliers b, and
b,. This turned out to be apout 170 times the incre2ss in verisnce when
three multipliers were uged. Tris demonstrates that considerable reduce

tion in the increase in variapce has been nohieved by the additi-nel

nultiplier bz *
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10, ILLUSTRATION (X)*

A8 it is not possible, in general, to compare the efficiencies
of the procedures suggested in section 6 to reducs the cost ut the
tabulation stage, &an empirical study wes conducted to agsesa their
merits and demerits. For this purpose the date on consuuer expendi~
ture statistics collected in a large scale sagple suxrvey ia Uttar
Pradesh were used. The objeet of this study was to cimpire the effi-
ciencies of the pfooodurw (i), (iv) ond (v) @8 well as their practi-
cability in lsrge soale oparationas, in esiimating (a) expenditure on
cereals, (b) expenditure on food, and (¢) total expenditure by per
capita prendituro classes.

The design of the survey wus a stratified three stage one with
tehsils as first stagye wnits, viillages as second stage units and
households as third stage uniis. From each stratum two tehsils were
selcoted with probsbility proportional to population (ppp) with replace-
ment, From each selected village about five aouseholds were selacted
systematically with a random start for the Consumer :Ixpenditure Enquiry.
It is to be noted that for each stratum total we get two independent
estimates one from each of the two tehsils seleoted from that stratum.
The sample households belonging to the teheils selected firat will be
considered as belonging to field sample 1(31) and the other sample
nouseholds will constitute field sample 2(F,).

The sample households belonging to each of the field samples were
stratified into fourteen classes on the basis of their per capite total

expenditure, The classes considered given below:-

¥ Part of National Sample Survey Working Paper HNo. 6 tSelf-welghting
design ot tabulation stage' by Murthy, M.N. snd Sethi, V.K.

+
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&,113 45 6 7 ais_&_,n 2 13w

per
expen~

aplta 0-5 5-8 8-11 11-13 1315 2510 10-21 2124 24-28 2834 34-43 43555 55-T5 T5-

diture

in Be,)

In each por cspita expenditure elsss the houssholds were arvanged
sceexrding %o the village, tehsil and siretum to whish they belonged,

4 the per eapita expenditwre, as such, was not given in the i
ssheduls wo had %o clagsify the howsebold YW making use of the total
expenditure and the househeld sise, A methed is given belew Wy whieh
the howseholds ¢an de olassified imto the par sapita twm olassus
without actumlly dividing the total expendiiure by the household 'l:lﬂ;
™he cm&: were given ocpies of a table giving the maximum total w
sxpenditure sorresponding to the different per capita expenditure
clagses and household sises.

Por procedures (iv) and (v) from eseh per capita expenditure alﬁa
s sample of size equal to the mumber of houssholds im that class was
selected o estimate the totsl expenditure on oereals, food and total
expenditure, This sample sise wes taken in eteh class hecsuss tle
comparison of the efficiensies of procedures (3v) and (v) with that of
procedure (ii) eoomes easy, e variances of the estimates of
%..1 8,7, €% by uaing )m«ima (iv) amd (v) were csloulated aasuming
the field sample to be the population. Thess variances oan be Consie
dered as the estimstes of the ineresse in the varianees of the estimate



of populutiom toluls of the actual popul-tiom, The biss of the
estimate bised on procedurs (ii) was al‘:o calculated,

A glance 2t coluwens (3) and (4) of Tables 2, 3 and 4 show that
the pps systemetic estimate is much better than the pps with replace-
ment estimate in a1l the cases. It is possible to improve upon the
pps systematic estimate by suitable arrangement of sampling units., So
if one ig fairly sure that the arrangement of the sampling wnit is good,
then the pps systematic method will be superior o that of pps with
replacement. Of course in the case of pps systematic sampling, the
varianoe camnot be estimated from one sample, This diffieulty can
be overcume by taking XMM two or more samples with independent random

starts,
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Pable 2 s Showing the precision of different methods of estimation
ot tabulation stage - (expenditurs on cereals),

per capita gubecazple 1 sub-gample 2
expenditure no. of bies . GeVelefs) OsVe NOs Of bias ... CeVe = CoVe
clase ;3:§i3 % 875 (") §3§') 322§i° R giéi) §;/')
holds  (i1) _ holds (ii)

(0) (1) (2) (3) (&) (1) {2 Gy (4
1 4 27.41 43,38 15.47 9 2.47 15.00 .82
2 18 «8,62 15.44 3,15 19 ~1.47 16.24 4,70
3 55 -2.84 7.16  0.84 43  0.76 8,78 4e86
4 31 1.15 8.74  1.21 41 =2.60 30,07 5462
5 38 =3.07 7.97  1.00 45  =1.98 7469  3e12
6 58 -1.89 7.60 1.1 52 =4.10 1.26 2,52
(| 33 -4.70 8.01  1.88 38  -5.48  11.60 4.64
8 33 ~9.73 10,40  1.63 24 =53 19.46  5.58
9 23 6.49 11.81 2.83 21 =0.31 15.7T 13.06
10 19 5,61 17.44  2.52 22 -0.% 15.44  7.26
11 24 2,74 13,06 1.72 15 4.11 22,29 13.72
12 10 26.96 24,28 3.1 5 =439 34.86 12.50
13 8 1.41 liiﬁﬂ 2.43 5  =2.91 21,29 11.00
14 4 b4 95 20.31 3.53 2 1.29 33,38 T.96
all 358 ~3436 3.10 1.03 341 -2.36 5¢19  1.94

c.ve t coefficient of variation
(11) substitution by mean of the multipliers
(iv) pps with replacement

(v) pps aystemstic



Pable 3 s Showing the precisi:in of differsnt methods of estiwation

at tabulation stage - (expenditure on food).

per sub~sample 1 subesanple 2

e s ME_ g a0 ST/ O i (G ()
diture h;uso saiyi (v) ~ house Zag¥y (v)  (v)

holds (i1) ho1ds
(0) (1) (2) (3) (4 ‘(1) (2) Gy (4
| 4 33470 47.17 18.0T 9 1,28 18,32 9.05
2 18 =525 12.87 1.64 19 0138 10.84  2.04
3 55 ~0e46 5.76 0.92 43 1,96 .61 3.8
4 31 0.18 Fo25  0.95 41 ~0,31 24,46 4452
5 38 ~0.05 §:25 .91 45 0.93 5085 454
6 58 1.97 6436 0493 52 2,24 5033 2,74
1 33 «3.15 7.52 1.69 38 «0,37 8.2¢  3.88
8 33 ~9.87 9.68  1.57 24 ~2.00 16.84  6.04
9 23 11.86 10.95  3.63 21 3,86 16,82 6,06
10 19 ~4437 12,24 2.4 22 2,10 11.93  4.68
11 24 2,08 16,71 2.51 15 5.12 23.17 16,04
12 10 =37.53 30,04 2.48 5 -3-44 21.92 6,98
13 8 ~5461 19.99 3.40 5 ~4.19 27.07 10,60
14 4 145 18.25 2,50 2 1.00 24,45 6.22
all 358 ~2.96 3,07 1.6 341 -0.00 472 1.66
G.v. 1 coefficient of variation
(41) 1 substitution by mean of multiplier
(iv) 3 pps with replacement

(v)

s'pps gystematio
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Table 4§ s Showing the precisiovu of differeont methods ol egtimation
at the tabulstion stage (total consumer expanditure).

per sub=gunple 1 sub=gsanyle 2
i R ‘g:}'b Sde ooe 0 Uy ()
diture house 171 (iv) iv) house i1 (iv) (v
holds (i) holds

