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All capital lettors denote matrices and the underlined letters
desote vestors. I, denotes the a'® order identity metrix, & denotes an
B x o satrix vith positive unit elements everywhers and O, denotes an
mxn null matrix, minupeuotrfudwwf. The iaverse of
X s denoted by X', The Eronecker product snd ordinery produst of two
matrices A and 5 are denoted respectively by A x 5 and A, The deter~
minant of 4 is denoted by A or det A, Diag (a;, 83y ooy @) stands for

the dw watrix with elements ‘1; ". vep .ﬂ .

The Kronecker delts, Ju.umwamumnmxco
acoording as i =J§ or L] .

The symbols used in one chapter have no beering on the symbols
used in another chagter, unless speciiically -u;uoood.

mm«.hnqmnbrukotlm.[]nhrtoubuw'a

otations like "BIBD" are not to be confused with the produst
of the matrices,

E(y) meana expectation of y; y may be a matrix, a veetor or
a scalar, V(y) means variance of y.



SENERAL JINTRODUCTION

This dissertation contains the suthor's verious contributions
tothodulganndnmnhu‘upqrmu. The main topies covered in this
thesis are weighing designs, partially balanced designs and designs {or
tvo-way elimination of heterogeneity, Soms of the material of the chapters
2, 3, 4, 5 (marked with ssterisks in the thesis) has been compiled from

the author's published papers (97, (107, 117, 1], (13, 1.

Chapters I and II deal with chemical balance welghing designs.
hm[ﬂ]mﬂoﬁdnu[u]mmcdmtthowoigbhot‘wodunh
onbomaoemulydotalhodbyuwmum If o wveighing
opsrations are made to weigh p objects, the minimum variance that each
estimated welght may have, will be -%{ where crz is the varience of
each weighing, Sinos we an interssted in the weights of the objects and
not in the estimate of o-a,mmmmwuoxwgmumu
veigh n objeots is n. Mlulnu)) be the welghing design metrix of
mnruumnmnuunmguuuxuuﬁmm
having no bias, where x;; = + 1 or =1 if the §® object 1s included in
mz“nmmwmmumwcwummmxu-o
um:‘hmmummm.auwx"‘uum It can be seen
thet (XTI r® 1o the vertonse svvarianse stz of the estimated welghts.
Hotelling has shown that the minimum variance for the estimated welight is
auuuuxu.-wuemumagxmmemwlmm
orthogonsl, flence, wo call a veighing design to be optimm 4f X X = nl;
26, X 1s & Hedasard matrix (Hy)e It may be remarked that a necossary



condition for the existence of Hadsmard matrices is n @ o mod 4 with the
posasible exception of n = 2, A complote summary of the status of the
existence of H, 1s given by Bose and Shrikhende [ 22_/ and conjectured

that for every orderorngo-ndc,"an exists., In section 1.2 of the
chapter I, ve give a method of construetion ot'llnvbon atl[(lpko 1)‘4 x],

pkg!lodl.

In the absense of optiamum welighing desi ns, the problem is to ind
the best welghing design. There are three well known eriteria to decide
this problem, They are due to (i) Kishen /43_7 (11) Ehrenfeld / 30_/ and
(114) Mood [44_/. Banerjee {7_] has given an expository article reviewing
the work done in veighing designs till the year 1950, Raghavares / 53_7
found best welghing designs subject to some restrictioms. No generel
solution for finding best weighing designs when n * o mod 4 was obtained
in the previous literature in weighing designs. In sections 1.3, 1.4, 1.5
ve shov that when n is odd,P, matrix (ef. Raghavarso /507 4f it exists,
is the best welghing dosign under the three elficiency eritaris. Also, it
is shown that when n = 2 mod 4, T, (of, Raghavareo / 52 /) if it exists is
the best welghing design with Ehrenfeld's definition of efiicisncy; aad
Uplef. Ehilich /29 7 if it exists, is the best ons in Mood's definitien

of eificiency,

Chapter II deals with the designs with some restrietions.
Sections 2.2, 2.4, 2.6, 2.7 and 2,8 are confined Lo the class of designs,

where these give
(1) equal veriances for the estimated wedizhte

(11) equal correlations for the estimated weighte.



The second eondition is the ssme as that of Benerjes / 6_/. Raghaverao
(307, 517 tound best weighing designs under the two conditions mentioned
abw.fcumn;lmcmnggmcutbﬂuthrutﬁuimy
definitions, MM%M@MQISMCMIWW&.M
class of designs in the previocus literature. In section 2.8, best welghing
du&mforncungtnd(udahoz’wunnzlud‘.MPndon
not exist are obtained under the conditions (1) amd (i1).

In seotion 2,10, we show that, whea n = 2 mod &, U, and T, are
the best desiins subject to the condition, viz, the varisnces of the
estimated weights are equal, with Kishen's, Mood's and Kishen's , Ehrenfeld's
delinitions of efficiency respectively. The best welghing designs (exeept Pp)
under the conditions (1, and (i1) mentioned ebove may be improved in some
cases by relaxing the second condition, via, the estimated weights are
equally correleted. Designs subject to the condition (i) may be obtained
vith the help of symmetrical partially balanced incomplete block desi ns
("SFBISD" ) Two designs for n = 9 and 21 are obtained with the help of
"S/BIB" designs. Theeo designs are more effielent than Ry and Kgy respectively,

The problem in sectiom 2.11, {irst mentioned by Mood, is to find
rough cstimates of the weights of soms objects and accurate estimates of
others, Designs for some odd n are obtained in the cases (a) n=1 objects
are welghed scourately with equal precision (b) ne2 objects are weighed
aoccurately with equal precision,

"FBIB" deaigns are very useful in desiin ol experiments, They
were {irst introduced by Bose and Nsir /20 / and later generalised by Hair



and Reo [745_/, The analysis, combinatorisl properties and construetions

of these deaigns have been extensively studied by meny authors, In order

to equip an experimentsr vith a wide clase of designs, there is a necessity
to develop the seope of partially balanced designs, Chapters 3,4,5 deal with
some partially balanced designs.  Group divisible designs were introduced by
Bose nd Connor /177 and were extended to measscciste classes by Rey / 56_/.
Further development was done by Raghavarao [”J. In chapter 3 we deline

& new assoclation scheme for a "FBIB® design vhich belongs to group divisible
fanily and we name it as "GFBIB" desigm. 'BIBl' design, group divisible design,
group divisible meassociate design come under this femily as particular cases.
Some genmeral constructions for obtaining "GPBIB" designs are given in section
3.5, Bose and Shimamoto [ 31/ classified two associste "FBIB" designs as
group divisible, 'Ly’ (1 = 2,3), triangular('T'), cyslie ('C') end simple
('81') type designs., In ucuo:: 3,6, "GFSIBY, 3-asscciate designs are
classified as 'GD' 3-associate, falky! (§ = 1,8), 'GT', '0C* and ’631' type
designs, Raghavareo have studied 'GD' 3~associste designs in detail /7 53_7,
In the present work, some combinatoriasl properties and non-existence of Yilg!
and 'GT' designs have been established,

In chapter 3, we restrict our attention to Sheh's / 58_7 intra-
inter group partially balanced desizns heving two groups of treatments with
replicate numbers ry and ry respestively, 4 detailed etudy of these designe
is given in this chapter. These designe are to achieve partial balance with
in the groups and balance (i.e. treatment differences are estimated with
the same variance) between the groups and they are named as partislly belanced
block designe with two different number of replicates. Our work also
gives some combinatorial properties and some methods of construction,



In incomplete block designs like "BIE", "PBIB" including lattice
designs the block sizes ere constant. In agronomic experiments it is some
times not agriculturally feasible to lay out blocks of equal sizes. There=
fore, Kishen /[ 41_/ introduced the Symmetrically Unequsl Block ("SUB®)
arrangements which share the property of complete balance (in the sense of
gonstant A\ , l.e, any two treatments ocour together A times in the blocks),
but involve blocks of different sises., The analysis of these desiyns is
obtained on the sseumption of equal intrs bloek error variances foi blocks
of different sises. This assumption may be ressonable when the block sizes
do not vary widely, In case the block sises differ in "SUB" errsngements
widely, ve attempt to meet the above assumption by wsing u different in~
complete blook designs, having unequal block sises (where the block sises
do not vary much), which ars more gsnersl than "SUB® arraagements., These
are called, in chapter 5, partially balanced desigrs - an extension of the
definition of "PBIB® designs. Using the association metrices / 19_7, we
arrive at a result vhich gives the necessary and suffiecient condition of
& connocted deaign to be pertially balanced, Some constructions of these
designs are given with the help of existing incomplete block designs,
Lastly in section 5.4, wo give some constructions of binary equi-replicate
partially balanced designs, pairvise balanced (which are also partially
balanced) dosigns and binary equie-re;licate balanced designs = all having
two unequal block sises-by using 3-associate "FBIB" designs.

Designs for twoeway elimination of heterogeneity were fully
studied by many authors, where the column « row incidence matrix is complete .



Pottoff [ 49_] gave the analysis of the designs for two-vay elimination of
heterogeneity in general and classified some designs where rowecolumn
incidence metrix is incomplete. In chapter 6, using the concepts of ortho-
govality and bslaneing designe for twoeway eliminetion of heterogenal ty

are classified into 64 clasees, (Here row-column, treatmenterow, treatment~
column incidence matrices may not be necesserily complete), We restrict our
attention 80 the deaigns wvhere the three incidence metrices are binary and
they belong to 32 classes where the property of balancing is attributed to
treatments, Our main aim in this chapter 1s to get more designs under
different clusses where the row-column incidence matrices are incomplete,

It 1s proved in this work, that the classes 17, 18, 19, 21, 232, 25 and 27
are impossible. The designs obtained in the classes 5, 8, 23, 31, are all
new, The designs of Pottoff [ 49_/ where the rowecolumn incidence matrices
are incomplete, come under the class 29, For the class 29, ve arrive at a
result that the design should have the same number of treatments, columns
and rovs. A measure of non-orthogonality for two-way deaign, similar to
Shah's [WJ measure ol non-orthogonality in the case of incomplete block
designs, 48 given in seection 6.6, Finmally some constructed designs
(for v < 28, r « 13) are given as an appendix at the end of the chapter,

The results given in this thesis sre believed Lo be new and will
improve substantially the existing knowledge of the design and analysis of
experimonts,

The following are, in short, the new results discussed in the
thesis 3



1. (a) Construetion of Hy, , when n = 2 £ (2p%  1)% « 1.7 uhere
P 23 mod ¢

(b) when n is odd, P, satrix (of. Raghaverso / 507), if it
exists, is the best weighing design under the three eificiency eriteria,

(o) For n 3 2 mod 4, T, matrix (ef, Reghavareo /52_7), if
it exists, is the best weighing design with Ehrenfeld's definition of
offiolency and U, (of. Enilich /297 ), 1f 1t exists, is the best welishing
design under Mood's definition of efficiency.

