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CHAPTER I

IRTRODUCTION

The work wesented hers hes origimated from & plomeering
paper by Seou’ and is essentially sn extension of his idess to
different probless ia Sample Jurveys. The whole werk mainly consists
in deriving estisstors wniformly better than those usually adopted
in with replecement sampling schenes.

In with replacement ssmpling schemes,the 'order-statistio?
(distinot sanple units arrenged in an ascending order of their
unit-indioes) forms & sufficient statistie. Therefore, if any
estimator (8.8., 84y of the population mean) doos mot depend on the
torder-atatistic’, 1t oan be unifomaly improved W the use of the
IsoeBlackwell theorem., The author has mot hesitated to use this

poverful theorem to derive improved estimators «1Ff T is & sulficient

statistie, for sny convex (downwards) lose fumctiom, &n estimaiter

wnifornly better than g(5) (vhere g(S) is some estimstor based

on the saaple 8) is given by

P g(S) »(8)
t{efs) 17 e . L8 '
Z ¥8)
s -7

1. Cf. Bseu, Ds, '0n Bampling With and ¥ithout Replacement®,
Senkchys ?OJ.M(W}B). Pp. 287-294.



mmmumummrauumnvmmum
statiotiec T and P(3) stends for the probed lity of selsetion of
the sample 5,

The whole thesis ie divided into eight chapters and twe
appendiocen , Chaptor II has been devoted to the problem of finding
monents of distinet umite that appesr in a sample; this chapter
mmmumxupmncmmmmmw
whioch would hawe been,othervise, difficult to obtain, It nay W
pointed out that it was this chapter which ultimately led the auther
to write down the thesis, It hes been the suthor's endeavour o
presant & selfecontained trectamt of the prodlems disoussed hevei:,
nurnhu-urwtbm«mnmunuumm
smmmvm-um.mmoannusou,um
form,

mmmunmohummmwmmm
estimation of the populstion mesn ¥ (or total), ite square and the
population wariance. The problem of finding unbiesed estimator of
hmn«mmnumw.mumn&sm
varisnce estimetors of the estimetors of ¥ . The following
technique for finding wnblamed varisnce estimators hes boen used ‘w-
if ¢ 1o an undiased estimator of T , an unbissed estimtor of
v(s) ugtwavl

1. V(%) desotes the variance of &,



v(t) » ‘z - o8t (f).

whers oot (72) 1o some unblesed estimator of T,

Varianee expressions for the estimsters of T sre derived,

In those osses, where it was diffioult to derive, we have given their
unbiased eatinstors.

It has been oleerved that in ssmpling schemes with unequel
prodebilitiss of selection, the best eatimators are wnsdelddy to
compute is lawge samples. Consequently, other (though, of scurse,
samevhat less aefficient) improved estimstors that are essy %o compute
in prectice sre givem. Further, &s the varisnoe estimstors of
the {mproved estimatore are also ocomgliosted, it is sugrestsd to
use the variance estimators of the original estimators frea which
the improved estimators were derived (which are mostly siaple). is
these estimators will over-estimate the sctual variances, we will
slways be on the safe side.

W nov start to comsider in detail the contents of the
thesis chapterewise.

In Chapter II, moments of distinot units that appear fn &
ssaple, are derived under any seapling scheme, If we demote the

mmbder of distinet units By , , 4t is proved that



. [“5'] "} [1s (n-x"!=5 %t (Eﬂm}' %, ¢ h-xffwﬂ&-!} “2%23
* asr s4 ¥ (éﬁwﬁ:}iﬂ' El‘n v omal ].

whore U2 veun demotes the probability of exclusion of unite

1 2y oc.p 6nd m from the sample and the summation }‘.1 is taken
over &1l possible comMinations. This expression was reguired while
«ummmmzummmamtmmu
otserved in & simple random ssmple (with roplecement), msu ( 4. ),
Snd Des ia) and Khamis ( 14 ) have shown that this aversge is &
better eatinator of the populstion mesn than the wsusl overall
awrige. Essot expressions for vt)(tqﬁ 0) and = [£(- )}
(whore £( » ) 48 & function of - satisfying some regularity
conditions) are also derived., Throughout this chapier, we have
restricted curselves to ssapling schemes for which P ) 1] w 1,
Por simple rendon ssmpling (with yeplacement J, & tabdle of values of
8(2-), vhore n 1s the samsle sise, is provided for n upto
fifty and seapling frecticns 0,001 (0,001) 0,010 (0.005) 04100,

In Chapter III, simple rundom ssmpling (with replacement) is
considered in detail, In sddition to showing that the swerage of
distinet wmits (7 ) de better than the usual overall sverage
(;).umtmumtuthmuortbom‘:unsut
units is given, Several other estimators of the population mean are



suggested ani their relstive efficiencies are compared, A direct
comparisan between the varisnces of Yorvits — Thempson eetimater
( ;i-’;-’ F, )emd § 1o wedo. Tt 4o found that ¥ 1ia better
than forvites — Thompson estimator if the coefficient of wariation
of the populstion is less than & given quantity end woree otherwise.
Some admissible properties of y are proved, Unbissed estinators
of V(y ) are given. A mumerical sxsmple, wsing the pepulstions
of Wates and Grundy ( 46 ), 40 slso given t0 study the relative
perfomance of the variance estimators.

The usual estimstor of the pojpulstion varisnce, ¢° -% 3‘ (y‘.n’.
is given by the ssaple verisnoce =

n
.zhr"ln‘i‘;‘ (,1 -;)ao

It is proved thet for sny convex (dowmwards) lose funotion, en

estimator wnifornly better than '2 io given YWy

e, ,(n) =e, (a=d)

S 2 s
2 O i3 %
8 =
(4] w.
where l: is the ssample verisnce besed on > distinet umits (with

divisor ~ « 1) apd

S §
o Mo " «C)E oD e (&) (o)1



0. (nel)
A Sable of wnlues of W is given &t the end of the chapter

for all > and b=l to 50. Pimally, for the purpose of estimation
of T, s compariscn between sinple randem sempling schewmes (with
and without replacenent) is made.

Chapter IV 4s devoted to sanpling with usequel probadilitiss of
selsction, let us conwider a populsation of ¥ units. let

5= Ty /%
bs the sevalus of the Jeth popujation umit, Py 'wing its protsiie
lity of selection., From & sample of sise n, the ususl estimator of
the population total

N
Ie E Y
31 3
is given Yy
n
:' l ? % 9
t-l
where s, is the pevalue of the 4feth suaple wmit, If '(1)"""(9)

are the distinot units olwerved in the sample, & better estimstor
of Y 4o given Yy

.. Zegyngy

3-“)[(’(400..0 P, ).‘1- };("!)00.-0 | \))ﬂ’..(.)‘"‘ﬁ
[(’(1)00"“)) ,71(,(1)00.0,) )) ’0‘(-) ,1;1 (1)]

.(1) e



the sumnations 2‘1 and ;.i stand for all combinatione of p's ond
all combimations of p's conteimiag P(4) {chosen out of

P(y)r Bg)r see0 B, ) respectively.

4 table of exnot values of 1( for nedy 3 4and 5 4s

i)
glven

In ovder to estimste V(3 ), the usal mbddamd estisntor of
¥ 16 considered and an eetimator better than the usual estimstor is
given, A8 these better estimators of Y and Y are unwieldy %o
compute in prectics, other improved unbiamd estimators of ¥ and
Y’ are given that ave simple to compute in practics, but are souee

what less efficient than the former estisators.

8: 18008
In Chapter ¥V, we discuss sampling/with unequal probabilities

of selection but without replacement., As the 'order-statintiet ig
sufficiont, sny estismator (e.g., of the population total) which is
mot & funetion of the 'order-statistic’, can be uniformly improved

by the RaoeBlackvell theorem. In this chapter, certain resulte
obtsined by Murthy ( 2| ) &re shown %o be fmmedinte comsequencves

of this obeervation., It is shown that if we rely only on the
‘order-statietie’, ssmpling with usequal probabilities (with replace~
ment) until we gut & specified mmber of distinet units is equivelent
to ssmpling with unequal probabilities (without replacement),

In Chapter VI, the following twoestage ssmpling schemes hove
boen taken up:



1) The firet-stage units are selsoted with umequel
probebilities (with replacement).

i1) The second-stage units are seleot:d Yy simple raniom
saapling (a) with replscesent (first case),
(b) without replaceaent (second case),

Hers again, estimstors are obtained that are better than
uwsuslly employed estimators. Two sets of improved estisaters sre
evolwed., The first set of estizators suggests the immediate
necessity of employing these estimators in pragtice ss they are as
simple as the original estimetors from which they were derived. The
second set, though being better than the firet set, is mot of much
use in practice.

Nanjsmss, Murthy end Sethd ( 20 ) gawe the modifications of
the usually employed sampling schemes which provide unbisssd rutie
estimators of the ratics of population totals of two charscteristies,
Their modification oconsists essentially in selecting first unit in
the ssmple with probvabdbilities preportional to I’a (l‘1 beinz the
value of the auxiliary characteristic of the jeth population unit )
from the whole population snd the remdining sample unite sccording
to the arigimal ssapling scheme. In Chaptar VII, we have givem
unbiased ratio estimators dotter than those given by them in onses of
sampling with unequsl probabilities, two-stage ssmpling (firstestege
ssapling with unequal probadilities with replscement and secuvnde
stage simple rendom sampling without replacement) and stretified



sesmpling with unequal probabiifitive,

The problem of estimating the total sise of & population and ite
reciprooal is known to B ef special intereet in biological and other
related problems, @.g., well-kmown problems of this type are the
estination of the total mmmber of fish in & lake or the estimstion
of the total mmber of wild animals in & forest ete.. In Chapter VIII,

(without replacement)
independent simple rendom sampling/at several stages is oonsidered
for this purpose. New unbiased estimators for the populaticn sise
snd 1ts reciprooal are given, The estimator of the reciprocal of the
population size is undiased but the estimator of the population sise
is untiased only if the total number of tzih caught (imoluding the
repetitions) 1o not less than the total mumber of fish ia the lake,
In addition, the problem of estiwating the population mean of o
characteristic snd the retic of the population means of twe sharage
teristion is sleo considered, 4 modification of the above ssapling
scheme on the lines of Menjemme, iurthy sad Sethi ( 22 ) provides
&n unbissed ratio estimstor for the ratis of the population means of
two characteristics, This modificatiom slse provides simpler estinator
of the populstion eise, This simple estimator haz the same bius ae
Bailey's Qutimator in csse of direct ssmpling (simple rendon ssapling
with mmﬂ,h‘l hes smaller risk function than Bailey's

estisator for any convex (downwords) loss function.



Fimally, in the two appendices given in the end we prove
gertain algobrdoal resuits thut are relevant to the thesis,

10
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CHAPTER IX

EVALUATICN OF NCWINTS OF DISTINCY URITS IN A JANFLE

Suswary .

in this chapter, exset expressions for the moments of distinog
units that appear in & semple, are derived under sny sampling scheame,
The importance of such & problem arisea, %.g., vhen we select & simple
rendom ssmple (with replacement) from & finite populstion, and require
the wvariance of the average of distinet unite selscted. It has heen
shown by Bssu [ 4 | thet this sverage is s better astimstor of the
population mean than the wsual overall sverage,
2.1, Prelinimery.

In this section, we give an ijmportant lemmea which will be used
repeatedly in this and subsequent chapters. The proof of this lemms
i» given in Appendix I,

o
n % %
Jemma 1t mc:ofmum. e (m)y of Z;7 2,7 s 2, (where m (W,
@' >»0 and J, a, »=n) in the expsnsiocan of
i fel i

(Zl L 4 Zz * see ase ¥ 2‘8')-
is given byl
o (m) = a” = ()mel)® o (3 )(med)" - oes ol (@R N

“on e (2.101)

l. Wote that C _(n) = 0 for = ) n. ) ﬂ\, "LIN”TI'U» i

//Q NOwvene C 5971) A >{}»

\5( RN
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In terms of the 'differvnces of seroce’, c'(n) can be represented as:

0.(.) - g G'. - & '- ,m ’ aon wwa (2.102)

where & is the difference opersator with unit increments. Ve shall
be using hereafter these two expressions (2.1.1) and (2,1.2) for c_(-).

whichever will be csonvenient to us.

«
11 $ Qufﬂdﬂt of Zil z:z see see 31%
1 "2 n
‘x’ ‘2' essy t‘ are any m different integers chosen out of
"y
19 29 eee seep Nj "‘1" >0 and . a - n) 4in the expansion of
i=l

(81 * !3 * ses nas b z.).i is dv.‘ ' c-(.)’

{where

Sersliary 23
C (m) wm [ ¢ (nel) ¢ Cpop(m=b)].  o.. vow (2.1.9%)

Corollary 3s For all positive integral veluss of N, we have

]
" - I,, G.(I)( : ) * Ty “e e (2.1.‘)

Consider a population containing N wnits and & sempling schewe

# for whioch

« probability of inelusion of the ith unit in the ssaple;
(‘ - 1. 2. sy l)

Y- probability of exclusion of the ith wnit from the ssaple;
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’u « probability of imelusion of the ith and jth units in the sample;
qyy = Probability of exolusion of the ith snd jth units from the sample;
ete.
we shall demote by ) , the mumber of distinot unite that appear in

& sample.

It is obvicus that

\

",,a’ 3 31 - Z‘ ¥ 0as ees * 7‘.9 see s (2.2.1}

vhere

1 4f the 1th unit is included in the sample;

J
/

0 otherwise.

Now, by definition, if =n is any positive integer, the nth order

moment of )/ is givea Wy

#( ) )@ BBy ¢ By 4 eer ean oz,)‘

N a.
. 1 “n
» B :ﬁ: i im B so e s eos (3»2.3
(2 5hhh L )
where 2.1 denotes the swmmstion over ( : ) ecombinations of m i's
chosen out of Byr Tpe eeny By and 2‘2 denotes the summation over

all products of the type

“.% "a ‘
3,7 %) ees B (%‘.>°’:la‘..)'
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Obviously,

and therefore,

M N

:( )) ) - -Zl Ot(n) Ll- ,n vee B * snse (201.,)

¥hen »p =p for every set of m distinot units
11 12 soe 1. 12 soum
11'12 ’ soey 1. 9 the QWﬁm (202.’) reduces to
7 | "
E( ‘y) ) ] z ( a ) C.(n) pn a ° s (202.")
”1 LA R ]

2.2B. Mements of ) of uny megative order.

To derive the negative moments of 5/ of amy order undsr any

sampling scheme, we mm"‘tlmt )21y 1.0,

%z ,,.x" 9%

and define

u = 1le3 (‘-1’2300-.')0

1., It is evident that this sssumption is indeed necessary, othervise
no negative moment of . exists. In this chapter, we restrict
ourselves to those sampling schemes for which F[ > 1] = 1.
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Therefore, if & is any positive integer, the negative moment of - of

order ¢ 1o glven bWy

i(+}-tf L ]
» (Fouyem = =uy)
¥
Lowg
e dppa. Bt L @aw
B
¥
Simoe, 0 ¢ I W, £ (¥ = 1), the infinite expansion is possible.
iwl
Now, lat
-

80 that
(ll"lto.-f")r} .

wee cow (2.2.9)

- 4
Since the infinite series, 1 + _ e (ulvuzo»... ou')'. is

rel W

bounded sbove by the sbsolutely ccavergent series

i+ :3.: "(?)’ ¥

r=l

it, therefore, foliows thas

- &
l’.(—%;-).;%- [1031—};&(!1&%0".0‘.)'].

oae (2.246)



But it is apparent from (2.2.3) that

, | LI N
?é(‘l + ‘2 * ses ¥ ‘.)' = lﬁ‘fl é;l .22 ‘1 ‘a “ew ‘- ‘(

el
o - =
.-'Jdl(‘qqu -o..)a "'” .

The Heth term vanishes by assumption 9y, '.o.