(0) (1) (2) (3) 4 ) (2) (3) (4)
1 4 33433 46.97 17.90 9 2.03 20447 10.62
2 18 =5.04 12,31 1.85 19 =0.4&2 10,84 2.42
3 55 =0429 5.,40 0.85 43  -1.68 Ge62 3490
4 31 0.42 T.15 0.85 41 -(.28 243,31 12,16
5 38 2438 6.58 0,97 45  1.19 7.05  5.22
6 58 2,40 6.55 1.05 52  ~3.68 6466 2,50
7 53 -3.51 7.5  1.87 38  -1.88 175 3.2
8 33 -8.72 9.93 1.64 24 -1.78 16,65 6,24
9 23 3.30 11,91 2.44 21 12,44 16.22  7.52
i0 19 =2 52 1l.2% 2.08 22 1.69 11.29 6,14
11 24 2.84 11.20 3.18 15 2,52 21.79 11.10
12 10 -30.33 25.46 3.19 5  -5.14 29.41 10.30
13 8 ~1.34 20,46 430 5  -6.78 48.T5 23.64
14 4 17.17 %.86 10,66 2  1.43 55,22 8,86
all 358 -1.63 3.61  1.62 341 0.13 4.89 2.34

6.v, ¥ coefficient of variation
(11) + substitution ty mesn of the multipliers
(iv) s pps with replacement

(v) + pps systematie
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Ths comp riscn of the procedure (1i) with that of pps with
replacement sihows that the former is t‘o be preferred., But this method
has some piifails. This will be & good method, =8 has been alrecdy
pointed ocut, only i the correluation coefTicient betwesn the waliipliocrs
and the veriaite values is very nearly egusl to zero, The sysien tic
ppe estimate compsred favourtbly with this blased estimute. osines he
pp8 systemasric method has the added advantage of being unbiased, cue
is justified in prveferring that to the bizsed orw.

The difference between the field sample estimates gives us sn
idea of the variability of the estimate. It may be noted th:t ccmpured
to the vuriability of the estimate, the increase in variance at ihe
tabulation stage is negligible,

Time St

To study the relative meri:s and demerits of the procedures (iv)
and (v) from the point of view of operational convenience, time records
were kept for the different operations involved in applying the metnods

(4v) and (v) in practice, 'he resulis of this study are given beiow,

Time Recard

ata 3+ Consumer expenditure schedules for the semplo households

(Rural) in Uttar Pradesh

No, of sample villages : 146
No, of sample households 31 699
Charsc#ristic oonsidered s (i) expenditure on cereals,
(31) expenditure on food, and
(1i1) total expenditure.



Table 5 - Showing the time taken for different stages
of x tabulation work,

serial description of the operatiom time taken
number in hours
l arrangement of schedules 2
classification of households (according 8
to per ocapite expenditure)
3 extracting the information 10
copying the villege multipliers 2
5 finding of the household multipiiers and
writing them down 5
6 verification and checking 6
getting the cumulsnts 3
8 getting the usurl weighted estimates by
crogs-multiplication and additions 20
9 get:ing the systematic pps tabulation semyple 1
10 addition and getting the eatimates 6
11 peicotiou of pps with ceplacemeut tabul-tion
sample 3
12 additions and retting the estimates

From the time record we find

(1) +ims %aken fTor setting the uaunl weighted estimates
involving operatians 1 to 6 snd 8 is ..... 53 hours

(11) time taken i'or getting the systematiic pps
estimates involving operatioms 1 to 7, 9
and 10 is eoeme 45 heours

and (iii) time taken tor getting the pps with
raplacemsnt estimates involving
apﬂr-ztiona 1 to 7’ il and 12 is I XXEX 45 hours
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Prom these it appears that time taken for getting the usual weighted

estimates is about 5/4 of the time taken to get systematic pps estinetes,

This gap will be large when one has to get estimates for a nuaber of

eharacteristios,

In such a cage getting the weighted estimates may

take about four’timea the time taken for getting systematic pps esti-

mates.

Prom the point of view of time, there is not much to choose

between pps systematic and pps with replacement.
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Chapter &

PTHEORY OF SURVRY ERRORS

1. INTRCDUCTION

In this chapter & comprehensive trestment of the theory of
gurvey eirors including both sampling and nonesampling errors is
given Wy bringing together the vork of & number of aythors on this
subject, The use of teonditional approach! has considerably
simplitﬁd the deriva+ion of & nwaber of resulis ir this Field.
yvarious aspects of ‘he probzlam of non-sampling ervors auch a8
sources of nonegsmpling er-ois, nouesampling biss :nd varistion
and noneresponse Aare given here. The tectmique of in.erpenetraiing
sub-pamples &nd 1t2 various vees in large scale surveys have been
discussed in section 11 of this chaptere.

The question of agsessment ond eontrol of non-sumpling €ITors
his been receiving considerable attention and sulbabla techniques
spe being developed for this purpose. Mehalanobis (1940, 1944, 1946),
gehalanobis and Baniri (1960) nd Lahiri (195T) bove iven many
important techniques for aggesing 2nd controlling e™rors in censuses
4nd surveys. Hangsen anl dthers (1946, 1951, 1960) and Sukhatme
and Seth (1952) heve considered in detuil the questios of non-gampling

errore and have developed & suituble mathemetivel nedsl for ite




Postwenumerstion ohecks and re-in erview surveys are being made
part of mome of the nation-wide censuses and surveys so as to

enable assessment of nonegampling errors,

2. SOURCES OF NONBAMPLING ERRORS

7411 recently ‘he theory of sampling has been develcped assun=-
ing that each unit in the population has 2 unique ‘true' value and
that it oan be observed and tabulated without introducing any
error. This would meen thst a complete emumeration of all the units
in the population would give us figures without any errors, which
is not usually the czse, The abouve agsuapiion is rather unrealistic,
as in practice there ~re bound Yo be some observutional und tabulae
tion errors in the finzl results. Of course in some cases these
errors mey be negligible in hhe con‘ext of the wse to which the'
resulis are to b2 put. 7ven the first part of the assumption that
each unit has 2 unique true volue is questionable. As these types
of errors are different from rhe error dus to sampling of units
and are due to sources other thon gampling units, they are termed
thonesanpling errora! or 'response errors'.,

The broad sources of non-cimpling errors, wjich are present in
both complete enumeration 'nd semple eurvey, though possibly to
varying degrees, are incomplete coverege of the population or sample

(including nonerespo:se), faulty defini:ions, defective methods of



data colleotion and tabulation errors. In ocase of szaple surveys,
the errors may also srise from defective sampling frame 2nd selection
procedures, More specifically the non-sampling errors muy arise
due to omission or deplication of units, inaccurate and inzppropriate
methods of moasuremeut, inappropriate arvangement or wordinz of
questions, inadequate .nd ambiguous instructions, noneresponse,
deliberate or wconscious misreporting of data Yy respondents, oars-
lessness on the part of the iuvestigators and clevriks, lick of proper
supervision, and defective methoda of scrutinmy 2ud tabulation of
data.

From what has been stated above, it is clear shat Lthe vesults
of s‘amplevmyn axe subjeci not only uo sampling error Hut to none
sampling errors &lso. In many situations the non-sampliug errors
may even be larger and therefose more important tham the sappling
error. Thiugh data obtained on *he tasis of a coaplete enumeration
are free from sampling error, they sre subject to nonesampling errors.
To make the vesults of censuses and surveys useful, it ie necessary
to reduce the nonesampling as muoh a8 possible., It may be noted that
wnile, in general, sampling error decreases with incresse in sample

sige, the non-sampling errors tend to increage with the sample sigze.

