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INTRODUCTION

The theory and methods of construction of statistical
designs have connections with Modern algebraic systems, theory
of numbers, arithmetic theory of quadratic forms, information
. theory and construction of codes. The properties of finite linear
spaces have been used for the construction of (i) complete set of
mutually orthogonal latin squares (Bose and Nair, 1941) (ii) balan-
ced incomplete block designs (Bose 1939) (iii) partially balanced
incomplete block designs (Bose and Nair 1939) (iv) désigns where
some effects of treatments are confounded (Bose, 1947). Primrc')se.
(1951) studied quadric surfaces and used them in the construction of
balanced incomplete block designs. Roychoudhuri (1962) has gene-
ralised his study on quadrics and obtained several series of partia-
Iy balanged incomplete block designs through linear spaces contained
in a quadric., Shrikhande and Singh (1962) have observed some rela-
tions between association schemes and balanced incomplete block
devsigns and using them they have given solutions to some practical

designs.
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In this thesis solutions to balanced, doubly balanced
and partially balanced incomplete block designs some of which are
not listed in the known tables have been obtained. A detailed summ-
ary of work done in each chapter is given at the beginning of that
chapter.' Below is given a brief summary of results in various
chapters,

Chapter I deals with methods of constructing balanced
incomplete block designs from association schemes. The incidence
matrix of the design is determined as the partitioned matrix

1

(B” : BZ; ceeaetd Bt) where Bl = (bi_k) is the i-th association matrix

and b;k= 1 if the objects j and k are i-th associates or zero other-
wise. In the same chapter a new general series of balanced incom-
plete block designs is obtained through difference sets which con-
tains a éeries of balanced incomplete block designs given by Gassner
(1965). This series is obtained by taking a special set of elements
of cartesian product of Galois fields in the initial blocks.

. In chapter II geometries imbedded in finite projective geo-
metry PG(n, s) of n dimensions based on a Galois field of order s
are investigated. The concept of generating Restricted Linear Ana-

lytic Independent set of points is introduced. It is shown that such

a set generatep a geometry isomorphic to a PG(r, sl) imbedded in
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PG(n, s). The properties of PG(1, s;) - Line segments.imbedded

in PG(1, s) are studied to a greater extent than higher dimensional
spaces, Sinqular and nonsingular imbedded planes are defined and
non-singular planes imbedded in a plane are used to construct a
series of Regular Group Divisible designs. This series contains new
designs not listed previcusly as shown in the appendix B. In the ge-
neral case of imbedded geometries PG(r, sy) in PG(n, s) the trun-
cated configuration of lines is used to construct Pairwise balanced
designs (Bose and Shrikhande,.1960) which are useful in the study of
orthogonal latin squares. The properties of line segments contained
in a line are used to construct a series of doubly balanced incomplete
block designs such that every triplet of treatments appears exactly
once in the design.

In chapter III non-degenerate quadrics in f’G(Zt-l, s) are
studied. The form A of a non-degenerate quadric is classified as
hyperbolic or elliptic according as (-l)t det A is a square or a
non-square where the characteristic of the field is different from ‘2.
Non linear configurations like cones and vertex-less cones contained
in a nondegenerate quadric in finite projective geometry are studied
and the explicit member of such configurations obtained. Their pro-

perties are used to construct several series of symmetric balanced



viii

and partially balanced incomplete block designs. A non-isomorphic
solution to the wellknown hyperplanes solution of the symmetric
balanced incomplete block design is obtainéd through tangent

cones of a nondegenerate quadric QZt in PG(2t, s). This series
includes a non-isomorphic solution to the symmetric design with
parameters v =15, k=7, A= 3 for which Fisher and Yates (1963)

show only one solution- (a, b, c, e, f, i, k)-the cyclic one.

- e e -



N OTATTION

Symbol used Meaning of the symbol

Intersection ( of sets )
is contained in

belongs to

does not belong to
implies

The set confaining the element F

PG(n,s) Finite Projective Geometry based
on a Galois Field G.F. (s)
| B Number of elements in the set B
det A Determinent of the matrix A
A
T

Imbecdded Frojective Geometry of
dimensions r and of order s

ix



BALANCED INCOMFLETE BLOCK DESIGNS FROM
ASSOCIATION SCHEMES AND DIFFERENCE SETS

0. SUMMARY

In this chapter three theorems on the existence of balanced
incomplete block designs are proved using the existence of association
schemes and difference sets. The main results on association schemes

are that if an association scheme exists with v objects and ny ith

associates, P; the matrix of p;k's’ is1,2, ' m:; such that

np =ny; =...=n =n for 1_<t_5m
t .

and D P}J.=}\ fori=1,2,..., m

‘ o1

there exists a balanced incomplete block design* with parameters:
(v, vt, tn, n, ),
and that if t = m then under the same conditions of the above theorem
there exists anothdr series of balanced incomplete block designs with
parameters:
v b r k X
'mk+1, m(mk+1), m(k+1), k+1, k+1)
This series is new for m> 2. A new design of this series 'has parameters
(31, 93, 33, 11, 11)
obtained from a three associate scheme of Bose and Nair (1939).

In section 4 the following observations are made on difference

sets: Let v be any integer and v = s;. 85 ... Sy be its prime power

*As far ag the author is aware there is only one result of S.S,Shrikhande

and N. K. Singh (1962 ) known in this direction connecting the
existence of association schemes and Balanced Incomplete Block designs
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decomposition. Consider the cartesian product of the m Galois Fields

]

1, 2,..., m. Let x; denotes the primitive root of

GG‘F.(B‘i), 1
G.F.(Si ), i

1

1,2,..., m. Then label the points of the product space
with

= (xY X5 xg,..., xgl), J =0y lyeen, 8,7 23
where s; is the least prime p‘ower factor of v, label arbitrarily the
remaining points. Addition and multiplication of these points is defined

in co-ordinate-wise manner. Let Bj i=1,2,..., LE_IJ be a set of

points such that no two P's add to the null vector. Then the ¥zl

2z
initial blocks:
(\slao,Bl Cxl,.-o., Bl (ﬁ(—l), LN ...’(B‘-—l o BI——l-al’ ...’Bli %(-—l),
' . 2 2
where k < s if m> landk <s;if m=1, and G = (0,0, ... 0).
generate the following new series of balanced incomplete block designs*:

(v v.v-1l k-v-1 K k.k-1_° ) .
, v AR 2 ' T3 ) by adding the v points of the product space

to each of these: Y=l initial blocks.

. BI1BD % FRGOM ASSOCIATION SCHEMES
. Theorem:l.l. If an m- associate scheme on v objects exists

“where L

] ¥ Rm2% ...=n; = n for 1$tSm

* This generahses the series given by B.J. Gassner ('Equal difference
BIB designs', Proc. Amef= Math. Soc. Vol. 16, 3, 1965, 378-380).



and

PPoapl 4 pl = A
117 Pyp T e TPt
foralli=1, 2,..., m;

There exists a balanced incomplete block design with the following

parameters
(v, vt, tn, n, A ).

A constructive proof is given here. Identify the objects with
the treatment of a design. Also each cobjecti, i=1,2,..., v, construct
t blocks of size n each

BiL L=1, 2, ..., t;

where the Lth block contains as n treatments the n, Ith associates of
the object i. This is an arrangement of v treatments in vt blocks, each
block of size n. Let.us note that in all there are tn = r objects to be
denoted by il, iy soeo ir; which are either first associates or second
associates or’ .... or t-th associates of an object j. Therefore treat-

ment j will appear in all r times in the design, once in the set of t

blocks

By, L ,L=1,2, ...t

for eachk=1,2,....,1r.
Consider a pair of objects j and j' which are i-th associates

i=1,2,...,m. Treatment j and treatment j' appear in a block
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Bi, 1, if there exists an object i to which both j and j' are. L-th
associates. Hence the number of times such a pair of treatments

j and j' appears together in a block of the design is

i i i_ o
p11+p22+ ..--+ptt—

Since is independent of i the design obtained is a balanced incomplete
block design with parameters
(v, vt, tn, n, A)
Corollary 1.1. If there exists a two classes association ~a$heme with
parameters n;, np and matrices F 1 and PZ such that
either

2

1
()p = pe
=p° = -
1 22 = A

. 1
1 11 A or (ii) Py, =P

then we can construct a symmetrical BIBD with para;neters
v, T=nj, A=A or v, r=ny, A= A according as condition
(1) or (ii) is satisfied. (Theorem 2 of Shrikhande, 5.S. and N.K.
Singh (1962)). |
By taking t = 1 in the abo've theorem this result follows
easily.
Corollary 1.2. If a two associate scheme with parameters
v=4t+ 1
ny =ny=2t
! =
11\‘

Z —-—
11

P t-1

P



-5.

exists then a balanced incomplete block design with parameters

v=3t+1
b=28t+2
r = 4t
k = 2t
A=2t - 1

exists.
This corollary follows by solving for p;k's under the addi-

tional condition that

1 1 2 2
P,, + = = 2t-1.

Theorem 1.2. If an association scheme with v = mk + 1 objects

exists such that

= (v-1)/m=k

) =ny =..,.. =D

and
plo, i i
11+P22+....+pmm= A =k-1

then there exists the following series of balanced incomplete block
designs with parameters
I. (mk + 1, m(mk + 1), mk, k, k - 1)
II. (mk+1, m(mk+ 1), mk+1), k+ 1, k+ i).
The existence of series I is obvious by theorem 2.1. In fact

series I is known to exist for all prime powers v = mk + 1 by a theorem
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of Sprout (1954) which; uses difference sets. Theorem 1.1 enables
us to construct designs of this series even for non-prime power
values of v.

Series II is obtained from series I by adding the ith treatment
to each of the m blocks

BiL’ L=1,2, ...., m.

Note: If m = 2 the two series are complementary. But if m > 2 it is
no more the case and series Il is a new one.

1.1, Association Schemes Satisfying the conditions of the theorem.

l1.1.1. Latin Square Association Scheme:

Ly denotes the latin square associaticn scheme defined hy

Bose and Shimamoto (1952) on the v = n°

objects. Here the objects are
identified with the n% cells of a square with n rows and n columns. Two
objects are first associates if the corresponding cells are either in

the same row or in the same column of the square or they contain the

same letter of any one latin square in a chosen set of (i-2) mutually

orthogonal latin squares of order n. We know its parameters are:

ny = i(n'l) b np = (n+1-i)(n-1);
pil= (n-2) + (i-1)(i-2), p12= (i-1)(n+1-i),
P;2= (n-Yn+1-i); p%I-.: i (i, -1}

2 . R 2
Pi2=1i (n-i), Pzz = (n-2)+(n-i){n-i-1).

o



For a given n if there exist (n-3)/2 mutually orthogonal
latin squares of order n, then the latin square associa.tion scheme
L (n+1)/2 satisfies the conditions of theorem 2.1. If n is a prime power,
a complete set of mutually\ orthogonal latin squares exists and

L(n+1)/2 could be constructed leading to designs with parameters

V::nz, b=2n2
A
r= n&1 k=n_..£_‘..
}\=n2-3
2

The complementary design has the following parameters:
v=n b =2n
: 2
r=n®+1 k:“,;l
A= 112 + 1

~
~

»

1. 1.2. Some Cyclic Association Schemes.

Now let us consider the extended
Fartial Youden squares listed in Shrikhande (1981). The designs with
AN
rdference numbers 1,4,6 & 8 in this list satisfy the conditions of the;‘rem
1.1. The cyclic designs of B.C.S. Catalogue /1954) with reference nurf;l
bers Ci» Cs, C8 and C10 also satisfy the conditions of theorem 1.1. From
these designs. balanced incomplete block designs that can be obtained

~ or listed in the following page. (It may be noted that these designs can

be obtained through difference sets of Sproutt 1954).




v b r k A Ref.no. Ref. no.
in Shrikhande in B.C.S.