Putting this in (2.2.6), we obtain

o A lel
b Ko S w08
1 » A
e Ar1.7 (2 & i £
X ( "l(ﬁz‘u e i 3 f3eo 1
Hwl
o« - n x\-t
) :%-[l.-fz(“l‘n e w8 (=3 T g
vhich on expuasion gives
. (3)
-—1- - —L b ¥ i - ens
E( F ) a1 (Zay .o (nem)®  (Nemed)® *
(*)
“ew sas f(-). Tl » ser (20201)

In case, ‘tltz ."‘.-‘u”“ for every set of = distinct

units 1., 1., seup 44 then (2.2.7) reduces to

16



17

m
)
1 a2 ¥y 1 (1
B ( j)i.)'['t *El(n)“m...- e
(™)
coe  ses ¥ (=) 1] ¢ eer eee (242.T2)
I

Corollary 1: Putting ¢t = 1 in the above result, we get

m
. )
1 y *1 o S (3
g(-)-\--)-[p_z,l(zlqum_)i " - ) +oens
(2)
O = ")
Since
1 (:) o (:) m
N-m  (§mel) ¥ °°° (=) ¥  N(N-1) ... (Nm)
1 1 1 . 1.2
E(—) =51+ mnaut e A% *
1.2, , |
(l-lS(Mi(MS Zytgpgt +oe * 218, 1)
(2.2.8)
" 11 1 for t of dist
Incam qiliz “.1. are all equal for every set of m stinct
wnits 4., 4,5 ooy i3
1 ¥l q12 m

E ( 3 --l-+.§1 —(i-f:-r & Wi “nn (2.2.84)
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icular ¢ (]
(a) Simple rendom sampling (with repiscement).
In this sampling schome
n
‘u ses B - .ﬂ.}:.lL. (‘.1'2. LT ')

where n 4is the sample sise,

. i 1 l;l n 1
So B(=Emege T ‘L:'f)‘ )

nel n=-1 1
- _x.[_ 4+ 2 4+ Qcoi’!n- ¢ paw  #hE (202.")

'I

In terms of Bernoulli's mumbers,(2-2.6B)is given Wy 6 Davis [ 9 ] (page 188),

s
od, du,d 7 () N . (24249)
n 2% I P F ,
where l‘ is the ith Sernoulli’'s mumber .

Por large N, this gives uw o vary comvenient method for computing 5 —=).
Teble 2,1 gives velues of B ('—?--) correct to five places of
Y

decimals for sample sises upto fifty and for a reasonably wide range of

the sampling frection -;- .



Here
\(".)
U2 .” -g- for m & Hen §
}(a)
L4] otherwise,
Hel n
) (. )
RNTI WRE V.« . . ¢ +.8
(R=2)( ) a( o)

Combining the terme one by one, we geot

1 1 1 1
: ( ) ) - (z) 301020 ses o (Hen - : '
n

which is in agreement with the sampling echeme.

Cevollary 2:  vor amy imteger & (o6 0), it ¢an be showmn in & siuilsy

manner that
¥ Hel
» ‘ @ o '
B( 0 deW e I (e, & @)t o
Bl *
Sel

t t B
- X fﬁl (58, o0 (Fa)" = 1 M (mmed)” 4 ..

e %) . (2.2.10)

19
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W conclude this chapter with an obvious generslisation of (2.2.10)
for a cortain ¢lass of functions.

Theorem
If f(s) be a fumetion of s for which the infinite expansion in

powers of 5 4s possible in the damain O ¢ = ( ¥, and if the expectation

can be taken term by term, then

Nl
B0 2=t ¢ T (Zgyy  IEE=) = (Dr(med) o+ o
=

e (= (5 2 (2.2.11)
Proofs
ixpress f£(s) in the form
f(I) .,.é‘.lr .'.
By assumption
, v - P 4
sz(wv)].n[ri.»;rwv 1 “:-:“Atl(\) Yo

\
Putting the value of E( » ) from (2.2.10), we get

| b4 B r
wf £( )1.3",,[1":‘(5!1“.___) & ()" | o ]

=l

“f(B) e L (L0 )8 tluem) | o
'.1 LR

vhich on expension gives (2.2.11).



Tadble 2.1, Valws of ® (2),

1.00%0*

1.00400

1.007515
1.0100%*
1.01254
1.,01506
101758

1.02011
1,0226%5
1.,02517
1.0%024
1.01278
i
10
1.,04043
1.04554

1,05067

21



Teble 2.1, Values of E (2 ) (centd.)

n e 1 7 9 10 12
a

E

008  1,00400 1,00401*

009

010

015

020

025 1.01254 1.01255*

03 1,01506 1.01507*

L%  1.017%9 101759 101759  1.017%9  1.01759
H40 1.02011 1.,02012 1.02002 1.,02002 1.,02012
O45 1.02264 1.,02265 1.02265 1,02265 1.02265
050 1.02518 1.02518 1,02519 1,02519 1.02519
0% 1.02772 1.027T72  1.02772  1.0277%  1.02773
L060 1,03026 1.,0%26 1.0%027 1.0%27 1.0%028
065 1,0%00  1.0%81 1.0181 1.05282  1.0%282
HOT0 1.09535 1.05¥ 1.035% 1.09% 1.0B%
75 10379 103191 1.03792 103792 1,05793%
080 1,04046 1.04047  1.04047 1.04048 104049
085 1.04%2 1.,04303 1.04%04 1.04304 1.04%5
L9 1.,04558 1.04559  1.04560  1.04961  1.04562
£095  1.048)4 1,04816 1.,04817 1.04818  1.,04819
100 1.057 105073  1.05074  1.05%75  1.05076

22



Teble 2.1, Velues of x(«g)(u-u.),

|

R =) 14 16 1s 20 25

B

X

L35 101759  1.01760%

040 1.02012 1.02012°5 1.0201%*

O45 1.02266 1.02266 1.02266 1,02266 1.02266
£50  1.,02519  1.02520 1.02520 1.,02520  1.08520
055 1.02773 1.03774 1.02774 1.02774 1.02774
060 1.03028 1,03028 1.0%028 1.,0%29 1.0%029
065 1.0303 10383 1.0%83 1.0%83 1.05204
OT0 1.03538 1,033 1.035% 1.0 1059
OT5  1.05794 1.03794 1.03794 1.05795  1.03795
080  1.04050  1,04050 1.04050 1,04051  1.04051
085 1,046  1.04306  1.04307 1.04%7  1.04%8
090 104563  1.045635 1.,04564  1.04564  1.04565
95  1.04820 1,04821  1.04821  1.04821  1.04822
00 1.0577  1.05078 1.0579  1.05079  1.05080
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| 1.02266

1.02774
1.05%029

1.0R84

1.053

1.04%8
1.04565

1.04823

10384
103540
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CRAPTER IIX

ON SIMPL. RANDOM SAMPLING WITH REIPLACHNENT

Sunmary.

T™he problem of improving estimators in with replacement sempling
schemes has besn comsidered Wy Basu [ 4 ], snd Des 7aj and Khemis [14 1,
Besu showed Yy sn ingenious method that for estimsting the populsation
seen from & simple rendom sample (with replacement), the average of dise
tinet sample units is more efficient than the oversll sample mean., He,
however, stated that it wes not possidle t0 give & simple expression for
the weriance of the above estimator. In this chapter, & detailed treate
ment of the above problem is given, and the exsct expression fer the
varicnoe of the abowe estimator is derived. The _uhun efficiency of the
&bove estimetor with other estimators is also considered. Some comparisons
between the two simple remdom sampling echemes (with end without replace-
ment) are made here. An improved estimetor of the population varisnce i

&leso obtained in simple rendom ssmpling with replegement,

2els Introdustion.

I#% ws index the N population unite s 1, 2, «..y ¥ and lot !.3

be some resl valued characteristic (in which we are interestsd) of the

Jth population -“l. fere, we consider the problem of estimsting the

population mean

, - l.x L: YJ'

i. Throughout this chapter, with whatever aocents, J runs from 1 to ¥j
i runs from 1 %0 nj snd (1) rune from (%o (v) .

25



26

and she populatioan variance

Fany (r, -0 .

For simpliocity of future discussion, we shall slways refer population
units by oapital letters and sample units by small letters, Z.g., .

and 7y will demote the unit index spd the veariate walus associated

with the 4th saaple unit respectively.

masu | 4'])13 simple rendom ssmpling (with replacement),considered

two estimators of the populstion mean:

() Fediy

2 11 Averege over all n units of the sample;

i

(41) ;-9 - "L;'E y(“ =Average of . distinot units observed
in the sample.

If we record the sample of observation as
Ew (‘1. !2. aeny la)g

whore X, = (¥, Ii) snd 4f > be the nusber of distinct unite observed
in the sample, he showed that the 'order-statistio' (ssmple wunite arrenged

in asgending order of their unit indices)

Telmgye 2y v e %]
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vm z“) - (y(‘). u(‘)). and y“) is the variste valus of the

sample unit with unit index u(‘) forms & sufficient statistic
snd therefore, for amy convex (downwards) loss funection

8( ; I !) - 0 (’1 i !) ase (’Jol)

has uniformly smaller risk than Jy.
Now o for givem T, the conditional dietribution of x, is congentrae

ted at ) pointe 8(1)' :(3). sany ‘( \)| and

1 . (n-1)! i a(1) . 1 "(9)
P ey () ()

' “ '
- a(mﬁﬁ... o Hh®..(hHo

P[llnl(‘) iIT]e

ves  see (3eded)
vhere . mesns sussation over all integral a's such thet
u(‘) >0 and ’(1) . u(z) TR a(g) -0
and 3" means summetion over all integrel «'s such that
%g) 200 Ty >0 for TU % W TR
and 8(1) - "(2) IR z(Q y - nel,

Next,from (2.1.1) snd (2.1.3), wo have



w? i 1

2 —— - ewn ens 3.20
n(l)\_ P “(Q)l' cp(ﬂ) L] ( 3)
and
o (a=2)! o,
“(m&:" o 0 (nel) ¢ 8, (n=d) = e
cos sse (3.2.4)
¢, (m)
e 4 [ ‘l B ‘(1) H ,] - _m "ﬁ‘ s ees (’o‘a’)
Thus,
iy 1 1) = 5y, w)-zyw ’[‘x"(n i 7
.;)l— ¥ ’(‘.) = ;Q ses (’.2.‘)

18 & better estimetor than y.

Since, for any Ol' .2. sesy ©_ Such that :_.“ £ 1,

R[Z.ty‘lﬂ-x[;ll!},

it follows that §  4s indeed better thisn eny unbissed estimator

of T.

3.3. Variance of ;), .

Sinoe the probability of selecting the ‘order-ststistiec!

Po oy Sge 0 %)

28



is given Wy

.t a 1.5 o3 %)
#T) » L Tyt o oy () (%)
{mere ' bes o mesning stmtlar to (3.2.3)],

timrefore, by (3.2.3)

2, (m)

P(’) - - LR LR (5.5‘1)

Similarly, the probabi lity of selecting amy 'order-ststistic' with

distinot umits 13 given Yy

¢, (m)
> e () - (3.3.2)

Thus, for given  , the conditionsl probability of selecting 7T
is given Wy

ot

HTiY e . see = (3.3.3)

)

Lo

(

Therefore, by theorsms of simple rendom ssmpling (without replscement),

we haw

7(;’) )-Fi '(;,).,)).E(-&‘O %)sznoo (’-3-‘)

vhere S a H/(8=2))6 .

29
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Substituting for i {-:)-L) from (2.2.88) in (3.3.4), we got

'(;’)).(A:xfg.‘:‘xﬁpcuff -%}62

'!l.:lQLNQQoQO( =1

- 16 ... (338)

Direct proof thet V(¥ ,) < V(F ) .

31.”.

F7)e (ﬁl) &, (3.3.6)
by ‘.m (,O’O,} end (,o,o‘)’ we see that

V(F,) V(T )

iAf and oenly if

lﬂQQN’ sse & ("1)..1 '-a
W Sy

ns (1) g W . (3.3.7)

3‘(')-1.02‘0 cos ooc*'. @
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It can be essily shown that
P e w™lan g (1) o (7H) 5 (81) » cen s (30D 8y (0e1) o
ere (3.3.8)

,ooms (e g ¥

The equality holdes only for nel 2ad nel .,

Thus ¥  has a smeller verismce than except for me 1 apd

y
Rel, For nwl and mne2y, y, sad y are identiesl,

@ain in effieiency: The gain in efficiency of ¥, over y 4
ghven by

v( y)- v{ ;n)) ( I;l) 3..3(""1) * e @ (::) 31(1-1)

Wy) oS e

oos see (3.3.9)

An approximate exprassion for V( ¥, )i

Por large ssmples, it is rather cumbersome to compute V( ¥, )
owing to the diffieulty of computing 8. (Bel). An approximate

expression for V( ¥ ,) wslid for terms upto order e e given by

WiNerd -2, %u“ e e eee (3a3.00)
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ot dencte & oertsin class of estimators of ¥. vora given
loss fumction, (%) will rejwesent the risk (or expected loss) asso-
ciated with the estimator ¢ of T .

Of two estimetors ¢, and ¢, of ¥, t, will be said to be
aniforaly better them &, if for & given loss funotion,

B(ty) < a(e,) eee oo- (3.4.1)

holds for all possible values (Yy0 Ty oenn t,) with the strict
sign of imequality holding for st lesst one (Yy0 Typ eeny ’s)’

4n estimetor ¢ belonging to L is suid to be sdnissible in -
if there exists mo estimstor in ¢, which is better tham 4.

et us now consider the jroblem of finding admizeible estimators
of T. 15 the torderestatistic’ T 1s sufficient, we have te restriet
ourselves to functions of T only. Woreover the distribdution of ¢
is not complets, therefore meny different estimstors of ¥ osn be
Suggested. For simplicity, we shall consider the following class of
unbiased limesr estimstors of F .

;. - tl(\') ) ;v + fz( D )e #oe (3.4.2)

In view of the faet that

Myl )a £,00) Tet,(),

1. In feet, it has been conjectured hy Dr, Besu that any unbiased
estimator of ¥ , whioh is & linesr function of Ty must be of
the form (3.4.2).



it i obvious that necessary and sufficient conditives for ;. to be

an unbissed estimatcr of T, are
E!' tl(\? )] wl apd B[ fa('ﬁ )] w0 s  ees (3.4.%)

Comsider, mow, the class |- of estimetors 5‘. which sstisfy the
conditions of (,-‘0,)0

How,
vG,) « ()2 - Bl v n ()T e (0] .

- .o (3.4.4)

In order to choose & good estimator from E;,nmnm

(3.4.4) % proper chetces of £ () snd £,( 7). The firet

exjression on the right hand side of (3.4.4) is independent of ‘a( h

so for a proper choice of ta(/‘).nmuuhhi.
vi tl(-ﬁ) ¥ tz( 231,

which is minimum if ¥ tl( VY e ‘2( V) 48 constant for 2ll wuluss

of 7y ; i.0.,

Y tl( ->3) * fz(f) - E { fl(»\) ? + fz(-;’)l - ? *

£,(7) = (1= 0001« wer . (3.4.9)

33
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Since the sbove solution of f,(7) eonteins the umkmovn ¥, the
exnct valus of ra(.a) is not kmown unless fl( ’) = 1. Thus, if we
choose f.()) = 1 ythe best estimator of ¥ would be j , . However,
in practicsl situstions, vhen some o priori knowledge about ¥ is

available, it seems sSpjropriate to approximsts fz(-ﬂ ) w

£.()) = X [1=1(2)) (3.4.6)

where 1 18 wome & priori estimate of T . For example, ¥ may be
taken as the estimete of the population meen of the same wariate
obtained from some previous survey ete.. Om the other hand if no such

informaticn sbout T 4is available, it would be safe to tske £,(0) =00 ~

rom (3.4.4), vo see that to choose the optimum value of fl(-»‘- Yo

we have to minimise

B{r3(0) (-%;- k-2 T ¢ WX )

subjeot to the conditiocm that = | rl(i‘ Nel.,

By Sehwsrts imequality, we have
-l
;;if:( 3 (-ﬁ-.%)}. (-, cer (30448)

The equality holds i end omly if
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(& 4yt B
'l( v)e g(I:. i)‘y - L; “ . see (’0‘!9)
' E

2

Thus, when some o priori estimete L of ¥ 18 avsiloble, the rea-

sonable estimator of ¥ is given Yy

_ LB/ e))
6w -’/(n-»»)]] :

- [(®7/(8= )] o

T = atwgay ot

'R ] . re (,.‘.1&)
Purther, if no such information ubout ¥ 48 avsileble, the
following estimstor is recommended:

- .('\/('.)] -
Tt s ey T

. wew ( ’o‘cu}

These tvo estimators sre admissidle in ~ in the sense that they
minimise the first compoment of (3.4.4). Any estimator i‘ a1 7 ferent
from either of them csmmot be uniformly better them y, ory ,

because
vr .. ) ¢ vE) for all populstions where T e I
vy ) ¢ V(f.) for all populstions where T = O.