The difference between ihe sample survey ostimibe =nd he
parameter trus value being estimuted msy be termed tervor', If
the mite in the stmple can be observed and tabulated accurately

then this error econsists of only the error duec to sampling, namely,

oy



tsampling errort. A measure o/ the sampling error is supplied

by the mean squaré error shich is the expected value of the square
of the difference between ‘e estimetor and the true value. This
mean square error is composed of two pirts - tpampling bias! &nd
tgampling variance'. the former has been defined as the difference
petween the expected valus of the estimator end the rue value ond
the latter is 2 measure of the divergensce of the estimuitor from
jtas expected value. Of course in some cases the sampling bias may
be negligible or 3810,

1f the date are also subject to non-sempling errors, then the
differonce between & survey estima'e and the parameter trve valus may
pe termed ttotal error! and tnis consists of both sampling and non-
sampling errors. In this section a econceptual set-up ieo developed
which would emable us to get & meagure of the nonesampling exrors in
torms of 'nonegampling pias? und 'non-sémpling variance!.

The ‘true! value of & unif is to be conceived of as & charac-
teristic of the unit independent ’of the survey conditions which may
affect the valus treportedt for that wi . ¥or insiance age of 8
parson &t & partienlar peint of time, inocome of & pewSLL during &
pariiculsw period of ilme and xumber of persons in A coundry at &
point of time are examples of cherecterictics for which the true
value exists and is clenrly defined., There are many items of ine=

formation, such as intelligence of a person, attitude to some social




measures, oonsunmer preferencs to certain articles, for which it is
very diffioult even to conceive of the true. valuwe, In such cages
some suitable concep wally and to some extent arbitrarily defined
value may be teken as the true value. For the definiti n of & true
value to be useful in practice, 4t should serve the purpose of the
gurvey and it should be well defined and observable under tre gsonable
conditions nf survey! rel-ting o subject coverage, method of enquiry
survey period and method of tabulatiom. The honesampling exrrors
arise due to the fact that it may not be possible to collect &nd pro-
cess date accuvadely eveq if the true value is well dafined beczuse
of wam so meny operational difficultiss.

Suppose a smmple hts hear ehogen *a be cAnvassed under reason-
ahle conditions ol survey snd that theyre are two pcpu},z&:tiaﬁs, one
of investigrtors and the other of tabulstors (cleris) qu- lified for
doing the 7ield nd processing vork of the survey. If ue repeatedly
carry out the survey on the selected units with different samples
of investigitors and computord ehosen with some suitable probebility
desigs, we nry get different vesulis because of the various possibdle
gources of error present under the ugunl oparntionsl cundltions,
Here there nre three stnges of randomisation - selaction of units,
investigntors &nd computors. The 3ifferonoe hetween *he expected
value of the estimatov tokan over oli the three st2ges of randomie

zation wad the true value nay he termed 1iatal Wiasd, This ecnsists




of both *asmpling bias'! and 'non-sampling .bias'. The varience of
the estimetor taken over all the 'hree stages of randomization
measures the divergence of the estimator from iis expected value
and consisis of sampling varianse, varience bstween investigators,
variance beiween computors and some interactions between the three
sources of error. For instance the data collected by one investigator
may be afieoted by his misunderstanding of the instructiocns, his
preconcebved notims about the survey, ‘he earlier uniis canv:Ssed
by him ete. Thus we sce that the total error consists of sampling
bizg and variance, nonesampling or response biss and veriince and
some interasctions between che sample snd the sources oi non-ssmpling

eITOYB,
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For the sske of sgimplicily let us 2ssume ouly two stages of
rendomization = one for selecting tne sumple of units and *he other
for sclecting the survey personnel - instead of the three stages of
ran;iomiw‘cion eonsidered earlier, Here we congider ihe survey
perscinel as a whole instead of &s investigators and computors,
iat iar be the estimute for the sth sumple of units supplied by
%he rth sample of uhe survey personcel, The condi iomal expected
value of %sr taken over she saecond siage o randomization for a

fixed sample of units ias given by



R (Y, )Y, | (4.1)

which may be different from the estimate i. based on the true values
of ‘he units in the sample. The expacted valus of this Y, over the

first stage of randomization gives

E“(f'.) - (4.2)

which is the va.ue & that can b® unbiasedly estimated by the speci-
fied survey process., This value Y' may be different from the irue

population total Y and the difference
B(t) = ¥' = ¥ (4.3)

may be termed the ttotal bius'.

It may be noted the sampling bias ia given Ly
B(s) = E’('ta) -Y (4.4)

whioh is the difference beiween the expected value of the estimator
based on the true values and the true va.ue of the population total,
Since the total biss is the sum of sampling and nonesempling tiases,

the nonlsampling or response biae is given by

B(x) = B(t) = B(s) = ¥* = B (1,) = &,(1, - T,)
eoe (445)
which is the expected value of the nonesampling or re&pounse deviation
for the sth ssmple, If it is & complete emumeration, there ic mo

sampling bias and the total biae oconsists of only the response bias,



In oase of meny sample surveys also, the total nlas consists of only
the response bias, since ususlly unblased estimators (from the point
of view of sempling units) are used.

Po fix the ideas let us consider an example where = simple
random eample of units is drewn with er without replecement from &
population of N units and surveyed by k persons chosen with
equzl probability from a large population of K persons qualified
for this work, each perszcn surveying m of the units assigned to him
at random (n-nk). et Taij be the value reported by the jih ine
vestigator fer the ith wnit ellotted to him in “he sth e“mple. Then
an estimstor of he population total is given by

k =»

v— x % bx ]
T= =3 37 (4.6)
n J 1 si}

The conditional expected value over 811 possible samples of invesi-

gaors where the sth sample ia fixed is

iR

E(W')- X 2: (n = mk), ¥ =2 Ty
nisi. si, K'J'sij‘

1f there were no non=s2mpling errors in the survey, the eatimator

would be

where v, is the true value. The difference

dsi “Jes, " Yy (4.7)

msy be congidered to be the response deviation, This deviation may

2180 depend on the particular sawple being surveyed beczuse of the



poseible influence of some uniis on thoss of the others in “he

samplo, The response biss in this case is given oy

B(I‘) =Y - Y (4.3)
where
- |
O |
Yte = = 3 2 Y
: n i3 i si,

;,L‘ . standing for the suumation over sll samples containing the

ith unit. If the average response for a wmii is not aifec ed by

that of encther unit in the stuple, i.e, if Yoy ™ yi s then

b4 1 ‘g ' ' 1 X
= => 7 w5

There are & number of techniques aveilable for the assesement
of response bias (Iahiri, 1997). The survey figure may e compared
with an external figure obiained by some other ageucy <r by the same
agenoy in some previous period after muking the necessury adjuste-

ments for differences in coverage, definitions, survey p-riod ete,

fBHCe xow - /1 ]

his comparison may be feken 28 2 EWEX broad check on the aurvey

vexternel &ogregative checkle A

fisure.
vetter check would be to h.ve unit by unit sonmpmTison of the survey

ng values in some other survey, This method

data with the correspondi

is termed texternal unitary cheekt!, It may be noted that thera would

pe considerable difficulties in metching the wnits for *xis type of
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check. JIn thkee checks the agsunption is that one source of data

is m.oie reliable than the cther, If this assumption is not true, it
would be difficult to conclude which figure is subject to more

pvias in case of discrepancies. Another technique of =ssessing res-
ponse bias is to drav the sample in the form of two or more inter~
peneirating gubesamples and to get these surveyed by different groups
of investigators. This procedure is known as the method of interw
penetrating subegamples and will be considered in detail in section
1l.