2. (a) Best welghing designs are obtained for some n 3 8 mod 4
and also for some n = 1 mod 4, when P, does not exist under the 3 eificiency
definitions subjeet to the conditions

(1) the veriances of the estimated weights are equal

(11) the estimated weights are equslly correlated.

(b) when 2 = 2 mod 4, T, if it exists, is the best weighing
design under Kishen's and Ehrenfeld's definitions of efficiency; Upe ir is
exists, is tho beat weighing design under Kishen's and Mood's definitions
of elficiency, subject to the condition, vis,, the variances of the estie-
sated weights are equal.

(e) when n m 1 mod 4, if the corresponding H,., exists, best
veighing derigns cen be obtained for the cases (1) n-1 objocts are weighed
aceurately with equal precision, (ii) n-2 cbjects are welghed sccurately
vith equal precision of Mood's / 44/ problem, vis., finding the designs
vhich give equal variances for some nun'tfad weights where these should

be welzhed scourately.

® We call the matrices, constructed by Ehilich for n 8 2 mod 4, as Uy
matrices,



# 3, Introduction of group divisible family of "PBIB® designs
and their study,

4. A detailed study of partially balanced block designs with
two different nuaber of replications which are particulsar cases of Shah's
intra - inter group partially balanced desi ns.

5. PFartially balanced designs with unequal block sises and
their use,

** G, Using the coneepts of orthogonality and balancing, classie-
flcation ol the designs for two-way elimination of heterogencity is made,
Deaigns are obtained in the clssses 5, 8, 23, 31 wvhere the row-column
incidence matrices are incomplete and binary.

* idbikeri /717 had done & similar work, The author's contribution is an
independent one,

*¢ Similer vork was done by Agrawel /27, /3.7, [ 4. But the suthor hae
done this study independently.

10
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CHAFPTER 1
ON OPTIMUM WEIGHING DESIGNS
1.1 INTRODUCTION

Suppose we are given n objects, whose welights are to be found in n
weighings with a chemical balance having no bias., Let
x, =1 Af the J®P gbject is placed in the left pan in the
gt welizhing
s =1 4if the §*P objeet is placed in the right pan in the
10 yeighing
= 0 if the % object is not welghed in the 10 veishing,
The o*® order matrix X = (( x,;4) 1s known us the desigm matrix. Also, let
y, be the result recorded in the 1*® weighing, ¢, 1s the error in the result,
v, the true weight of the §*® objeot, so that we heve n equations
(1.2.1) Xyg Wy # XygWp ¢4 00 ¢ Xgu GCg B oy 121,2500 p00
We assume X to be none-singular matrix, The method of least squares or the
theory of linear estim:tion gives the estimated weights y by the equation

(1.1.3) v o= o'y

where sz are the column veetors of the oatmudmi.ahu'm the
sbservations respectively, If o-2 is the veriance of esch weighing, then
(1..3) V(g = (Z'X)-lo-' s 57,2 2 ¢co® = ((ou))c"

wvhers 8 = % and Gn((ouﬂﬁs"‘.

From Hotellisgh results, we know that the sinisum veriance of the
each estimeted woight may have, is o"/n and in this case x'x-nI‘. ‘e
call such weighing design X to be optimum. Mood [ 44_/ has jointed out: that

\

{iia70

1200000000ttt et osnee
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Hadamerd metrices, Pﬁn. when used as wol; hin; deeigns, satisfy this optimality
condition, vis. H Hy = al, « It may be remarked here that & neoessary
condition for the existence of iedemard mutrices is n = o wod ¢ with the
possible exception of n = 2, A complete summery ol the status of the
existance H_ is given by iiose and Shrikhande /33 7 and it 1s conjeotured
that, for every n = o wod 4, H_ existe. Williamson {69/ gave some methods
of conatruction of Hedamsrd watricos. In ons method, he gave the conatruce
tion of ”n whare n = 2(9&01} and p is odd prime, k is positive intezer, In
scotion 1,3 ol this chapter, we give & wethod o comatruction of ;:in where

n= 2['(291‘41)2*1 _7, pk = 3 mod 4.

In the sbsence of sbove type optimum wel hing desiyns, best wei:hing
designs are detursined from the efficiency delinitions of Kishen / 42_/,
Mood / 44_/ end Ehrenfeld / 30_/.

Eishen treats the reciprocal of the incrosgse in veriance resulting
froam the adoption of any design other than the optimum design, aa the officiency
of the design. This efficiency cen be meusured by

n
(1.1.4) 1/ EJ. Sy

This eriterion in Kiefer's / 39_/, [ 40_/ notation is termed as
A=optinum,

Mood cousiders as bost that woljhing dssign which gives the amallest
eorrespondin: joint confidence region {or the sstimated welghts, Here we use
the term, “"smallest confidenco re;lon® as defined by Noyman [ 46_7. Hence
& deaizr will be culled bust in the sensc ol Mood, if the determinant of the
matrix C is ainioum snd this is the case when det.S is smexisum. Thus the
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efficiency of a weighing design X can be measured in the sense of Mood, by
(1.1.8) det.8 / max det.3

If Apyn i the minimum distinet cheracteristic root of 5, then the
efficloncy of a welghing design X, can be measured, in the semse of Ehrenfeld,
oy
(1e1.6) X gin / WX

The last two definitions of efficiency were first introduced by
Wald /768 7 for statistiosl designs in generel. In Kiefer's notations, these
two are denoted as Deoptlisum, F-optimum respectively.

Best welghing designs, when n 1s odd in the sense of Kishen's
definition of efficiency, are obteined in section 1.3. Secotions 1.4 and 1.5
give the best welghing designs for n 3 1 mod ¢ n = 2 mod 4 under Ehrenfeld's
and Mood's definitions of efficiency.

1.2 CORSTRUCTION OF SOME REW HADAMARD MATRICES

th

DEFIRITION 14241 ¢ 4n nel” order matrix which contains » 1 or O

is called T, matrix, if

L]
(1.2.1) Tnol'.rmx = ﬂnol

{here, we consider Tnol. matrices whose diagonal elements are sercs).

Raghavarso / 52_/ showed that these matrices are optimum welzhing
dosigns with nel = 2 wod 4 in Kishen's and Bhrenfeld's definitions of
officlency subject to the conditions (i) the varisnces of the estimeted
welghts are equal (i1) the estimated weights are squally correlated,
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amd’thumobtdndvuhtholulpefmlu-en'.[u]%usrun.

DEFINITION 1.2.2 + An n°D order square matrix having elements & 1
hnmlmmmmdumlhuunsnutruu

(1.2.2) Sp3 = s.ns'n = al, = B,

We can casily show that, if S exista, then it is symmetrical ome,

o 1
(1.2.3) Ty ® [ e

when n-phvhmphoddpruomdhnpuutwmuwmhmt

p";xmc.maummuuusnum The problea is unsolved
vhen n is not & prime or & power of prime, Williamson used T,,, for the

construction of Hadamard matrices of order 3ne3,

Taer * Tney Toer = Tne1

(1.2.4) By, 2 = ]
n

-T

nel * Iml el * Iml.

Hozincmmoucndﬂzl”avnht.hohclpetsnuhmahs
perfect square and need not be a power of prime, but n-(nol.)'uhm
t =p% =3 n0d 4 p is & prize end k is positive integer.

DEFINITION 142.3 ¢+ A akew symmstric matrix of order n having serocs
as dieagonal elements and ¢ 1 as non-diagonal elements is cslled s if

!

(1.2.5) ZaZp ® FpZ, ® ol -E,

If & = p® vhere p is odd prime and h & positive integer, such that
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#® = 3 mod 4, there alvays exists s, mtrix (of, Willlamson)

THEOREM 1.2.1: If zt exists, then Zatel also exists and 4t
is given by

= . 1

Ty Zly =By
o T N R T T

i th - glt ) ]

The proof of this theorem is simple and hence it is omitted. Here
2%+l neod not be power of prime,

Example: Fooo-o--
-0 % %e tmw
cadb e ¢ moans o1
Z = L T
-t oD e ~ Beans =1
L R I
00-0--0J
e

R
r Q® % » % vt d e o=
- 0 % b e btew e Pe-
LR - T R R I |
L - B R
i I - T S SRR S T
LR I T I SRR R
L I - IR S S
z = - e P D pme R
ts L S S S R T
- P s rDewde P
L R R S
L I R I - BT
L R B R R - P
L B R R R Y B
L B L IR R )
- -

DEFIRITION 1.8.4 :+ The Kromecker product 4 x B of metrices
4 and B 1s given by
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8110 Wb o0 wy B
(1;2.7) Ax B 2 ‘213 ‘233 . ﬁzag
B & .58 L, . a, i

- a“t w2 ary -

vhere 4 = {( 8y Jig B = ((bu)) are rospuctively @ x n, p x q setrices and
‘13 B ($=21,2500,8; J=1525405n) 88 itssll & p X q Batrix. e shall use the
symbol 'x' in & product of malrices to denote the Kronecker jroduct,

We ulso know that

(aj The Kronecker product 1s ussociative and distriuvutive with

respuet Lo addition of metrices, 1.0.