The estimator ¥ . is also admissible in . 4in the sense thet it
miniaises the second component of (3.4.4) «nd therefore hes least varisgce

for a1l populstions whers the first component is mero, i.0., & = 0 .
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Sxpression for %( i-.i;r).

To evaluste %_—'-v). we shall follow the same method as used

in Ghapter || .
Fow, we have

i,’( b) el (1 - 'i-----:--)..1 ™ E[ ‘,:1 ‘;;":i") . e (5.‘.12)

The infinite expinsion is valid since 1 ¢ . ¢ a ¢ ¥, Purther,

= e -

the series :?,’1 .T:i is bounded above by the absolutely convergent
tel W
2 A
series ..: .
t=1 w1
5\ o6 t
o, E (?‘S-TT)]',E, %{:i)‘ Y (304023)

Putting the velue of E( - ) in (3.4.13) frea (2.2.34), we got

: e n ]
. < H
s > R e
[ (=) 1- Elr.:l (o ) Pu,..a® . | xm0

where
C1e (DIED L @Y DES®  ferngn

o

’u .an.. !
"9 otherviee.
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Thus ,
; u ol
=) = 2 (¥ > A
Fe- -1 nooo. tel ".1 '“
.;('), 2x(1- 2y
“o'm Fl2..a ] | xmo’

which on simplification gives

N B )
ﬁ(‘%;ﬁ?). .2;13 ‘T-E-"J-;"TL ™ esa P (3-40“)

Pe, thus, ses that it may be cumbersome to compute the estimators

(344.120) and (3.4.11) in oase of large semples owing to the difficulty
)

of computing I(%_—%-). If, howewver, the sampling fruction % osn be

ignored, the estimators reduce to
-t % - )
70 "F03Y ¥y +X[1- m'}. "ee (3.4.15)

;’ y .m;~ . e L enae (’.‘0“)

It is esay to see that (3.4.16) is the well known Heorv' ts —
Thompson  estimatol in cese of equal probability sempling [ 2731,

Because of the importence of 3.  , we shall compsre ¥, eod ¥, .



3.5. Comparison of ¥, amd ¥. .

% have shown that

WG, )e hx*"!f&.&iﬂt_{ &

D
-

V(;',,s.;,“) -Ei‘{m ¥ ’ > ]}0 v | %(m i ! S | |

-k ---)- (- 28, -Lv( ’) o eas (3:801)
w” .

It is not difficult to show that
2 0) = nf 2= (XN,
B> ) w8 2 -(3?-)“] + B(N=1)[ 1 -a(i?-)' N (!,5-)"] '
amt v( ) e wcEER L P L, w) (B,

3
o.o '(;") j H‘ : .ﬂ -
o (._z”a Tst:x-(,n-m,h

(1)1 = 25H" (-'i‘)‘j

.*r,.(L,-,a i'@:—* - HEL e (B f cer (3:5.2)
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Yow,
n-l nel 1n 2n
+ (Hel) _(me)) [(l-i) «(1e E) 1

1
VF.) - vF L, ) e o

" W e(- 3 R
P [P -xa-$)F e e)a- DY
] [ <13
-C, de. c, . (may) (3.5.3)
Thus 7 is better tham ¥, . 4f

Approximate values of (!1 and 03_‘.l for large populations correct

upto terms of order "%, are given by

0.—!—-" 2‘-‘-—:—““
17 28 °
o Bl (a=l)(m=d)
m S‘mz

(3.5.4)

%
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The above compurison shows that if the square of population

coefficient of wsriation exceeds (m=1), them y* has smaller

Y 2o
variance than §y +« Therefore, in practical surveys & proper
comsideration of the above fact must be made before employing these
estimators. Moreever, if we have some & priori kmowledge of ¥, it
would be more portiment tocompare y  and y*. ., . It oan be seen

on similar lines thet ¥ i better thea ¥+, 4f

.
t - %) .

and worse otherwise. This result shows that 4f X provides & close
approximation to T, 1% is always better to use y* instead of
..

¥e, now, conclude this section with the following sdmissibility
property of ¥, .
Theores:

If squsred error bs the loss funotion, y > ie adniseible among
all funotions of ¥, ®nd ~ .
Froofs

iat

t = ,’_‘, 0‘(;, . .")

bo & fumetion of ¥, and ' . Supposs that ¢ 1is uniformly better
m ;') L



Bow, Yy agsumption

i1

B0 e 5(F, cFW e[ €50 2 )V e B F,= DG, . > )

SE(F -BY ...

holds for all '1. !a' veey Yy o
Teke in particular Yot e afywt

Then, the above relation implies that

9(0. > ) = 0 LR

(3.5.3)

(say).

(3+5.6)

Since the ohoioe of C 4is srbitrary, it follows that f( ¥, )

is idemtically sero,
$hich proves the above theorem.

3.6, Fstimation of verisnce.

Lot us mow twrn to the problem of estimating the population

variance from & simpls rendom semple (with replacement). The usual

estimato’ of the populstion varisnce

-t -0

is given YW the sample variance

ey 0y - may § s g0y,

)z

o voo (34841)
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In this section, we derive & uniformly better estimator then .2.

Iheoren:
Por any ocomvex loss Muonl, & waiformly better estimstor than

.2 is given Wy

2 2 ‘c > (‘) -CO ("'l) 2
8, = 3[. i T] = [ . Y] I“‘a eee (34642)

whe re
: m‘}'i)é‘;(ll“)";g 53 it > » L

0 otherwise,

Simce T is & sufficient statistic, kW lsoe-Blsckwell theores

& uniformly better estimator of 02 is given by

s 1T ek [ mﬁ-_—ﬁ "h' (g -:‘.)31 7}

e (2 -5) 11 . (3.6.3)

hen = 1, (3.6.3) is obviously mero. To derive (3.6.3) when

) > 1, we observe|in ters of the motations of Seetion 3.2.

1. Ny comver functicm, we shall alweys mean convex (downwards)
function .



43

o ) @y &
L.z:' (ne2) (‘%)()...%)(9)

w see & 1
Plx, = Xog)r Xy = Xy | e .f (1) (v ) ,

- ! LA 4%0)
= a(l)! e “(9 )! (') * (')

o s (’0‘0‘)

whe re }}. motns susmstion over &ll integrel a's such that

“(1)"(3)’..’.‘(3))..‘“ dl(‘))o for ‘-1.‘00-,'\)'
and E,'m means susmttion over all imtegral u«'s such that
ﬂ(l) - ‘(') * see ¥ ‘(9) » neg , Q(‘) zo, I(") zo' and
3&) >0 for k* ‘* i'"» 1.3, snsg V .

Now, from (2.),.1) and (2.1.3). we hawvs after some simplifioation

] !
Sy T e

" = )! - "
b uaﬁ'—f? %)) = Co(nmd) + 20, (med) + ¢, o(ne2)

C,(n) =0 (n=l)
» (Y =1)

cen (3.645)



¢y (m) =¢, (n=l)
.. ’[lln l(‘). lz-x“c)l ] - ORI (3.6.6)

for 1*1.-3.3. e 9 Y e

Thus, if Y > 1,
(7, = 7)° gy = 74"y
e e LR el CEE L R AL

€, (n) = ¢, (n=1) 1 "
¢ (w) (550D « by 7))

g,(m) =5 (nel)

* e, (m) ( Z"'l'o-"ﬁ Ll - ¥, )2}

vew . (,."1)
Therefore, for any v,
2
(¥, = ¥,) C,(n) « ¢, (n=l)
£(s?1 7) = 5 2=t 1 7] = vcv O z 5 (34648
where -i has been defimed earlier,

Semce the theorem is proved.

In prectice, the estimstor -f, reguires the knowledge of the

ratio, 0, (n=1)/C,, (n)). Pable 3.5 gives values of (G, (n=d)/C ,(n)?

correct %o seven places of decimals for all v sad ne 1 to 50.
These retics were computed from values of [C (n)/m\ ] tabulated by

Gupta [20).

44
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5.7. Some estimateors of V( ¥, ).

W have seen that

'(’9)-_ *fl;...;(w £,

Various unbissed estimstors of V( y, ) &re given by

nel n=l nel
(1) " (7, )= [l £ 2 :... + (B-1) 1@4) ol ;

-l nel 1
(11) '3(;9 ).[l. + 2 ;'u-oil;,l,ln- ]f-('-'!.ﬁ-]

-0y (n) =2 (a=d) ,
¢, (m) % ¢

- 99-1(.‘1) 2
(111) ""«? ) - ?W 8, 4

v v, (F7,)e[ (% lh-—-H- i
12 v,(;;,)-{(%—-ﬁ.#(x-%)]-i.(numm%h)

The estimator (II) is known to be uniformly better than (I). It
appears difficult to give direot proofe of relative efficiencies of
thess estisators. The estimstors (IV) and (V) were given by Des 1)
and Khanis (14 ]. The estimator (V) is conditionslly unbissed for
2> 1s Des Eaj and Fhamis heve suggestdd the use of (V) for V) 1.
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It is eaay to see that

" ." ;;ﬁ; . eve (5'10‘)

A littls comparison will, now, show that the conditional variance
of (V) 4is less tham the variance of (IV). The amount of deoresse in
the varisnce is given by

1

V(v‘) -t(v, | ¥31 ) @~

&
'ﬁl ;(") M veos (’01")

In general, this leads to the conclusion that any estimater oz,

of ¢°, which 1s unbissed for G and s equal to sero for = 1, cen

be reduced to give & conditionally unbissed estimate of o for » 3 1,

vhich has smeller conditiomal variamos than the wvarisnce of oz. « Thie
conditionally improved estimator is related with ¢° by the following

equation |
sor (3:7.3)

wiere .  etands for the conditiomally improved estimetor of ¢° .
Humeriocsl exsmple:
To study the relative performsnce of these estimators of ¥v( ¥, ),

we shall comsider the following three populations given Yy Yates and



Table 3.1. Thres populations of Yates and Grundy.

Population % ){ %
Dmit - 4 4 i

1 ", | 8 o2
2 1.2 1.4 6
3 2.1 1.8 9
4 3.2 20 ]

4

,;::‘ L A 1.0 6.0 2.5

These populations were deliberately chosen by them &s being
more extreme than will be momelly encountered in practice,

The table below gives the verisnses of unbissed estimators

of ¥( i‘) ). and v(; ), when n = 3, V(vl) is not given, since
V(v,) <V(v,).
Table 3.2. Verisnoes of unbissed estimstors of V(¥ ).

Population Yy, ) v(v,) V(v’) V(v‘) 7(1, >3 1)

A 29823 L0 05222 09017 L7897
B «06125 L0220 H02% L0596 L0348
¢ 020964 000279 000293 000450  L0004%

47
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These results show that for the above three populstions

v(vy) < V(v,) <v(vg 17 >1) < (v, (37.4)

Thus, "z

for me2, v, @nd v

appears to be most efficient estimator of V( ¥, ).

3 are identioal. The above comparison thus

strongly sugeests the use of v, for sstimsting V( ¥, )e

For getting the estimate of V($), where ¢ is any unbiased

estimator of ¥, the follewing estimator may be used.

vit) « ¥ et (P), ... (3¢745)

where est ( 7%) stands for the wndissed estimetsy of T° and oenm

bo obtsined from any of the relatiors
oot( Pl v,(7,) =7 % (1als2,3,45) (34746)

From the example considered, it is expected that

est (’l) - '1(;,) ) - ;? (1=2,3) (SeTel)

would fare better tham the remsining estisators of f‘.



49

st us, now, compare the twd simpls random ssapling schenes
(with snd without replacement) for the purpose of estimetion of ¥, If we
drsw & with replacement sinmple random semple of sime n, then the variance
of the sample wean is n > ¢°. Further, in & without replscsment simple
rendon ssaple of sise n, the varisnce of the sample mean is a‘loa(ﬁ).

it is wwlly claimed that sampling without replacement is better than
seapling with replacement, Besu [ 4 ] hes pointed out thet this
comperison is not fair, because the ocost of selscting & sample of sise
n 4in wvithout replecement ssmpling is greater than the coet of
selecting a ssmple of the seme eise in with replacement sampling, ror
comparing the two ssmpling schemes, it would be appropriate to Sake
into account the cost involved in the selection of two &ifferent
samples., The comperiscn, thus, mainly depends on the choioe of the
cost fumction Gnd mo sampling scheme otn be sadd to be superior to the
other unless the cost funotion is known in advence, et we, for
illustration, consider the case wheye the cost of sampling ie propore
tionsl %o the mumber of distinet units drawn, Thus, the oxpected coet
of selesoting » with replecement sumple of sise n is equivelsnt

to the cost of selseting & without replscement sample of sise

:(9)-:[1-(!;'1)‘1. Basw hos showed that in this situstion
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the sample mesn of the with replacement ssaplo is worse tham the
sample mesn of the equivelent without replscement sample., W, now,
compare the ssaple meen | of the eguivelent without replecement
stmple with the following estimator of with replscement ssaple.

it has been shown that

2 - -
Vo, Je - o v To o eer (3e842)
2 Gy 3’«[‘(3‘.—-7)]
and further,
W(Y)el g-(-L)- - 3148, (3+842)

Since, z-:—-:-’)- is & convex fumetion of v (1 ¢ V (a ¢ ¥N),

we have
NEET G i AT o

From (3.8.3)y 4% is evident that the first compoment of

(¥, ., ) 1s sssller thamn V(' (). Thus, for & population whose
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coefficlent of veristion is sufficiently large, V( ¥ ., ., ) would de
smeller them V(| ). This comparison shows that the semple mesn
of without replacement ssaple osmnot be umiformly better than all
estimators of with replacement sarnling, The comparison made above
15 not very satiefagtory. First , because of the limearity of the
cost function snd secondly, because E( - ) 4is not necesssrily sa
integer. ¥e hope that for some other cost functione alse similsr
situations may be found out where with replacement sampling would
fare better than without replacement suspling.
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(n-1)

Table 3.3. Values of 'é!'(;)'_ (contd)
m

:"’ 21 22 23 24 25

1 1.000000¢6 for all n

2 ,4999995  .4999998  .4999999 .4999999  .5000000
3 .33323%  .3332665 .3332888 3333036 .3333135
4 2492003 .2494015 .2495518 .2496643 .2497484
5 1976139  ,L1581031  .1984904 .1987974  .1990412
[ .1619699 1627974  .1634737 1640281 .16448%
T J135%836  .1365562 .1375340 .1383520 .1390384
a .1144881 .115993% 1172659 .1183450 .11926%
9 097439 .0992561 ,1008081 .1021373 .1032797
10 0831272 ,0852394 .0870540 0886193 .0899745
1 ,0708560 .0732409 .0753009 .0770878 .0786436
12 .0601513 .0627902 .0650794 .0670738 .0688180
13 .0506832 .05%55%90 .0560624 .0582511 .0601724
14 .0422127 .0453100 .0480141 .0503852 .0524727
15 0345620 0378671  .0407595 0435020 0455460
16 0275957 0310960 .0341657 .0368697 .0392613
17 .0212082 .0248926 .0281295 .0309861 .0335172
18 0153161 ,0}91746 .0225696 .0255T705 .0282338
19 .0098522 0138756 .0174206 .0205584 .0233471
20 0047619 .0089419 .0126294 .0158973 .0188053
21 0 .0043290 .0081522 .0115440 .0145657
22 : ! 0 0039526 .0074627 .0105929
23 J 0 00323 ,0068571
24 $ 0 «0033333
25 1 0