The response btias in & census oan be estimuted by curveying 8
sarple of units in the population using vetter pechniques of dnta
eollection and compilstion than would be poseible umder censul con=
diticns. Such surveys which are usually conducted just after the
census 0 study the quality of the census data are called ‘post
enumeration surveyst!, Zven in oase of & large scale sample survey,
the response bias can be sgtimated by resurveying a 3 begauple of the
original sample using bet+er survey techniques. Another nethod of
checking survey data would be to campare the values of the units
obtained in two surveye aad to meconcile the figures hy furiher
investigation in oase of discrepancies, This method of checking is

termed 'reconciliation (check) surveys'.
5, NON~3iMPLING VARIANCE.

The mean square error of the egtimator Yu r vagsed on the sth
gample of units and gupplied by the rth sample of tha survey pere

sormel, is by definition
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(Y, ) = B (Y, - T) (5.1)

where Y 48 the true valus being estimated, This is a meusure of
the divergence of the estimator frou the true valus, taking into
account both sampling and none-sampling errors. This meagure consists

of bias and variance, *‘hat is,

Wy, ) = V() + B (Y,,)

2 ' -
-n(r,_ -1+ (1 - )2 (5.2)
where Y! is the expected valug of the estimator iaken over both
the stages of rendomization, The variance of tne estimator is a
meagure of the divergence of the estimator from its expected value
ond Y' = Y is the bvies, Tsking the varianoce over the two stages

of randemizetion, ¢ get
. . ) :
Verlfgp) = VB () + 5V (T, )

N 2
= vl(!l-) + Ean’r{-xsr - Ys.)

(5.3)
Fronm (5.3) #2 See that the veriance can be split up inio two parts-
aampling variance and respoase veriance. The escord ‘erm stands for
the expeoted value of the sguare of the krosyome deviations of the
sample estimates from ‘heir expecied valne taken ovar hoth the
stages of rendomization, This term can be further split up by

writing

Y=Y (T =Y, =Y, +X) e (Y  ~-Y



where Y " E'(f.r), and ‘aking the veriance we get

B, (- Ty )0 = By, = T, - T, + a1, - 1)
ees (5.4)
Phe first term on the right in (5.4) is the interec:ion between the
sampling and non-sampling errors and the second term is the vari-
ance between survey persomel. Thus we see that the mean aqu!;ro ;f
the egtimator concsists of sampling variance, interaction between
sampling and non-sampling errors, varisnce between survey persommel
and square of sum of the sampling &and non-sampling biases. In a
complete census the mean square exror is composed of only the non~-

sampling variance and square of the response bias,

6. SIMPLE RANDOM SAMPLING

To fix the ideas let us consider the oasc where & gimple random
sample of n units drewn with replacement from a population of N
uwnits is divided at random into k equal subesamples of m umits
each and these sub-samples are surveyed hy k investigators selected
with equal probability from & large population of K investigators
qualified for this workh Iat Yu and Yi. be the value reported
by the jth investigator for the ith unit in the population and its
trus valus respectively, Suppose I“ is the valus reported for
the ith unit in the sample hy the Jjth selected investigator, Here
it is assumed that the resporse for a unit is not affected by the

response of other units in the sample. An estimator of the popula~

[

o @



tion mean is given by

w
»ivin

y- 3 Yyy + (m = m). (6:1)

e

The expected value of the estimator taken over the two stages of

randomization is

o

Y

BF) = 3 5 L, - 6a
¥y (= § 15) (6.2)

. V)

and the total bias, which in this case oonsists wholly of response

bias, is

3

B(t) = B(r) = -;- 5 (x; - ri) (6.3)

v s

The varience of the estimator is given Ly
Voo(F) = VE.G) + BV, ()
where ihe subscripis deno:e the stages of randomization, The condi-

tional expeoted valus of y over the second stages of randomizatiom

for a fixed sample of units is
I - 1 X
E(Y) - 3 % ey % ?’13)'

The unconditionsl variance ¢f this over the first stage of rendomiza-

tim/g"!nn by 2
¢
8 2 1l - 2
VE ) == G = § ‘i‘ (ry - 1) (6.4)
The conditional variance of y over the second stage of rendomiza-

tion for a fixed sample of units is

LS

[ 4



| 1,13 12 0.2
.0) = g B3 ‘;’_‘ 43 = %y;‘)
1 1 £ m 2 n ‘
A b oot f 7, s

n
for vr (% 2, ’13) is the same for all j. Taking the unconditional
i

expected value of this expression over the first stage of randomiza=-

tion, we get
K _ ¥ N
L 1 1 B 2 a(m-l)
nn® -2y £ 205 oy - e 02 2
(g = 1Ty, - 1))

-2 6 [1+ (a1) ] (6.5)

whare 0§ is termed 'simple' or 'wocorrelated' response variance
and is given by the variance of individusl response deviations, that
is,
G- 5 % g (T, - 1)° (6.6)
J
and  is the intra-claess correlation among the response deviaticns

in a pample canvagsed by .ne investigator (intra-investigator

correlation), and is given by

K ¥
2 1
CEED §§ g T W
ere (607)

Hence the variance and the mean square error of y are
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Vo) et [+ (D). (6.8)
and
WS E.G) = V) + (1 - D (6.9)

In case of complete census, ganpling variance would be zero and

hence the variance and mean squareé error of the census figure ia

given YWy 2
~ %

V) = [ 1+ (=1 (6.10)

HSase (1) = V) + (@0 - 1Y (6.11)

The result in (6.8) shovs the contributiom to the total variance
from the response variation and it also brings out the impact of the
intra~class correlation among the responses in & sample oanvassed
by ome investigator (intre-investigetor correlation) on the response
varience. The intra-class correlation will be positive if the res=-
ponse deviations for the different units have a consistent tendency
to be in one &1r;ction for an investigetor and in another direction
for another investigator, Iven when this correlation is smmell,
the contribtution to the responseé variation may be considereble if
m, the number of units surveyed by each investigator is large, For
instance, if f = 0,01 and m = 1000, the response variation becomes
about ten times more than that in case of f- 0.

An unbiased estimator of the variance of the estimrtor y given

in (6.8) is given by



- : k2 . 1% '

vG) " ¥le1) 2 @7 Gy % 7y (6.12)
for

B P L R =k K V) + Y VE) -] = EDVE).

g
This XK result shovws that if k independent samples are surveyed
by k investigators gelected with equal probability from a large
population of jnvestigators, then it 1s possible to get an unbiased
estimator of the total variance (and not the total mean squeTe error).
This procedure is known as the method of 'interpenetrating sub=-samples’
which is eonsidered in detail in section 10, The variance between

investigetors is given by

K L
2 1 Y vt ""2 2
o nTZ(Y' -Y) -6d§ (6.13)
J o
for
K - ) | , K K
2 1 - 1 = |4 1 A2
PR R ¢ ¢ -yt ) w2 T (Y - )Y +
2_33 5« )
Y Y., -X) (Y4 = T4)
5 1 1,‘5. iJ i ivd i
2
=5 * ¥ %] a

if ¥ is sssumed %o be lerge. M unbiased estimator of oi is given

by

w

-

2 s 1 >
Ornk7(3)~m) ¥ % (yij-yoj)

en Vi

(6.14)



for taking the ocnditional expecied vaiue of the second term in (5.14)

we get

e

k
‘u}-— -}o—- ] 2
-y §' 52 (1 =Ty
and the expected value of this expression over the sample of investi-

gators, is given by

K N

where 02 is the total variance in the population and is given by

K X

FokiTiay- 1) ol (6.15)