13 26 12 € 5 1 C,

17 - 34 .16 8 7 4 Cg

25 50 24 1z 11 6 ;

29 58 28 14 13 8 Cg

37 74 36 18 17 - Cio

1.1.3. A Three Associate Scheme TFrom DNifference Sets*.

Bose and Nair (1939) have obtained a three associate design
through the difference set
(1, 2, 4, 8, 15, 16, 23, 27, 29, 30)
in the module of residue classes modulo 31. It may be verified that the
association scheme of this design satisfies the condition of theorem 1.1.

Hence we have the following two designs by theorem 1l.1:

sl. v b T k A
1 31 93 30 10 9
2 31 93 33 11 11

The design sl. 2 is new balanced incomplete block design.

Its lay-out is indicated in the appendix and listed as B.3.

- % Let G be an abelian group of order v. A set D of k dist® nct elements
from G is called a difference set, if the k(k-1) differences of the
elements of D contain every non-zero element of G exactly times.
These definitions are generalised and in place of a single set D, one
can take t initial sets of k elements each and demand that t.k(k-1)

intra set differences from the t sets contain every non-zero element
of G the same number of times.
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2. BIBD'S FROM DIFFERENCE SETS

€.
1

Let G.F.(s;) denote a Galois Field of order s;= p;  and
X; bea primit'.ive root in the field G.F. (si), i=1,2,...., m. Let

v be an odd integer with the following prime power decomposition:

Let s) be the least prime power factor of the integer v and f
denote a point of the cartesian product G of the m finite fields
G-F.(Si), i=1,2,.,.., m
G=G.F.(s)) * G.F.(s3) * ..... * G.F.(84,) ;
where the operations of addition and multiplication of two points are
defined coordinatewise in their respective fields. Let us label some

of the points B's by «'s as follows:

= (xd j
txj_H—(xl, xJZ,... cee s x'ln)
i=0,1, ... ...,sl-Z
% =(0,0, ... ..., 0)

Let B denote the set of points

B:((.vc0 b Uy s e ey %c_l)

-

where k ( sy if m > land k < 8) ifm=1.

2.1. Some Lemmas on the set B.

Lemma 2.1.1. If occ and @, are any two distinct elements

~

of the set B, then ( %, - %y ) has a multiplicative inverse.
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Froof follows easily since no coordinate of the point
( w, - % ) is zero and hence a multiplicative inverse exists for each
coordinate in their respective fields.
Lemma 2.1.2. If g ¢ Band@#0orlthen & ¢ B.
For, othérwiée if a suffix d exists‘ such that
Yo %3 T Dctd-1 T ooy
then o
c+d-2=0 mod [ (5;-1), (sp-1),...., (sm-l)]...z.l.z.
Since c and d are both not greater than (k-1) which is ¢ (sl'- 1), the fi:
1ds being of odd order and ¢ # d the maximum value which (c+d-2) can
take is 2(s;- 1) - 3. Hence {e¢+d-2) can take the value (sl-l) in which
case (ctd-2) can not be equal ¢
0 mod (si- 1); i= 2, 3.,... ce.gMm.
Hence in no case‘can 2.1.2 be satisfied,
PROPOSITION 2.1.3. A set T of (v-1)/2 points (85 ]
j=1,2,..., (v-1)/2; can be selected from the product space G such

that if BJ. € T then its additive inverse —BJ. £ T.

’

A constructive proof is give below:
The set T does not contain L since it is its own additive
inverse. From the remaining (v-1) elements of the product space G,

form (v-1)/2 distinct pairs of distinct points, each pair containing

-
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a point of G and its additive inverse. The set T can be obtained now

by selecting one point from each of such pairs. The point selected

for the set T from the jth pair is denoted by (3, and the other member
J

of the pair by Bj+(v-l)/2 . We have clearly
Bj-}-(‘]-l)/z = -ﬁlj ; j = 1, 2, ee s ooy (""'1) / 2.

For convenience the 'point Gy is also denoted by {50

npeA
Theorem 2.1./ The initial blocks

0
B2 ; (.32“0, 2“1, LU 4 LR X J .-’0 y ‘326&{”1)

Bl: (plw [] Bl%l’ see o0 ey Blu]{-l)

LI LN AN B O ] ae e se @ L ] LR ae o L e e

B(v--l)/Zx (B('-.f-l)/Z “ y e p(v—“ )/2“1(-1

on adding the v points of the product space G to each element of each
block a balanced incomplete block Avith the following parameters

results in:

b = v.(v-1)/2

r = k,(v-1)/2
k = k
A = k.o(k-1)/2.

Proof: T_he.vpoints {'Bj "g, j=0,1,2, ..« +..y (v=-1) ; of the

product space G are taken as the v treatments of the design. First

we esta.bhsh that each initial block contams distinct treatments, then
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that every treatment appears in r blocks and finally that every pair

of treatments appears in A blocks.

If the initial block Bj had contained two identical treatments

then we should have;

Bj % = Bj Gy y ¢ F d
B. ( %, = o
Whlch would imply +h*

-1 )
Bja-uco(cxc-ocd) &%

and since “o is not in the set T which contains B the initial block B..
could not have had two identical points. Hence every block of the design

has distinct treatments.

Now we will show that each treatment appears exactly \ times.
Let B be any point in the product space G. Consider the v hlocks gene-

rated by the initial block Bj for some fixed Jj,.j=1,2,. e eeo(vel)/2

Let.

B-Bju =B,

" then the point 8 appears in the k blocks

Bj+ BC ’ C -'?«0,1,: ¢ oo * s ey (k-l)

’ ‘H@nce as j=1, 2, N <5 (v-1)/2; we observe that every treatment
LS ¥ T

appears in r = k. (v-l)/Z blocks.
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To show that every pair of treatments appears A times in
the design, consider the differences
By (% - f‘d) and 5 (fc - f‘d) = Bip(vmy2 (%~ %)

arising from the pair of points

of the initial block Bj and the (v-1) such differences arising from the
. (v-1)/2 initial blocks Bj, j=1,2, ... ... (v-1)/2. We shall show that

among these (v-1) differences all the non-null elements of G appear

for some

PG G =12, eee eal (ve1)I2)

we must have

By (o =) = By, (‘?‘c - o)
By multiplying both sides by the mulkiplication inverse of ( &, = %y )
we have

Bj = le

which is impossible.
Among the k.(k-1)(v-1)/2 differences ffom the initial blocks
‘every point appeggs A = k.(k-1)/2 times and hence .every pair of
‘treatments appears A times.

"2.2. A property of the design: The b blocks, of design derived in

ieorem 2.1, are all distinct.
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A

Consider two initial blocks:

Bjs (B: w, B, «.» oo ....,Bj ‘xk-l)

J o '] 1
and
Bi=(B; &, B .- e By ®po1)e
If
By o F By

then Bj and Bi are distinct blocks.

if

Bj “; €& B,

1

then we have that

By % )tBj,

-

for, otherwise .or some ¢, we should have

¥
Bjul-ﬁi'xo y 1l ¢c ¢k ~1
and hence
=1 2 -1
By &y = By a, "y =By a
. 2 ' . -1
gince ocl = (xl ag ocl = (1, 1, «-sy 1), showing that “c

which is not.trué’"b‘y ﬁf&positio’n 2.1.3.

€ B



DOUBLY BALANCED AND PARTIALLY BALANCED “
. : DESIGNS FROM IMBEDDED GEOMETRIES

0. SUMMARY

Let PG(n, s) denote a finite projective geometry of nl dimen-
sions based on a Galois Field G.F.(s) of order s. Let G.F.(sl) =G,
be a sub-field in G.F.(s). Every geometric point has s-1 analytic
representations. A set Pr of r+l georﬁetric points is said to be Res-
t1"icted Linear Analytic (RLA) independent with respect to (Sr’ G,) where
Sf is a set of fixed analytic points one corresponding to each geometric
point of P r» if no linear combination of the analytic points of Sr with
coefficients chosen from the subfield Gl vanishes unless all the coeffi-
cients are zero. Taking a set Pr which is RLA independent with respect
to (Sr ' Gl) consider all linear combinations of anélytic points Sr with
coefficients restricted to the sub-field, A geometric point, for which
one of its associated analytic points lies in this set of Restricted linear
c':omb‘inatiorm will have (sl-l) analytic representations in this set. An
RLA independent set Pr is said to be Generéting if a geometric point
has either zero or (8)- 1) analytic points in the set of all Restricted
.Linea.r (RL) combinations of points of S..

It is proved that the space A;_ of geometric points associated

with the analytic points of the set of RL combinations of points of Sr is

' 15
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isomorphic to a PG(r, sl) if Pr is a Generating RLA independent set

with respect to (Sr’ Gl)' Ao“‘are points, A, are called Line segments.

1l

These are also defined to be nonsingular imbeeeded geoemtries of di-
mentions 0 and 1 respectively. The ;imbg:dded geometry Ar obtained Qy
the generating set Pr of RLA independent set (Sr. Gl) is said to be non-
singular if L\.r._ lobtainee:l by the generating set P,_) of RLA independent
set (Sr-l s Gl) is non-singular and the geometric point of P_ which is
not in P, ) is not incident to any line generated by points of A

r-1°

Necessary conditions for the existence of non-singular geometry Ar are
obtained.
A number of combinatorial properties of Line segments are

obtained in detail and they are used in the construction of Doubly Balanced

Incomplete Block designs (Calvin, 1954) where every triplet of objects

occurs the same number of times. This contains new designs in the

practical range.

Let A o be a mon-singular - imbedded finite projective plane of

order s; (which could be generated as indicated above) in a PG(2,5). A

- line of PG(2, s) is classified as an outsideline (it does not have any points
~in common with the imbedded plane) or a tangent (it has exactly one point
in common with the imbedded plane) or a secant (it has a line segment of
the imbedded plane in it). If s=--sz1 every line is shown to be either a tan-
gent or a secant, "In this case by cutting off the imbedded plane and taking

‘ tangents to the imbedded plane without the c.ut-off points as blocks and
with the remaining points as treatments one obtains a Regular Group Divi-

le Partially Balanced Incomplete block designs.
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1. INTRODIICTION

Let GF(s) = G denote a Galois field of order s and F.G.{(n,s)
a finite projective geometry of n dimensions based on the field GF(s).
A point X of the geometry has (s-1) analytic points associated with
it represented by |

)(t(gao,?al,---,éan)-ga
where 9 is any nonzero element in G and . €6 ,i=0,1,...,n;
not all zero. “
| Let us note here that a finite projective geometry _P.G.(n. 8)
of n dimensions based on GF(s) contains subsets of points X of the
geomejctry,_,,called its subspaces or flats satisfying the following |
properties:

(i) there e;cist subspaces qx of dimension h ir;P.G;(n; s),

forh=.1,0,1,...,n where c"l E ¢ : the empty set Ad ire points .
Al are lines, 4, are plav .s etc. and F.G.(n,8) s An itself,

(i) ’A'h € 4 (h, k=-1,0,1,...,n) == h <k
and h = k if and only if &, = b, -

(iii) The points common to oy aﬁd Ak.éonstitute a subs-
pace L?r called its intersection. The space As of minimum dimensions
containing Ah and Ak (néceuaiily unique) is called the join of
Ah and Ak which is the intersection of all subspaces that contain

and A4, .

both Ah K |
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(ivih+ k= r + s where h,k,r,s are as obtained

i

above.