94




¢c_ (n=1)

Table ,o’o Values of A (oontl)
c - Zns

:"’ 26 27 28 29 30

1l 1.0000000 for all n

2 .5000000 for n ) 24

3 «3333201 333345 L3535 .3333294 3333807
4 +2498115 2498587 .2498940 .2499206 .2499404
5 (1992352 .1993895 1995125 .1996106 .1996889
6 .1648585 ,1651676 .16542% 1656342  ,1658090
7 -1396157  .1401025 .1405137 .1408616 ,1411565
8 1200468  .1207173  .1212923 .1217864 .1222119
9 »1042646 ,1051161 ,1058542 1064955 ,1070539
10 0911518 0921776 .0930T37 .0938586  .0945476
1 -0800030 .0811943 .0822415 ,0831643 .0839795
12 «0703490  .0716970 .0728875 0739417 ,0748775
13 0618648 0633607 0646867 ,0658656 ,0669162
14 «0543172  .0559523 .0574068 .0587037 0598633
15 0475339 .049%09 .0508763 .0522851 0535481
16 0413646 .0432760 .0449662 .0464810 0478422
17 0357685 0377778 .0395768 .0411922 ,0426467
18 0306065 .0327276 .0346298 .0363408 .0378840
19 0258351 .0280625 .0300629 .0318649 +0334925
20 «0214030 .0237315 .0258255 0277142 0294224
21 Q172679 0196929 .0218762 ,0238477 «0256 329
22 «0133550 .0159121 0181507 ,0202314 ,0220902
23 0097347 .0123601 .0147103 .016838 ,0187662
24 0063224 .0090123  .0114409 .0136400 0156371
25 0030769 .0056480 ,0083516 .0106206 0126827
26 ) 0028490  .0054250 .0077611 .,0098857
27 J 0 0026455 .0050463 .0072310
28 4 0 0024631  .0047059
29 i 0 0022989
30 - 0




C_ (n=1)
Table 3.,3. Values of al-(;‘r (contd.)
n

=
¥

31 32 33 84 35

1.0000000 for all mn
.5000000 for mn > 24

5..*. O 020 M F

+3333316 ~3333322z .3333326 ,3333328 .3333330
«2499558 2499665 2499749 2490812 2499859
1997514 .1998012 ,1998411 ,1998730 ,1998984
+1659539 «1660741 1661738 ,1662566 1863285
«1414068 1416195 1418004 1419544 ,1420856
«1225788 .1228958 ,1281699 .1234073 .1236131
«1075409 1079665 ,1083390 ,1086654 .1089519
«0951537 0956879 0961594 0965764 0969457
.0847012 .0853413 0859108 ,0864167 .0868685
«0757102 0764525 0771187 0777093 ,0782413
«0678548 «0886950 ,0694488 ,0701262 0707361
«0609026 0618362 ,0626766 ,0634345 .0641193
+0546833 -0857058 .0566289 0574637 0582202
«0490684 +0501756 0511775 ,0520858 .0520109
0439595 00451473  ,0462243 0472028 ,0480935
«0392798 «0405439 0416926 0427382 ,0436916
«0343665 +08385044 ,0875215 ,0386311 ,0396445
»0309714 «0323793 0336619 ,0348327 0359036
.0272536 .0287284 ,0300736 ,0313031 0824200
+0237795 .0253185 0267237 ,0280093 .02901880
«02052128 «0221217 0235844 ,0249241 ,0261535
«0174553 0191148 0206327 .0220242 .0233023
+0145616 <OL62777  ,0178488 0192902 ,0206152
»0118229 ~0135936 ,0152159¢ ,0167052 0180754
«0092245 .0110478 0127193 0148550 ,0156687
+0067585 0086276 0103467 0119270 0133827
«0043988 «0063218 ,0080868 .0097108 .0112066
+0021505 .0041209 ,0059303 ,0075984¢ .0091310
0 0020161 ,0088685 ,0055740 0071475
4 0 .0018939 ,0036886 .0052489
v 0 .0017825  ,0084286
L 0 «0016807

\%

0




¢ (n=l)

Table 3.3. Values of -;7-;‘7— (contd.)
n

e

B =) 3% 57 38 » 40
n

1l 1.0000000 for all =n

2 5000000 fer n > 24

3 «5333331 « 3333332 «3333332 «3333333 «3333333

4 «2499894 «2499921 +2499940 «2499955 +2499966
5 .1999188 «1999350 »1999480 .1999584 .1999667
6 .1663827 1664 %02 .1664698 1665027 166531

7 .1421976 1422931 1423746 1424442 «1425037

8 1237916 1239467 «1240815 .1241988 «1243008

9 +1092036 «1094250 .1096199 .1097916 «1099431
10 097273 09756 37 09768221 0980519 0982566
11 0872715 L876321 0879548  ,0882441  .088503%
12 0787190 0791485 0795352 0798837 .0801982
13 0712861 0717828 0722320 -0726 388 0730075
14 .06473% 0653007 0658105 0662739 0666957
15 .05890638 0595311 0600994 0606176 0610907
16 0536617 0543460 0549707 0555417 0560643
17 .0489058 0496476 0503263 0509481 .0515186
18 0445626 0453597 0460903  .0467608 0473773
19 .0405718 0414218 0422021 «0429196 0435802
20 0358348 377855 0386136 0393761 0400792

57



Table 3.3, Values eof % (a3} (contd.)
8De u F-—T;y—— conta .

n =) % 31 38 39 40
m

21 .0334620 0344113 0352853 0360910 0368350
22 0302707 0312668  .0321848  .0330321  .0338154
23 0272838  .028%248 0292852 0301725 0309937
24 0244785 0255627 0265639 0274898 0283474
25 .0218354 20229613 0240017 0249648 0258575
26 .0193382 0205041  .0215825 ,0225813  .0237080
27 0169725 LHI181TT1  .0192920  .0203R55  .0212849
28 0147261 0159681  .0171183  ,0181825  .0191763
29 0125883  .0138664  .0150508 0161500 HO171T1T
30 .0105497  .0118628  .0130802  .0142107  .0152620
31 0086021  .0099490  .0111984  .0123592 0134393
3 0067382 0081179 0093983  .0105885 0116964
33 L0049515 006330 0076735  .0088922 .0100272
34 0032362 0046786 0060183 0072647 0084259
» 0015873  .0030597  .0044277 0057010  .0068877
b3 0 £015015 0028972 0041965 0054081
57 4 0 0014225  .0027473  .0039829
38 + 0 .0013495  .0026087
» N} 0 0012821
4> N 0

98



Table 3.3.

¢ (n~l)

Velues of -&-—(-;5-— (eontd.)

r =) 41 42 43 44 45
n

1 1.0000000 for all =

2 .5000000 for n > 24

3 «3333333 for n > 38

4 «2499975 «2499981 +2499986 «2499989 «24999%2
5 «1999734 «1999787 «199983%0 «1999864 «1999891
6 «16655 %0 «1665720 .1665878 1666009 1666119
7 «1425546 «1425981 «1426354 1426672 «1426945
8 1243897 1244671 «1245346 «1245935 «1246449
9 1100767 «1101948 «1102991 1103913 «1104729
10 0984390 0986017 0987470  .0988767  .0989927
11 0887367 0889462 0891346 0893043  ,0894572
12 0804824 0807393  .0809719  .0811826 0813736
13 0733423 0736464 L7392% 0741749 0744043
14 0670799 0674305 0677505 0680431  ,0683107
15 061523  ,0619189 .0622814  .062613%9  .0629191
16 0565434  ,0569830  ,0573868  .0577581  .0581000
17 0520426 0525245 0529683 0533774 0537549
18 0479446 O4846T4 0489498 0493954  .04980T4
19 0441893 0447515 0452722 0457520 0461974
20 0407284 0413286 0418842 0423991 0428768
21 0375228 «0381596 .0387498 «0392976 0398064
22 0345404  L0%2124 LK1 034155 0369545
23 L317545 034605 0331164  .0337264  .0342944
24 0291428 029815 0305684 .0312080 «0313041
25 026686 3% 0274566 .0281735 .0288416 0294649

29



Cy (ne1)

Pable 3.3. Values of E'_"T-TT (contd.)

60

n=> 41 2 43 4 45

n

26 +0243%89 0251697 0259157 0266113 0272608
27 .0221769 «0230072 ,0237812 02450% 0251784
28 0200983 0209572 0217583  ,0225064  .0232059
29 0181228 0190092 019836 +0206097 0213330
3 0162412 0171545 .0180073 .0188046 +0195510
31 0144458  .0153849 0162624  .017083%2 ,0178520
» 0127294 0136937 0145950  .0154386 0162291
33 0110858 0120745 0129991 0138648 0146764
34 0095094 0105218 0114690  ,0123563  .0131884
3% 0079955 0090309 0100000 .0105082 0117602
3% <0065 394 0075972 0085877 0095162 .0103876
37 0051372 0062168 0072281 LO081764 0090667
36 0037853 0048852 0059176 0068852 00779%
M 0024804 003020 0046531 +0056 395 0065662
40 0012195 002313 0034317 0044364  .0053806
41 0 0011614  .0022506 0032731 0042344
42 4 0 0011074 0021475 0031254
43 ) 0 0010571 0020513
4 ) 0 .0010101
4 3 0




c. (ne1)
Table 3.3. Values of ——z—y——cl - (contd., )

n - 46 47 48 49 50
m

i 1,0000000 for all =

2 5000000 for n > 24

3 «3333333 for n > 38

4 «2499994  .2499996 +2499997 «2499997 2499998
5 «1999913 «19999% «1999944 «1999955 «19999€4
6 1666210 1666287 +1666 350 1666403 1666447
1 427178 1427378 1427549  .1427695 1427821
A .1246897 1247288 .1247629 .1247928 .1248188
9 1105451 . 1106090 +1106656 .1107158 1107602
10 0990965 0991893 0992724 0993468 «099413%5
11 0895950 0897194  ,0898316 08993%0  .0900246
12 0815469 ,0817042 0818471  L08197T1  .0820953
13 0746136 «0748045 -0749789 .0751383 0752840
14 0685558 0687804 689864 0691754 0693490
15 0632995 634574 0636947 0639132 0641147
16 0584150 0587054 058973  .0592212  .0594502
17 054103 0544259 0547241 0550003  .0552563
18 «0501988 AN505420 0508696 051173 .0514560
19 0466104 0469937 0473498 0476809 0479890
20 0433204 043738 0441165 «0444738 0448063
21 «0402796 0407202 0411307 0415135 0418703
a2 0374563 0379240 0383604 L3876 79 0391483
23 0343239 «0353180 0357794 0362108 0366145
24 032%03 0328798 0333656 0338201 0342459
25 Q%0463 0311003 35773 0320245

0305911

61



c_ (n=1)

Teble 3.3. Values of -:-—-m— (contd.)
i}

62

n = 4 41 48 49 50
=
26 0278679 0284359 -02896 79 0294666 0299345
27 0258097 «0264008 0269548 0274745 0279626
28 «0238606 0244740 0250494 «0255895 0260971
29 0220104 0226455 023416 .0238016 0243281
30 0202504 «0209065 0215227 0221019 0226468
n 0185728 0192493 .0198850 0204828 0210456
R 0169707 0176670 ,0183216 0189376 ©0195177
33 0154381 «0161%37 0168267 0174603 0180573
34 0139696 «0147040 0153949 0160456 .0166590
» «0125605 «0133131 0140214 0146887 £153181
3% 0112065 0119767 0127020 0133856 «0140305
37 00990 3 40106911 0114329  ,0121%3  ,0127924
38 <0086 484 0094527 0102106 «0109254 0116003
3% 0074378 40082585 0090321 0097619 Q304512
40 0062689 H0T1056 0078944  .0086390 0093423
41 +0051 391 +0059913 +0067951 0075540 0082710
[} «0040450 00491 % 0057319 0065047 0072351
43 0029874 0038692 H047024 0054889 006234
44 0019614 0028584 0037049 0045047 «0052611
45 0009662 0018773  .0027375 0035504 0043192
A6 0 0009251 0017986 0026242 0034053
47 Ny 0 .0008865 0017246 0025177
48 3 0 0008503 0016552
49 4 0 0008163
50 4 0
m’ o..l(n.l)

The values of the ratio ——TT— ozn alse be obtained from

C_(n=1) ¢, =

m
the values of W with the help of the following relations

1 % (n=1) ¢ _, (n=1)
n -E:(nf * C, (n) ¢



CHAPTER IV

ON SAMPLING WITH UNEQUAL PROBABILITIES

Sumpary .

This chapter desls with the problem of improving estimators in
sampling schemes with unequal probabilities of selection, Here, we
have derived the improved estimator of the population total, Y,
which has been referred to by Dasu, In addition,two sets of estimators
of Y and r& are given, The first set of estimators is cumbersome
to compute, while the second set is simple for computation. The second
set of estimators, though lees efficient than the firet, is more

efficient than the ueually employed estimators.

41 Introduction.

let us consider an unequal probability selection method; let PJ
be the protability of selection of the jeth populstion unit® ( Pyel).
Suppose a sample of size n is drawn with replacement sccording to the
above probabilities. If, for the i~th sample unit, we record its
Y-characteristic Vgo its probability of selection Py and its unite

index u o then the sample is

63

1. In this and subsequent chapters, we shall be following continucusly
the motations introduced in Chapter]]] unless otherwise stated.
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8w (‘1. lz. seey x‘))

where ". L] (". ". “)o

it the ‘order-statistic' be given by
Tw= ( 3(1). eesy 1(9))'

where '(1)' '(z)' PR zH) are the ~ distinot umite arrenged in
ascending order of their uniteindices.

It oan be e2sily shown that T is & sufficient statistic,
Therefore, if g(5) 41s some estimator depending on S , for any convex
loess funotion, & wniformly better estimator than g(S) is given by
2{e(S)1 7).

+ Es the ti ale

The usual estimator of the population total

: - % h) -‘ . “on e n (‘0201)
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Theorem 13

For any convex loss function, & uniformly better estimator than
% is given by

i .n(iaw)-z;o“)%. ees (442.2)

¥
’(‘)[(’(1)0 ses ¥ ’(~? ))"10 E‘i("uf o".‘,c,,_n)l-l‘foov(.) l P!(!;i] -

[+] -
(‘) [(’LU doob ,N) )"" Zl(,tn +osed P )"0'.0 ﬁ(’)‘,‘l Z,l ,“n ]

>-1)
e LAR (‘405)

the summations 2‘,1 and Z"l stand for all combinations of p's and
all combinations of p's containing ’(1)( chosen out of ,(1). ’(z)'
0o ey ,w)) respectively.
Proof:

Obviously, by Rso-Blackwell theorem, & uniformly better estimator

than 3 4s given Wy

- 1
B(s ”)"(;1.! 7)

v
-2 ‘m P [11-1(1) 'T] see (‘.20‘)
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But
M _(med)! %) *)
’(‘) “ (1)' 00.1(9)| ,(l) e ’(9)
P[lx - 3(1)‘ ‘!‘] - ——— (4a2.5)

¥ *(1) “>)
- (x)l .ee ﬂ( Q)l’(l) «se ’(9 )

where 3  and I haw mesnings similar to those defined in (3.2.4).

It has deen shown in Appendix I that

5" (1) oK)

Ael
.(1)) oo a(" { (l) ses ’(9 ) - [(’(1)00000 ’(g)) -

(_)v -l n-l. 1

-4 1
J‘:nl (’(1) ¢ oo & ’(9.1))b + ese (‘)

< ) @
Ll ’(53)-0. ’(g 3)) - [(’(1)00000 '( 9))‘ -

.(l)‘ see C( ® )l

v.l_

:f:':l (’(1) LTI '(Q'l)). *oe (') ’(‘) ]0

e L (‘030‘)
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W

;9 05(3.7).2:.

Honce the theoren is proved.