(Alx byl X G = A, x (Asx ¢
(1.2,8; (A +8) x¢ = AxCehxC
Cx{A i) = Cxaelxb

where A snd § are conforustle ior addition

(b) If 4 1p & x k matrix, o 18 k x o mutrix, ¢ s p x 1 matrix
and D 18 1 x q watrix, then
(1.2.9) AB x CD = 4ixC-3xD

both sldes balng mp x ng matrices,

When &sn or >, exists, usine the concopt of Kromecker produet of

mutricos we can always construct ;i‘»ng .

THEOREM $42.2 3 If elther S, or X exists, then s.3 slways
oxists and it ia given by
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= 8yxSy ¢ Buxl, - Ixly (o)

(1.2.10) 8.2 . saz e Ral - 1xi,

FROOF s+ Let X be the metrix equivalent to the right hand side
of (1.2.10). We know that 58 (or3 > ) = ol -5  consider XX,
Using the delfinition 1.2.4 and the properties of Kronecker product of matrices,
we can easily show that

' 2 .
(1.2.11) ¥X = nlg~Eag end 153 = 03,

‘rbodumlohmuofxﬂonro-udahonuq-notrhvuhgxu
non~disgonal elements, Hence X 1is our required 3"3

Hence, if Et exists, by the theorem 1.2.1 there exists znol. .
And by the theorem 1.2.2, 8(“’“3 exists, This ensures the existence of

4 2
Taten)2e g o0 2 Sarnn®e 17

Lst t =7, 19, 31. Then we have the following designs which are
new to the existing literature,
Tags * Tisaz * Taemo
lesz * "soee * Teeo

1.3 BEST WEIGHING DESIGNS WHEN n IS ODD WITH
KISHEN'S EFFICIENCY DEFINITION

L2 3.1+ let 8= (s )ibea »™ order positive definite

matrix each of whose diagonal elements = n >p, A necessary condition that

tr 5™} (tr mesns trace) ¢ —M is that all the oharscteristic roots
(n=1)(nep=1)
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otSahmldlhhtbothhml(‘f;::) s Depel ) o
PROOF s let /\p}\zg .../\pbothoohumurhmmuat Se
(n=1)(nep=1) 1= M (m=1)(nep=1)
> .L - l)‘ - .-2-.:222—.
AL mp=M (n=1){nep=1)
. olo=1)
(103.2) plovp=g) Pum(oer-iiliAy - Fomg= 3
(n=1)(nep=1) Ay mp= Ayl
> 0 torz\‘ uop-lorz\s ﬂ:—:ﬂ

P
o suffictent condition for > & x BRI o, g
i=g M (n=1)(nep=l)
A;mp-lor)\sm for some i
- “ nep=2
p %
& necessary comdition for > ¥ plueps) is that
=g M (n=1)(aep=1)
';‘.‘2:2.’. 5,\‘ < nep=l for all %

L&A 1.3.3 + A necessary conditioa for tr 8™ ¢ plosp-2)
(n=1)(nep=1)

is that )\mts) < mepel. (i,e. the maxisum charscteristiec root of 8 ¢

aep=1).
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Proof of this leams follows from the lemms 1.3.1
THEOREM 13,1 ¢ In the lemma 1.3.1, when S is symwetric aad

oy % 13043 (L, = L2, p)y tr 5725 T%ﬁ

Suppoes Am(S)s nep=-1 . Let

= nxl ‘i | -1
8 (‘1 31) and  C=((eg 0w

PROOF

(1.3.8)

Lot ¥ be the normalised cherscteristic vestor of 5, eorresponding to ). (5,)
. \
(1.3.4) N aaxB1) = (0 %) (nll

:i> °N
g 9 (3) \.
$ pax®l S

S nep=l

(1.8.5)

W
I\
Lot A\ (S;) = bep=lex , x>0 amd A3, Ag s ees '\;-i; be

the characteristic roots of s‘ »

|
{
|

Tr C

TS | i
= (s -ga e ¢ ———
1 g4 -
-l R
- Sy 38 5 1
= w0 = A
n=g,8; 83 n-g;%1 8

1 .\i 84“_
(1.3.6) = tr 87t .

g
n - g1 57

But, tr 0= -biBeP2)
(n=1)(nep=1)

. ploep=2)
B - g 57's (n=1)(nep=2)




1 (p2)° 1041858 (
>, .-1 * ——P‘ * 1 B Eﬂ’?‘)

/\‘ a‘p-;). )\: ne "1 8;1‘1 (n-xan-l.)
2 2
. i, (p=2) . (nsp=lex) ¢ p=i
nepelex  p(pelj=(nep=i=x) (nep=ie=x)in(nepmiex)j=(p=1)
plnep=2)
(n=1) (nep=1)

\"J

o for n>3, p>8 and 0sx<1}
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Equality eign, it takes when x = 1, Hence by lemma 1,3.8, a necessary

eondition for tr C s—ﬂﬁ-’tﬂ—umz A (8 )snepe=2 and
(n=1) (nep=1) max 1
P
(1.8.7) tr C = > e > “'i"‘u
i=1
(1.3.8) e,.= 1 > ‘;
3 n—g’x S;ng - 8 8
. "mml’
(1.3.9) > 3 = ( '(
o 1 n=1)(nep=1)
nep=2

“w 0 > 2(0'9'3).

Hence the theorem.
(n=1)(nep=1)

COROLLARY 1.8.1.1: lLet X be a n x p order mstrix, each of
whose clements is o)» Let 3 = X'X which is non-singular, Then

tr s > -E-Eﬁl-— wvhen n is odd

(n=1)(nep=1)
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The proof of this corollary follows from the theorem 1.3.1 and @
lemna from Ehilich / 29_/ vizs. when n is odd, all the elements of S(= X' X)
are odd,

COROLLARY 1.3.1.2 5 Lot X be a n®® order metrix whose elements
are + 1 or 0 and X'X(=6) be a non-singular metrix. Then tr 5™% > ;3-:-;.
when n is odd,

For proviang this corollary, the iollowing lemma is useful.

511 512
Lo 1,33+ Lot 5= ( )boa-muumun
12 832
definite matrix vhere the orders of 5, su, Su be nxny, n=p X n~Py PX P
respectively, let ,\1. ,\z be the maxisum characteristic roots of su, 392

respectively. Then

(] '
A e 8,8 8,,8.0 =}
-l -l -l 1 12 - mu 12

(1.3.10)  tr S > tr S5 » tr 3y g YT » Ay rg ¢ Top Arrg )

8,, 8,0\

PROOF 3 trs5: = tr ( H n>
912 S22
-, -1 -1, =1
(1.3.11) = tr (8,,~ 54 33: s'u) ¢ tr (3gp= S'nsiisul
-l i) ' - $
= 4 8, ¢ tr 5 5.5(85575198,7 u’]‘su ¢

1 ™ -1
W (855= S12573812)

v

be 5] o ‘f{ b 81381 (Sgpm S1a8do02) o+
tr (8g5 - 5198708400 (ot [37 )

-

v

8,08
-1 1 12 1 ' 2 wi ¢
TR vl 'X';'ﬁ RtRY tr (315519) (8yy= 519835810

¢t (Spp- A W
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On expanding all the terms in the above manner, we get

sns' s,,s' 2
-1 -1 * (d e d 12 12
tr 8™ 5 tr 8. e tr8,, ¢ (v ¢ b)) tr eteems o W ( «=2==ID) ¢ sieees
L 2 'y N A Az A A2
1] P |
-1 -1 M *Ag S12°13 512913 =1
I - e

'
Sy gt

It can be sasily seen that tr
o )\1)\3 a=p )\1Ag

(1.3.12) tr 5 > tr 8,1 ¢ tr Sy,

PROOF OF THE COROLLARY 1.8.1.2 :+ Let X =n /X, X / where
o-p P

thoorderatx1bonxn-p. Mthomhcolunotlleoumnlmtm
leroundthodmtaotxzbo £ 1. Let

x, X s 8 n=p

(1.3,18) s= ¥'x = 53 ,‘x' = | M T8
| I, XX 842 Saa| B

nep P

-1
Svidently ve knov that tr8 . > E and by the corollary 1.3.1.1 ,

-1 plnep-2) |
S > « Hene 1.3. t
% > T (eeel) P L33 v -

-1 -1 -1
tr8 > trsp etrsy

P2 9:5 - E(n’ﬂ) = 1 ¢ -—&-—
- (n=1) (nep=1) nepel1

i

> 10 —

2n-1
Hence the sorollary.



The efficiency of a weighing design in Kishen's definition of
elficiency is given by

5 1
4 i=]1 . tr 3 3
When n is odd, by the corollary 1.3.1.2 we have that tr Sda-:gz

Hence the efficiency of & weighing design ¢ 2-,-—"" « When we use P
n n

matrix / 50_/ as weighing design, we get the efficiency of the design to be
2n-1

. which is maximum possible, Hence

THEOREM 1,3.2 Pn matrix, if it exists, is the best weighing
design when n  is odd, in Kishen's definition of efficiency.

1.4 BEST WEIGHING DESIGNS WITH EHRENFELD'S DEFINITION
OF EFFICIENCY

LEMMA 1.4.1: Let 8 = «'U“ be a n"h order positive definite
matrix, Then the minimim characteristic root of 5 is less than sfe equal to

ﬁ(.ii * .JJ ’j(.ii - JJ)S + ‘.uljt) for all 1;‘ (w) = 1.3.0.. | + Y

%
PROOF Let ( §: ) be the normalised characteristic vector of

844 Iu

8 8
( 'y carresponding to the minisum characteristic root of ( 5 s
Ji 4

%51 %53

Then

(1.4.1) minimum characteristic root of

%1 %3

0 0 pt? 8 [0y 4
5
Ojete1 1

5

= gy 51 9 geseg 55 O ey

23

)



minisum characteristic root of §

\'

8 ]
But minimum characteristic root of ( u 'y )
.Jl .JJ

= ¢ [‘.u * 8y - /(nu - l“)ao 4848y J
Hence the result.
Lot X be & n*® order metrix (weighing design) with the elements
s 1loro, Let X X(=8) be a nonesingular matrix, Easily we can observe that
S 1s symmetric and 8;4 < n for all i, The efficiency of the weighing design
Apig Of 8 .

with Ehrenfeld's definition of efficiency is HED
wax ), of S ain

the minimum characteristie root of 3,
Case (1) s When n is odd.