. Ahis defined in F.G.(n, 8) as the set of points [

such that <A = 0, whereW isann + 1 by m matrix of rankn - h

-

ey ocn) denotes the point X .

and o = ( a s
| The geometr‘ic pofnts are denoted with upper suffices on
Greek letters and elements of GF(s) by. 9, a;, By
Let G} = GF(s}) & GF(s). The elenlxents 6£ GF(s)) are
denoted by A 's and are called Restricted elements. A Restricted
linear combination meéns linear combinations with coefficients being

chosen from G only.

2. RESTRICTED LINEAR ANALYTIC (RLA) INDEPENDENCY

Let

: 1 r
Pr=[x07X!‘“'9X]
denote a set of r + 1 geometric points and

S =[ o, ‘cxl, ,...."’ o ]

a set of analytic points where oci as a fixed analytic representation

of Xi , 5?0,1;..f,r.
2.1. The set P, is said to be Restricted Linear Analytic Indepen-

dent with redpect to (S, G;) or briefly RLA independent (S¢» Gy) if
Ao, Apr eees A€ 6,

->AO’A1'000"}\1“00

‘0 1. . r
A, @ *A\ @ eyt A @ =0
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2.2. A set P, which is RLA independent (S;, G,) for every

analytic set S, of P, is called Restricted Linear (RL) independent
set with respect to G,.

The concept of RL independency may appear to be more
general since when GF(s;) = GF(s) RL independency is same as
Linear ihdépendency. We shall however prove:

Theorem 2.3. A r;ecessary and sufficient condition that P, is an
RL independent set is that F, is a linearly independent set.

Froof: Sufficiency of the condition is obvious. To prove
necessity, let Py be RL independent but not linearly independent, i.e.,
there exist elen;xents

90, 91, see seey Qr
not all zero in GF(s) such that
9°oc°+91a1+...+9rocr=0 . I
Consider the set
S'r = [ Bo’ Blv seey Br ]

where

“i if Qi“o 150, l,oo., Te

i |
31,_{91“ if 9, 40
P, is supposed to be RLA independent with respect to every one of

its S, sets and hence with respect to S; in particular. Consider

1 T
A& + eee + Ar o =

o
}‘o(f +)\1
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where

if 9 40

AN {;

By I, « is reduced to the null vector though not all }\i's are zero.

if QiﬂO i=0, 1, veey Yo

Thus RL independency is equivalent to linear independency but RLA
indepéndency is not. RLA independency is a more general concept
than linear independency.
2.4, The set
B, [ K0 K )
is always linearly independent, hence RL independent (G,) and hence
RLA independent (S}9G;) with reference to any specific analytic
representation S| and subfield G| if only the two geometric points )(o
and )(l are distinct. |
2.4.1, But P} can be RLA independent with respect to some S1
and G; though £° and xl are not distinct, as for example the set
Py=[ £ F]
is RLA independent with respect to (5}, G,) if
. Sy= [, 9a° ]
a;d g f Gy |
3. GENERATING RLA INDEPENDENT SET: .

3.1. Let the set P, be RLA independent set (S,, Gj). The set P_

is said to be of the generating type and referred to as generating RLA
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independent (S, G,) set if in addition*
(0 Ags Ay ooy AL AL L AT, L, M, e Gl} |
(i1) (}\0 - )\"é 9) o + .ee +()\r - M ) ocr; 0 9 f}l
| thé that the set in 2‘.4. 1. though RLA -independent set (5, Gl)
is not of genérating type.
Example 3.1,a: Consider GF(24) associated with the minimum

function:
x% 4+ %34 1 =0.

In P.G.(2, 24) let us consider the set
Py = [ Xo, Xl, X.Z ]
of points with respecf to -
So= [ «°, ccl, o ]

where .

oL = (0,0, %), og1= (0, x, 0), ocza (0,x2,x2 +:1)
observe that F,, though not iinéarly independent, is a generating RLA
independent set (S,Z" GF(2)).

)
Exampl.e 3.1.b: ‘Irll F.G.(2, 24) as above the set F, with

S2 where | ‘
«®=(0,0,x), o= (0,x,0), o2=(1,0,0)

is.alsc a generating nLA independent set.

* This additional condition guarantees that in the set of analytic pointsg
generated by taking all non-null linear combiriations of the points
“i y i=0,1,..., * with coefficients restricted to the subfield Gy, 2
geometric point X would have exactly 8] - 1 analytic representations,
if it has one in this set.
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Example 3.1l.c: Again in P.G. (2, 24) with the same minimum

function the set P, with respect to
S, = [ BO: Bl"s Bz ] and GF(2)

where

B%=(0,0,x), BE(0,x,0) B=(0,x2,x%+ 1)
is generating RLA independent set but with respect to

Sy, = [ oc(.), ocl, o ] and GF(2)

where

a°= (Ololx) =B° ’ “}‘-" (O'X’O) =Bl

' o’ (0, %, x3+ x2+ x) = (x34 xz),B2
. is not a generating RLA independent set.

3.2. We may note here that linear independency of the set P,. is a
sufficient condition for‘ P, to be a generating RLA independent set with

respect some S, and G1 but the condition is not necessary as shown in

example 3.1.a.

‘4. IMBEDDED GEOMETRIES
Henceforth
1 T
P.= [XO, X L XE) X ]
is supposed to be a generating RLA independent (Sr’ Gl) set.
4.1. Restricted Subset and kestricted Subspace
The set C

0 1 r
Cr=[oc/°6—?\°0¢ * Ao * exe + A 07, not all A= 0, }\ieGl]
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is defined as the Restricted subset of analytic pointe -.neraic by the

r+1
generating RLA indepdadent set S, The set C, contains (s, -1)

analytic points, with each of which a geometric point X of P.G.(n,s)
is associated.

The set Ar of all geometric points wltvch are associated with
the analytic points of C. is defined as the Restricted subspace Ar

generated by P through S or simply Restricted subspace O . Itis

also denoted by the following symbols:

Xva"uK AX’XHH’X A
b 1 . r ? T o 1 r
a,'“,noo’a e e, ¢,a’oo-,“0

4.2. The Restricted su‘bspace Ar gener.ated‘by Pr a genérating
RLA independent set with respect to(Sr, G,) is‘isomorphic to a pro-

jective geometry P.G.(r, s;) of r dimensions based on GF(sl).

Proof: The Restricted subset C. contains (sf”-l) analytic

points. No two of these points are identical, for let

(o} 1 r
cx=>\ooc +7\loc +...+>\roc

and

- 0 ".1 ; r
! A'ooc+?\loc+...+)\roc

then
o r
- ol = - A1 vee n (N = At
o -0 ()\o Ao)oc+ h()\r )\r)uc
does not vanish, since [ o, al, eey ocr] is an RLA independent set

of P,.
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To every geometric point X of A r? (slol) analytic points
of Cr are associated and no more; sincé if we have
0 1 r
A=A & + A, & + eee + A
0 1 T
and
r

= 1 o 1 l t
B=A cxf?\loc+,...+?\,roc

associated with the same geometnc point, then oc 9 B.As @ ranges
over the nonzero values of G, wq Qﬁ the. &p Mganalyic rdpreserta-
tong. of ;‘ inCpandif 9 £ Gy we have:
. o r
% ~ - ' cs e - '
9{3=(>\0 Qho)oc-r +(}\r ri)cx;éo
(since P, is a generating KLA independent set) and hence

o $ 9B 4f ’9}1G1.

. - r+l .. .
Thus the restricted subspace A r contains E}__;l__
81-1

geometric points X . The isomorphism between A . and P.G.(r, 8])
will be clear with the following correspondence between their points:

for a point X in (AN consider an analytic representation which can
alwa~y5 be written in the»fc.>r1"n. 7\0 o+ )\1 ocl + eee + }\r o  with

A, & G; = GF(s)), (i=0,1,...,r). Consider'also‘a_point\% in P.G.(r, 8y)
determined by the analytic pomt ( Ay }\1, cosees 4. AL )  then

the correspondence )( ¢ >§ is an isomorphism preserving

incidences. Thus A r 18 an imbedded geometry of dimensions r and

order s; in P.G.(n, s).
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5. LINE SEGMENTS
The Restricted subspace A l is also called a line

X , XO,X Xg,)(l_ ’
segment and denoted by L o 1°T B i+« We shall study here
the properties of line se gmgnt’: and finally obtain the number of line
segments generated by the two distinct geometric points )(o and K
as we take different analytic representations for them.

It may be recalled that in case of P, ii isa generating RLA

independent (S), G, ) set iif the two points £° and Xl are distinct.

\x°,x1 0

i i 15" 4
5.2+ We have on x £ o, o-l where
6‘0 a.nd G- are any two distinct geometric points of Lo’ 1 and O

it o o0
and bl respectively their analytic representations in C,. { Repro-

ductive property).
This follows from the fact that Cl is a vector-space of which
( o ,ocl )} and ( bo_, bl ) are just two different bases.
| Thus the same line segment is reproduced by any two of its

analytic points provided they correspond two distinct geometric points.

X,X X,)(

oco,ocl 9 oc ,9 a

To estabhsh the necessny part consider a third pomt K other

. ‘a
. . &
5.3. if and only if 9091 G;.

i

than Xo and x which belongs to both the sides of the identity. Con-

sider also the two possibly different restricted analytic representations
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of X one }‘o /ao + }\1 al generated by ( oco , al ) and the other
. 0 . 1 o . 1 .
A 0% + A 197% generated by (90 o 91 «). It is seen that

clearly
Ao A ol =9 (A g oA g od)
0 1 o "o 171

Since «° and al are also linearly independent this equality implies

}"o 9o - Ml 91
}\o }‘1
the common value being equal to g"l » from which one obtains
-1
9o 1 (}‘ }\o)(}‘l}\'o) SGl

It may be noted that since the selected point X is different from both

Xo and )(l none of ?\'0,7\'0,}\ and )\'l could be zero.

1

The sufficiency part is obvious.

This property shows that two different analytic representations
of the same two geometric points could give rise to two different line
segments (which are distinct except of course for the two defining geo-
metric points. Two line segments generated by two distinct geometric

points K and X are then exther identical or have only X° and Xl in cmmon.

Y

Sed4s The line segment L o 1 hasg 8y + 1 pointa.

o £t

5.,- The number of distinct line segments L generated by

two distinct geometric points £° and )( is (s - 1)/ (sy - 1),
. . . o) 1l o 1 .
Since the analytic pairs (Qoa )9, ) and (9 & » « ) with

-~

generate the same line segment, in counting the number of distinct
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line .segments one may without any loss of generality restrict one's
al:tention only to the (s - 1) generators of the type (ga° , ql ), deter-
mined by the s - 1 nonnull elements 9 in GF(s). Kesult 5.5 follows
once it is noticed that for a fixed Valug/%fieg(s -1) generators (QMO , a])
with A rangmg/oﬁe sl nonnull elements of the subfield Gl ggnerate.
+ identical line-segments, (Kesult 5- 3). The nurnber of distinct line seg-
ments is thus equal to the number of cosets of multiplicative group of
Gy with respect to the multiplicative subgroup of Gili}e,: -1,
1 -
5.6. A distinct triplet of points appears in exactly one line segment,
This property follows from 5. 4.
5.7. The total number of distinct line segments generatéc‘l. by pairs

of distinct points of a line P.G.(r, s)is

s . (s -1),
51 (s:ll-l‘)

A pair of distinct geometric points generate s - 1  distinct

. 81- 1
line segments. Hence the (s + 1) pairs of points generate (s + 1) f_"__-___;
,‘ (81~ 1
1

line segments; but each line segment could be generated by any two of
its geometric points. Hence the result.

It could also be obtained by noting that a line segment is uniquely
determined by any three of its points and hence the number of distinct

line segments is (s-; 1)/ (sl'; 1) ;
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5.8. A point K of (P.G.(1,s) appears in _.s_i(i_'._i.} line
: ’ 81 91-

segments.