LR}

Honce

2 ;(.!-l)- 2}_ }‘-(02

.2 ¢ 2 2
E(gr).k[--rk + s Oy ’°r)'°r‘

7. ESTIMArION OF POPULATION PROPORTIOH.

It is interesting to oonsider the question of response variance
in estimating a population proportion. Ilat Yi:) be 1 or O accord-
ing as the Jth investigator reports the 4th unit in the population
as belonging to a particular olags or mot and let P! i be the pro=-
portion of the investigators reporting the {¢n unit in the popule-
tion as belonging to that claes., Suppose & simple random e=mple of
units ies drawn with replacenent from a population of N umite to

e surveyed by a sample of k persons seleoted with equal probability

LD




from a large population of K pérsons qualified for this work.
An estimator of the population proportion P is given ly
k

‘f.—g-§ yyy (=) (7.2)

v p

where 113 48 1 or O according as the Jth selected investigator
reports the ith unit in the sample as belonging to a given class
or not. The expected vaiue of this estimator over both the stages
of randmisation is
I G-
E(F) = § 2 P{ =P (7.2)
1
and the bias, which in this consists of only the respornse bias, is
P! « P. In this case oi and Oi defined in (6.4) and (6.6) res=-
pectively are given Ly
]

2 1 - 2
G =3I - (7.3)
and
2 a1 ¥
=N DRy @y @yt Y (1.4)
The varience of ? is
X
1 - o2 L X /
Y(P) - ¥ .4,14 (P". P’) +m Z P Q' [1+ (m—-l)' ]
i

(1.5)

From (6.12) 1t o&n be seen that an unblased estimator of the

total veriance given in (7.5) is

O 1 k 2
) - ey P )

(1.7
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where p 3 is the sample proportion reported by the jth selected
investigator in the sample assigned to him and p is the over-all
sample proportion, From (6.14) an unbiaged estimator of the vari-

ance between investizators ci is given by

k
2 o 1

o =Y(P) - 2 q =1 1.7
= V(P i P,y fa pf'j) (1.7)

If the intra-class correlation is assumed to be 0O, then the variance

giveh in (7.5) reduces to

R P!
V() =

— (¢ =1-P) (7.8)

This resul:t is interesting because it shows that the oxpression

which is normally used as the sampling v-riance of a sample propore
tion includes not only the sampling variance but also the uncorrelated
response variance (Hansen, Hurwits and Bershad, 190). in unbiased

estigator of the variance is

since E(pq) = E(p) = 3(3°) = P! = ¥(p) = p** = (2-1)V(p). BHere agatn
we sese that the variance estimator of a ssmple proportior usually
used to estimate the sampling variance estimoies unbinsedly the total
variance including both the sampling variance and the wmcorrelated

ICSponne VAriance,
8. COST FUNCTION
18t us oonsider the czse of getting optimum values of k, the

number of inveatigators, and m, the number of units 2msigned to one
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investigaetor, which would minimize the totel variance for & given

fixed cost. Suppese the cost functiom

where Gl is the cost of recruiting and treining one investigator,

02 i3 the cost of surveying one unit and n = km. Tha total variance
of the estimator y of the population mesn Y, given in (6.8), may be

written as
-2 &

V(y) = + -;E (8.2)

whore oi = a: and 62 ™ 05 + Gg. Mininising the vairiauce in (?.2)

with respect tc n and k subject to the cust restriction (f.1), we

get

KA @ -
I — (8.4)
! o .

9. INTRA=-INV:STIGATOR CCRRELATION.

4 mumber of empiricuel studies have bheen conducted in recent
years Lo assess the magnitude of the intra-investigetor correlatiom
coefficient for different types of charaecteristics, The results

obtained in some of these siudies are presented in Talle 1,



Pable 1. Showing the ranges of the intre-investigator
correletion coefficient for differsnt iypes
of ehuracteristios,

reference k type of itenms range of

(1) (2) (3) (4)
gray (1956) 20 8 factusl items ) - 0.02
perception of and
attitude to neigh= 0 - 0,08
bour!s noises
8 items about illness ¢ - 0.11
Gales and 48 most semi-factual and
Kendall (1957) attitudinal items about 0 - 0.05
TV habits
Hansen and Marks 705 amest factual items 0.01 « 0.02
(1958)
more difficult items 0,02 = 0,04
most tnot ascertained?
Ga’klgoz'iéﬂ 0002. - 0‘06
Kish uand Slatey 20 firet study 0 - 0,07
(1960) 8 mecsnd study ¢ - 0.04
Kish and Rengford
(in preparation) 9 messurement of major 0.15 = 0.50

dantal defects

nusber of investigators - ¥ .
(Source s Kish, L snd Slater, C.W.(1960) VPwo studies of interviewer
_variance of socio-psyohological variables', presented
at the mrual Meeting of the pmerican Btaltistical pssocia-
1 m\)o

10, NON-RESPONSE ERROR.
e of “re sourcee of @ ror in csneuses and surveys, memtioned

earlier, is the incomplets coverage of the popul-tion or sample, This
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incomplete coverage may arise due to respondents' refusal to give
informati n, respondents being 'not at homo;. inagceassible semple
units etc. The error in this o2se arises because the populution

of non=respondents may have characteristios different from those who
respond and the results vaged cnly on the surveyed unils muy be
misleading. This type of error may be termed ‘nonerespouse error!,
sinoce it arises from not surveying a2ll the units in the populatien
of sample., The non-response errow may nol b8 imporiant il the units
not responding in & swrvey have charscteristics simil.r to those of
the responding units. But umally in prectice this situation does
not arige, For instence, if uestirnnaires are mailed to & rurber
of farmers, the nonerssponse rate may not be uniform among the far-
mexns belonging to different land holding size classes and hence the
results based only on the responses of the responding farmers may
be misleading., I+ may be noted hat in most cases of noneresponse,
the response méy he ctizined by pursustion, repeiled visits to the
noneresponding units evc,

One way of dealing with the provlem of noneresponse is to make
all efforts to collect information from a subwsample of the units
not responding in the £:rst zitempt (Hansen »nd Hursiiz, 1946).
Suppose out of n unite sclected with equal probobiliiy without re-
plucevent from « populaticn ol ¥ units, ny units respond and n,

(un-nl) units do not respond n the first attempt. ILet 2 subesample
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of n';lz units be selected from the n, non-responding units with
equal probability without replacement for nz;king apacial efforts
te collect the informatiom. If n and y', are sample means based
on the n, vnite responding in the {irst attenpt and on the gub-
sanple smmax of n', units respectively, then an unbizged estimator
of the population total Y is given by

Yo % (ny7y + ny, | (10.1)

It mey be no'ed that there are three stages of randomization
in (his cuss - serpling of anits, nuaber of units in the sexple not
responding in the +ipat attempt «ni submsampling of nt 2 unite from
the m, units not respoiding in the first attempt. Taking the vari-

anca of the eatimator givea in (10.1) over these three atuges of

randomization, we have

> - o @ » . K
where E and ¥ stand for eonditionel expected value and varianee and
the subsoripts denote tle siages Of randomigation, The c.nditicnal
expected value and viriance over the third stoge of raandumizetion

are given by n,

. x"’ 1 W
E(’i)v (a7, + ry¥,) = -y (y, == I
3 ¥i 2 27 m, §75)

and P 1.
e e e e )
n° B 1) 1
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where y is the sample mean baged on 811 the n units in the sample
snd y,, i® the valus of the ith roneresponding unit in the sample,
Purther it cen be seen that
) ¥ - -
B (g¥) = ~ 7 end T (H) = o.