(a) The welghing design does not contain seros. Hence by

leams of Ehilich / 29_/, vis., all .“‘ are odd and by lemme 1.4.1, we have

(1.4.2) /\m(s) & B leygl < n=1

(b) At least ome column of tho weighing dusign contains
at least one sero. By the lemma 1l.4.1, we get

(1.4.8) /\m(S) t [.n-l en=,f (-1)30 “Ui _7

< * (2n-2 ) = a=1 .

N

Combining (a) and (b), we get ,\mcs) % n=l; which shows that the
efficiency of the weighing design is maximum possible when ) m(s) = pel,
We know that, if Pn [ 50] exists, it gives )\m(P‘nPn) = n-1, Hence
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THEOREM 1.4.1 : In the sense of Ehrenfeld's delinition of
efficiency for odd n, P if 1t exists, is the best weighing design,

Case (11); When n = 2 wmod 4. (n2)

(a) the veighing design does not contain sercs in any

column, The following lemmas of Ehilich / 29_/ ere useful.

LEMMA 1.4.2 ;' All the elements in S are even.

LEMMA 1.4.3 3+ There exists no 3 columns of X which possess pairwise
inner product = o mod 4 .,

By the lemmas l.4.1, 1.4.2 and 1.4.3 ve have

(1.4.4) )\m(s) & n=8 < b=l

(b) at least one column of the design contains at least
one sero, Supposc 1‘” column of the design contains at least one sero, Hence

s sn—l.j"‘colmdmnotconuln 2eros. It-u-n-l. then we can

ii
easily see that 0“ is odd, By the lemma 1.4.1, we have

(1.4.5) m(s) glo=l o ne./1¢4 ) < n=i

(1.4.6) Apin(8) € #(n=3 ¢ 0} < m-1

On combining (a) and (b), we see that Am(ﬂ) < n=1, which shows
that the efficiency of the design is maximum possible when )y q.(S) = nel,
We know that, if T, /53 7 exists, it gives Aggq(TnTa) = o=, Hence

THEOREM 1.4.2 ¢+ When n(# 2) 2 2 mod 4, Ty is the best welghing
design in the sense of Ehrenfeld's definition of efficiency, if it existe.



1.5 BEST WEIGHING DESIGNS WITH
MOOD'S DEFINITION OF EFFICIENCY

Lot X be o' order matrix with the elements & 1 or o. w.x'x-s
be & nonesingular matrix., The following two results are due to Wojtas L.VOJ.

RESULY 1.5.1 ¢ When n is odd, the maxisum det 8 ¢ (ﬂn'-l)(n-l)u-l

RESULT 1.5.2 ¢+ When n(>2) 2 8 wod 4, the maximum det S< 4(n—1)’(n—2')ﬂ

The efficiency of a weighing design in Mood's definition is given
by dete S / max, dot. S .

Case (i, n is odde The efficiency of the design is maximum possible
if dot 5. = (30=1)(n=1)""%, We know that, if P, exists, it gives the maximum
deteraminant, Hence

THEOREM 1.5.1 + When n is odd, Py, if it exists, is the best
welghing design in the sense of Mood's definition of efficliency.

Case (44) n(>2) = 2 mod 4. The efficiency of the design is maximum
possible 4f det 8 = 4(n=1)%(n=2)"2 , Enilich [ 29_/ constructed matrices
vhen n g 2 mod 4, n upto 38, which wve call them un-m:m; give maximum
determinant, Hence

THEOREM 1.5.2 ¢+ When n(>2) 3 2 mod 4, Uy if it exists, is the
best weighing design in the sense of Mood's definition of efiiciency.

A
(1.5.1) g, = .1 A.z where 44y 4y are cyclic matrices
2 A&

of order n/2 with the elements ¢ 1. This method of construction was given
by Ehilich [ 89_7 and he constructed U, matrices for n upto 38 using electronie
computor, The following table gives the designs for n upto and including 38,



adopted from (29 /. Here, only the first row of Ay and A are given. In

the table + means « 1 and - means - 1 ,

TABLE 1o 3.3

. A .
2 @ &
] * e e * e -
10 * PP e ™ ¢ o e tw™
14 LR R S B -t P -
18 ¢ PP - e e PP o=
26 L R R B R NN L I I R R N A
30 -t PEE e - - I I R R I A
38 PR R R R X IR N R L B N N R I I I N

The econstruction U, is essy when Fp,/; exists.

P

(L.5.3) Up = V3 W2 | here Fp/a need not be cyelie.

-P.Va Pﬂ/ﬂ

¥e know that P”.Pu exist, Hence we have twomuuuadnim for

o= 50 and 83 ,



CHAPTER 2
WEIGHING DESIGRS UNDER RESTRICTED CONDITIONS
2,1 INTRODUCTIOR

This chapter is continuation to the [irst chapter on weighing
designs, Here also we suppose that n objects are given to be weighed in n
welighings with a chemical balance having no bias. In sections 2.8, 2.8,
2.8, 2.8, of this chapter, we obtain best weighing designs subject to the
conditions; (1) the veriances of the estimated weights ere equal (ii) the
estimsted weights are equally correlated; with the three efficiency criteria,
when n 3 mod 4 and n 3 1 wod 4 where F, doss not exist for some favourable
cases. The results, in sections 2.2, 2.3, 2.4, 2.5, 2.6 and 2,7, are useful
for obtaining the above sald designs., Section 2,9 provides some designs
subject to the conditions, vis., (i) the veriances of the estimsted weights
are equal (i1), the estimuted weights are uncorrelated. Designs are obtained
under the restriction, vis. (i) the variances of the estimated weights are
equal, in seotion 2,10. Some of these designs are better (in the sense of
efficiency) than the designs obtained with the conditions (i) and (i1).
Finally, we get designs in section 2,11 for the problem in which the experi-
menter might be interested in finding rough estimates of the weights of some
objects and scourate estimates of others, We restrict the desizns to the
cases (a) n-1 objects are weighed accurately (b) n-2 objects are welghed
acocurately; the vuriances of the estimated weights of these objects are
agsumed to be equal., The sections marked with astorisks are from author's

published paper [/ 14_/.
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2.2" Dpss1G8s [ n,s, A/ AND THE FUNDAMENTAL
NECESSARY CONDITION

We shall confine ourselves to the case when (1) the variances of
the eatimated weights are equal (ii) the estimuted weights are equally
correlated. In;hi-mo.mptduignxuthmmn. 8y A where
a its size, s the number of seros in any column and

| | = s ' iod" = Li3sesy n
(208.1) PN Eixuxu :ﬁ"
Thus we get
(2.2.2) ¥x = (nwe= 1) I, *r By,

We denote this weighing design X by ([ n,s,./

(2.2.3) det X = o (det. x'x)i

n~1/2

= 3(n—.0n)‘)i (neg= ) )

Case (1) n is even, Since (2,2.3) is & real integral value

(n=s ¢+ B=I 1) (nws= ) must be a perfect square.

THEOREM 2.2.1 : A necessary condition for the existence of X,
when n is even is that (n=s ¢ 5=1 )\ ) is a perfect square.

Let
(2.2.4) (ows @ D=1 ) ) (Dw~e= ) = ‘3 » then
' 12 2 ]
) o (he2) o [0 0% o a(aone® 7 vbare shae
2(1e N

Case (i1) n is odd., Since (2.%2.3) ia reaul integral value,
n=s ¢+ B=I X is a perfect square.
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THEOKEM 2.2.2 : A necessary condition for the existence of X when
n is odd is that nes ¢ D=l ) is & perfect square .

Let
(2.2,6) neg ¢ D=l )\ -d‘ when d is some integer .

Since we are considering odd n, it takes values either 1 mod 4 or
3 mod 4, let
(2.8.7) n= 4t e} ifnzimdd

= 4t « 3 if n=3mod 4

where t is non-negative integer. Let s take one of the values 4ty 4thl,
4t*2, 4t43 where t'(< t) 1s slso some nonenegative integer.

Cagse (11,) =0 = 4tel. For o-s ¢ T=I A  to be & perfect square,
@ should be 0y 1 mod 4, Hence

REMARK 2.2.2, 1 The welghing designs [ étel, 4te2, A/,
["atel, 4te3, )/ do not exist.

Case (11p) o = 4t+3, Wwhen s=2)\ = o) lmod ¢, n~s + B-1 )\ 8
not & perfect square, Hence

REMARK 2.3.2, ¢ The welghing designs [ 4ted, &ty A7,/ 4te3,atss,y/
vhen )18 even, and the dealgns / 4ted, 6te3, 17, [ 4t+3, 443, A/ when A
is odd do not exiat.

8.3 THE LEGENDRE SYMBOL, THE HILBERT BORM RESIDUB
SYMBOL AND THE HASSE-MINEOWSKI INVARIANT

The Hasso-Hinkovski invariant ves first used by Shrikhande / 59_/
in the design of experiments to show the lmpossibility ol syametrical balancad
incomple block designs when v is odd. It is well recognised by now that the
Hasse-Minkowski inveriant is en important tool to show the impossibility of
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various designs, Since we will be using this inverisnt in the chapters 2
and 3, we give, in this section, & Driel resume of the important properties
of the legendre symbol, the Hilbert noram residue sysbol and the Hasse-
Minkowski invariant,
The Legendre sywbol is defined as
+1 i & is gquadratic residue of p
(2.3.1) (a/p) =
-1 if a is non-quadratic residus of p.
A 8light generalisation of the Legendre symbol is the Hilbert norm
residue symbol (u.b)p. If a and b are any nonwgero rationsl numbers, we

define (‘.b)p to have the value + 1 or -1 aceording as the congruence

(2.8.8) o by 2 1modlpF)
hes or has not for every value of r, retionsl solutions X, Yy Here p s
any prise ineluding the conventional prime p = ~.

Meay properties of (a.b)p are given by Jones / 37_7, Pall [“J.
We mention the following the known properties of (s,b)p taken from the above
refersnces for ready reference .