Choose any other point X' of the line which can be done in

8 ways. For each choice of X! the number of line segments generated
by X ~and X' is B=1 | Hence X appearsin S° 5 -1 line seg-

ments; but a line segment is counted s} times in this process as many

times as a point of the line segment (other than X)a: < chosen as [' .Note

that the given line segment is one of the 5. i line segments associated
8 - ‘

with any one of the s pairs of geometric points so constituted. Hence the
preposition.
: -1
5.9. A pair of distinct points X and [' appears in g line
P """1‘51_
segments.

That a pair of distinct points X and X' appears in at least

8 -1
Bl-l

line segments is obvious. If the pair had appeared in a one more
line segment generated by two points (j"pand G"Q then the same line seg-

ment can be generated by X and X' and hence is already counted in

-1
':—1"_"1 line segments. Thus every pair of distinct points appears in .g._-...}.
B 1-

line segments,
5.10. Examples illustrating the properties of line segments.
Consider P ¢ (2, 24) based on G.E(24) whose minimum function
is x% + x3 + 1 = 0. Let the subfield be GE(2%) whose elements are:

50, 1, x3 4 x, B4 x4 1} GE(2*)
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\
two geox;netric points )(oand ‘Kl be taken with the analytic points

Re) . :
«= (0, x, x+ 1) and oclﬂ (0, 0, 1) respectively. The other 15 points

of the entire line generated by X‘ and )(1 in F.G.(2, 24) are given

below:
- 2 ' \
X' : (00 X, x) . x 3: (0, x, x3+ 1) - X4 : (0, X, x3)
X 5: (0, x, 1) X 63(0, x, X34 x2+x)\ XY: (0, x, x3+x%)
p ¢ 8, (0, x, x2+x+ 1) X 9: (0, %, 0) p{ 10: (0, x, xz)
KB (0, %, x34x+3) 22 (0, x, x2+ 1) £13: (0, x, B 42 +1)
4 14: (0, x, x2+ x) Xls : (0, x, x3+ x) X 16, (0, x, 2+ x%+x +1)
| xo 1 .
We may verify that L o’ 1 contains the points Xz . XB and )(4 in addition
PR \
to the two defining points X° and Xl and
P 2 o4 0 L1 o .1
Y7 SENE oY SEE A ¢
. L 4 - L 1 ”’ Lo 1
& 4 9u y1x

where @ = xa-l--l and = x3+ x2 whence ¢ u-]':: x3+ l+x & GF(s‘l),
Taking } (9 )} =5(1, 1), (1 2 3 2

‘ \ | s U -? o 1), (1, x), (1, x2),(1, x?), (1, x*+ 1)} we
genérat‘e 5 lines s'égments which are all disjoint, the four other line

segments'than the one obtained above being as shown below: respectivelys

100 K R, 2, g $1°, R, 14, 58, 38/

LTI U Y

o

It ,is obvious that the ebove line in PG(2, 2%) with these 17

points has the equation x,= 0. It is covered by these 5 line segments.
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6. CLASS‘I'FICATION OF IMBEDDED GEOMETRIES

In this section we classify the imbedded geometries and later
obtain the conditions of their existence after studying some preliminary

cases:

!
6.1. Let us consider B, generated by P,= [)(O, Xl, XZ ] of

generating RLA independent set. The Restricted subspace 02 contains
KK

the Line segment L o’
[ A : 1

belong to the entire line generated by the points )(o and K in the geo-

1 ,
1 say. Then the point X2 may or may not

metry P G.{n, s). If it belongs to the line we call P, a singular genera-
ting RLA independent set and A2 a singular Restricted subplane, other-

wise we call A2 a nonsingular Restricted subplane and PZ a nonsingular
generating RLA independent set.

6.1.a, Example: A singular Restricted subplane &, in a plane.

2
‘Let us consider P G (2, 2%) and G, be the field of § 0, 1}
elements. and the set
; P,= { Xo, xli x2 1
where L2 =(0, 0, x), xl = (0\, x,' 0) and x2= (0, x%, x%+ 1).
It is clear that J2is coincident to the lina through the points J°and 1.
The line segmeht |
LE e e

where the point X3 is given by (0, x, x).
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The Restricted subplane A [Xo X Xjf )(4 )(5 XG] where
3(4= (0, x2, x2+ x + 1), 3(5 (0, x +x, 2-i-l) }( = (0, x +x,x2+x+l)

and its 7 line segments are as givén below:

Lo (00000, 20 (00K, 30 60,0, €y, 41 (L2 x5>,
mﬂﬁﬁ»édﬁf)7mﬁﬁ

These seven pomts and seven 11ne segments are 1somorph1c to P.G (2, 2)
contained in a line of P.G. (2, 24)
6.1.b, Example: A nonsingular Restricted subplane Az in a plane.
Leét us consider in the above example
o= [ 8 B
where K = (0, 0, x), ;(1 =(0, x, 0) and )(2 = (1, 0, 0), It is
obvious that )(2 does not lie‘on the line generated by X° and )(1 in the
geometry F G (2, 24). The remaining four points of the nonsingular
Restricted subplane A‘za:re:
P=0xx f=0,0%x p£=0xo0 KL= xx,-
with the seven line segments.
Lo (K500 20 (0,808, 30 (0000, 43 K420,
51 (L), 60 RSy, Tr (2 540).
It is obvious that these seven points and 'seien line segments are also
1somorph1c toa P G (2, 2). o
: Thus in both the cases the imbedded geometries are isomorphic

to P T (2,2). But the important difference is that in the singular case
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all the points lie on a line of the geometry in which they are imbedded
while the nonsingular case has a structurally different imbedding in the
geometry P,G. (2, 24).

6.2, Iﬁ general let P, be a set of generating RLA independent points -
that generates the Restricted subspace Ar « Then Ar is said to be a
nonsingular Restricted subspace ifthe Restyicted subspace Ar-l gene -
rated by P._, is a nonsingular Restricted sul;spaCe and the point )(r of
the set P, is such that it does not lie on any of the lines in I G.' n, 8)
which‘a:'e generated by any pair of points of the Reétricted subspace Ar-l .
The point Ao is nonsingular Restricted subspace by definition.

In all other cases the imbedded geometry is said to be
singular,

6.2.a, Example: A nonsingular Restricted subplane Az of order two
imbedded in a finite projective plane P. G, (2, 22),

The minimum function is x2+ x + ] » 0, the elements of the
field are 0, 1, x, x2 and the subfield is of the elements ﬁLO,' 1‘) The points
=001 =10, £=q, o0 o0
generate“ a nonsingular Restricted sbubplane Azin P.G.(2, 22).
6.\Z.b.v Example: A nonsingular Restricted 3-dimensional subspace A3
of order two imbedded in a finite projective plane P,.G. (2, 24).

The minimum function is x4+ x3+ 1 = 0 and the subfield is of

lements 2 0,1 } Let the points X and )(1 be taken with the analytic
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points « = (0, 0, x) and o - (0, x3+ 1, 1) respectively. The Restricted
subset C; generated by them has the only third point xz given by

o= 4= (0, x3+ 1, x+ 1)

and the lline segment All =[ Ko, )(l, }(2 ] where Xz is given by oc2 « It may
ke noted that the point X3 given by (1, 0, 0) does not lie on the line gene-
rated by the points ‘ Xo and Xl which infact consists of 17 points. Hence

the get
‘ 0 1 3
P, = [ X y K y K ]
is a nonsingular generating RLA independent set with respect to the ana-

lytic set
1 3

S= [ 0‘0! wy ol )
and the nonsingular Restricted subplane £, consists of the following
additional points:
a0 k), i nn) £ 3, xe )
and the line segmehts: )
Lo+ (KR 1 (000, 1 (006,
LR, 1 (LKL, 160 00000, s (810,

-
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The fourth point to be included in ¥ 3 so that it may constitute

a nonsingular generating RLA independent set. shoﬁlq not be incident

to any of these 7 (entire) lines in P. G, (2, 2%) whose equations are

given below:

Ll \ xo =0
.LZ x; =0
. 3 =

Ljs: ‘(x+1) x,+% =0

Ly: X1+ (x3+1) x, = 0

Lg .(x3+ x+ 1) x+ X+ (x3+ 1) x; =0
Lg: x1+(xz+x+1) Xy = 0

Lo: (x3+x24 x) x+ Xt (x%4 x+1)x, =0

It is easily verified that the point X7 with the analytic represen-

tation oc7 = (1

» 1, 1) has the required property. Hence the set
o .1 .3
Py=[ £ 2]
is a nonsingular generating RLA independent set with re spect to:the

analytic set . _ ‘
S; = [ L, o, @, ol 1.

The restricted svubspace A3 generated by P3 has a total of 15 points of -

which 8 points Xi (i=1,2,..., 8) have already been enumerated earlier.

The remaining 7 points are as follows:
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XS :.(1, l, x+ 1), )(9: (1, x3, 0), )(lQ (1, x3, x), Xll (0, 1, 1)
Xlzi (0, 1, x+1), Xlﬁ (0, X3, 0), )(14: (0,x3, x). ,
It was observed in example 3_. l.a that a generating RLA indepen-
dent set P need not necessarily be a lihearly independent set. The
example here shows that even a nonsingular generating RLA independent

set P, ig not necessarily a linearly independent set of points.

7. EXISTENCE CONDITIONS FOR NONSINGULAR RESTRICTED SUBSPACE
Theorem 7.1.. A mecessary condition that a nonsingular 3-dimensional

Restricted subspace of order s, exist in F.G.(m, 8) is that

(sn+1_1)/(s -1) -'Bs?+ st 1)(8 _ 51)]>0,

Proof. If a nonsingular Restricted subspace AZ exists and its
(82+ g1+ 1) line segments all intersect;in A _itself, every line which
1] g 5 y

has a line segment in &_ . contains (s - 91) distinct points of . G. ‘1, 8)

2
which are not in the imbedded plane. Hence the fourth point to generate

a nonsingular Restricted 3-space must be outside these lines and the

choices for that point are:
(s®*h1)/(s - 1) - (Si- 1) (s - 8;)/(8;- 1)
which must be strictly positive.

7.2. Theorem: A necessary condition for the existence of nonsingular

Restricted subspace Ar in P ¥ /n,s)is that

(sl 1)/(s - 1))(311'+1 1)/(sl -1).
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This condition follows if we note that the number of geometric
points in the imbedded space A  are at most as many as the total
A e

number of points in the geometry P C.(n,s,).
8. STRUCTURAL RELATIONS OF NONSINGULAR RESTRICTED
SUBFPLANES OF A FLANE

Let Py a[ 12, xl, )(2 1 be a generating RLA independenil:‘
set with respect to a (Sp, G) in P C.(2, s). The Restricted subplane
Az g;nerated by P, has been shown to be isomorphic to a P.G.(2, sl)
in section 4. Hence if we consider any two geometric points of AZ R
there is a unique line segment, generated by these two geometric
points with analytic representations taken from CZ' which belongs to
the subplane A2 . This property holds because of generating RLA
independent\property of the set F’2 with respect to (SZ, Gl)'

If we consider any line L of the geometry F.G.{2, s), the line
may cut the imbedded geometry & 5 generated by PZ in either no points
or in one point or in more than one point. If the line L cuts the imbedded
plane in more than one point say two points then from the isomorphism
of ‘AZ toa P.G.(2, §;) the line L cuts the imbedded plane in a line
segment uniquely determined by the two geometric points with analytic
representations from the Restricted subset CZ' The line L. may have

some more points in common with the plane A2 than the above line

segment. But if the imbedded plane is a nonsingular Restricted subplane
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then we show that it will have no more points in common.