The above estimator, though better, is not very useful in large
scale ssaple surveys becsuse of the oumbersome computations of o(‘)h
In Section 4.4, we shall derive & simpler estimator of Y, better
than % . Table 4.1, given Melow, gives the exact exyressions of this
estimator, § , 4 for ne 5, 4and 5, For neland ne=2, 58,

is sage as :.

Table 4.1,
l})-) 3 4
1 ) T
(1) Pa)
" .
~ 3y 3(p)) 3‘;_; «" {(’(1)”(2)),' ’(f) LR L6V
) ,
5 Py ¢ Proy ) 4 4 §
(1) (2) [(P(l}* P(z}) - ’(1) » ’(2)"
L [@pqy® Prayt Peay ) "L')
. T (1" F@)" *(3) P(1)
P(2) 4[p(yy + P(z) + P(3) |
4 . z <l

(1)




il 4.3 (owmed,) 1
[
:5 5
% pd+1]
%1}

2 I{(ngyye _'_m" . ";zz 1y
[ lm * My " - (Iﬂ

if l‘ﬂ) l’u} * Mgt 'm:} * “’%} ¢ ':ﬂ} v .{ﬁ'(ﬁl lc;)

o, n{.r "k “'t:}'w‘ Y0 Py “

| Uy "«) thmemgl
3 )




4.3, Estimation of ﬁ.
The problem of finding an unbiased estimatoy of fz arises in

most problems of variance estimation of estimators ¢f Y. The usual

eatimator of !2 is

" :(;:ir‘ify By By 0 e (4.3.1)

For any convex loss function, a uniformly better estimator than

% is given YWy

B(ey D) = 28,55 o) * g S B Yy e (432)

where
2 . n=2 i n-2 '>’ -1 n-z
P(i) l.(ptu "‘p(.‘“#o .+Pw,) -Z.I(Pu,-h o*p‘,,_.)) 4'.-- (i) ]
®(1,1) © i - n Y-, n ’
[(p #eepy) ) = 2y (p 4o etp o) #ena(=) Z P(1) ]
and i
n=2 3 ne2
. <.,Pc|)[(l’u)“"‘*’(9) 2. g‘(l’m"’"*pw.-) +oo(=) (Pc;,+Pu-_')) ]
®(,4) ~ i

v =-I

[(pmh-ﬂ’w) )ﬂ_ 21(1?0) +"*pw-'))n+' «+() 21 P!(‘l)]

coe (4¢3.3)
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the summations 3, and }:1 have been defined in (4.2.3). The

sunmation Z}i stands for all comkinations of p's containing p(i)
and ty .
P(1)
Proof's
Obviously, & uniformly better estimator than sp is given by

1 &
E('r I T) = B( a0 = 1) 1‘3;‘1}1-1/1 7) = E(’1"z’ )

- .(1) .(1') P[Il i x(i>, 12 - I(il)' T]o

(4.3.4)
It is ecsy to see that
2 .nm (n-QI (1) “9)
p(i) Z a(l)[ .o a(o ) { (1) U”
P[llnl(i),l "(i)' 7] - .
5 2 -
TR R T )
and
" (ne2)! “(1) ®,,

p(i)P(il ) Z “(1) .o a( )‘( ) ..p(v)

P[llnl(i), 'z-s(il)l T = | -~ -
o~ ! n ly

%) fon @

(1* 1’) H ave (40’-5)

"

r
where 2: 3 and Z" have meanings similar to thoee defined in

(3.2.4) and (3.6.4). Therefore, we have from appendix I



1

L3y =%u) %) " *@)! U= °1,1)

and

P[ I(l) - ‘(1)' .(2) = l(i’)‘ T} - 0(1'1')0 (40506)

Using (‘030‘) anpd (‘o,-‘)i we get

2 L wl
B I (VRO R CHO R R (O
(405.7)

which was to b proved.

Corollary l. Improved estimatol of di .

Y
The usual estimator of Gi - PJ ( ;L, - r)2 is given by
J

2 l o =2 1 2
s, = ?n—.—lyz ('1..) " (el 12;‘1’(51-51/) o oos (4:3.8)

Thus a uniformly better estimator than li is given by

2 (2 - '2)2
Be, | D) B[ —F5—— ]
" 2
@« 3 ’ '.. -8y ]
1(;1’°(1’i ) (i) 2 (i ) . (40509)
Corollary 2,

We can express 8(8’ | ) in a different form as follows:
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Since
.i -% Z I: - 'P ,
... R(’p'T)-l[% Zsfl!]-n[uzl!]
[2(3)2 "\ I
. 2 = ; (1) (1)
= L0y) 54y - f,“i,"(i.i ) 2 .

(4.3.10)
Corollary 3. Estimatoy of V(z» ).

An unbiased estimatoy of V(Z, ) is given by
% (;9 ) = ) 4 -2 0(1’1 )'?1) "15 110(1’1’)'(1)‘(1 ) (4.3.11)

Since this estimator is quite complicated for use in large

samples, Basu has suggested the use of

;;(-,-;3-;-;) 2(s -D* L (4.3.12)
&s an estimator of V(8,). 4s it over-estimstes V(3 ,), we are
always on the safe side to use (4.3,12) as our estimatoy.

The estimators derived in this and preceding sections, though
superior to the usually employed estimctors, are mot of much use for
large scals sample surveys., The main advantage of simplicity of these
sampling schemes would be lost if we use these estimators. In the.
next section, we give simpler estimators of Y and Y2 These estima-

tors though less efficient than the above derived estimators, are
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superior to the usually employed estimators.
- Simple improved estimators of and Y .

1et us suppose that the observed samples are segregated into

groups of equal Py ‘s, For instance, consider ths problem of esti-
mating the total yleld of a crop from a sample of farms, Bvery
sample-farm is selected with probability proportional to its area,
Here, if some crude approximation (#sy correct to 2n acre) is used
to measure their areas, we expect to get & mumber of farms with
same Py in the sample . In the sequel, by the p-value of a unit,
we mean the probability of selection associated with that unit.
it P(l)' ’(2)’ eeey p(k) bs the distinet p-values of the sample
units arranged in an inecreasing order of their magnitude. Iet n(i)
be the number of sample units having p(i) as their pevalue,
However, mot all these 04) units will be distinet, let ), e
the mumber of distinet units among them. Now, if we arrange these

Vi distinet units in an ascending order of their unit-indices

ys then it is not difficult
ceys

and call them 8(11)9 3(12)0 essy ‘(iv

to see that the statistioc

™ = [y o ! W] i"cm' ‘(xvm)"&%]

oes (4.4.1)

is sufficient.



It should be noted that if we take away the ancillary
statistics n(l), ‘(2)' soup n(k) from the sufficient statistic T,
then it reduces to the 'order-statistic', T, defined in the earlier
section. The 'unnecessarily wide' sufficient statistic T™ is used
here for the purpose of deriving estimators of Y and !2 that
are much simpler (though somewhat less efficient) than those

considered in the previous sections.

4.4A. Bstimetion of Y.

Theorem 3:
For any convex loss function, an estimator wmiformly better

than 3 4is given by

k n
i .-,’: 5 ;Li). Fs, 8 oos (4.4.2)
i=1 *(1)
where
) o
o "0 e Ten)
Proof':

Evidently, by Rao-Blackwell theorem, an estimator uniformly

better than z is given by .
. 71
E ( z | F) = B ( T’!‘] < s (4.4.3)

Further, the probability of getting a sample with a given T*

is
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a! . " (x) ,
P(P) L n(l)] e ‘“)l ’(1) r) ’(k) . .9(‘)(‘(1)). vee 0,)”0(1!(‘) s
esre (‘."‘) .
and
=1 ) M)t P
’(1) n. oo.%. (L)!%:n \Aoo.l[l))‘ ’(1) “"(1) ¥ .’(t)
Plxy®(ary | ™) * x

B) eee B ) esee A,

e ., (Bgy)
® >, () =l e ()

‘>r()
] ))“)(.(1)) sss @ .5}(1'.) ll(i)) “es CQ(K) ll(k)‘)

n
a ".“l . “‘\SL(':" . wes (40‘05)

7rom (4.4.3) and (4.4.5), it follows that

k n
: ” - l E & >
E(sim™) n - ’(‘) L S

vhich completes the proof of the theorem.

A simple comperison of 3, and § will show thet 3, will
b superior to § 4f and only if the sample sise is greater than twe
and st leact three units in the population hewve the same pevalue,
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otherwise &, ond 3 will be identical. It is mot diffioult to

give a direst proof of the feot that V(3" ) { V(¥). The strict
sign of imequality holds only when the above condition is satisfied,

Variance of r,\ .

W have

V(&% ) = B[V(Z" | Bgye eees um)} + v[B(E*, | n(l)....a(k))]

2
k = - k T

where Y(l) is the average of the population gnits having the
p=value p“)c

Assusing thot Pl' ’2‘ eoep !3; sssy Px are the distinet
pevaluee in the population, we get after simplifying (4.4.6)

¥,
< g
- .l 5 "-1'- ? - m -
V) ey Iy I de Ogheg M aeryan) e =,
(4odeT)

1 - 2 -
I:-‘z;}-_-f) 4 (xy -f’) ’ ’3"{;‘}'1‘»'3



e 5
K
. 7 NP (-L'-r)zo
% 1 33 %

the summation . runs over all u’ populsation units with the
p=va lue Pjo

we, thus, see that V(3* ) is made up of two componments, The
second component is unsltered if instead of using J. . we use some
other unbiased estimstor of Tu). Consequently, in order to minie
mise the first compoment, various other estimstors of ?(1) of the

form

(vhere E [ £,( H,)ll(‘)]-l sad E [ £( i“.).a“)]-a)m
b uwsed. To choose & reasonnble estimator in this class of estimee

tors of ?(n.mwmﬂummhﬂnumu

Chapter ],
4o43. setimtion of (.

Iheorem 4:
For any oonvex loss function, an estimator wmiformly better

than l’ is given Yy

71
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1 R '\) Yoo :‘ ;)}2‘
By LG By T ")
k ¢, -(n Q-l) li(;,
- : n (l -1) ]. ens (‘M)
W @ T@TT 0 gyl
where
2 1 %i; - 2
'9(.\ « z ))ul).ls ’:‘1 ( "h) “¥.0 )
Exoof:
Cbviously, &n estimator uniformly better than -’ is given Yy
B(a,1 ™) = B[ zray 3 (D y)
) 4 A A= w" ’1 "’ ,
4 7
- B[ (;-L)( -,3-) |1 . (4.449)
i '
Further, it is easy to verify that
v

B y(agy=d) e, (n
P(2) = X(ipyr B = Bigy)| T @ "(T)"'Lg"'. mel) °*T.e m%a(i)) ¢
“l) o, (n
P(x) @ Bigp)r By = Bgpy| ] - %
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and
n i n,' .
’[‘l"(u)"l"(llr')lp]'%la- "%“ "L
(19 1) . (4e4420)
Therefore,
E m,\(8,=1) :.,;’“ y o)
B(s |‘!’)-&x n(n= o 'a:‘) 08, Ay -

k / Yo Yeih 7y
5 %1‘ ‘1 SRR ¢ ) R ¢ 26 B W U
T,

& o N »
rel r'el ’(‘) ,(") Yeas vee!)

o9 (‘O‘Qn}
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and simplifying (4.4.11), we get

s2
y k ¥y,
2
o™ e oy [ I '(1) T&T) -;El'(t) ,5“) j

; ( 1) ° e~ (‘ ).1) .33)(4)
n - _— *
A B1) ™4) LI (l(n) ’zu) ]

This completes the proof,

Coreliary 1s

It is essy to see tiat

2
. ¥ o
B(sg | *) = B( :-?:—‘r) -n(-’-i- ; ;-z--p-)

2 2
E =n Ve . k n n,..»1) o, -l :
. r MMy 2k, ; (B)"D & (agy=b) 85,
]

- a n(nel e,  (n.,,) 2

k y k y2
1 a Yy
* Wy () ‘(x)%’ g s 3 xee fleied)

is & simple~improved estimmtor of G:.
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Corollary 2
An unbissed estimatoiof V(3% ) is given by

2

" k n (n )-1) T (n( )-1) 5.,
MO EL S - o ex
(3 Ty, iy ] e cer(dedaas)
= - . 0n o ~ad ® ave .
WD LG Ty ' T W "%

&8s an estimator of V(¥ ). First, because it is eimple to
compute; seomdly, becsuse it is always non-negative, nesides this,
we Gre on the safe side as it always cver-estimates the variance

of &



CHAPTER V

USE OF *ORDER-STATISTIC! IN WITHOUT ROPLACUMERT SANPLING

Sumsary .

In ssapling without replocesent from & finite population, the
order in which the units are selected, is immeterial for the purpose
of estimation, This point wae moted by Besu [1 ] and murthy [3!],
Basu showed that the 'order-statistic'! (sample units arranged in
ascending order of their unit-indices) forms & sufficient statistio,
and therefore, any estimator which is not & function of the'erder
statistio’, oan b uniformly improved by the use of Reo-Blackwell
theorem. In this chapter gertain results obtained Yy Murthy [31)
are shown to be immediate consequences d>f the above observation.

It is shown that sempling with different probabilitiss with
replacement until ve got & specified mumber of distinot units is
equivalent in some sense to sampling with different protabilitise
without replacement. Some other related problems are slso considered

here.,

2:1. Ssspling without replacement.
In sampling without replacemaent from & population containing ¥
units, & particular ssmple may be recorded as

8= (:l' 3:: saey 3‘)0

82
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where 't. ('" "’ “‘) (1-1. £y sney l) and n i» the sample
aise; all these syabols have already been defined in Chapter 117.
mmuuvamnum-mommhuamw

- . . e eve o 5— "
R e R R A

LA R CSOIO‘)
If wo record the ‘order-statistic’ Yy

Pe Ry Xayr oo %)

where Xy [ T(g)* Pgy '(1)] is the i-th order-statistic (iwl,...,n).

¥eo have

. P ’2 awe "
- T 8 wes .l
’(,) $-7 m‘)(hl.ba) ees (lﬂ,l-’z- T ’.-11 (s .a)

vhere the sumsdtion is taken over all possible samples giving rise to the
‘order-statistict 7.

It has beon shown by Sasu [ 47 that T i & sufficient statistie,
Thus, if g(5) 4ie some estimator depending on §, Wy Heo-Blackwell
theorem, & unifornly better estimator tham g(S) de given by B[g(S)) 7).
For any convex loss funotion, the risk associated with ={g(S)| 7] is
smaller than the risk associated with g(3).
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1s fized in sdvesce !

In this oase, units are drawn with unequal prodabilities aad with
replscenent until we get & specified mumber ‘u' of distinct unite.
If r demotes the mumder of drawe in & particular case, the sample &

may be recorded as
Sw ('1' Koy sees 3')'

If we demote the ‘order-statistic’ 7T W
Tw [ l(x). ‘(2). ey :(‘)}'

where l“) i the ieth order-statistic (i = 1, +.. n).

It is not difficult to show that

MO = I [ £ gyt B ppgy ¢ eer o mgy)™ -
re2 el (‘)i ¢ W)t et Pa)

(8

’ (,(1)0 e ¥ ’(..1))’.‘ * ...(.ﬂ)ﬂ 1‘(‘)

2
e ’(l)hlj }f eer  {Selel)
where 1) senotes the summation over all possible combinstions out of

p(l). eney ’(‘Pl)' P(“x)g se oy p(')' and the term inside the S usSre

brackets demotes the probability of getting T in r drews, Assuning
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without any los® of mnt}' that ’(1) + see # ’(‘) <1, w get on

suming (5.2.1) over ¢

’(,) - 5 .(.(‘) "1) ¥ sse # "!2 . as(‘) "!]0 sse + P .

f=l ’(") [ - H(l). e "’(.) 1"’(1)- » 5™ '(M)

+ (.)N ;';(*> i‘m ]u ®a s (5030‘)
?0)

It osn be proved ly induotion over an that (5e2.2) ond (5.1e2) sre
.‘ﬂ.
Thus, if we rely only on the torder-atatistic' T, the two methods

of ssapling are essentially the ssme.

pes Raj [13 ] sin ssmpling witheut replacement, gave the following

set of wnocorrelsted estimators of !-1’{1!’.