(s) I m and m' are integers not divisible by odd prime
(13.3) (mm'), = =1
(2.3.4) (mpp), = (o/p)
Moreover, if m=n' £ o med p

(2.3.5) (mpp), = (a') Pl

(b) PFor arbisrary noo-sero integers m, m', n, n' and s; and for
every prime p
(8.‘." (-.. .)P = ¢l

(2.3.7) (wa', njy= (m, n), (a', Bl
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(2.8.8) (mm', --')p = (my=- I')p
(2.3.9) (2 n)y = (n, m),

]
(2,3.10) r_\; Godstiy = ((me1)!, =1),
and J
(3.3.11) (e, b), = (s b) .

Fow, let 4, B be two rational, symmetric and non-singular satrices
of the same order n such that 4 = CBC' where C is a rational nonesinguler
satrix, Then 4 and B are said to be rationally congruent., The ratiomal
congruence relation between A and B is denoted, symboliscally, by 4 ~ B, Let
dy (1 = 1,250y n) be the lseding principel minor determinant of order § end
suppose d4 # o for all 1, Define dy, = 1. Then the Hasse-Minkowski in-
veriant of 4 is given by
(2.3.12) cp(l) = (=1, “1), :73 (44410 =dy), for euch prime p .

The following two lemmes regarding the Husse-iinkowski iaveriant

vill be useful.

LEMMA 2,3.1: PFor a n x n diagonal matrix onwuhouhdhgoun
slemsnt d’

n(ne1)/2

(2.3.13) o (g0 = (=1 ~b)p (=1, 4/

LEMMA 2,3,2; If A= olnotxm vhere e and f are non-mero
retionals, then

En-0p a{n=1,/2 nel

(2.3.14) opla) = (-1, @) (=h8)p (M), (nye)y (Breiy

where g=e¢ ¢ nf,
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2.4" ON THE IMPOSSIBILITIES OF / nys, A/

Case (1) A= o, Since we are considering non-singular weighing
designs its inverse exists end it 43 slso & matrix with rational eleoments,
Thus I, = (x™3)'(x'x) (£™2). e bave that 1, end X'X ere rationslly congru-
eat and they cen be written X'X ~1I, . Hence

(2.4.1) 0p(X' %) = e,(Ip) = (=1y=1),

But X't = (aes)I, . Froam the lemms 2,3.1, we see that
. n(ne1)/2

(2.4.2) epllX) = (=1, «1) (=1) v-s)

On equating the right hand sides of (2.4.1) and (2.4.2), we get
for all primes that
n(nel)/2
(3.4.8) (=1, lﬂl)p = ¢ 1
(2.4.3) alveys holds vhen n = o mod or 2 1 mod 2 ; and when
B 22 aod § it becomes
(ao.o‘) (“1. n=g) = e}

This rosult can be stated in the form of the following theorem.

THEOREM 8.4.1 ¢+ A necsssary condition for the existence of
L.n. 8 o]uhnng!uﬂ‘,umt (=1, n=8), = « 1 for all primes p.
Examples for some non-existing designs s

n| 6 14 18 B34 58 T8 94

s | 3 g 4 4 < 2 2

Cage (41) A # oo Here
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From the lomme 3.3.2, we see that
o(n=1)/2 n=1

(2.4.6) ep(X'X) = (=1p=1), (=1, ves=n), (=158)5(By8),(Bynms=) (nmsmiry )
wvhere g = nes ¢ HIA

Case(iiy) 3 n is even; we have g (ows=r) = t’ (ef. Theorem 3,3.1).

On equating right hand sides of (2.4.6) snd (2,4.1), we get

n(n=1)/2 ‘

(3.4.7) (=1, mme= (~(ome=xy g), = +1
It follows from (2.4.7) that
(2.4.8) (-d-‘Tx,;)p = el if ngowmodé
(2.4.9) (timism MBlp = el if n=2mod 4

Case (”'b) n is odd; whsn;-d’ (this is considered after
considering the theorem 2.2.2), On equating the right hand sides of (2,4.6)

n(n=1)/2
(2.4.20) (=1, M-)Jp (n, awg=XN, = ¢ 1

It follows from (2.4.10) that
(2.4.11) (n, negeNy = ¢ 1 for nz 1 mod 4
(3.4.12) (=n, pes=Np =+ 1 for nz 3 mod ¢

The results (3.4.8), (2.4.9), (2.4.11), (2.4.12) can be stated in the form

of following theorem,
THEORSM 2,4.2 ¢ If the theorems 2.2.1 end 2,2,2 satisfy,then a

necessary condition, for the existence of / n, s, 4/ with A # o, is that
(-FFT.n-noi-'fz\)p-oxor(n-o-/\.n-ozfup-01er(non-o-)éplox
or(-n.u-.—)«)ptox acoording as n s omod ¢ or 2 mod 4 or 1 mod 4 or

3 mod 4 for all primes p.



Examples for some nonwexisting designs.

n 19 27 81 43
8 12 15 10 °
A 1 2 2 3

2,5" STRUCTURE OF THE DESIGE [ m, s,/ VITH A 6 o

The distribution of the elements « 1, 0, ~1 in the matrix is
particular interest, Let the [irst row of this matrix contain r positive
units end t soros, We bring them in the columns 1,2,..,r and in the last
t ocolumns respectively. Then we construct the matrix X, of n x n-1 in
which the {irst row vanishes and it is given as

(2.541) o= @-*18) _53.., 0

where t 9 hthottheoluumtorotl. After deleting the first row in
LS Mr.niucutﬂ:x'whm gives that

(2.5.2) det. Xplg = det X'X
and - -

Xeq X 2

L] ]

| T13 Tas s

where
Tyy = (omemn)(Toy ¢ By pg) 0 Bgg T 2 By

(2.8.4) Xgp = ~(oeo=N By eor o Kgg = (nes=MIy ¢ ARy

Igg = (nwe=r) I o *(omse3) B, o 0¥ =04

Honce from (2.5.2), (2.5.83 ), (2.5.4) we get that
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B-t t

(2.5, 8) ro= = s (,‘-‘x) {,\(..,\-t)}

vhere d4° = nws ¢ Bel). Since the dosign is non-singulsr, we know that

can not be «1 for s > 1. Thus from (2.5.5) we see that, because r takes
integral values, t is of the form s=(1%- 1)\ > 0. Further i takes different
values only when it takes the values including ssro, Thhuducto“%t‘su.
where t, is the oumber of seros in 3he J®B row of X. When i does not teke the

J

nmm.masusj'm.qummummtw-. Samo is b

case with s<3A, Hence ®

LEMMA 2.5.1 5 A necessary condition for the existence of [n.ou]
having rows with different nusber of seros, where 8 >0 and ) ¥ o, is that
n=s= ) i3 even or 8>3,

Lot X, = ny8,0_/ vhich gives
(2.5.86) Xy Ko = (n=s)I, = Xo Xq o

Hence -
LEMMA 2.5.8 ;  The designs / n,s, o/ having rows with different

asumber of gseros are non=existent.

Hlow consider the designs having every row s seros and A+o. Then
(245.5) becomes
(2.8.7) r = (nes & d)/3
and (2.5,7) shows that every row of I contains either ;H-r«-‘u';-"!-‘-;puluvo
anits. Let ny be the nusber of rows of X whero each row coteins S-god
puiunmunndhtn.bothomub«rol’motluhmwhmcoah&m
2222 jositive units and ny ¢ mp = . Write

(2.5.8) I = [ :::: ]

where xnp is ny x n mstrix (1 = 1,2) such that
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(24509) { me Fm % 9ty
I". Eﬂl = -‘En"_
Let .
(2.5,10) X = nye
-
Consequently
L]
(2.8.11) ’x = x"x" ema x'5, = dBy
Hence, we get
o' » e ' .
(2.5.12) X' X" = 11" = (nee=NI, ¢ AEy,

and also thet every rov and column of X" hes the sams number of positive
uoits, Since X with A # o implies X", we use X' for / n, u.»]ndxc
fw[n.n.o]bwonttwnrdowhoalhumrymvubam

2.6  SOME NON-SXISTING DESIGNS / nesy)/
Let E be & matrix obtained from X"(or X,) by changlng the negative
units to seros. Let M be & matrix obtained from X"(or X ) by ehanging
positive unite and negative units to seros and seros of X"(or X,) to positive

units, Hence

(2.6.1) 2° (arXy) = 8N Mo By

Let , : .

(2.6.2) nN -((Au».m -((pun. Mi'e MM -(fu)

We can deduce from (2.5.12), (2.6.1) and (2.6.2) that
(2.6.3) Slrggh o 3G gqh o Kpgghis (ame=NIye (300 r=n)By e2(Fe 750

uhcror‘hﬂnmot‘poatuvomuin‘vhotmrwotx'(wxo)- All
ri'aromlhﬂncuod L i
Lot s = 0, then M = O, . Hence (2.6.3) gives
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LEMMA 2.6.1 3+ A necessary eondtuoq for the existence of X
vlthu-oartwtuuhmot[n.mo]mcpﬁtun-l.hmt
B8 ABod &

Agsin on considering (2.6.3), whea n is even and ) is oud or
when n is odd and A\ is even, we have that Mg is odd for £,J(1 £ J) = 1,304 0.
From the metrix MM' ve get that ]

(2.604) ne® = ms ¥ 5 My
1£)

when all p,: are odd, it follows from (2.8.4) that
(2.6.5) s{s~1)+1> n

LEMMA 3.6.3 3 A necessary condition for the existence of X (or Xo)
when o 4s even and ) is odd or when n is odd and )\ is even is that
n < 8(s=1) 1.