Henceforth we shall consider a nonsingular Restricted subplane
A 2 generated by nonsingular generating RLA independent set I, with
respect (SZ' Gy).

8.1. If a line of P.7.’2, 8) cuts a nonsingular Restricted subplane

AZ in z:t line segment, then the line has no more’ points in common with "
the nonsingular Restricted subplane &, . -

If a line L cuts the nonsingular Restricted subplane Az in a

0"0.‘—1

‘line segment L O}U 1 and also has one more point J‘i of the line L

W, &
in common with the subplane & 5 0 then consider the set

sy = [&, why ]
of analytic points of

Py = [0 07y0*]
of the line L.

It is clear that P, is RLA independent and '... §; genérates
the Restricted subset C, since C, is a vector space and S} is another
. basis for C2 and thus we obtain 1;he Restricted subplane Az from P'2

which shows that the Restricted subplane A2 is generated by a set of
three collinear geometric points O”G, 0—1 and G__,I. and that AZ is con-

tained in the line L. It implies that the three points Xo , Kl and Xz

constituting Pp(whichare in A2 ) are also collinear, violating the fact
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that the Restricted subplane Azis nonsingular.

We may now classify the lines of a plane I . .2, s) into three
classes, in an exclusive and exhaustive manner. A line'L is called
an OUTSIDE LINE, or a TANGENT or a S8ECANT with respect to a
nonsingular Restricted subplane A 5 according as the line L cuts the
imbeélded plane in no points or in one point or in a line segment. Simi-
larly the points of the plane not in the imbedded plane are classified
as follows: a point P belongs to class I if it has the property that every
line through P intersects the imbedded plane in atmost one point, and
the rest of points which are not in the imbedded plane and class I
belong to class II. It may be noted that all lines through a point Q of
class II canhot be outside lines or tangents and hence there must be at
least one line L among the lines which is a secant to the subplane A2
and by property 8.1 that for a line L through € there cannot be two
line segments in common with the nonsingular Re stricted subplane A2 .

8.2. Through a point Q of class II there‘ cannot be two lines which

are secants with respect to the Restricted subplane & 5

Since the Restricted subplane A2 is isomorphic to a
PG(2, 8y )every two line segments intersect in a point of the Restricted
subplane AZ and hence the point Q has to belong to the subplaﬁe cont -

radictorily.
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Thus through a point Q of class II there is a unique lige By 8.2
which has a unique line segmaemt ..by. 3.:1¢t in common with the non-
singular Restricted subplane AZ' In other words the points of class II

are nothing but the points on the extensions of the line segments of the

nonsingular imbedded subplane.
8.3. The number of points in class II is
2
( s’l+ 51 + l) (S - Sl)
As has been noted in the preceeding paragraph of 8,2 every

point Q of class II lies on a unique secant and every secant has (s - sl)

points on it which do not belong to the subplane. The number of secants

is am many as the number of line segments in the nonsingular Restricted
C 2 ) )

subplane which is (51+ st 1). No two secants intersect outside the sub-

plane as shown in 8.2. Hence the number of p‘oints of class II is

2
(Sl + 84 1) (s - s9).

8,4, The number of points in class I is
2
(s“+ s+1)-(512+ syt 1) (s -5 +1)

as can be obtained easily by subtraction.

8.5. Through every point of class I the number of lines that do

not cut the subplane is (s - sl2 - sl).
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For, through every point P class I, s + 1 lines pass through
and of them sf+ §,* I lines cut the subplane A2 in one and only one
point each. It may be noted that each line joining the point P with a

point of the subplane p 5 is a tangent since P is a point of class I.

8.6, The number of tangents from a point Q of class II to the

- subplane Az is Sl'

8.7. The number of outside lines th rough each point class Il is
2
s -8 .
1
Through each point Q of class II there is a secant to the
subplane Az containing s;+ 1 points of the subplane A2 and hence
(32 + 8 +1. & F1) points remain in the sub lane through each of
1 1 1 P g

which a tangent passes originating at Q. Thus the lines which do not

cut at all the subplane A2 from Q are in number s + 1 - Sf—l =g - s?.

8.8. Class I is; empty if and only if s is either 8] or s?,
The number of points in class I is equal to
2 2
(sl + 8+ 1) - (s1+ s+ 1)0(s - s;+ 1)

as shown in 8.4, Note that for a given 81, this expression a quadratic

2

in 8, reduces to zero if an only if either s = 8,0rs=s 1
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9. STRUCTURAL RELATIONS OF NONSINGULAR IMBEDDED
GEOMETRIES INF.G (n, =, }

We shall consider a nonsingular Restricted subspace A.‘l‘ of
order 8; imbedded in a P. G.{(n,s). In 8.1 it has been proved that if a
line cuts an imbedded plane A _in a line segment then it will have no

more points in common with the subplane Az . In general ,

9.1. It may be verified in a similar fashion that if a line L cuts
a nonsingular Restricted subspace & r in P C.!n,8) in 2 line segmant,
fhen the line L. will have no more points in common with Ar .

Again we can classify all the lines of P G. {(n, s) into three
mutually exclusive and exhgustiv;a x classes: the class of OUTSIDE LINES
where every line of this class cuts Ar ‘in no pointe; the class of TANGENTS
where every line of this class cuts Ar in exactly one point and the class
of SECANTS where every line of this class cuts Ar in a line segment.
of Ar .

Similarly the plassification for points is as follows: A point not
in Ar belongs to class I if every line through it is either a tangent or an
outside line; all other points not:n Ar and class I beong to class II.

9.2. The number of tangents through each point of class I is

(sll"*'l -1)/ (s1 - 1).
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9.3. The total number of tangent to Ar from all the points

of F ¢, ,Sz)ls

¢ (877 - 1)(sT- 1)(sTHIL D/ (s - 1)(s%- 1)
where the subfield is of order s. |
Every point F in the Restricted subspace L\.r has
(s¥- 1) / (s - 1) line segments through it in A+ Each of these
(s¥- 1) / (s - 1) lines through P has a line segment in common with
Ar + Hence the number of lines through F which have no line segments

in Ar is by subtraction from the total number of lines in F G (r, sz)

through the point P :

ir

(87 - B/ (2. 1) - (sT_ 1) / (s - 1).

No two such lines as above which originates from any two distinct points
of the (sT+1_y) / (s - 1) points of A being identical we get the required

number of tangents to be
[ (sTtl_) M (s - D[ (s r_. l)/(52-1) - (8T- 1)/(s - 1)]
10. APFLICATIONS OF IMBEDDED GEOMETRIES TO STATISTICAL
DESIGNS
With the help of results of the previous sections we obtain now
a series of doubly balanced incomplete block designs and a series of
partially balanced incomplete block designs of two associate classes

which include new designs. Some pairwise balanced designs are also
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obtained and are used to improve lower bounds on the number of
mutually orthogonal latin squares.
10.1. Doubly Baianced Block designs through line segments: |
In F.3 /1, s) the line containing s + 1 points consider all
line segments based on a subfield of order sj. The points of P.G.(l, s)
as treatments and the 1iné segments as blocks gives the following

balanced incomplete block design with parameters of (say) series I

v=s5+1

log
i}

s (82- 1) / 8, (szl_ 1)

21
n

s(s-l)/sl(sl-l)
k= s+ 1
A o= (s= 1)/ (s;-1)
0=1
The values of these parameters are obvious from the properties of
line segments proved in sections 5.1 through 5.9.
An important property of these designs is that every triplet
of treatments appears exactly once in the design. Very few such balan-
ced incomplete block designs are known —(Calvin, L.D; 1954)* where
triplets are also known to occur a constanf number of times, A list of

designs with r and k g 20 of this L3series is given in the appendix B.

#* '"Doubly Balanced Incomplete Block Designs for experiments in
which the treatment effects are correlated", Biometrics 10, 61-38.
Here their use in organoleptic experiments is also discussed by him.
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10.2. Regular Group Divisible designs through Nonsingular

Re;tricted subplanes imbedded in a plane.

Let Az be a nonsimgular Restricted subplane of order s
imbedded in a P G (2, s?),

Let U be the set of points which are not in A2 and V be the
set of all tange\nts to A2 from points of U. The configuration (U, V)
where U is the set of treatments and V is the set of blocks is a partially

balanced incomplete block design which is a Regular group divisible

design with the following parameters:of series (say) IM:

P11=0fz2-m- 1.

First let us notice that it is a group divisible design. The
number of treatments is easily obtained to be (s4- 8). These treatments
] ‘o : 2 ini 2 '
are partitioned into (s“ + s + 1) groups each containing (s~_ s) treatments.
Each group corresponds to a secant i.e. a line segment of the subplane AZ.

Two treatments which belong to the same group do not appear together
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in the design since no tangent passes through them both as already
they are on a secant. Two treatments which do not belong to the same
group appear exactly‘ once together since the ige in P C, (2, sz) which
is generated by these two points has to be a tangent to A2 , for it cannot
be a seciant in which case the two treatments belong to the same group
and it cannot be an outsic\le line since the set of outside lines is empty
in this case. Since each group contains az.'-s treatments it is clear that
the number of first associate n| is (st- s - 1).

Two treatments that appear in a group have exactly ny- 1 treat-

ments which also do not appear together with them. Hence

1
N pll: SZ

- 8 - 2 = nl"‘ 20
If two treatments A and E appear in a group the number of treatments

which are 1st associates of A and second associates of B is zero, since

the same line cannot be a secant and a tangent, Thus piz= 0 and simi-

larly P%ln 0. Let A and B be first associafes, hence a tangent passes
through them., The number of points C suchthat CA . isa tangent as
well as CB is also a tangent is the number of points not in the group
to which A and B beloné and that number is n;. Hence pézz ny. Similarly
the other association matrix can be verified.

The number of tangents is obtained to be st s by taking r = 2

in section 9. 3.
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Every tangent cuts the subplane A _in a single point, hence

2

k=s%1-1=g%and through every point of U, there are exactly 52

tangents which gives the number of replications.
The following designsiare obtained for r and k less than 17 by

taking s = 2, 3, 22.

Sl.no. v b r k )\1 Ao n, ) p}l p%l
R.1. 14 14 4 4 0 1 1 12 0 0
R.2. 78 78 9 9 0 1 5 72 4 0
R.3. 252 252 16 16 0 1 11 240 10 0

The design no.2 is a new design whose construction is indicated

below:

Let us consider the projective plane of order 9 with the minimum

function x2+ 1 = 0. Let the subfield be the set of elements {O, i, -1} .
Consider the set
1 2
P2=[ X09 X ’ X ]
of geometric points where the analytic set

= 2
S5,=1 «’, cxl, « ]

with « =(0,0,1), « (0,1,0), & =(1, 0, 0).

The set P, generates a nonsingular Restricted subplane A of 13 points

2

and 13 lines. The tangents of the plane to the subplane now give us the

design sl.no. R.2.
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10.3. Let us consider a nonsingular subspace Ar or order 51
imbedded in a P G.n, s). Let U be the set of all points not in Ar and
V be the set of all outside 1i.nes, tangents and secants to Ar from points
of U. The configuration (U, V)is a Pairwise balanced design of index

unity. and type (v, ki, ky, k;) where:

v = (sn+l-1)/(s - 1) - (slr+l-l)/(sl- 1)

lf:l -9 -
k2= 5 - 8
k3= s+ 1

For v is the number of points outside the imbedded geometry .
Since we take all lines as blocks through every two points of U there is
either a2 secant or a tangent or an outside line. Hence every pair of
treatments appears once and only dnce in the design. It is obvious that
we have the block sizes kl s k2 , k3 as above depending on whether the
block is derived from a tangent, secant cr an outside line.