Hence the varienceé of the estimator is given by

P

. N ) 2
V(Y) = V(B 3) + BB, [5—(-5) (k1) e, ]

where k = n, / a',. Since

. ) n i
2 3 2 2 P
B(g) = 1 % 2 BIT) - 3
whera oi is e variine2 belween the wnits in the populstion rot

regponding in the firat attsupt and K?_ is the nusber of such none

responding wnits in the population, the verisace becomes

, )!2(}6-11) ¢ N n§ oi
V(Y) = oy + m{kel) ——— (10.2)

(Hz"l)

where »" is the vuriance beivwesu the ¥ wrdts in the pupul:-tion,
The cost function in this case may be of the form
n
C = Cyp4+ 3,02+ 0y Q (10,.3)

where C, is the coet per uwnit for the Iirst attempt -t dviz collee=

)

unit sampled from the noneremponding units (for obiaiuin; date by

tion, €, is tie cosi per unit for tabulation, 03 is che cost per

additi.nal efforts and for tebulrtien), P s the proportion of units
in the populution that would nuve responded in the first atlempt,

and § = X1 1 - Po The optimum values of n and k which would minimise
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the cost, ensuring at the same time & given value v for the variance

of the estimator, arc given by

, %1 o
a=n 1+ (k1) T 57 —3) (10.4)
2 o
o (x,-1)0° €0
k = { " 2 p) - 1 .1 -—-—-2————-— (10'5)
¥, (§-1)0}, G, + C,P
whare .
ﬂ Ko
» - 2 2

¥

; 2 .
the sample siye reguired for emsuring the vaive v for the verle

-

ance iF thexe ware complote reaponse. Ir it i ussmad that 02 = oi
i %
end ,3“_1 = '2._1 = 1 tke optimum velues of n and k roduce to
nenf 14+ (xe1)2] (10.6)
},; - \li-— »
= Cl + uz.F

An intercating device in dealing with 'not at heme! cages hes
been considered by Politz end timmore (13497, ¢his proccdwre cons
sists in ascertaining from *he responding households the chence of
their being at home at a purtieular point of time and weishting
the results with the inverse of this chance, For instance the house-
holds may be asked whether they were &t homé at some speciiied time
during the previcus 7 days. Then the households w3y be closrified

a8 being at home onse in 6 visits, twice in 6 visite etcl, and the




data obtained for the different classes may be weighted by the
{nverse of the respective probehilitiea of ‘hoing 2t home, In prace
tice some hias would still persist bec:use of persons net 2t home

during the entire investigation periocd, who eannot be contacted,

11, INTERFENLTRATING SUB=-SAMPL S|

The technique of interpenetrating subesamples, which is due to
Mahalanobis (1944, 1945, 1946), in its most general seuse consists
of drawing the sample in the form of k sub-samples according to any
probability sampling design which would enable in getting velsd esti-
mates of the population parcmeter under oconsideretion &nd subjecting
these %o k different operutions to study the differential effects of
these operations. This technique has many possibilities in the field
of censuses snd survey8 in Asyessing non=sdmpling errors (Mshalsnobis
and Iahiri, 1960, Lehiri, 1953, 1957). Ome of the advantages haa
been mentiomed in sestion 6, There it was shown that if k independent
interpenetrating mab-pomples drown froa a population are assigned at
random to k investigators selected with equal probabllity from & large
population of inves:igators, i: would be possible to ecliu te the
totel verimce of the esSimator including bhoth sampliug -nd response

variction,

1l.1 LISKED SUB=I AMPIES
Originally Mabhalnsbls (1940) made use of thig techmigue in
orop surveys te Jind oul ths differential investigator hias, Fow

this purpose, linked psirs of' grids (square parcel of land) were lo-

N

TP



located #t random on ¥ the mape in the form of dumb-bell chived
figures, one end of esch figure reprenenting the grid belonging to
gub-sauwple 1 and the other end representing the grid belonging to
subegzmple 2. One sub-simple was inveatig2ted 1y one set of investi-
gators and the other sub=gample by 2n entirely different set of ine
vestigators independently. Under certain wellegnown assumytions the
Student's t-test msy be oppliad to the differsnce hatween the ectimates
bagsed on the two subesampl:s teo test the hysothesis th i ttore is no
diffarential investigntor bics at any specified level of cigrificance,
If the differsars 'unrms cut to be significant, it meane thut the
divection and magmitude of investigator bies ure not of the same order
for all the investigstors. Ii may be noted that if the differemce
turns out 4o be statismticeily insignificant, it does act mean that
the investigntor bias is zero, For, thnis result may be due to “he
fact thet the kmxeEkigx binses are &1l of the soae ovder »nd in the
gune directione

The ebove method cun well be applisd to bring out the differen~
1izl eftect of differsnt tabuluition procedures, metnuds of data
collection, etcs, and ‘¢ bring ocut the vuriztion over tine., Suppose
ong is interested in fi.idisg out whether intensive triinwng of the
investigators for & given swrvey 18 ¢azential or not. For this
purpose, one subesiaple ¥a vey be useizned to intensively trained

jnveatigutors and the other submsuaple to invaatizitors who have got
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only superficial traininge If the difference in 'hs regrlts chtainad
from ‘hese tuo aub—sampleé turns cul to e siguific:nt, there is a
etrong case for adopting the method of intensive training in future
surveys of & similer maturé., On the ¢ hier head if the diflercnce

were not significant, it would mean thut for this type survey intensive
training is perheps not essential.

The techrdque of interpsnetrating subesamples wiy be used as 2
check on the differeni operatiomns involved in large scule surveys,
Suppose ome wishes 0 have % check om the celeulations st the time
af tabulation, For “hiz purwose, the sumpls aay bz divided intn k
linked sub=-eamples assigned to k different groups of computors at
random 2nd the estimates may be cbiained from each of these subesamples,
If there is good egreepent helvsen these estizates, for all practical
purposes it may be cssumed with certain amount of confidence that the
oslonlations bive bueu dune covrectiy. I0 one of thes- estimsteg
differs from the others (assuming k ia more than 2) 2nd if there is
2004 agreement betwsen {tho remaining k-1l estimates, one naturally
sugpects the caloulations donc cn that subesample axd gets that esti-
mate recalouluied. Tuuws 11 is socen thel scitable acticu can he taken
o the besie of tme sube-ssnple eglimsites thershy incre sing the sceu-
racy and utility of the fiwal resulus,

It i8 %o be ncted ih:t deitniled interrenetration of the gube

senple would reguive & good ceal off additionsi prepivuiory time, and
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iucreases the complexity of work &t the field and the vabulation
stuges. It 1s &lso found that the powr. of the interpenetr-ting
sub=-ample check is generelly low due to the fact that the egstimate
of variasnce usuzally used in the test is based oaly »n < few degrees
of freedom, It may b® noted that the larger the positive correlation
between thé sub=pamples, the greater will be = the semsitivity of
the -eet snd lower will be the efficiency of the joini estim:te based
on botn the subesuimples, S0 if ¢the main object of the survey 1s to
test the dgifferentinl investigntor bia=s, then 14 would be desirable
to haye the same sample investigated by both the setc of jmvestigators
inderendently uwnder the sise eomditions, IF this is not possible due
to the praseuce of ccndlitioning #ffect between succesiive investigations
c¢f the sene unit, it would be desirable to uze sub-samples which are
ilinked in such & way that the estimsies from these sr.nples are highly
correlated,.