(This lemma is the generalisation of Raghevarao's lemms 3.1 of L-SOJ).
Let : ,
(2.6.6) (Ngghi= (Bgy = M) (Byp = M) = 16 o(0=20)E,,

Prom (2.6.3) end (3.6.6) we have
(’o‘-') ‘«*\“» * 3« "“‘ * «"31‘»' (II-Q-/\)IB ’*\xu * “3'1‘ l"’p

It follows from (3.6.7) that n“' are odd vhen A is odd, Hence
LA 2.6.83 : When ) is odd, a necessary condition for the
existence of X" or X, is that
(2.6.8) n < (oes)(n=s=1) * 1
Some exaumples of non-existing designs.



n 8 ) reference B 8 A reference

11 2 0 lommas 2.5.2, 2.,6.2 21 17 3 lemmus 2451, 2.6.3
11 2 4 Lemmas 2.5.1, 2,6.2 22 18 1 lLemmns 2,35.1) 2.6.3
12 83 1 lLemmas 3,5,1, 2.6.2 23 3 2 lemmas 2,51, 2.6.2
19 3 0 lenuas 2,52, 2.6.2 27 2 0 lemmms 2,52, 2.6.2
19 3 10 lemmes 2,51, 2.6.2 a9 ¢ 2 lemmus 2,51, 2.,0.2

Now we can show essily that the exlstence of [n,o.»}] with ) \# o
implies the existence of symmetricul belanced incomplete block ("SBIB®)
design with the perameters v'=b'=n, r'sk's Li-g. N s '—'—3-;2-2 ; and
consequently if a "SBIB" design exists with the above parameters we get
[ﬂo O ’\7

23,7" THE MON-EXISTENCE OF THE DESIGHS / n,1,1_/and / 0,1,3_7.

By the lemma 2.5.1, we see that each row (and each column) of
these designs contains one sero. By the leams 2,6.2 these designs never
exist vhen n is even, Hence, in this section n means odd n. Thus on
transforming X to X", we get that every row (and every column) contains the

same number of positive units, Let this number be r, Hence

(2.7.1) r = 2-'&.:-2
Consider the design [n.l.l]. Hore M= x‘ and
(2.7.2) X' = el -By, slso
(2.7.3) Xr" = am'e (e N') e (n-dr—2) B 1,
= (n=2) I, ¢ By,

Hence
(2.7.4) 2m'o(nen’)s 521 o(2r - «'-‘-";3) Bon
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Let I-((nu)) where ngg=loro for all 4,) = 1,2,¢0) B
(2.7.4) gives
(2.7.5) 3 enyy ey = o eTE L5 (LAD) = B

Lot 2r = 252 be 0dd, Honco I' should be skew symmetric which
1s impossible due to the fast that every row end column of X" contains
w positive units end 23.59 nogative unite. Thus it follows that
§ 1o sysmetric and n 3 3 mod 4. Lot n = 4t + 3,

(2.7.8) BE' = pI e (retel) B e (r=t) (B, = I, = K)

Easily we can show, by using sssociation matrices of Bose and
Mesner / 19_/, that ¥ is symmetricsl pertislly balanced incosplete block
(*3/BIB%) design with the following peremeters

veb=n rsks= E:L’:—‘-oli'l’vﬂg'“"h/\;'l"t"h Ag = ret

and

retel t ret t
(8.1.7 ) P 1 = » " =
feprele] e Lo

For existence of this design we must have A to be & perfect square

mquuuumm

2 i

A = y%e2pe1, Y= ’ia"ia' p = 9:’°Pu and

(v=1)(1= 7) = 3y
2 ot

(l.’.ﬂ) ')7

This result is due to Commor and Clatworthy / 27_/. For the parsmeters given
1n (2.7.7), A =4t o1, %) = (=1 = 2r)/2(4t + )i, On substituting the
value of r we get

(2.7.9) " }* vhich is not an integer exeept for t = o,

-§8t01
4t + 1
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Hence it follows that “SPBIB® design with the paremeters given in (2.7.7)
does not exist; this shows that the design / n,1,1_/ is impossible for n >3
Similarly we can prove that the design ['n.l.sj is also nonesxistent for n> 5.

2.8 BEST WEIGHING DSSIONS WITH KISHEN'S DEFINITION OF
EFFICIENCY WHEN n3 3 MOD 4 ARD n = 1 MOD ¢ WHERE Py
DOES NOT EXIST

Let the matrices / 0,0, = 1/ £ 1s0y3_/s £ 00,5/ be denoted by
Z;. Qp R, respectively. By the lenme 2,6.1 we have that n = 2 mod 4
and n = 1 mod 4 are necessery conditions ior the existence of 3, Q, end
R, respectively,
When the matrix X'X is of the form (nes=)) I, ¢ A5, , the variance
of each estimeated weight, is

(2.8.1) gl ) -2

(nwg=)) (negen=1))
Thereiore, the efficiency cen be measured, in Kishen's delinition,

g.l.t) ( N _(omeeil ) = f(n=s; AJy in Raghavarao's
n (nesen=g A)
notation,

Case (1) n33ood 4 With the help of the sections 2,2, 2.4,
2.5, 2.6 and 2,7, we can show that the design sets [n.o.e]. [n,c.t],

(000025 (05100 ]y £ me8y07 and (0,1,17 do not exist.

Kow conasider
(n=3j(4n=3) _ (n=o=N (nwson~1 ) )
n{éne6) n(“oﬁa\)

(2.8.3) £(n,8) - f(n=sy)) =

D=3, \ are positive, n>8 ¢A or 8 = 9 A = =i,

(=8’ { n(40n9 )=68%9 } ¢{(4eb13)0%¢ (4~8)6n=d }
n(én~6) (n~gen=2 A )

(2.8.4)

where ' = se).
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For Q, to be efficient, (2.8.,4) should be positive., Lvidently
this 1s positive when n >3 and A = =1, Also it is positive when s'> 3.
when 8's 3, (2.8.4) becomes

(n=3 ) (3=A
(2.8.5) ¢ )

n(4n=6)(n=3en~1 A )

which is non-negative since A < 3, Hence (2.8.4) is positive for s'> 3,

Also we know that [.n.-.gdon not exist for o0<®<3, Thus

THEOREM 2.8.,1 s For n>3 and n g 3 mod 4, G, is the bost welghing
design in Kishen's definition of efficiency.
Cese (11) n = 1 20d 4 where P, does not exist, The matrix P, is
(0,001, The sections 3.3, 2.4, 2,5, 3.6 sod 3.7 enable us to show that
[7,0,3) A= =103, 4 5 [ N A= 0,1, 2,3.4 > £33, 073.4) anad
the design uu‘[ n.‘.o]n 513 do not exist, Also !,6.0_7 does not exist,
For n = 13,F, exists and it is the best weighing designe

Consider the difference
(n=5) (6n=8) _ (nwa= ) (n=gen=1 ) )

n{6n=10) a{n=aen=2 ) )

(2.8.6) £(n,5) - £{n=sy N

(a=8') [ (6n=10J8'=25(n=1)] + A [ n(én=10)8"=(310°~60ns25)]
n(60=10) (n=sen=2 A )

(2.8,7)

where 8' =8 ¢\,

As in the csse (1), (2.8,7) can be shown positive for s'>5 . Hence
ve have ths following theorem

THEOREN 2,8,2 :+ For n>5 and n 3 1 mod ¢ also vhen P, does not
cxut.nnhﬂubut weighing design in the sense of Kishen's definition

of efficieney.
2.8, BEST WEIGHING DESIGNS WITH CHRENPELD'S DEFINITION
OF EFFICISNCY WHEN n 3 3 MOD & AND o § 1 MOD 4, WHEKE P, DOSS HOT iXIST.

we know that (nes=)) and (nwsen~1 ) ) are the distinet characteristiec
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roots of X'X with the multiplicities n=1 and 1 respectively, when A # o

If = o, n=s is the only distinet characteristic root and it has multipli-
city n. In either case, among the distinect roots nw=s-)is elvays sinimum
except when) = «1 and s=0, in which case the minimum root is one. Hence
from (1.1.6) ve measure the efficisncy of the design / n,s, A/ in Ehrenfeld's

definition, by Bee= A

Owg >)>0
BaX. Xm
(2.8. 8) £y(nmgyn) = 1
s o s 520y X el
@aX. \gin

The following two thecrems provide best weighing designs when
ul!ludtlndngxladivmrndmnotuhtrupnunly. The proofs
sre omitted, because they are sismilar to the proofs of the theorems 2.8.1
and 2,8.2.

THEOREM 2.8,3 :+ In Ehrenfeld‘s definition of efficiemecy, Q, is
the best weighing deeign for n >3 end n & 3 mod ¢ &

THEOREM 2,8,4 ¢ Forn>Ssndi ngz 1l mod 4y nhowhon?ndonnot
exist, R 1s best desizn in Ehrenfeld's definition of effieiency.

3.8) BEST WEIGHING DESIGNS IN TS SSNSE OF MDOD'S DEFINITION OF
EFFICISHCY WHEN n g 3 MOD 4 AND n = 1 MOD 4, WHERT Py DOSS NOT BXIST

Consider the difference of the deteralnsnte Q',,Q, and X' X vhere
xhw[a...,\]; ng3mod 4.

(2.8.9)  det.Q) Gy = det X'X = (40-3) (03)" "= (~a+E=T A) (nwe= A .

] \J
(2.8.10) e a3 0= 3 - e 1= - 2907

vhere 8' = s A . Por larger values of n the expression in the braces of
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B
-ge3

(2.8.10) tends to 4 = (rel) @ . Thus we have

3 'e3

(2.8.11) 4 =(rel) ;'" 5 4=(s'¢1) 8 > 0 forshd

It follows from (2.8,10) and (2.8.11) that the differemce of the determinants
is positive for n>3, 8>3 and A > 0. We know that [n.n.ddmmtu&st
for 8'<3 except for s =0, A == 1, From (2.8,10)

1
. . e n=1 ¢ i
(2.8.12) dot. Q! G = det. = = = (ne3) {u—:- (1+ =3 }
nd
* 4 -l ¢
(2.8,13) u-s-(xo;,) tends to dn~3-e for large values of n.

Hence we heve the differemce (2.8,12) of the determinants is positive for

n>undQ15 does not exist. Thus

TAEOREM 2,8.5 3+ For n>15, Q, is best weighing design in the sense
of Mood's definition of efficiency and z: is the best ome for n<15 .
o= 1medd Consider the differsnce of the detersinante ky Ry

and X'X where X hcny[n. l.)J.