As a corollary it follows that if the N(t) denotes the maximum
number of mutually orthogonal latin squares of order t then the existence
of the above pairwise balanced design implies the following inequality:

N [ (s2*1_1)/(s-1) - (sll““_l)/(sl-l) 13 min fN(s), N(s+1), N(s-s,){ -1,
Note that the expression on the right hand sidé is independent of r and n.

Takingn=r and s = s% we have

N 1 (s2(r+1).1)/(s2_1y . (s**1-1)/(5-1)] 3 min %N(s), N(s+1), N(sz_s)} 1.
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10.4. Let us consider a nonsingular Restricted subplane of order s
imbedded in P.G {2, 32)_ In this case it is proved in section 8.8 that
Class I of points is empty i.e. through every point there is a unique

~
.

secant to the Restricted subplane Az. Consider the points of P. Z (2, sz)

2

of tangents and secants as blocks. This configuration is a Pairwise balan-

not belonging to the subplane A _ as the set U of treatments and the set V

ced design of index unity and type (v, ki, kz) where:

Hence the last inequality in section 10.3 can be improved in the special

case of r = 2, to
N (84- s) > min SN(SZ), N(sz- s)} -1,

= min isz- 1, N(s?- s)} - 1.

. 2
Taking 8 = 27= 4 we thus have

N (252) > min {15, N(lz)}. -1
= 4

which is an improvement on the known* lower bound 3 for N(252).

* Mann, H,B; (1943 );.Design and Analysis of Experiments, Dover
Publications.



BALANCED AND FARTIALLY BALANCED DESIGNS FROM NON-
LINEAR CONFIGURATIONS IN FINITE PROJECTIVE GEOMETRY

0. SUMMARY

In FG(n, s) the set of 211 solutions of a second degree homoge-
nous equation in n+l variables which are general coordinates of a point
in PG(n, s) is known as a Quadric Q in PG{n, s). It is said to be non-
degenerate if there exists no nonsingular linear transformation of the
geometry PG(n, s) by which the equation of Qn can be transformed to an

equation containing n+l-r (r7 1) variables, otherwise degenerate. A

7
degenerate quadric Qn in PG(n, s) which capnot be expressed in fewer
variable§ than n is called a cone of érder 1. The tangent space of a point
of the quadric haks cone of order 1, with that point as vertex, in common
with the quadric.

In PG(2t-1, s) wﬁere s is odd, the form A of a nondegenerate
quadric is classified as elliptic or hyperbolic according as (-1)t det Aits a
nonsquare or square.

Taking all tangent cones of order 1 as blocks and the points of a

non-degenerate quadric Q,, in PG(2t, s} we get the series of Symmetric

Balanced Incomplete Block (BIB) designs

2t _ 2t-1 2t-2
vei=d oop, p= 2 Loy 2 s
5 - £ -1 s -1

This series is known, but the actual plans obtained here through quadrics
are prcved to be non-isomorphic to the known plans. Known plans are

49
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based on hyperplanes of dimension (2t-2) in PG(2t - 1, s) whereas QZt
does not contain such hyperplanes of dimension (2t - 2). For example

this series gives the second solution to the design with parameters

for which only the cyclic solution (a b ¢ ¢ f i k)is known (Fisher

and Yates Tables, 2nd Edition 1963).

Similarly taking tangent - _. =n  vertex-less tangett
cones in non-degenerate elliptic and hyperbolic quadrics in PG(2t-1, s)

four new series of PBIB designs are obtained.

1. INTRODUCTION
Let Q, be a quadric in PG(n, s) defined by the set of all points
X = (Xo, Xl ) eoesy X

that satisfy the equation:

1z1 =0

where all the elements 3 and x belong to G.F.(s).

If by a nonsingular transformation of the geometry Qn goes

to Q' _, with the equation:
b“q_}r
S'b.. vy, =
2)Pn Yivy =0 rxl
. . j21-0 .
then Qn is said to be a deé’enerate quadric. Otherwise Qn is a non-

degencrate quadric in PG(n, s). If Q'n-r is nondegenerate in PG(n-r, s},
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then Q, is said to be a cone of order r with the vertex given by the

equations:

and a base given by the equations:
Yn-r+l = Vg p42 S ¢+ =¥n = 0.

1 = be cae ' = | oo
Two points « (O.‘o.’%l" » %) and P ( PO’BI’ ! Bn) are

said to be conjugate with respect to a nondegenerate Qn if:

N
—
™ -
2, tay Py 4y = 0
FZLzo
The set of all points which are conjugate to a given point is called

its polar space. The polar space T(P) of a point P of the quadric is
called the tangent space of ¥. It is known that (Roychoudhuri 1962)

Q, (7)) T(P)is a cone of order 1 in the plane T(P) (theorem A2 of
appendix A). In case of characteristic 2 Dickson (1958'. has shown that
a nondegenerate quadric Q_ in FG(n, 2™) can be reduced to one of the
following forms:

(1) when n = 2t all quadrics reduce the form:

2
xo-l-x1 Xp F e o0t AP ) ¥4 =0
(2) when n = 2t-1 a quadric reduces to one of the two forms

below:

(a) x

oxl +X2 X3+... ...+X2t_1X2t=o

2 2 =
~ (b) }\(xo-!-xl) tx Xt Xy Xg b .o b Xy 5 Xpp =0
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where
A (x20+xlo)+xo X3
is irreducible in G.F.(2™), It is shown by Roybhoudhuri (1962) that
the quadrics (a) and (b) above represent hyperbolic and elliptic qua-

drics respectively.

2. CLASSIFICATION OF FORMS OF QUADRICS IN PG(2t-1, s)

Consider a nondegenerate quadric in PG(2t-1, s) . Its equa-

tion can always be written in the cannonical form

2 2 2
cxo :x.°+oc1 xl+ e oo +?‘2t-l :L2t-1 0]
by a nonsingular transformation where no is zero, i=0,1,..,(2t-1).

In this section these forms will be characterised as elliptic or hyper-

bolic depending on the nature of the determinant- of the form .

Let N(0, n) denote the number of points of a non-degenerate
quadric in PG(n, s). Feom the results of Primrose (1951) it is known

that
N(0, 2t-1) = (s*+1)(s*"!-1)/(s-1) if Q, , is elliptic
and

N(0, 2t-1) = (st-1)(s*-141)/(s-1) if @,  , is hyperbolic.

Theorem 2.1. The quadratic form

. 2 2
txo ko + (xl 3&1 + eoes o0 + “2t-1 3‘-2,6_1

1

represents .as nondegenerate hyperbolic or an elliptic quadric
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according as the product
(”1)t (04 X Ses eee L o (A)
o 1 2t-1

is a square or a nonsquare.

Proof: Consider the following equation

2

t-1 241 = O ---(2.1)

o x2+oc x2+... cee +
oo 171 ‘ _ 2
Case I: Let the product (A) be a square.
The number of solutions x where
x = (xc,,'x1 P oeese aeee, th-l)
which satisfy the equation 2.1, as shown by Dickson (1958) is
(st- 1) (st 1+ 1) 4 1.
The number of nonzero solutions x of equation 2.1 is hence
(st- 1) (st'l-l).
The number of geometric points in PG(n, 8) which lie on the quadric of
equation (2.1) is precisely
(st - 1)(st-1 4 1)/ (s-1).
It is clear that only a nondegenerate hyperbplic quadric QZt-l has
these many solutions.
Case II: Let the product (A) be a nonsquare.
The number of nonzero solutions in this case is also known
(Dickson, 1958) to be

(st + 1) (st-1 . 1)
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and hence the number of geometric points of equation 2.1 is now
(2t - 1) (s2t-1 4 1)/ (s - 1)

showing that Qp, | 1is an elliptic quadric.

In both the cases since none of the
% 9 i=0, 1, ise siny (n-1)

could be zero, it is obvious that the quadric is nondegenerate.

It may be notedthat the product

t
(h) qo 9‘1 ee eee Uy o

and the product
- t
-(1) det A
where A is the form of 2 Quadric not necessarily jn cannonical form,
are either both squares or both non-squares (being identical) and hence
we can re-state . - theorem 2.1 in the following form:
Theorem 2.1': Let A be the form of a Quadric in PG(2t-1, s). The

form represents a nondegenerate hyperbolic or elliptic quadric according

as (-l)tdet.A is a square or a non-square.

Examples: 2.a. In PG(5,2) the equation of 2 nondegenerate elliptic
quadric ‘
(xzo‘-i-xlz)+xo X} +xp x3 + x4 Xx5=0
2.b. In PG(5, 2) the equation of a hyperbolic quadric °

is
xox1+x2 x3+x4 x5=0
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2.c. In PG(5, 3) the equation of an elliptic quadric is
xg+x%+x%+x§+x‘21+x%=0
2.d. In PG(5,3) the equation of a hyperbolic quadric is

2 2 2 2 2 2 _
-xo+xl+ x2+ x3+ x4+ x5-0

3. NON-LINEAR CONFIGURATIONS CONTAINED IN NONDEGENERATE
QUADRICS

In this section we shall study the properties of cones and other
non-linear configurations contained in nondegenerate quadrics. Let Qn
be a nondegenerate quadric in FG(n, s) and T be = point .n ik 2 Lct,
T(P) denote the tahgent space. Then it is known (Roychoudhuri 1962,

result quoted as Theorem A.2 of appendix A) that

-

-

Q (% T(P)= Q.1
is a cone of order 1 with vertex at P and a base a nondegenerate quadric
Qn_2 in PG(n-2, s).

Theorem 3.1. The number of tangent cones of order one comntained
in a non-degenerate Q is N(0,n).

Froof: Firat we shall prove the following lemma.

Lemma 3.1, Let P} and F, be any two distinct points of the quadric.
The number of points of the quadric which are conjugate to P1 and P2 is

non-zero whether F; and P2 are conjugate or not.
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The points of Qn which are conjugate to P, are the points of
Q, () T(Py ).
The points of Q, which are conjugate to both F, and P, are the points of
Q, () T(P) () T(Py)
Hence all that is needed to be shown is that
le, O e | ~ o, O @) O 1R | > 0
where \A‘ denote the number of points in the set A,

The set Q, O T(F;) () T(P,) contains (s+1) + s% N(0, n-4)
points if P, and P, are conjugate as obtained by Roychoudhuri (result
quoted in the appendix A as Theorem A.5). If Pl and PZ are not conjugate
then the intersection

y Q, () (P () T(Pp)
contains*N(0, n-2) pbints as obtained by Roychoudhuri (result quoted in
the appendix A as Theorem A.6)
Proof of the theorem: If the points P, and P, are conjugate then the
inequﬁlity to be shown is
1+ s N(0, n-2) — [s+ 1+ s2 N(O, n-4)) > 0 - -41)
Case 1: Let Q, be taken in PG(2t, s). Then the left hand side of the

inequality is

2t-2 2t-4
14 Sue - ‘11).Ls+1+SZ - - '1)=s2t‘3+1.

which is > 0, infact 3 1.
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C~se. 2. Let Q, be taken in PG(2t-1, s).

a) Let Qp;_ ; be elliptic, then the laft hand side.of (I) is

s.(st-1 + 1)(st-2_1)
s -1

1 +

sz;(st'2+1)(gt'3- 1)
|

-E+1+ —

= g2t-34 1,
which is > 0 and which is 2_ s+] since t 2 2.
b) Let Q;; | be hyperbolic, then we have

1+sN(0, n-2)~ [s+ 1+ s% N(0, n-4)J

= 1 + s.(st-l_l)(st"z-}-l) -[S + 1 + Szo(ﬁt-z- 1)‘5_1:_-_3 + 1™
s -1 s -1 ) ~

s?‘t'?’ + 1

which is > s + 1 since t> 2.
If Pl and Pé are not conjugate then the inequality to be shown
becomes as follows:
1+ s N(0, n-2) - N(O, n-2) > 0
i.e. 14+ (s -1) N(O, n-2)> 0
Since s > 2 and N(0, n-2) >/ 0 we have that left hand side of the inequality
‘to be always @ 1.