7
$.(5) = -;;- P

-
$(5) myy » DY (1 =pyds

o » L LE 2 ]

Iy
“(S) .- 'lqaf ses ¥ "’1 * ,1 (1"1.’2‘.-0’ 'H)'

LER ] LE S ] LA 2]

'.(S) s ’l’,atu e ’”1 * .’f (h’l"a"l"ﬂ). (’.,.1)



Theorem 1:
For any convex loss funotiun, & wmiformly Wwtter estimator tham

n n
%S = L e, t,(S) (Z o, »1)
i P S

is given Wy

5 ‘ ’ - - (5.3.2
L7 riir:'gi}” )

where P(T | (1) ) 4is the comditiomal probability of getting the

‘order-atatistic' T given that i-th order unit was drawn first,

Rroof:
Since

ixt - '(h)' %1 " ) “1’ Xyp eaes '1-1]
PLay = Bopye Bgoy © Xy) [Fye Bpr ono0 Byy)

o b’l:i. “ -’_.l.’(!l]

ene oo ’.,Q
199" +e0 = Pyy " P tasd

for all .* ke 1' &y se-p 0y it follows that
4 b 4
B ¥y,q(5)=4y(5) | 7] = B[ -,ﬁ*- (1epy=seom py) = ;f (opyopy=e- w=py) | 7)

LI
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Therefore,

- ~ T 1)
o T o8y(5) | 1) = 5L 4000 | 7] = T xg .LP.[_!_].S..J,

Coroliary i
Then n » 2; we have

- . Ja
vl ai:x °ty(>) | 1 - m“ %) By, eny e ).

Gorollary 23
In simple reniom sampling(without replacement)

'1(%) - ,’1 * ass # ’1.1 +* (H’l) "' iwly aeny nj

and
n
o t,(5) | 7) = B[ 8,(5) | 7 -Z 3:1 Fyo eee (50304)
Theorem 23
A unifomly better estimator than
z (8)e.( (3 )
gls) = 2 s, (5)%,(8) e, , =l
sfgertd 1S toger 397

of Y%, is given by
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. 2 - ‘
LYy M) T, . VP2 | (1)0(8 )
(1 (4)7(1°)

(54349)
wore P [T J(1),(1")] 1s the conditiomal provability of getting T

given that ’l"(t) and lz'l(‘,)o

Proof:
Ueing (5.3.5), it can be seen that

L 4y(9) 8,5(5) = #;(5) () )2]e0 (J=2y ..y n)

B[ 'hl (s} ',(5) - "(53 'J(Si* l? 1wy ($ 1y 2) ooy Jod)

and hence,

B[ a(s) )=k [ 8)(s) 4(5) 7]

- B , y
ST’ [r @)« s W) PLTj() (1))

P(T)

n
Lo

which was to be proved.

Hemark: The estimators (5.3.2) and (5.3.5) own aleo be got Yy
fiaproving the usual estisstors of Y and !a under the
ssmpling scheme disoussed in Seotion 5.2.
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Corollary 1:

When n = 2, we have
2
B[ £,(5) t,(5)) 7] = (—Y [( -'pz) ——-+ (1-p,) —3» 2(1-p1)(1-p2)

ve o (5.305‘)
Corollary 2:

In simple rendom sampling (without replacement)

' n n
B[ "1(‘5) tJ(S) | 7] .-E- %1) + B i 1*32.1 ’(1)’(3)' (5¢3.5b)

The estimator(5.3.5)is used to derive unbiased variance estimetor

n
P(T i
of Z y 3 .
4=l (i) P(T

5.4, Improving Das' estimators.

The set of estimators of Y given by Des [ 8 ] is as folloms:

71
1(3\ = ’p—l—l

B  O=)
u(s) = 3= », » (D) °

L L LU

. ) Ve (l=py=py=eco=p__,) (-py-p,) (-p) 1

AN W Pl ' P, B (B
«(8) = Y, (l=py=e..=p, ;) o (1-p,) 1 ey
n - . .ee * e

P P P N-1
n ne1 1 (n=1)i ;1)

ppz‘
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A unifomly botter estinator than u’(s) is given by

u(?) =2 [ug(3) 'ﬂ
n L T 1. i !'[?lfy...w(*)l
7 ’

- E ’
41 @

eer ses (Sede2)
shore the sumsation .. 48 taken over all possidle X;y +..9 X, -
It is easy to ses that the estimators qr(?) (rwlye..y B) OO
jdentical if aad enly if the ssmple is drawn by simple rendom

ssapling (without replscement). In thia case (50442) is seme ae

(5+3.4).
This shows that in simple rendom sampling (without replagement)

the estimator besed on the sample mean is more efficient than Dea?

a3 well as Dem Raj's estimators.
in unbissod estimster of Y- based on w(s) smd y (g <*)

is given by

'!?( S) = %(3)7' + (ll-l)‘%(s)yq » cusw ves  (5eded)

(g <rwly 2y eony n)
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A uniformly better estimator than this is given Yy

1
a [Z T".Li)- ..my(rhl"".:ﬂl':'u(1))]

:[v"(s i) .El 721) @) +

2 v o 1 |
("l) 1*1.’:'-1 ’(‘):(1|) [ s m"' T%’(T'gl.“."‘m)"""«“')}‘

o “ee (5"0‘}

This expression will also be identical for all r end k A and
only if the sem;le is drewn by simple rendom sampling (without
replacement ).

Purther, it nay be seen on similar lines that in a more gemerul
(without replacement) sempling scheme which hes been comsidered by
pes Baj ( ' ), the estimstors of Y (or of Y°) obtained by
improving Das! estiastore will be fdentical if and enly ifs

The firet unit in the sample is selscted with pre-assigned
probabilities and the remaining units are selacted by simple renden
ssmpling (without veplecement). For further reference about this,

one msy vefer ¢o Des Baj ( 1% ) and Murthy ( 31 ).
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ESTIMATION PROBLIM IN SOMY QENSEAL SAMPLING SCHUMES

Sumenry.
In this chapter, we have extended the techmique of improving

estimators to twoestage mmixsthmr sempling schemes. Improved
estimators of the populstion total, ¥, and their warisnce estimators
sre derived., Similar to Chapter IV, two sets of estimators of Y are
given hers. The first estimstor is easy to compute in practice,

whereas the second though tediouws to computs, is more efficisnt than

the first.

ot Ky Xpp eeny Xgp eooy Xy bo the W first-atage units of o
population., Suppose that x’ oquaista of ‘3 secopd-stage unite.
let Y, e some real valued charagteristic of the heth secondestage
wit of x.1 (holy oo-y !3)1 in vhich we are interested. In confore
mity with the motations used in previous chapters, capital letters
refer to the populstion and smell letters refer to the ssaple. for
example, Xy Xy eeey X stand for the n firstestage (in order of

m)mmu’.wxu.-mm reth (in order of drav)

1. Throughout this chapter, j rums frem 1 to N, h from 1 ¢o ¥ ,
i from ltom, r fromlto m,, (1) from (1) to (> ), amd (ir)
from (11) to {1 V.., ), unless otherwise stated.

2. All relevant information about the unite, such as, their waiteindices,
probabilities of selection eto., sre incorporated in the symdols =,

“‘".
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second-stage unit in the i-th (in order of drew) first-stage ssmple
wnit. ™ assume that firste-gtage units are selscted with umequal
probabilitieos (with replacement), and Af the jeth first-stage unit

is included ), times in the sample, ), oub-somples of m

3 3 3
each will w drewn therefrom independently of each other, every sube

units

sample being drawn sccording to a given sampling method.

In this sampling scheme, the firstestage units axe selected

with unequal probetdlities (with replscement), snd the secondeatage
with

units are selected /equal prodabilities (with replscement), Lt Py

be the probability of selection of the Jeth firet-stage unit
(}Er,-x).macumx

Y

zjh - !3 "%' * . (‘Jol)

the s-valus of th¢ heth second-stage unit of x‘.

The ususl estimstor of the population totel, Ye [ !’a. is

i n
given YWy

i - -} ZEp (6.2.2)

5 ek 1T
m-‘- - 1:1.“. luutlumluof lu and

u is the unit-index of the i-th (in order of draw) firstestage saaple
i
it

1. The symbol m. is cosmonly demoted by m, j we hawve used this
symbol to avoid éenfusion with the previvus use of = for the sube



et X130 Zyye eor Xy Do the distinet first-stage units
in the ssaple arrenged in an incressing order of their uniteindices.
1ot Mgy b the mmber of times X3y 18 selected in the sample,
Fimalliy, let x(u). eney t(‘%)) be the distinot second-stage units
of x(“ arpenged in an inoreasing order of their unit-indices.

Now it is not difficult to show that the statistic

Tl ) % Ay Fgayr 0 Kg o] 4= deeees? )

«oe (‘do’)
is sufficient) and the probability of getting & ssmple with & given
™ 1

A A
« B ) ® 2o (e
'('.) A(l)‘."' ,t(\) )" '(1) LR ’( \)) —TJM—- .

i w, () (1)

W, therefore, have the following:

Sheoren 1:
For any convex less functiom, an estimator uniformly better than
8. is given Yy

:‘: .é : k(‘) 390;) » Sen ("a.’)

where '9“) .‘;%:) (E.;) l(”). .(17) being the zevalus .f'(”).
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Pxoofs
Clesrly, an estimator uniformly better than 3. is given Yy

l(‘.lt‘)-!(lnl!") o s¥a (6.246)

A Arevel A
’ ___Ka.(_ll_y__° ‘- (v, W7,
(‘) hm\..‘o )t:(—&).l !.oo. k(\»\ '(1) ‘.,(1" ...’4~-‘)

n. "y, )t
P 1) s P eosP

P(x,, = Xgey! ™ - X

) - L (’ 'y Ay’ ) ® (. Aegy)

e Y (L) (‘) (‘ ) Y4 (‘) (‘)

i .;L a0 ) D e
LIRS Ve wgy

¢ \')(L/)(.‘I' } *(I/])
=1 ra) )
(1)
‘m "'3:"- e (‘0301)
YL
we thus have from (6.2.6)
WOOR iy

ES l 4 L] i H
B(8, 1™ e 2 & - “zr) Sar) " @ L) Fo e

fence tha theorem is proved.



Variance of §% .

CREE LT S N [ R YR L R

'{ ‘(% )2 A(l) :90) 'A(l)' Ll ,‘<~.>) )]

edprz zqn.v(:m, LRUEAL! i My Byl (6e2e8)

u_(})

whe z - &
B O Rl P

3(“) B

The above equation after some simplificstion reduges teo

Lol b2l L
V(lg))--‘! (-)lf1 E(—E;a 11-?.-(--) ”j

i;.p .(-%—-)3 ‘J o =2, L (62e9)
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in unbissed estimator of V(3% ) is given Yy

n
Lo Ry
(@) ed? - -‘-?—(—:-‘-—-1-)-. (6+2410)

where 3

; bes been defined in (6.2.2).

in estimetor uniformly btetter than vl(ﬁ‘[\ ) 48 given YWy

s N LN ¢ PIRTS § '\‘“,-\(. Aoy y=1)

- R’15£ ( i; A(‘) ;\D.-.', )z .:‘: A(‘) ﬁ),;, ]. s (‘.z.n)

where
S - 2
\ '—'"!-—T L (= -8, . ) i Yy}
.z\')(-i) (.) - ) { Yol ® - (U’) (‘r) Vi) '

¢ otherwise,

Note the similarity between the expressions (6.2.11) sad (4.4.13).
The proof for the above formula runs on lines parallel to that for
(4.4.13).
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An estimator Wtter than w*, .

If from the statistic 7, we take out sncillary statistiocs

xm. eseg A, ¢ W get amother sufficient statistie

Te [ (‘élci)i '(11)’ esey ‘(1 9(0) P’i i= 1,3' PPN }‘

8w (6.2.12)

The statistic T 4is smeller then 7%, Therefore, any estimetor,

vhich depends on T, oan agein be wnifommly improved Ly the use of
the well-known Reso=-hlackwell theorem,

Clearly, the probability of getting & sample with & given 7 is

PT) e B! S Mo BNy
A(l)‘_'“ o | (1) &3 = ‘:(g)k(n
i
s (‘a.x,)

where [ stends for the summation over sll positive imtegral Myy'®

such that . A(‘)O.o

From the results of Appendix [, it follows that



T e >en ¥ ) D (1)
M e L 5 (e (D
Do, - By By
v =) OIp, .. (642.24)

whare '51 stands for the summstion over all none-neghtive integrel

4 's such that Gy 8+ e T, =T

Theorem 2%
For any convex loss functicn, an estimator uniformly better

thean 8% 49 given by
'1., -l .(‘) :\D\” ' see (‘40”)

- \_ZQQ.,"] -~ =n
L s Py OO 2SS _m Y,

Y, )y - u "
ser ¢ Byl | =] /P(‘!)
%) /

Proof:
It is obvious that an estimator umiformly better than ¥* s

given W
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A
s@ Inezz =l ini, .. (6.2.26)

i ’ :“)- B A(1) A °9m(!“]l‘“)

CRER PRREE IRt S T

e L

P(?)

On the lines similar to those given in Appendix [, it can be shown that
;\[ )
‘( a "I) - ‘(1)’ L (‘.3.")

The theorem follows by combining (6.2.16) =nd (6.2.17).

Qarellary 13
"
Wen 7, e ———d— and n, =1, the sbove setimator takes the
o
simple form
g,\’ =% v [ ;£ "J/” ;Qr( ].
z‘)fﬁ )

Though the estimator ¥ is superior to &% , it cammot Yo of

| |
much use in prectice, unless r’--.-L uun’-l. It is etter

Lu
"l
to rely om the estimstor 3% , which though less efficient than 3

has the merit of simplicity.

Vo
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et us pov consider the commonly adopted procedure of twoestoge
ssapling, Here, the first-stage units are select.d as ususl with unegual

propebilities, but vhemever & specified firstestage unit, siy the jeth,
is included in the ssmple, & sub-staple of .3 second-stage units is
drawn therefrom by simple random ssampling (withoat replacement). If
the jeth firstestage unit is included ), Simes, A, such Submscmples
are drawan independently of each other.

Following the motations defined in Seetion 6.1 and 3ection 6.2,

we record the following sufficient statistioc:

oo [ T Rgye Mgyl B(gp)r ceer Bgy ) ch =l e o )
“ne (‘0’0‘)

A little investigation will mow show that the probability of

getting a sample with & givem T 4is (Peller, \6 )

A 1‘ A’.Q)
’(1) ane ,(*); X

n!
’(P) - 3(1)1 see AQ)’

- SOy @, Coype T sy M)
T o | e

| )] (1) 2 2

o> X (B - A 2
e @7 TILNETE o G
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" thus have:

Theores 3:
7or any convex loss function, an estimator wmiformly better than

3. ie

e d: Mgy Fos o (6+3.3)

Procfs

Obvicusly, an estimetor uniformly better than s, is

B( S 17 = u(E 1) . (6+3.4)

It may be noted that :‘ is the aversge of the s-values of X, ., X,.,

ooy 'h‘,. .

MHext, it can be seen that

Pz, = oL Tiia?t VLIKIRL x h" - X

R ..’11)
)

("”)

(‘ .

ve (64352

whe e ‘(‘1). es vy ‘(h m the -(‘) distinet second-stuge units

(u
of ‘(‘) taken from '(“). 3(“). seny :(1 \)((’)\- “ the chojee of

these ") second-stage units is arbitrery, it follows from (6.3.4)

i
1. Note tist the assumption X - x(‘) implies that -“ - u(‘).

2. The eqwtions(6.3.2) and (6.5.5) will be obvious from the similar
equations of this mature devived in Chapter Vi,
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and (‘o’o,) that

B(E 1™ ed

& M@ ‘("1}") L) (mgy)s

*(1)

where the sumsstion .. runs ovwer all possible combinations of =)
distinot iry'® chosen out of Xgq)® oo By o and 3“)(-“))'|
dencte the averages of the s-values of these combimations of a(“)'a .
Therefors,

E (: 1T) » ""(u 1(1) l.,,“_) ’

which completes the proof of the theorem.