(2.8.14) ot BB -dot ¥X = (60-5)(nm5)""- (n-esT A)(amem A"
'o Del
(2.8.15) = u(n-s)bl{(a- -§-) - (21 g-'m- ;—':'g)

For large values of n the expression in the braces of (2.8,15) tends to
9 L]
6=(re1) 5% *° uhich 1s greater than 6=(s'+1) 8° *° and

; B
(2.8.16) é=(s'+1) . ”a o fors'>H5
It follows from (3.8.15) and (3.8,16) that for n>5 and 8> 8 the difference
of the determinants is positive, Also we know that [ n,n.),\] does not exist

for 8'< 5 except for s = 0, A= 1, lence



THEOREM 2,8,6 ¢+ For n>5and n 2 1 mod &, moumrndmm
exiat L is best weighing design in Mood's definition of efficiency.

Y w
3... CONSTRUCTION OF Q-, Z‘ ARD Ry MATRICES

We know from the scetion 2,6 that the existence of "SBIB" design
with the parameters veb'=n, rek'= 2"9». NG g vhere \ # o,
iaplies the existence of / n,0,A7. Let N denote the incidence metrix of
SBIB® design with the above parameters, Then the design X, neos ATy
is obtained by
(2.8.17) X = 2§ =By,
Lot a2 = 4n-3 and @} = 63 where d; and d; are integrel values. This vo have
the following table

TABLE 2.8.1
° "SBIBDe Corresponding
v et P bod velghing design
a n=d NCIOQ
p) '3 G
n=l o
| z n_:g ’a

mwgin-mmmlmlutmmmhminadpgu
469-70 of Coohran and Cox / 26_/.

(A8
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TABLE 2.8.2
*S3IBD weighing design
v r A
3 2 1 3
7 3 1 2;
7 é 5 G
) 8 7 Rg
1 5 2 ;1
15 7 3 2;3
21 5 1 Ryy
31 10 3 Gy

¢ See these constructions at the end of this chapter,
3.9 WEIGHING DESIGNS /[ m, s, 0/

In this seetion, we give some designe [n...oj. These may be
used vhen the experimenter wants to weigh a large suzber of objects and
vhen the pans do not allow more objects at a time, subject to the condi-
tions (1) the variances of the estimated weights are equal (ii) the correla~
tion of any two estimsted weights is sero. For the construction of some of
these designs, wve may use the concept of Kronecker product of two matrices.

THSOREM 2.9,1 ¢  The Kronecker product of [ ny, 8, 07 and

Lngs 890 07 18 (“nyngy v,8;+ g8y 838y, 07,

The proof of this theorem is simple and hence it is omitted,
Example

. " let %y, = Iy = [3,2,0.7, X3 = (4,0,0.7 = By
X= IgxHy = [12,8,07.
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Some of the designs are given at the end of this chapter,

2,10 DESIGNS SUBJECT TO THE CONDITION, VIZ, THR
VARIANCES OF THE SSTIMATED WEIGHTS ARE BQUAL

Case (1) n =2 mod 4. Consider the class of designs which give
equal veriances for the estimated weights, Let X be n'® order design matrix
under this class. From the section 1.1 we have

@101) v e 0070 w8 0 oo a (g
ﬂmmou' are egual,

THEOREM 2.10,1 : For the class of designs under section 2,10,
€41 2 ;':i(x = 152,00, B)e
PROOF Let

8,, 1 .'
(2.10.2) § = 47 1

8 8

Suppuoimkimatlmtmmquyithinfkntcolunofx. Then
we have 849 € n=-1. Also

(2.10.3) 0y= 1 : A

-———-'—-:I— > ;.. > D.:I
1578151 8 1
. i
But by the definition of X, 0y =05y (1 =23,3,,.,n) Hence ell ey, > g
Suppose X containy no seros. First we prove the following lemma,
LEMMA 2.10.1 ¢ Let X be & n x n metrix where n g 2 wod 4 and
its eloments be & 1. Let S = (g = I'X, nonesingular metrix. Then

e | n
tr 8 > ".Io
We have the following three lemmas of Ehilich L 39_7 are evident,
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(See the lemmas 1.4.2 and 1.4.3)
LEWNA 2.10.1 3 mmw.u'mm-“uom4 in

§ ¢ gme nmutyupuuu,mnxmbowmmumfmu

849 8

8 = (’.-1 ﬂ) ammwamersums,, mequhevm.u
S
12 S22

in 8, ond 3, = 2“6“«-:1.““8“’ omod & (ef. (297}
PROOF OF THE LEMMA 2.10.1 3 By the lcuz.lml..wmw

511 512

8 wvhere the elements of 544 and 2

arrange any 8 aa (Sizf’u) o 41 ond 533 3 2 mod 4

and their orders be 4 and b respectively, Hence

. -l

5,, 8

e s = (ti u)
512 S22

-l -l

(2.10.4) = ¢ (tr 8::1 . tr s;;l

vhere the elements ot!lhnuls;’ are odd; and by the theorem 1.3.1

-1 -l

» n B n

trau > ;:i and trlu > =T Hence
-l n

(2,10.5) tr 8 2 -

But for the class of designs under section 2,10, tr st a ney
which 81'“ .11 2 ;}i (1 = 1.’.0., ﬂ)o Hence the theorem 2.10.1.

mmrwru-mu-nou" are equal and e=eh is equivalent
to <l . Also for U_ matrix (of. 1st chapter);
o=l n
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.(n-l)lm * 28,2 o2 O0/2 n/2

(2.10,6) UpUy =
. Cwann (-2)1p/p * 3z u/2

" 1 |

L | =Rt o2 5oz nf2) %/2 o2
(2.10.7) (U Up) = 1 1 |
On/2 n/2 57'%/2 = 51 P2 w2/

-

Evidently, it is seen from (2,10.7) that the diagonal terms of
(u; Un).lmoqmluxdescbn;l:? From the sections 1.4 and 1.5, we see
that Tn and lln are the best designs in Ehrenfeld's and Mood's definitions
of efficiency respectively., Thus

THEOREM 2,10.,2 : Under the class of designs of section 2.10, T,
1s the best design in Kishen's and Ehrenfeld's definitions of efficlency;
U, is the best design in Kishen's and Mood's definitions of efficiency,

Case (i1); n is odd, If F exists, we know that it is the best
weighing design in the semse of the three efficlency criteria. When P
does mot exist, we have Qy, 3 and R metrices, But they may not be best
under the class of designs of seetion 2,10, For example, consider R’ and
Rgy* The relative efficiency of the designs Ry and Ry, t0 the designs 14
and 15 (given at the end of the chapter) is less than one under all the
three efficiency oriteria, "SPBIB" designs mey be used for the construetion
of some weighing designs under the class of section 2,10, These desigus,
for some n (as in the case of n = 9 and 21), may be more efficient than the
designs B end 3. .

Let §' be &« m~associate "SFBIB® design whose parameters are

(2.10,8) v=b=n, ¥, Dy Dgy esp Og jNe)gs,, Ay 80d «’:k»
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let 55, Bgy eep By Do the association metrices /19 7, Let
(2.10.9) X = 3N-E,, which is nonesingulsr and

(2,10.10) X = @'V e (oetr) B,

™Y
- e SO) b wenerg sl e
A: = n-‘(r-)\‘) 1=1,35s0, B

From (2.10,10) end by the properties of associstion matricss / 58_/, we can
show that X gives equal variances for the estimated weights. Designe 14,15;
given at the end of the chapter, were constructed with the help of 8 -
associate "SFBIB" designs.

When P, does not exist, where n = niny = 1 mod ¢ and if F, and

i

Pn, exist, then we can construct design X with the help of Kronecker

product of matrices as
‘3.‘0011) X = Pul b 4 ?‘.

The matrix X gives equal variances for the estimated weights and each is

given by
(2.10.13) - o3
(38, = 1)(3ng ~ 1)

In Kishen's definition its eificiency is
(8n,~ 1)(3ng~1)

(2.10.13)
¢ a;0,
JABLE 3,10,
n o : A ifficiency with
1 2 Bin  yyshen's definition
65 3 13 48 <865
125 5 25 9 682
169 13 13 144 .914
205 B 41 160 .889
325 13 28 288 .942
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2.11 DESIGRS WHICH GIVE EQUAL VARIANCES FOR THE PART OF ESTIMATED
WEIGHTS OF THE OBJECTS WHERE THESE SHOULD BE WEIGHED ACCURATELY

In this section we give some designs which give equal variances

of some estimated welghts of the objects where these should be weighed
accurately, The problem was first mentioned by Mood in / 44_/, We restrict
our attention to the ceses that (i) n-1 objects ere weighed sceurately,
(1) n=2 cbjeots are wei hed accurately. We can show easily that eqq > -é-
for 1 = 1,3,..y 5. Our ainm is to obtain designs which give smalle: oy,°
(corresponding to the objects where these should be weighed accurately)
s compared to the ¢,,° of the best designs of the sises nei and n-2., For
o g omdd, mpra1uu»1muanuun. When n = 2 wod 4, ve may
use T, matrices if they exist. In this section we give designs for odd n
under Kishen's definition of efficiency,

Case (1) n 3z 1 mod ¢ (a) n~1 objects are welghed with equal

precision , "
1 &
Lot 8= ' o Lot ©112 O33 *oer €y el
21 &,
corresponding to the required ou' in which we are interested.
{ ]
i=1 no

> 23 (of, theorea 1.8,1)
2(n=-1)

2ne3

ma for i= 1.2..0. D=1

(3.“02) s .u >

Mﬂa_lbommm-trtxofwdnn-l.whuhhmngd.
90 that first rov of it = By ... let H_ = (5, By +e B, ,) and



B 1
1 o=1
(S.n.i) X = #
h; .
ho-x "
i per -1
vhich gives
(2.11.4) 'x = (l)Ip g *8 0y Opes
01 nel 2
and
2ne3
011 = 2(o1) i= 1,3500p D=1
e = 4 » Hence

THEOREM 2.11.1 :+ The design X defined in (2.11.3) is the best
for the case (1), under the clsss of designs in section 2.11, (b) n=8 objects
are weighed acourately. Let

511 513 Spe1 n=1 n-1 n

(2.11.5) s = (| ) vhere Sgy = (
su Sap 8, 8,0

Let o4y (1 = 1,250+, n=2) correspond to the required ou' in which we are

interested.
ned -l ¢ -l
(aom‘) ‘Z.j,j, = (D‘e) Ou = tl'(su - Sususn)
=1
2 (=2 )
2 tr S;i 2 -----—L-— (Gf. theorem 10‘01)
(n=1)(20=3)
2(n=2)
2.11.7) o ———————————
( *1 (n=1)(20m8)

* L
Consider 2“ """zh-axn-ax"ﬁn-cx‘”m

(2011.8) X = (2;-3 “o2 2 )

g ned Iz
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which gives (a1) . 3
43 *
(2011.9) s = To-2 * fo-2 02 =
%2 n-2 I, + (=28, 5
and
.1‘ = m for 4 = 1,38,.ep=8 and le n-l-ann- -
Hence

THEOREM 2.11.2 ¢ The design X defined in (2.11.8) is the best one
for the csse (1)bunduthoehuo£dutgmofmuonl.u.