spothsr cbjection to the age of interpenstratiny subesemples il‘
that the cost of survey incrazges beciuse of bhoth the perties of
investigators going uver the entire fisld, I¢ has b2on shewn thet
under the assumption that the cost of joueney is proportional to the
square«rcot of the nusber of rondomly located points the percentage
losas of informution (I.b) por unit of cost resulting from the linked
method of seleciion us cumpiacd %o melsetion withou’ in ¢rpenetration

for tle sAape Yoiel suiple siee is ~iven by



(c. +¢)
L=[1- A" 1 x 100 (11.1)

(1+ 7 )\{"i‘“c.i +C) |

where cd is the cost of journey, Gk other costs,  ihe correlsztion
coefficient between the two linked ssmples. Informatics: is defined
ag 2 quantity which waries inversely as he variance of the estimate
and the ratio of the information to the total cost of the survey iw

dofined us the ‘information per unit cost! (Mokeshi, 1950) «

- 1142 INDEPSNTRT SUB-SAMPL:S.

A has already been pointed out, lirked samples =te tu be used
only if the mair chjective is 1o £ind out the differentinl effect of
{wo operatiems, But if the main object is to get » relizble estimate
of tie pomul-tion pataneter and ths study of differenti~i effects is
only = subsidiary objective, ‘hen it = pmeferahle to have independent
interpenotrating subwsamples, The differonce betweon the estimates
based om two indepepient insermmne rsting suhenamplas provide 4
mesgure of the sempiing as well &a ponmgampling errcvs present in the
regults,

The technique of interpenctiting sub-samples is o *2ld im
caleculating the totel variition esspecially im large scile serple sure
veys wlhere & namber OO ohasmnderistics are under cossiderstion. If
there 2re % imdependeat interpenaiciting submotuples aubjocted to k

different operations cuch providing » wvalid estimate of the popilation




2%

parameter under consideration, then an unbiased estimator of the

yariance of the estimator (mean of the sub-semple estimates) is

given by

~

]

k .
v6) =Ty “il(yi-'i)z. F= 23y) (L2

o

where ¥, is the estimate based on the ith sub~-sample. It may

be noted that this procedure gives a simple method of getting an
estimator of the variance of a ratio estimator, It r, (= -?-'-),

(1 = 1, 2, eess k) 1o an estimate of the population ratio R(= -ff )
baged am the ith subesample, then an unbiased estimator of the

variance of

1 k
R' = £ Qf{ri (11.3)
is given ly
@) = ey 5 (5, - " (11.4)
R - r, ~R .
k{kel 5 i
Since the variance of R'kand that of the combined ratio estimator
R1 = (11.5)
P 4
1 : §

are approximately the same (Murthy and Nanjamma, 1959), (10.4) cean
be taken as an estimetor of the variance of R'',

It is to be moted that the veriance estimator given in (11.2)
holds even if the veriances of gubesample estimates are different

provided = the combined estimator is taken as the aritmmetic mean



of the sub-sample estimates. An unbiased estimator of variance

can be obtained on the basis of independent interpenstrating sube
sample estimates even if the gub~sample estimetes &re weighted to
obtain the combined estimator. Ir vy and w, are respectively the
estimates based on and the weight for the 1tb sub-somple (i=1,2,0.s) k)

then an unbizsed estimator of the variance of ‘he cocmbined estimator

R 4 k
Y= 2 qﬁ.(zﬁ-l) (11.6)
i i
is given by
%(:I) = fz -“'""""""'“' E 'inyj

-Zw i 3)1

N n A
since E(Y) = ¥(Y) + ¥ and the second term in the above expression
estimates unbiasedly Yz. This expression after simplification

becomes

(2'171"( )(Z'i’i)

(11.7)

Y -

gince it mey be difficult to compute the estimator in praciice

the following unbiased estimator is suggested.

ﬁh.?h,wfjv
| (11.8)

In oase of k = 2, this becomes simply
V) =Y -T2
whioh is quite simple to calculate since ¥, 7 and Y, would be

readily available.
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Suppose in a stratified sample design, there are k independent
inerpene trating sub-samples in each stratum. Iet Ysi denote the
estimate of the sth stratum total based on the ith sub-sample (s=1,2,...
Ly £ = 1, 2, 4o0y k). The variance estimator based on subesample
estimates may be obtained either using strate sub-sample estimates

or just the sub-sample estim:tes pooled over the strata, That is

- L k |
WOt fiewens e
S k

V(Y1) - fl;%-;:—;i-) % oy - i)2 (11,10)

vwhere
L 1 X
yﬂi’ 1.1*27,194!&7- E%yi
' [ ]

o
3
wir
A

Of these two estimators (11.9) is more efficient than (11.10)
(Murthy 1961), though the calculation of the latter will be less time
sonsuming then the former. In a stratified sample design with k
independent interpenetrating sub-samples if A and L denote the
estimates of the sth stratum total for the characteristics y and x
respectively besed on the ith subesample, then an estimator of the

variance of the ratio estimator T(= y/s) is given by

1 L L k 2 . Kk _
MO T [0 n) R0 e n) (g5
2k (2
+ R % (x-:L - xa) ] (11.11)

and an estimator of the bias in R is given ly
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i nk - R'
B(R) = =V (11.12)
k y ’
where R! = = b x’i (Murthy 2nd Nanjamma, 1959).
i «1

Operutionally this method is cunvenient because it simpliriss
the computation of varismce in case of complicated designs and at
the same time helps in having a broad internmal check on the resulis,
The efficienoy of % ihe variance estimator is, however, impaired
due to the reduction in the number ~f degrees of frecedom on wiaich
such estimates are based, This also makes the large sample Interpre ae-
tion of the variance estimator inapplicable, However the range of the
sub-sample estimates provides & gonfidence interval for the median
of the estimatcr (which is the same as the mean if the distribution
is symmetric) with a confidence coefficient of 1 = (%- )l':°1 irrespece
tive of the distribution of the estimetor. It may be noted that
the interpenetrating sub~-semples are of value if ‘he survey hae tc be
carried out in successive stages due to the necessity of providing
prelinminery repul‘s. The agreement of the sub-sample estim2tes is
likely to be more convincing to the layman than any statement of
sampling and nomes8mpling errors,

Suppose there are two agencies and two parties of inwestigators
within each agency to condust the survey. Then 8 or a multiple of
8 (say 68k) independent interpsnetrating subesamples may be selected

and each varty of investigators in esch agenoy may be assigned 2k
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sub-gamples at random for being surveyed, With this arrangement

the total variation of the estimator may be analysed as given below,

source of variation degrees of

freedom
between agéncies 1 |
between parties 2
within error 8k-4
total k-1

This anala;rsia will help in locating the stages of operation where
there is much of discrepancy. For instance if ‘he between agency
difference turned out to be statis ically aignificant, this would
mean that the survey has not been carried out according to the
specifications by one or both the agencies. Similarly a significant
result for the pariies will help in looatini: that purty which is not

functioning nccording to the specilicatioms,
124 ILILUSTRATIVE ZXAMPIES.