Variance of 3.1_7 '

Siatlar to (6.2.9), it can be shown that

2.k g g ™ o <
AR PR CIE m dy 7120
ol
.Q,(@) 1 P "‘(Q”’f 2, (6346)

where

5l

(0 e —gt— .
3
(D
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An unbissed estimator of V(3® ) is givem by

n
SoE g
@) emi. AL L 6D

n{nel)

4

It can be verified on similsr lines that ¥, is slso uniformly
better them 3 i & different Swo-stage Scmpling schene, where the
firatestage unite re drewn with unequal probabilities and the second-
stage units are drawn by oiroular-gystematic ssapling.

This saapling scheme i8 in current use in the Hationsl Sample Survey

of Indis,

in estimator tetter than .

The procedure leading to an estimator better then . is same
as thut given in the previous section. %o state below oaly the finel

result.

heovea 4
in estisator unifomly better than 3%  is given ly

=,g -l .(‘) :o,” » s (‘o,o')
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",
snd
Vo, -
Lz:)" ‘] " Yoy Yey) & " 1 >
P(r) = 'é“ (-) 11 ( “l) wee ( ﬂ\,) [ (x) q | * ave
By
» V) >?>)>
.v,
ses # ’(’\) : ]. ]
(a)

the sumation :.‘ stands for all non-negative integral -x"u such that

CIOKIOQImQQ‘, - e

However, in préctical situations,where simplicity of the estimator
is the main oriterion,the estisator %. is not useful, In such cases,

we pecomsend the useof z* as an estimstor of Y, &nd

as an estimator of v(i?;,»).



The extension of the method of improving estisators in multie
stage sampling schenmes can b given on similar lines, from the point
«memv.nmmz;mo-myum:mm
scheses. It may be remarked that useful improved estimators of Y

in these sampling schemes will b essentially of the form of the

improved
estimstor ¥ . | By useful improved estimators, we mean/estizators

that are easy to compute in practice.]

106
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SAMPLINY SCHENES FROVIDING UNBIASED RATIO ESTIMATORS

Sumeary .
The problem of finding unbisased retie estimator of the population
tote]l of some charecter with the help of sa suxiliary charecter, has
drawn much attention in rescent years. HSome references to this are
given in the dbliograghy. Hanjeams, Wurthy snd Sethd ( 33 ) have
given unbiased ratic estimetors under different sappling schemes,
These schemes have been obtained YW simple modifications of the
cemmonly adopted sampling schemes. For some suoh Sampling schemes ,we
have derived ratio estisators which are more efficient than those
given by Wenjemme, Wurthy and Sethi. The method of improviang the retio
estinators for other sampling schemes of the above type, vhere ssmples
are drawn with replacement at sone stage of sumpling, is anslogous
to that given in this chapter, and is essentislly based on the Heoe
Blackwell theorem.

Ied. Intredustion,

For the sake of simplieity of expoaition, we shall follow the
notations slready introduced in preceding chapters. Further, the letter
¥ will stand for some real valued suxilisry characteristic related to

Y chersoteristic of & population, ¥e sssume that the value of the
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¥ charsoteristic of every population unit is known {n advance and is
greater than sero,

Instead of giving improved ratio estimators of the population
total of Y oharasteristic, w give unbiased ratio estimators of the
ratic of the population totals of Y and ¥ charsacteristics, Iamproved
unbissed ratic estimators of the populstion total of Y. chareoteristic
oan be obtained Wy multiplying thea YW the populstion total of
Wegharacteristie,

1.2, Ssmpling with wnequal probabilitiss.
The modification of stmpling with wnequal probabdilitiss which

provides unbissed retio estimators, is as follows:

1) Draw ome umit with ppw mmhau’.’

2) Draw the remsining (nel) sample units from the whole populae
tion in the wsual menner, 1.0,, vith unequal probabilities
(with replacement), P, being the probability of selection

3
associated with the j-th population unit (J » 1,2,...,8).

st us now record the observed saaple as

- { (’(1)’ A(l)). TR (‘(Q ). R(\) ))]'

where ‘(1) - [ Ty gy Bq) v(‘)] ia the i-th order stetistio

and A“) is the mumber of times z(‘) is included in the ssaple.

1. The symbol ppv is an abbreviation for ‘probabilities
proportional to W',



The probability of getting & particular sample 5 is given Wy

Ma)
ke -L'L P(1) w
?(s) = —izd LTE SRV ;—tﬁ-). (.2.1)
-:D_I Ma)!

vhere Ve la.

In this saapling scheme ,an unbisssd eetimator of the ratio

i ‘—"-“ i @ ';
-~ w
I
J
is given Yy
i, T
~ a “ (1)
2w 2(8) ... (T4242)
1., 2@

To get an estimstor uniformly better tham R, let us record the

torder-statistio?

e f '(x)’ I(z>g seny '( S )]o (1020’)

Now, aa T is a sufficient statiastic, we have:

Iheoren 3¢

109

For say convex loas function, an estimeter uwniformly better than
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oV

is given Yy

7
~ “T(4)
n\) - :ﬂ "’ LT LE T (7'30‘)
Le ¢ )
@ ¥y

where c(‘) is given by (4.2.3).

Eroofs
Cbviouwsly, an estimstor uniformly better than & 4s given Yy

. ™ R p(8)
E ( R ‘ 4 ) £ " H Ly T (’0‘0,)
2> p(s)

-
where the sumation .. is tsken over all ssaples giving rise to the
‘order-atatistio’ 7.

On putting the walue of P(3) and simplifying, we can write

> >
(R e — - i
» n 7 A . v == A
£l py) (R, b/ e (1, ®
. et (‘) "T Y]
A 5 !
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It at onoe follows from Theorem 1 of Chapter IV that the ausbrator

b 4 w
of (7020‘) is given Wy ZQ(‘) ’(‘) and the dencauimstor, bW ‘(‘) ’,(‘%o
{;ﬂ . ,
el ‘
Lo E(riT]e ”.mm
o, . 1)
@ 3
(1)

Por estimating V( R, ), we require unbissed estimetors of .

Hanjemms, Murthy and Sethi gave the following estimator of RR‘

>

R LT "”'w 'k “’."(3 T )
i a3 " e
v
aee1) w(d & Nq) )

P1)

gith the help of Theorem 2 of Chapter JV, 1% cta be proved similarly
that

Iheores 2:

Por any coavex loss fumotion, an estimator uniforaly better than
I~
B i given
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A g%‘m.x) "‘a&)' . = ") ;'w :(i_).
P | G Agsed O (1) (76208)
R, = : "

® ( ? .-'-L‘l

R O B

where ©y ) wnd °4,4') have been defined in (4.3.3).

Sorollary 1:
An unbissed estimator of V( Al,) }s unifomly better than
A " 73
'l ( R ) - 3; - ‘z ¥
is given YWy
A oy "3
'a ( R, ) - lf) - lzv . LR (1.‘.’)

As indioated in Chapter IV, the type of estimators derived above
sre tedious to compute in prectice. In teras of the notations of
Seotion 4«4, we give below estizators of R and K= which though
less efficient than the above derived estimstors, are much siapler to

compute in practice.

Iheores 3:
Por any convex loss functiom, ancther estimator uniforaly better

then R is given Yy

;

{,'

Yy
A
s'f

N Ed

(7+2410)

Dl

-~

[ 1.
P

3
o~

-
St

L L]



Eroofs
mmz-mmwamsxmpurn

apd of the fact that

) ~
7 R p(8)

HBIT™ e
»(8)

L (1‘3.”)

s B Y

so™

where 7 is the similar statistic as defined by (4.4.1), snd the
summstion runs over &ll samples giving rise to T,

After subetituting the velues of R and P(S) 1in (7.2.11) ond
sinplifying, the theorem follows &t omce with the help of Theorem 35 of
Chapter IV,

Using Theorem 4 of Chapter IV, we can prove similarly the

following:

Zheores 4:
For any convex loss functionm, smother estimstor uniformly better

P

than !z is given YWy

T 3 ;9(’0

‘z‘) - L 11 i)y - [ ?( X ‘(‘) P :

nineld) ¥( 5 o ),m> fel (1)
1e1 (1)

S { r e Gy,

n T‘-’ F
e & ) i=1 o o, (aggy) ’mz

“s (Te2.22)
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This theorem will be found useful for deriving unWased

estimators of V(ﬁ'{, ) end v(“m Yo

T.3. ZTwo-stage sampling.
Iet us mow turn to the prodlem of deriving improved ratio estimte

tors in case of two-stage sampling. W consider ouly the medificstion
of the twoegtsge ssmpling scheme disoussed in Geotion 6.3, where the
firstestage units sre drewn with unegual probabilities (with replace~
ment) and the second-stage units, with equal probabilities (without
replagesent). Similar procedure can be followed for other twoestage
ssmpling scheses, The medifisstion of the above scheme is as follows:
1) Draw one second-stage unit from the whole populstion
of secondestage units with ppw’, eay Xyy0 and then
select (-’-1) second-stoge units from the resaining
(IJ-I) secondesteage units of the jeth firstestage uait
by simple rendom sampling without replacement.
2) Drev the remaining (nel) firstestage sample units
and their subessmples in the usual msnner (i.,e, unequal
probabilities for fireteatage and equal probubilities

(without replagement) for second-stage).

1. This can also be schieved in & different menner by first selecting
s firstestage unit with probabilities jeoportionsl to the total
weghsreoteristios in the firstestage unite and then selecting s
second-atage unit with ppv from the selected firstestage uait,
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Using the motations of Chapter V| s "8 record the abgerved
ssmple

se ixn. Bigr eeve uh-l'i. »nip i:ﬁ. Bt coer X “T].

The probability of getting & particular ssaple 5 4is given by
hé N
P(9) » - o P (8) ’ - (Te341)

vhere e I¥, end v) 1 the vevelue of X, ', ina 2'(s)
is the probability of getting the above sample under the usuil twoe
stage sampling scheme considered in 3ection 6.3,

In this modified sampling scheme, sn unbissed estimstor of the
ratio

P {

-

is given by

">

v
o
L

(Te302)

o
EM;P 4
ot

1. ™ defive 4y

W
'” £ " "'.Pf",

the vevalus of the heth second-stage unit of xJ anslogous %o the
sevalue as defined YW (6.2.1).
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whure :1 and 33 are aversges of the sevalues and the v-wvelues of

‘tl. !“. se sy “\ respectively.

8

Row, if YW
™e [ ?‘(‘)' ‘(‘). ‘(u)' ey .(".]’)(g)?[‘ - 1.2.00-. » ]'

we demote the similer sufficient statistic a8 defined in (6.2.3), w
haws
Iheoren 3!

For sny convex loss fumotiom, on estimator wniformly better

than R 4 givem by

T Apay P
e — L (13)
P k(‘) ',)u)
w5 - 4— T s - -L v
here ZQ(L) Q{() (‘z") '(“) e 'Q(U \)‘U (i") '(”)‘

s(") and v(“) sre the sevalue snd the wewalue of a(“)

respectively,

Proofs
in estimstor uniformly better than £ 4is given Wy
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L R P
E(RI™ e . T ’ vos (Te3:4)

Z r(s)
S$- ™

mmwuammmmmnmmu ™.

Some consideration on the lines of Theorem 3 of Chapter VI

will show that
L Apgy ¥
“ Mgy Yo ,
i PO 2[5 Xz, e
and

R I Mgy B |
I, tmeel 5.‘.‘% I I, rE .

ves (T0345)

Purther, Yy prooseding on the lines of Theorem 4 of Chapter VI,

1% osn be proved thet sn estimstor still better them % is given
L

T @y 8.
i, - S

L LR (10,‘)

" -
“ 9eg) Yoo
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where %) nes the same mesning a8 in (6.3.8).

The extension of this techaique to sny genorel multieetage
ﬂﬂmnm“bumusmw lines, W comclude this
chapter with the following obvious extension to strotified sampling.

T.4. gtratified ssmpling .

Here, we shall cousider the modifiestion of stretifisd sampling
with unequal probabilities with replucenent.

1ot k be the mumber of strats, iQ-ﬂ L be the
auber of units in the populstion and the sample respectively for
the ! =th otretum ( | = 1y eeup K)o 1ot Py, Do the prodability
of selection associated with the jJ=th unit of the U wth stratum
( :“:i ¥
P
Y oheracteristics being ¥;; ond Y);  reopectively.

o)y @1y eeep K)o the corresponding values of ¥ and

In stretified ssapling with unequal probabilities, n  units
are drewn independently from the | =th stratus with unequal
grovattlities ( | = 1y eeep K)o The modified stmpling Schene
which provides an unbiased ratic estimator io as follows:

1) Drew ome unit, say the j=th wait in the U =th

stratum, from the whole population with ppw and
replsce it.
units
2) Drav the remsining (n =1)/frem the ! wth stratum,

and n units from k,"th stretum (E/*V - 1.2...;.&)

El
in the usual way, 1.0, with stratified sempling with

uneusl probebilities.
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ntm“.ummwhmuluu

sw | i(l(u) p Aty Jooeesn (B 0 Ao )_ZS

L - l. ey k]'

where X ({7 is the i-th ordereststistic of the sample selected

from the Leth stratum, smd A ., 48 the number of tiwes it is

inoluded in the ssmple ( L@ 1y sesp k § & @ 1y aesp V¢ Yo
The prodability of getting such & ssmple is given by

k Yo LIRS
i ‘Lﬂ/ A Acl )y """E','
p(s) = b=l 2'(8)s oor  (Tokod)
v
k M
where e . L W, 1is the population total of the suxiliary
(el jud O

charscteristic, snd P (3) is the probsbility of getting the sbove
sample under stratified ssmpling vith umequal probabilities (without

any modification).

An unbinsed estimstor of the reatio

kN

I I T,

e} gm0 X
Re X N bl

: :f: '&'

| w1 Jwi )

is given Wy
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E 3 LA
YJ; n, s Lis ‘;"T‘"’
A [{ RS
- 'kﬂv ‘Hf . LR (10“)
) w,.
‘ B LQ?) ’
Y ﬂl ’ ‘Pl Lz

L Q}. ’(Qi)
It say be noted here that the estisators - A A(m-’-—-—-
LI ™ Lz
snd i. X Aui) o ape unbiased estisstors of the populstion
aQ t“ ’(Q’Z)

totals of Y snd ¥ chareoteristics of the ( «th stratus respece
tively under stratified sampling with unegual probabilitiss, and

are of the ssme form &s givenm by (4.2.1).

ve state without yroof that better estimstors tham R arve

A, Qf- A1 & ¢ ¥,
obtained by replscing ¢ 5 A e apd T R, —
L gmd Py 5 el P

by estimators of the forms (4.2.2) and (4.4.2) 8o done in Chapter IV,
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CHAPTIR VIIX

A CEBSEAL SANPLING SOMaM: AND ITS APPLICATIONS

The preblem of estisating the total sise of a population is
known to be of grest importance in biologicel and other related
problems, @.g.s One may be interested to find out the total mamber of
fish in & lske, or to find out the totsl mumbsr of oycles eperating
in & oity ete.. Severnl suthors have dovised methods of seapling
such populations references to whioh &re given in the bMbliography.
In this chapter, we comsider simple random wgfw&pﬁ:ﬁg{;lm
for this purposes A8 it has been mentioned by Bailey ( 1l ) that
umtnmmnmwuwummdum the
reciproeal of the population aise rather than the use of the populise
tion size itsalf, the problem of estimating the reciproosl of the
population sisze is also considered here., In addition, the problem
of estimating the population mesn of some cheragteristioc (say fish
weight) and of the ratio of the population nesns of two
characteristics are also considered.

Consider & populotion of ¥ wumite. let Y, end W o the

J J
velues of ¥ » snd ¥ ~ ghernoteristics associated with the jeth
populstion unite (¥ is sa suxiliary oharsoteristio related %o
Y - charseteristic, snd J§ veries frem 1 to N,) We shall

bogin with the problem of finiing unbiased estimators of
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4 Y
I - Do o, ow - ass
? o ’}-;x !3 snd - E'J . . (‘otol)

The sanpling schens $0 be considered is as follows:

k simple rendos (without replacement) samples of sises
Bye By eeer By are drswn independently of esch other, i.e., each
semple is drewn by simple rondom ssapling (without replacement) snd
is replaced to the popaulation for subsequent selection of samples .