' As for the theorem, corresponding to each point F we have

o (O T(p)
to be a cone of order one and these cones are all distinct by the above
lemma. Hence we have N(0, n) distinct cones contained in the quadric.

Let us call these cones as tangent cones.
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Corollary 3.1. The number of tangent cones of order one without
\.rertices contained in a nondegenerate quadric Q is N(0, n).

This directly follows from the above theorem.

Theorem 3.2. The number of cones that pass through a given point
of the quadric and contained in the quadric is 1 + s N(0, n-2).

Prod. Let Cbe a point of the quadric. A cone of order 1 contained in
the quadric passes through this point, if the vertex C is conjugate to P
with respect to the quadric, or by symmetry of conjugacy relation if P
is conjugate to C. The number of such cones is equal to the number of
points conjugate to C and contained in the quadric which is exactly given
by the numbet of points in the tangent cone with C as vertex since only
these are the points conjugate to Cin the quadric. By theorem 3. 1, all
the cones with these points is vertices including C are distinct. Hence
the number of cones that pass through a point of the quadric and contained
in it are 1 + 8 N(i, n-2).

Corollary 3.2. The number of tangent cones without their vertices
that pass through a given point is 8 N(0, n-2).

It is obvious from the above theorem that only one tangent cone
that has been given point itself as vertex does not pass through this point
as it is suppressed in counting the tangent cones without vertices.

Theorem 3.3. The number of cones which are contained in the quadric

and which pass th rough two distinct points of the quadric is either



(s+1) + s N(0, n-1) or N(0, n-2).

Proof. Let P; and P, be two distinct points of the quadric, If there is
a point P which is conjugate to both Pl and PZ’ then the tangent cone with
P as vertex passes through both P, and P,. Two tangent cones are dis-
tinct if their vertices are distinct by lemma 3.1. Hence the required
number of points is given by the number of points which are conjugate to

L

both Pl and P2

ive. Q) T(E) O HB)
whichis s+ 1+ s2N(0, n -4) if P, and P, are conjugate and N(0, n-2)
if Py and P, are not conjugate.

Corollary 3.3. The number of configurations which are vertex-less
tangent cones that pass through a pair of distinct points of a nondegenerate
quadric is

(s+1) + s% N(0, n-4) or N(0, n-2)
according as the two points are conjugate or not with respect to the quadric.
This follows from the above theorem since all cones contained in

lthe quadric are distinct even after suppressing their vertices.

LY

4. APPLICATION TO STATISTICAL DESIGNS
We shall consider a nondegenerate quadric Qp in PG(n, s). An
association scheme is defined on the N(0, n) points of the quadric by the

conjugacy relation. Two points of the quadric are first associates if they
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are conjugate with respect to the quadric and second associates if they
are not conjugate. Using theorems in the last section one can now cons-

truct partially balanced incomplete block designs as follows:

Let the v treatments be represented by the N(0, n) points of

the quadric and let the blocks be represented by the tangent cones contain-

’
ed in the quadric. The parameters of this design are

N(0, n)=b

<
]

r=1+sN(0, n-2)=k
A= (s+1) + s N(0, n-4)
A, = N(0, n-2)

n, = s N(0, n-2)

Pil= (s-1) + s2 N(0, n-4)= A, -2
pi: N(0, n-2) = A,

4.1. Let Q_ be a nondegencrate quadric Q,, in PG(2t, s). Taking all

its tangent cones as blocks we get in fact balanced incomplete block designs

which have the parameters (Series Nl) ' .
ve (s 1)/ (s-1)= b
r = (sot-1_ 1)/ (s - 1) =k
A= (s2-2.1)/ (s - 1)

It may be noted that if we take hyperplanes 22t-2 in PG(2t-1, s)

as blocks and all points in PG(2t-1, s) as treatments we obtain a balanced
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incomplete block designs with the same parameters above.

But the designs obtained here through quadrics are non-isomor-
phic, i.e. a design with parameters (v; k, A\ ) of one series cannot be
obtained by substitution on its letters or objects from a (vi k, A ) design
of the other series. This fact is clear since if there were such isomor-
phism between the two designé then there has to exist a one to one isomor-
phism between the tangent cones of the nondegenerate quadric ta in
PG(2t, s) and the 2t-2 dimensional hyperplanes of PG(2t-1, s) such that
the incidence propetties are preserved. In other words the quadric has a
tangent cone isomorphic to a hyperplane of dimension 2t-2 but the non-
degenerate quadric Q,; in PG(2t, s) is known to contain linear spaces of
dimension t-1 and no higher dimensional linear spaces and certainly it
does not contain linear spaces of dimension 2t-2. Thus there does not
exist a one to one correspondence between the designs; proving that the
series N is non-isomorphic to the known series.

4.2. Taking a nondegenerate elliptic quadric in PG(2t-1, s) and all

its tangent cones as blocks we have the following series N, :

b

v = (st +1)(et-l1) / (s -1)

r= (s8t-24 gt-1 _ gt 1W(s -1) =k

>
i

P = (s8t34 gtel | gt 1)/ (s - 1)

(szt-3_ St-l + St-Z - 1) l (S - l)
np= s Ay

>
1
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pil = }\1-2
2
P1; = A

This series contains one practical design for s = 2, t = 3 whose parame-

ters are

o 1 2
v b r k Ay Ap ™ Fp P
27 27 11 11 3 5 10 1 5

4.3. Taking a nondegenerate hyperbolic quadric in PG(2t-1, s) and
with all its tangent cones as blocks we get the Series Nj:
ve=(st1) (st-14 1)/ (s - 1) =D

t-2 -
(52 “_st l"‘st—l)/(fs-l)':-'k

r =
A= (s2t-20 gteli gt Ly /(s - 1)
A= (st 1)t 1) /(s - 1)
ny=(s (st 1) (552 + 1)/ (s - 1)
A -2

%

This series contains only one design with r and k smaller

1
Py =
1 —-—

P =

thah 15 obtained for s = 2 and t = 3. The parameters are :

b T kK A A 1 2
v 1 2 nl pll p]_]_

35 35 11 11 11 9 18 9 9

Hence symmetric balanced inoomplete block design
v = b = 35
r = k = 18
A= 9
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All these designs are obtained by considering tangent cones as

blocks and points of the quadric as treatments.

Now using the corollaries of the theorems of section 3 one can
obtain further designs as follows. In a nondegenerate Qn , but all tangent
cones be taken as blocks from which the vertices are left over, then we
have the fcllowing series of partially balanced incomplete bloc.k designs
with parameters

vi, b, r ko, AL AL, BN

where

<—
"
o
3"
<
i
o’

A= A -2
M=k
nyp =0,
PR o ok
ij .
ij

referring to v, b, r, k, ?\1,?\2, n1 , p%(, of section 4 above.
1)

4.4. Taking a nondegenerate quadric Qp; in FG(2t, s), its vertex-

less cones and points produce the following general Series Nl' :

v=(s2t- 1)/ (s - 1) = b



r=s8.(s2"2 1)/ (s - 1) = k
A o= (s2t-2_1)/(s - 1) -2
A2 = (8252 1)) (s - 1)

L
SO
Pri= M2

This series produces the following designs with r and k smaller than 16,

Taking s = 3 and t = 2 we have the design
1 2

v b r k AoA ny Py P11
15 15 6 6 1 3 6 1 3
40 40 12 12 2 4 12 2 4

4.5. Taking elliptic nondegenerate quadric in PG(2t-1, s) we get
the Series Nj:
v=(st +1)st-1 - 1)/ (s-1) =b
r=e.(st-14 1) (st-2. 1)/ (s -1)=k

A = (sZt'3_ st + st‘l_l)/.(s -1) 2= plll

A = (glt-3. gt-14 4t-2 = 2
5 (s K s ‘-1)/(5-1) P,

np = s (st 1)(st-20 1) / (s - 1)

This series gives one design with r and k smaller than 16 which is
not included in B.C.S. catalogue (1% 4) by taking s = 2, t = 3 with the

parameters



. 1 2
v b r k Ay A2 n, P11 P11

27 27 10 10 1 5 10 1 5

Lay-out of this design is indicated in B, 8 of appendix b.
4.6. Taking hyperbolic nondegenerate quadric in PG(2t-1, s) we

get the following Series Ng :

v=(stoa)(st-14 1) /(s - 1) = b
r=s.(st-1.1)(st-%+ 1)/ (s -1)=k
Ay = (sZt"3+st- ot-1.1)/ (s -1) -2=pl

11
A, = (203 4sbL ot2 L 1)/(e 1) = p2

n, = s.(st-1 - 1)(st-2 +1)/ (s - 1)

This series contains the following design for s = 2, t = 3 with the

parameters
v b r k A A n, pll1 o) 12‘1
35 35 18 18 11 9 18 9 9



APPENDIX A

RELATED THEOREMS OF RAYCHOUDHURI AND PRIMROSE

In chapter III (Non-linear configurations in finite projective
geometry) the proofs of many theorems require a previous knowledge
of certain results of Roychoudhuri. Those results are stated below
without proof and for proofs reference may be made to Raychoudhuri's

paper(1962)and his Thesis (1959) and Primrose (1955).

Let Q, be a nondegenerate quadric in PG(n, s ) and F a point
of Q.. Let T(P) be its tangent space and n-]1 an n-1 dimensional
'h¥perplane in PG(n, s) which does not pass through P and Sn-l be a

plane which passes through P and not identical to the hyperplane T(P).

Theorem A, 1., Let Agy Ayyenns, Ap be linearly independent points
of a quadric Q, in PG(n, s). The p-flat p determined by these points
is completely contained in the quadric if and only if the (pt+1) points

are pairwise conjugate (Lemma 2.3 of Raychoudhuri, 1962).
Theorem A.2. Q () T(P) is a cone of order 1 in the (n-1)-Lat T(P).
(Theorem 2.1. of Roychoudhuri 1962).

Theorem A, 3. Qn O T(F) O Zn-l is a nondegenerate quadric

in PG(n-2, s) which is elliptic or hyperbolic according as Q,, is elliptic

66
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or hyperbolic. ( Theorem 2.1 of Raychoudhuri 1962).

Theorem A, 4, Let N(p,n) denote the number of p-flats or linear
subspaces of dimensionality p, contained in a non-degenerate quadric
Q, in PG(n, s), Primrose (1951) has shown by stereographic projec-
tion that

N(0, 2t) = (s?t-1)/(s - 1)
N(O, 2¢-1) = (a'+ 1) (a"x1 - 1) /(s - 1) if Qpq is elliptic
N(0, 2t-1) = (st _ 1) (st-1+1)/ (s - 1) if Qp:_1 is hyperbolic
Raychoudhuri's results (1962) further show that
(N(p,n)=N(p-1,n-2)N(0,n) (s-1)/ (sPt1 . 1).

Theorem A.5. Let Pl and P2 be two points of a ﬁondegenerate
quadric Q, in FG(n, s) such that the line P, P, is a generator (i.e.
Pl and P, are conjugate). Then the number of points P other than
P} and P; such that both PP, and FF, are generators of Q, is

(s - 1)+ 8%, N(0, n-4)
(Lemma 3.1.2 of Raychoudhuri, 1959).