An example of a situztion wherc & sample survey estimate turned
out to Le nesrer the truc value than the complete enumeration figure,
is provided by the Jute Survey in Bengal (India and Pakistan) during
the yeurs 1944-45 and 1945=46 (Mshalanobis and Lahiri, 1560). Jute
being a cash crop of intermational importance, ucﬁurate figures for
production become available subsequently. The official forecast in

these years vere bused on complete enumeration of all plots. Sample
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survsys were 2lso conducted by the method of actusl physical obsere
vations of randomly seleccted plots. The results of the enquiry are
given in Table 2,

Pable 2, Comparison of official (complete enumeration) nd

sample survey estimates with very reliable tdade
figures, Bengal 1944«45, 1945-46,

sr, item quantity (thousand bales)
no, 1944~45 194546
(0) (1) (2) (3)
1l trade figure 6728 7562
2 complete enumeration 4895 6304
3 sample survey 6480 1540
4 g;ez:g&ﬁ;’)r betveen =27+2 percent =16.,6 perocent
5 discrepancy between
(3) and (1) =3,6 percent -0.3 percent

(Source : Mahalanobis, P.C. and Lahiri, D.B. (1960) !analysis
. of errors in censuses and surveys with special
reference to cxperience in Iadiat, 32nd 3Jession of
the International Statistical Institute, Tokyo),

This interesting example shows that the sample survey provided a
gore accurate figure than the census beczause of the reduetion in
non-gampling errore made possible by confining the survey to &
semple.

Another interesting case of response bias ic provided by a
study conducted in Central Iowa, USA by the Jowa State College

(Bendricks, 1956). In this study the figures for volume of corm in
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a gample of 50 oribs arrived at on the basis of fermers! judgement
estimates were compared with the objeotive measurements goi after

the harvest. The result of this study showed that the judgement
estimates wag about 15 percent below the objective figures, The relee
vant figures regarding this study sre given in Table 3.

The post enumeration survey in the 1950 Census of Population in
the USA showed an under-enumeretion of 1.4 percent which may be taken
as the nonesampling bias in that census., Similarly the poste~enumeraw
tion survey in the 1351 Census of Populstion in India showed san
under-enumeration of 1.1 percent and the nonesampling biss in the
1956 Livestock Census in Indis Wis sssessed to be about 15 percent (in-
cluding processing errors) for large heads by 3 post-enumeration

2urvey.

mable 3. Objective corn yisld estimntes compared with
estimates from reported data.

obiectlive eglimace reported eastimate
corn in &adjusted unadjusted adjusted

ares sampled

figld For loss to net

in hare agreage

vast and 15

percent

undsrstate~

ment
{1) (2) (3 (4) (5)
Alabamz (1948) 26 23.4 21.0% 24.8
North Carolina (1949) 41 369 315, 3742
Virginia (1949) 55 49.5 42. < 49»6
10 Southemn States 21.8 19.6 16.4 19.4
Central Towz (1953) 79.8  Tl.4 58.% 688
" (1954) 14,0 6646 5547° 6541

X = offic.1l estima’as, y = roported data.

(Source : Hendricks, W.A. (1956) 'Non-eempling errors in agricultural
surveys', Luproving the walily of Statieticnl Surveys, 3139, publijca-
tion of American Statistical Association).
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Mahalanobis and Lahiri (1960) have given an interesting example
which brings out the utility of using 1n£erpan9trating submsamples to
serve 25 a btroad check on the survey results. This refers to the
L3nd Holding Survey conducted as a part of the National Saxmple Survey
in India in 1954=55. In this survey the entire sample wa$ drawn in
the form of 12 independent and interpeneirating subesamples, 8 of
which were cenvassed by the Sta’e agency und the other 4 sub=stmples
were surveyed by the Central agency. Ib may be noted that both the
agencies carried out the survey using the same ccncepts 2nd definitioms,
schedules and instructions, «nd une sewe programme of work. The
resulta of this survey for some characteristics are presen{eé in
Teble 4.

It may be noved from Table 4 that the Ceniral and State estimates
are not alwaye in agreement with each other. It is found lhut the
Stete estimates are lower than the Cenitrel estimates for the charace
torigtics ccnsidered here. The Alfle¢runce between the Central and
the Stote cstimates are sisnificant in case of nunber of households,

nunber of operational holdiings, lund operdted and land leased in,



Pable 4. Showing the compsrison between the Central and the State
sub-sample estimutes for aggregates of some characteristics

(estimstes in millions)

221

sub- category
sample no, of no., of no. of acreage acresge acTeage
house-  persons Operaw operated owned lesged in
holds tional
holding
2 58,.8 285.5 5840 3.3 274.0 49.0
5 5949 292.8 9.4 313.6 268.4 45.2
4 5645 280.1 551 290.4 257.4 3340
State sample
1 56.3 286.7 54.8 27842 254.9 23,3
2 56,7 283.5 54.9 281.0 248.4 2,6
3 2843 25540 5762 269.9 246,1 23.8
4 56 43 280.6 4844 30146 276.% 25.3
5 5848 301.1 5143 300.4 26Y.9 3045
6 57 .2 285,2 55.7 £89.1 271.0 18.1
7 56.1 285.0 53.6 3000 271.9 28,1
8 5601 280.2 48.6 2775 270.5 Te0
Pooled estimate
centrul 57,0 289,2 58,1 305.4 267.6 37.8
State S5T.1 28742 52.8 28742 263,.6 23,6
Pifference
aotual =1, 98 -g oOj "'}n 53 «l3ed 5 '40& -14.3
peroen~
tw “504 - 007 "'704 - 600 '1.5 .5'1,6
gtudent's
t 2.43 A4 2307 2,28 .61 2.51%

x - gigniricant at 5 percent level
(8carce 1 Mahalanobis, P.C. snd IAhlri, D.3. (1560) 'analynis of

errors in censuses and surveys with special reference %o experience

in Tndia', %nd Ssssion of the Internstionsl Statistical Insitute,

Tokyo) e
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13, USE OPF QUALITY CONTROL TECANICULS.

The technigue of statistical guslity control (S¢0) may be
applied toc census and survey work to assess the juulity of the work
and to improve the outeguing quality with suitable corrective wction,
For this purpose it is desiruble to those S5Q€ teohnigyues which huve
built in devices for initiating corrective 2ction. Mors &abieniion is
to be paid tu eontrol of errors through SOC techniques than to zccepiance .
plens for [inished work. For a perticular situation, the best plan
is defined azs that which ensures the higheat oculegoing quality for 2
given coet or alternctively ihe lowest cost for & specified sutegoing
quality. ‘“here is sonsiderable scope %0 apply 5S¢ tecmiyusd for cune
trel of errors in censuses’ and surveys because of the large =mownt of
routine repeilitive operations involved such 23 coding, punciing etc.

No attenpt will be made here tu deseribe all the SQC techmiques
which may he a2pplied to eonirol errcrs in surveys, Instead one proce-
dure is doscribed wideh is inddcwlive of sueh applicutions, Suppose
k opesutors we B duing 2 perticulsr rowtine operstion where the
output cen b checked and the peraicusible error rete in tha finished
wor. 18 specified. The work of esc) opersator is first complately checked
for & siitable lemgth of time, If the error rate is less tien the
specified rute, only & sample of his work is verilied im thé subseguent
pericde of time., The gecisicy x# regerdiag whather to continue verie
ficztion ou « sumple bawis or to have eomplete werification is taken

separately for each operator on he basls of his cumulated error rate
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over the past period. It may ve noted ‘hat this procedurs i1l nelp
conslderably in redueing ths cost of varification and at the sane time
will ensure & specified quality level for the finished worice I0 &y
be mentionsd that this type of nrocedure i3 being used in the Tnited
States Bureaun of the Cense and that this has besn foumd ko be helpfnl

in eontrolling errors in ~ensus and survey work.
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