Considering first the problen of estimating ¥, we see that
the ususl estimstor of T based on the ieth sample is given ly the

saaple mean
e =iy . . (8.2.2)

whore the sussation is tsken over all units of the ith sample.

i W

Obviously, suy linesr fumetion U .‘,'i‘ is alao an unbiased
R T |

estimator of ¥ provided . o, = 1.
fo) *

‘Mpposv that alons #ith recording the values of Y e and ¥V -
charsgtoristios, we also record the umiteindices of the sempls units.
iat ‘(1)’ 3(2). esey .(-) be the m distinet units observed in the

sample, then it is essy to see that the statistic

Tw ( ltx). ﬁa). veny I(.) 1 “as (.olo’)

i2 sufficient,
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Purther, it osn be verified thot the prodaM lity of getiing amy
preaseigned m distinot units, in this ssapling scheme, is given W

Bl m-‘ |
(..‘ )+ cool=) (u-n:t m)g (‘::

A

cee  (8e244)

Alse the probability that at lesst (l-l‘) syecified units out of =
given units will be drawn in the last (k-l)-plu.ugimvl

-—t-- -L—

1L () = 1T | ™ ...(';H)E - ...
Py= bl s (.) -
no

i=2

(8.1.9)

Clearly, for any convex loss funetion, an estimetor uniforaly
better than ¥, 1s given W as(;1 I 7)e Using (B8.1e4)y (841.5) amd
moceeding on the lines of Theorem 3 of Chapter VI, we osn prove that

n(;,‘ 12 - i‘. i (84146)

vhere y denstes the averdge of the a distinet unite observed.

1. (:) is to regurded as seroif rd>m, or if a is negative ,
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in & similer menner, we can prove that
F 1= 5,
Thus §_ 4s uniforaly better than ey limeer funotion
."i.‘;‘ (f’.c‘-l) unhbiased for Y.

varisnoe of ¥, .

Ubhvious 1y
WF) V(T 1@)] e V[ E(F,, w)]

- B(WF,. 1) el (2dy, e (841e])

whore ""'ﬁ'ﬁ"{) 5 ( r:.?)g,m 1t follows from (2.2.8) thed

X X e |

B N [ o LS

% (%). ;: l .g » ﬁ-—:—’ oooﬁu——.—-’"’
n.

(% K (5=1) X N

ie=l

savisation o ¥,

For getting an unbiseed estimator of V( ¥, » the following
unbissed estimator of ,' '
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~ n oay Fy ¥y
g - mif' ase “ue (.ol-‘)

.
AR By By

may be used.
It can ¥ shown thet an estisator uniformly better thag

P
Yf is given Yy

X wilbi
i-i (l.)- (ﬂ)l L_L (:.1)& e u‘?
* 1*%‘! 1 (”’(1') e k‘.
T /= n=l
i_j;i.(‘u)'(:):g(l 0..?

(8.1.9)

As the expression (8,1.9) is unwielly for the jurpose of
conputation, the expression (8.1.8) sosus prefersble to (8.1.9) in

astual practice,

In order to estimats the average fish weight of fish in & lake,
the following procedure may be adopted:
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We cateh fish k tises, each time after cetoh every fish is
waighed, ite weight noted, sarked with & bisck spet and throwm back in
the lake, In this way, the total mumber of distinet fish observed is
equal to the mmber of waspotied fish csught; these distinet fish
form & sufficisnt statistie, The average weight of the unspotted

fish will be the required estimator of the aversge fish weight.

82, st of ¢ r of fish ine lake.
In this section, we shall take wp the yroblem of estimating the

tota]l mmber and the recijwoesl of the total mumber of fish in & lnke .
To vender our exposition clear, we shall consider the particular case
of the general semplin; schese given in Jection 8+l when n = ) §

fi @1, eovp k)o This schese is known &8s direct ssmpling.

Ba2p, Direet Sempling,
In this saapling schese, if X is the unknown mumber of fish

in & lake, the prodability of getting sy = distinet fish is given
L 4

L]
poye n) %@

P LR} R 2

(8.2.1)

It is not d4fficult to show that complionted but wnique

estimntor of % ie given Wy
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e (k«1)
LR k

t.l(:) B ore sve (8.242)

However, the sesrch for an estimator of ¥ lesds to the
following theorems
Iheores 1:

A unique wbissed estimator of N exists if and only if
t7e nusher of fish osught 15 not less than the muaber of fish in
the lake (4.0., k ) ¥), in that onse, the required estisator is
given Yy

s (kel)

$(m) - -—::Tﬂ ' . (8.2.3)

otherwise, no uabdiased estiutor exists.
Exgefs
Spppose that there exiete an unbiased estimmtor of He Lot

it be tl(n). then we have from the condition of unbissedness

wiun L¥, N) k) ‘ .

A c (

Putting successively N e 1y 34 eeey "o gol the only possible

gatinmator:

o (kel)

’1(-) - .‘!GS ’ “re - (842.5)
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this is unbiased for N if k ) W, otherwise

%3

kel) 3
B(8y(a) = [ W= i—%—(—m—g o (8.2.6)

The bias of tl(-) dooreasss 88 k incresses and would be negligidle
if k is large emough. dereover, if some orude spproximstion for N
is availadle in advance, & correction for the biss can be mude,
An estimstor of 1(\1(-)) (unbisged 4f k ) N) da given Wy
o (k+2)

v (y@]= @ . . (8-27)

8.28, Genersl sampling sshons,

Proceeding on the above lines, it can be shown that in the

seapling scheme given in Sectien 8.1, &n unbissed sstimstor of % is

glven by
r X
|21 .g,, (‘:»% D -]
N ‘e L‘.'.& 2= il
a® = T _E -
ILev-olfmelle - |
fel gl )
oo (8.2.8)

k
and an estizator of N (uaMaed if [ a, 2 ¥) is given Wy
i=l



129

V]_—L Jefmd)(]) t; e )

ty(a) = Ceee (84249)

1__]_(')-(')_‘1("‘” l

k
4n estimator of  V( 4, (m)) (unblased if .ti;lw 2% )is

given Wy

K
\.a ﬁ (2= 3] ] he J
i=l 2=\
K

\]:U - e, }

1 ful

v(t, @) = y(m) -

se8  see (3.2 .10)

If the number of fish caught on successive cocsssions is small
as compered to the total musber of fish, these expressions osn be

ap roximsted bWy

. o, (Zn =1)
-t o, (Zm )
e (Tm +1)
t,(m) 8 . (%ﬁ) . con (8.2.11)

The exact velues of these terse oun be got from Tsble 3.3 umzuium.
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-B
vhen n and m ore large and are such that =2 e - - A

1 of moderate value (say ( 5) (Peller page 93), the approximate

values of the above expressions osm be computed by the relation

.-(.) «n®o™, ces (8.2.12)

The estinators derived abow are sxpeoted to fars better thay
the usually adopted estimators as they are funstions of the sufficient
statistie 'm', Howewver, their jprectical applicstion is restricted
ouly to cases where the sample sise is large emough so that tieir
blas msy be negligible., Anmother difficulty sbout their use is the
d1frioulty of comjuting o_(n)j this difficulty ean bo overcose if
the Table 3.3 is extended for sufficiently large valuss of u, In the
next seotion, whare we consider the problem of estimsting V/¥ , it
will be shomn that & simple modification of the sbove sampling scheme
will provide simpler estimator of N, though mot exsotly unblaged,
The Was of this estimator, in the particulsr osse of direet saapling,
is equal to the dias of iPsiley's estimstor., But for any convex loss

funoction, our estimstor is uniform)y better than Dailey's estimator,

8.3, metimttonof T/ ¥ .

The importance of this problem arises, sa for example, in
estimting the proportions of persons in & ity uaing a particulsr
wand of cyele, or in estimating the ratio of the average fish wedght
to the aversge fish length of fiash in & lske eto.. The method to
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dorive sn ushiased estimator of ¥ /¥, besed on the lises of

Fanjemme, Marthy and Sethd ( 37 )y is as follows:
1) Draw one unit from the whole population with ppw.
(w’ »0 forsll J.)

2) Draw (‘1 e 1) units with equal produbilities
(without replacement) from the remaining (Nel)
units.

3) Draw the ressining (k = 1) suaples in the usual
way, 1.0., Wy independent simple random ssmpling
{without replacemsnt).
In this ssmpling scheme, the probability of gotting & partie
culsr set of & ssuples, on deleting the information which wit was

selooted fivst, is given Yy

P(8) » -”-’L -—%—- . e (84341)
f=] (u‘)

Thas on unbiased estimstor of —%— is given Wy

Re --L'-l;———-—-‘. oo (8.342)

where °1"a' sery 8 are such that & o‘-l.
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Simtlar to (8.1.3), the statistic

T» ( ‘(l)’ eary '(‘)] (LR (.0’0,)

{s sufficient, snd the probability of getiing samples with & given 7

is

(e 7 P8)w -:l- Pyo oo (8.3.4)
85-F

&
where ,1 is given Wy ('010‘) and =.-* é '(‘) .

Proceeding similarly, it can e proved that an estimator

uniformly better then R 48

T R (8) 2
4 C; 17w 2L . '—L" . se (84345)
P ¢ ) L
8o7
k
( 1'*) ;
since ir(a)- & Aﬂ......._. -L.---il-pl.
8-7 8o % )
If wo know © , sn unbiesed estimstor of v(-g-'-) 1s given Yy
2
AR
'( )‘ - » P sea ('o’.‘)
l" r: i

e

where g 1o given by (8.1.9).
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Appliestion to the estimation of fish popmlation,
%e mow apply this techmique to derive an estimator for the
total nusber of fish in & lake, The procedure is as follows:

1) First, & large mumbor of fish are caught and are
sorked with & red spot, one red fish is then taken
out and the remsining are thrown baok.

2)  recapture and observe every fish including the
mrevious deteined fish into this ssaple, and nark
them with a bleeck spot.

3) All the previous captured and regsptured fish are
thrown beck into the lake, and then (kel) independant
recaptures are made. fvery tise all the fish osught
are otserved snd mariked with & blsck spot,

#s nov sssoviste with every fish in the leke variste values

!:-I. :Ol. avey H.

¥

J

1 if the jeth fish has 2 red spod,;
0 othervise.

In this formulation, the total munber of distinet fish is equal
to the nunber of fish observed without amy blsck spot, Then, similarly

the sufficient statietic is given by

Tw [ '(1)’ T l(‘)’ .(1)' veup ‘(k)’" s (‘0,01)
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where '(1)' sy n(‘) sre recapture sizes arrenged in &n inereasing
order. If VW ll.uhmhthImWrofnaﬂ&mthMl.
probadility of getting ssmples with & particulasy T is given lrl

’(f) - %1 ‘30 ’1 ’ sen e (.1,‘)

where m is the total mumber of distinet fish oteerved, =, ie the
total mumber of distinet red fish oteerved, and rl is given by
(8.1.4).

Prom (8.3.5), it follows that an estimstor of N is given iy
' 04' . ‘l - LR ('O’O’)

Phis estinator is mot exsctly unbiased as

. 7 G

B ( cB)w W PA -l l1e L,

e S J:.Ji W
oo (8.3.10)

The reason thet (8.3.5) is unbissed and (8.3.9) bissed is thet in this
o809 m“um,lj » 0 for all ¥ units is not satisfied, bt

this bias would be megligidble if ’1 is large and the nuabder of

1. This osn be obtained from (8.3.4) YWy putting

< 3 if the fish has s red spot,
-
{9 othervise .
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recsptures is also large.
Ia the particular osse of this scheme when -1-1 for all

felyeeey ky Bailey suggested the following satioator of W

oot (H) = 5. vee ees (Be3.11)

where r 4o the total numder of red fish observed in k reesptures,

It is woll-known that m-}_i biased estimator with bias
negligible for large asmples. or aay eonvex loss funetion, it can be
shomn that a better estimator than (8,3.11) is given by (8.3.9).
Though the former estimstor has the seme nias as Sailey's estimator,
1t has smeller risk funotion thsn Bailey's estisator for any convex
loss function.

Tt is restrked that the Sbove estimators arc derived on the
ssgumption thet the recajtures form simple rendon samples from the
fish population snd that the desths and Mrihe of fish populstion oan
be neglected during the process of sampling. Consequently, these
estimators are applicable oaly to those populstions, whore these

cssunptions are satisfied.



Appendixz I

ie indioated im Chapter II and Chapter IV, we shall
mﬁm.tumnttummmﬁmuuﬂ

extensively in the thesis.

Ihsoren’
't L

ayl By ees € i Sl

&5

-(I;6I30...0:.)) ).-?;‘(llolao...ol\)‘l)no

e (o) BB,

where the sussetion J. is taken over all positive integers
Byp Ty eonp %, such that Wy # 0 & eee ® 2 = n, and the
summation }:‘ extonds m sll possible combinations of x's
chosen out of o eacg B, o
Ereofs

% shall prove this theorem by induetion over n . The
theoren is evidently true for szy & when ~ « 1 or 2,

1t us suppose that the theorem is true for R« 1y 25 seey

mel, Them, by supposition

136
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' o) )!
z m “ 0.0'—0 “l’.o .l\ %‘:]" Oblv1

B X . e vV g ey
“1 , 0:1—1&-’- [(%"‘ .’“9) ‘ 11(3‘00“\)_1) - oaa(‘) E‘.z l].

vhere the sumations inside the square Wwagkets are garried over
‘z. ", sy X, oOnly.

She abowe expression, iy summing over cl.nunio

g :-1-‘-5:-;:-‘- :1‘ e B (Bpee w20 e D (xp000ce x,)°
* aee (")Qﬂ\ ‘?‘lq *

This proves the truth of the theorem for m e m. Since it 48

true for ne 1, it is true in geners].
Sopoliazy 1
" 5 "1 a

“‘ e '9\ 1 eae X,

- {(‘10 TR 'o)' -zi (‘1’ sss & ‘9‘\)"’ LA (.)\)—‘ ‘: "

~

% 20 «'>0 i'9iwd, suuy ~ nd E&a‘."

and g“muuommmmumu xt'g oontafining :‘.
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Proof:

The proof is obtained directly by using the equelity:
" ) | &, )' " .1 * .
3 m'l ses X, ™ ‘x‘ e .‘\ o “,)\ l cno.‘ reslo 4

.3..' L Hl ‘m .‘" ‘av
N ’l\.“. “dl .‘Oll. e &) ‘1 i T § hl eer X5 o

Covollary 2!
Potting .l.'ﬂ‘ . mX, wly wo get

) \ M I
pX m Vel N e DT (=) (2%

and

 rr xR e GEE R C R S

Alternative versions of these equalities are given in
Chapter II in slightly different foras.
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Appendix II

In this appendix we give the following theorem which has besn
referred to in Chapter VI.

Iheoren:

o al - A
“ R Teee A L1 [Teos @ AT % |
© iel

[ 22~

- z (.)' fil (\;’1) .-a( ;;:,))( ’1( ) . ‘l).l’ TR ’.9( "‘),;‘ & ).‘) !‘ +

where ' stanis for the summation over sll possitive integrel A 'e

such theat A = By Snd }‘1 atands for the sumnation over none
f=l
negative C"l such that “1’“3’“"“9'

Ixests
Since o , (m A) =0 whemever A = 0, the sumstion ¥ is

emivelent to taking the summstion over all non-negative x"- such that

9
> Ay = n. Parther, as it is mot difficult to show(hy direch sxpaseion
iel

of @ .>))_(|‘ A‘)) that
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h osmg A) | :‘j-m;’ =)* 1:,(,>... (jmyCre o) 1’;

_2“ »
LS

-..it\;( YV, mad, ) J .

i=l

nptmmﬁenuﬁiutmw-numumwnm

sunning by multinomial theorem.
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