Theorem A, 6. If P) and PZ be two points of a nondegenerate qua- |
dric Qn in PG(n, s) such that the line P, F, is not a generator. The
numbcr of points P éﬁch that both the lines PP and PP, are gene-
rators of the quadric is N(0, n-2)

(Lemma 3.1.1 of Raychoudhuri 1959).



AFPENDIX B

LIST OF DESIGNS AND SOME LAY-OUTS

This section contains a list of the different series of designs
that have been obtained in this thesis and also lay-outs some of these
designs. |

The following PBIB series of designs is derived from non-
singular imbedded planes:

B.1l. Series IM: By taking tangents to a nonsimgular imbedded
finite projeétive plane PG(2, s) in a finite projective plane PG(2, s2)
after cutting off the points of the imbedded plane we have the Regular

Group Divisible design:

i
1
N )
]

[i4]

v
r=k= sz,
K].: 0’
}\.2'-'-' 1,

= g2
nl—S ""1,

1
p11= nl- ].,
2 —
Pll— ny -ny - 1

with a2 solution for the parameters:

v b r k nj p1 pZ

78 78 9 9 5 4 0
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by taking s = 3,
The following two.series of BIB designs are derived from
association schemes:
B.2 Series Ay: The BIB design with parameters
(v, vt, tn, n,A )

exigts if an m-associate scheme with n; =n fori=1l,2,...,t m

exists such that
i .
P“+...+p1tt=}\ fori=1,2, ... ..., m,

B.3. Series Ay: Ift = m above we have the series of BIB designs
(mn+1l, m mn+1l, m n+1l, n+l, n+ 1)
The lay out of the design with parameters in the above series
(31, 93, 33, 11, 11)
is indicated below: .
Let us consider the difference set:
(1, 2, 4, 8, 15, 23, 27, 29, 30)
in the module of residue classes modulo 31, Two treatments denoted

by i and j are first associates if:

(i-j) mod 31 A} =(3, 6, 7,12, 14, 17, 19, 24, 25, 28)

second associates if
(i--j) mod (31) Ay = (1, 2, 4, 8, 15, 16, 23, 27, 29, 30)

and third associates if
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(i-j) mod 31 A, = (s, 9,10, 11, 13, 18, 20, 21, 22, 26).
Corresponding to treatment i, .the block
Bijp,» (L =1, 2, 3) ,
is obtained by putting i and i+t mod 31 'where t ranges over the
elements of Lth set A a'.bove fori=0,1, ... ..., 30.
The following series of BIB desigﬂs is obtained from
Difference Sets:

Ba4o Series Dl M (V, V'Z‘r-l . k";-l k, knzk-l )

where k v if v = ph and k  the least prime power otherwise,
The lay-out of the design with parameters :
(9, 36, 16, 4, 6)
is displayed here under. It is constructed using the initial blocks
(0, 1, -1, x); (0, %, -x, -1); (0, x+1, -x-1, x-1 5 (0, x-1, -x+1. -x-1),
in the field G.F.(32) with the irreducible function x4 + 1 = 0 :-
{123 4) (2316) (312 8) (1 45 3) (2691) (3872)
(16738) (2 8 45) (3496) (1 897) (2457) (36509)

(4685) (5971) (6849) (4518) (5147) (692 4)

(4937) (5283) (6715) (4723) (5368) (653 1)
(7593) (8467) (9752} (7389) (873 6) (926 5)

(7162) (8529) (9341) (724 6) (8912) (918 4)
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Below are series of designs from nonlinear configuration

in quadrics:

B.5. Series N, : All the tangent cones of a nondegenerate quadric

Qy; in PG(2t, s) give the Symmetric Balanced Incomplete Block design

with parameters

.v= (s2t-1_ 1)/ (s -1)=1b
r= (2 1)/ (s - 1) =k
A= (s253050) 1 (s - 1)

This series contains a design with parameters

for which Fisher and Yates Tables (1963) show only one solution
the cyclic one: (a, b, c, e, f, i, k). The solution through quadrics

is obtained by taking the quadric

2 =
Q4; xo+xlx2+x3x4-0

in PG(4, 2)..It has 15 points which are our treatments and with res-
pect to each point F:

= ( 0‘ ’ 0‘1’ ! “5, 0‘ )
the tangent space T(P) is given by:

OClXZ + 0621\21 + (13X4 + OC4"C5,
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The points common to T(P) and Q4 give us the block corresponding to

the point F. Thus we have the 15 blocks as follows:

(1, 4, 7, 5, 8, 6, 9) (6, 1, 9, 2, 12, 3, 15) (11, 2, 5, 7, 15, 9, 13)
(2, 4, 10,5,11,6, 12) (7,11,.15, 12,14, 1, 4) (12, 2, 6, 7, 14, 8, 13)
(3, 4, 13, 5, 14,6,15) (9, 1, 5, 10,15,12,13) (13, 3, 4, 8, 12, 9, 11)
(4, 1, 7, 2, 10,3,13)(9, 1, 6, 10,14,11, 13) (14, 3, 5, 7, 12, 9,10)
(5, 1, 8, 2, 11, 3,14) (10, 2, 4, 8,15,9,14) (15, 3, 6, 7, 11, 8,10)
B.6. Series N' : The vertex-less cones of a nondegenerate quadric

1

Q,: produce the designs with parameters:

v=(s®* 1)/ (s - 1) =1

2t-1

r = (s.(s -1)/(s-1)=k

MEGP2o 0y (s o) 2

A (sZt"Z-l) [ (s - 1)

2
1

= A
Pls M
1
Pi1® A

The series contains the design which does not appear in B.C.S. cata-

logue with parameters

v b r k A n 1 2
>§L 2 1 pll pll
15 15 6 6 1 3 6 1 3

The lay-out of this design can be obtained by deleting the first treat-

ment in each of the 15 blocks of the design constructed above.
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B.7. Series N,: In a nondegenerate elliptic quadric PG(5, 2)

taking its tangent cones we have the PBIR design with parameters:

v b r kK A A n 1 2
1 2 1 Pl B
27 27 11 11 3 s 10 1 5

This design is constructed using the following quadric Q5 in PG(5,2):

2 =
x +x2 +xxl+x2x+x4x5 0

The tangent space of any point
“‘“(f‘o’ Gy o Oy Gy Ggy )
is given by:
() wx +uc\+uc*c+oc\.+wx+oc4x5

5 170 32 3 54

The 27 points and the1r tangent cones are shown here under:

g : (000010) P,: (000001) RB: (000100)
P,: (001000) P: (001111) P,: (000101)
P.: (000110) Pg: (001010) Pgy: (001001)
P4 (011100) P, :(010011) P, (011011)
(010111) P, ,:(011101) P,z (011110)
P, (101100 P _: (1000 :
6( ) 17 ( 11) P18 (101011)
. : (10110 .
P gt (100111) P,,: (101101) P, i (101110)
P,,: (111100) P, (110011) P,,:(111110)
P, : (110111) P,.: (111101) P,.:(111110)

These are the twenty seven points of the elliptic quadric in PG(5, 2).



Below we show the blocks of the design, representing the
tangent cones by the set of suffices of points:

1: (1, 3, 4, 7, 8, 10, 15, 16, 21, 22, 27 )
2; (é, 3, 4, 6, 9, 10, 14, 16, 20, 22, 26 )
3, (3, 1, 2, 6, 7, 11, 13, 17, 19, 23, 25)
4: (4, 1, 2, 8, 9, 11, 12, 17, 18, 23, 24)
5: (5, 6, 7, 8, 9, 10, 11, 16, 17, 22, 23 )
6: (6, 2, 3, 5, 8, 12, 15, 18, 21, 24, 27)
7 (7.1, 3,5,9, 12, 14, 18, 20, 24, 26)

8: (8,1, 4, 5, 6, 13, 14, 19, 20, 25, 26)

9: (9, 2, 4, 5, 7, 13, 15, 19, 21, 25, 27)
10: (10, 2, 5, 11, 14, 15, 19, 24, 25, 1, 2)
11: (3, 4, 5, 10, 11, 12, 13, 20, 21, 26,27) .
12: (4, 6, 7, 11, 12, 14, 15, 16, 19, 22, 25)
13: (3, 8, 9, 11, 13, 14, 15, 16, 18, 22, 24)
14: (2, 7, 8, 19, 12, 13, 14, 17, 21, 23, 27)
15: (1, 6, 9, 10, 12, 13, 15, 17, 20, 23, 26)
16: (1, 2, 5, 12, 13, 16, 17, 20, 21, 24, 25)
17: (3, 4, 5, 14, 15, 16, 17, 18, 19, 26, 27)

18: (4, 6, 7, 10, 13, 17, 18, 20, 21, 22, 25)
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19: (3, 8, 9, 10, 12, 17‘, 19, 20, 21, 22, 24)
20: (2, 7, 8, 11, 15, 16, 18, 19, 20, 23, 27)
21: (1, 6, 9, 11, 14, 16, 18, 19, 21, 23, 26)
22: (1, 2, 5, 12, 13, 18, 19, 22, 23, 26, 27)
23 : (3, 4, 5, 14, 15, 20, 21, 22, 23, 24, 25)
24 : (4, 6, 7, 10, 13, 16, 19, 23, 24, 26, 27)
25 : (3, 8, 9, 10, 12, 16, 18, 23, 25, 26, 27)
26: (2, 7, 8, 11, 15, 17, 21, 22, 24, 25, 26)
27: (1, 6, 9, 11, 14, 17, 20, 22, 24, 25, 27)
B.8., Series N'Z: In the nondegenerate elliptic quadric ;in

PG(5, 2) taking all tangent cones and deleting their vertices we get

the PBIB design with parameters

1 2
v.ob or kA A, oa Pln PY,
2727 10 10 1 5 10 1 5

where the 27 blocks can be written down explicitly from the above
dedign by leaving off the treatment number corre sponding to that block

which appears in that block.

B.9. Series Nj: In a non-degenerate hyperbolic quadric in
PG(2t-1, 8) taking tangent cones as blocks and points of the quadric

as treatment we get the designs of this series.



B.10. Series N’3 :
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Hyperbolic nondegenerate quadric with its

vertex-less tangent cones gives the designs of this series.

The following is a series of Doubly Balanced Incomplete

Block Designs from line segments of a line.

B.11,.

Series LS: These are constructed by taking all possible

line segments of order $) in a projective line of order s.

The parameters are:

swith

Sl.no.

LS 1

LS 2

LS 3

Table :

10

17

List

o
]

e ]
1l

w
i

b
i

o
fl

s+ 1,

2 2
S.(S - 1) /'Slc (Sl - l),
s. (s - 1)/ Sy (81 - 1)
sl+l,
(s - 1)/ (s; - 1)

1

of Doubly Balanced Incomplete block designs

with r and k smaller than 21.

10

30

68

r k A o]
6 3 3 1
12 4 1 1
20 5 5 1
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The doubly balanced incomplete block design with

parameters:
v b r * k A o)
10 30 12 4 4 1
where is the number of times every triplet of treatments occurs

is constructed using the line segment of order 3 imbedded in a finite
Projective line of order 9 based on G.F. (32) with the minimum func-
tion :

xZ + 1 =20

These are ten points namely:

1: (0, 1) 6: (1, -x)
2: (i, 0) 7: (1, x+1)
3t (1, 1) 8: (1, xa1)

4: (1, -1) 9: (1, -x+1)
5: (1, x) . 10: (1, -x-1),
Taking every pair of points of the line and generating all
the line segments using G.F.(3) & G.F. (32) the 30 distinct line

segments are as follows:



1234
1256
12710
1467

23810

2497

251009
34910
36710

56108

78

2809

foen

1379
1386
1578

23175

24106

3487

W

5107

5679

- - e e

13510
14810
1459

16910

2369

2458
3465
3589
4698

78910
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