The o, for X ia (2.11.3) s g and e, ., =0, for X in (2.11.8)
is~¢ . nmmmwmumwmmmmmmodmm
type of designs., For the case (1), the following design is useful, if it

exists .
Let B
(2,11.10) ¢ a fomt Fam1 4 where
Eipg
" ]
(2.12.12) M 4B ., ™ 4E,;;  enddlspositive integer,
Heace we get (
nel) - DB
— I ( l..l_ Epel ol =l 1 )
(a=1)By oo aly

For inverting (3.11.12), we use the following method of imversion for parti-
tioned matrix,
GENERAL FARTITIORED MATRIX AKD ITS INVERSE “1
Greonberg and Serhan / 34_/ utilise the specisl form of & parti=-
tioned matrix in order to invert it. In the general form of their matrix
the diagonal sub-matrices are themselves diagonal matrices, Ve here consider

®, See the reference [10.
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diagonal subematrices of the form al, * bE,, .

Consider & nonesingular (h x h) partitioned matrices L and M of
order (v x v) defined as follows.
L = ((Lu)) where

(21013) Ly = Byyfy.y, » Lyg =8y I, o By By y,s Byy = by and 8y £ 0

i,j= 1:8500p h
M = (Mu)) where

(21126) Mgy = Ty Bygy 0 Mg =5 L0 Yag Begege Tyy =T and xg # 0
‘.’ = 1;’..0. h

h
(2,11.185) v = v
i=1
Let
(l.n.u) B= «b“». Ii= «'u» » Dl = M"l’ ':. 'Y ) 'h)'
9‘ - M(lv Basees ‘h)
THEOREM 2.11.3 : If ¥ is the inverse of L , then
(2.11.17) Y = - (8D, ¢ pg) ™" BDg"
FROOF ;§ We have IM = x,
% h
(2.11.18) - Lig g = Iy, » Ei Lig ¥y = 0,1,:

The equations (2.11.8), on left hand side, show that the coefiiclents of

Eq" and 8'1'4 are seroe and the coefficients of I" are one., Henoe

= ls
(3.11.19) g &1

: 'y
E‘:I Ve Bag Vg * 8Ty = < o i, = 13005 b
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Then (2,11.19) can be written as
(BDIOD,)I --Bb;l 80 that

Y=o (8D, ¢ D) an:1 vhen B is nonesingular (2,11.17)

can also be written as

o -l
(2.11.20) T =« (Dphy * Db ‘n,)
Hence from (2.11.12) and (2.11.17) we have

S W IR =~ Vs
i =l (n=1)(2n=d=1")
(2,11.21) i=1,2,00p 0=l
2
e = e ——
- 30=(d=1)"

For the construction of X in (2,11,10) we use the condition 2,1i.11.
Hence ne1 = d%(= 4t% sey). To satisfy this, "SBIB" design of femily 'A*/ 63/
is used, Let N be a "SBIB" design of family 'A' vhere v = nel, Hence we get

al‘hl. a8

(2.11.22) Booy =2 =B,

The paremeters of N are vabs=a-l= 4t r'k-ltagt. -t’gt.
We know that "SBIB® design of family 'A' for n-1 = 16, 36, 64, 100 exist

Cass (1),: We have that 5;.‘ alvays exists if t!n_1 exists, where

(2.11.23) Sna Bpay ® 203 gy * B3y o™
e t ® ( - .

5,..3 Za_;. 1) H- DwZ Dol

Let

Z;-a Eneg 3

2n=2 1=l

(2.11.24) 4 =



which gives
(0=1)I; 2 * Epeg pe2 Bpez 3

(3.11.25) £’y =

From (2.11.17) and (2,11.25) we get that

u 2 3(n-2)%
(2.11.26) F1,3) vey 0=2

1
®rel nei = Smn * ‘é‘ (2.:!)
Cese (11) n = 3 mod 4, (a) ne1 objects are weighed accuretely with

equal precision.
n‘vom?nd-truter the objects which should be welghed

asourately, cuofta_lh ;é,. Our aim is to get designs where its

e, (4 = 1,2,¢.p 0~1) are smaller than ﬁ. Let

T B
(2.11.27) X z ( -l el 1) where
B gy 2
(2.11.28) Tpy Bpeg 1 ® GBpey 3 80d & is sny positive integer
(ne2)I . ¢ B (de1)B
(2.11.29) £y = n=l " “n=l o=l o=l 1
(d=1)By pey nly

From (2,11.17) and (2.11.29) we get that

v - [1- =25
(2.11.30) = (n-l)(la—d-l . 21,2500y D=l
2n=3
®m = =8

n(2n8 j=(n=1)d=1
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Ned 16,19

Two designs defined in (2,11.27) for n = 11 and 27 are given at the end of
the chapter,

(b) n=2 objects are weighed accurately with equal precision.

If 8,_o exists, we write

8 B
. ned nw3 2
(2.11.31) X = ) ) where
B s
22 4

sa..asu.g """“n-a"‘n-aa-z and sn-axn-zl = °n-21

and
(n=2)1 * B 0
(2.11.52) ‘x = oed w2 ned - 8
% ng 42y v (wtiny,
from (2.11.32) we see that
1

(4] =2 1 = e

(2.11,33) i = [ 3(n-2) 121,250, 0e2
n
®inet - %m0 ¥ g(ne3)

We know that sn_,dou not exist for n = 23, 35, 59, 71, 79, 95
wunmuunwzw.mmm-umwaﬂumm:u
n.‘,. “' a7,



ARPENDIX 8.4

In appendix 2.1, we give some welghing designs connected to the
chepter 3. In the following designs « means +1 , «~ means ~l.
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9.

[ 6,2,07 =

10,

(748,07 =

—
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[hﬂﬂj -

(14,507 =
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Design under section
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16. Deeign under the section 2,11 for n = 1l.
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17. Design under the section 2,11 for n = 27,
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CHAPTER 3

GROUP DIVISIBLE FAMILY OF "PBIB® DESIGNS®
8,1 INTRODUCTION.

In this chapter we meke systematic study of some partially balanced
incomplete block designs which belong to group divisible family. For the
sake of brevity we denote them as "GPBIE" designs. The definition of "GPBIB®
design is given in section 3,2, In section 3,3, We give the cherecterisation
of (m*1) associate "GPBIB® design, The analysis of these designs is given
in section 3,4. Section 3,5 desls with some methods of coostruction of
"GPBIB" designs. Some combinatorial properties of these designs and nece~
ssary conditions for the existence of & class of these designs are studled
in section 3.6, where specialisation is also given to "GL," and "OT" designs.

3.2, DEFINITION OF (mel) ASSOCIATE "GFBIB™ DESIGN.

An (mel) associate FBIB design belongs to group divisible family,
Af it satisfies the following conditions:

(1) The experimental material is divided into b blocks of k
units each, different treatments being spplied to the units in the seme block.

(1) There are v(= ut) treatments and these san be grouped into
t groups of u each, such that any two treatments of the same group are
either 1st, lnﬁ.ojl“ sssociates while two troatments from dirferent groups
are (me1)™ associates. The association scheme is same for all the ¢ groups.
(441) BEach treatment is replicated r times.

® See the reference / 12 _7
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(iv) BEvery pair of treatments which are 1% agg0ciates

(1 = 1,250.0, @el) ocour together in ), blocks.
We suppose that the assoclation scheme of these groups is known. Let the

secondary paramcters of the groups be

"
(30101) a‘(hl.i... '.}. "%1 By 2 U=l
E ) §
Pl - ((P“ ] (1’131 - lpa.oopl)

Henece we get the secondary perameters of the above "GFBIB® design as

D‘(m.’poo..) and l\..l = ‘(t—l)

[ ®
P
Fl = i o-l 1= 12,00 B
0, wlt=l)
(3.2.2) ( -
| B
o I
mm
Faer = : ;'
 ByBges B! u(te2) |

3.3 CHARACTERIZATION OF (mel) ASSOCIATE ®GPBIB® DESIGN,

Let i = ((n“)lbo the incidence matrix of a "GPBIB" design where
au =1 or0 mmmuthoi‘htrutmt occurointho.i"'blockornot

(1 = 1.3....' and J = 1'2....'). Lot
Ny '
Ng

B

(3.3.1) 8 =




where Ny (1 = 1,2,..,%) 1a the part of the incidence matrix ¥ carresponding
to 1% group of treatments in b blocks. Also let the associstion metrices,
first introduced by Bose and Mesner [1!_7. of the groups be Bgyy BiseepBp o

Hence we can write

(3.3.2) md = Iy (PeQ) ¢ Byy x Q
e

where Poo= 2> By s @=L By
i=o0

o
Let the elgen values of P be S BgAg, 9, 93 ooy 8, with the
i=o
multiplicities 1, 41. Jz. « eep oLy Trespectively, Here ng=l, = r
The det(N') can be written as
- - b1
(3.3.3) dot(En') = det/ Pe(t=1) QJ [ det(r=q)/

Further we know that det(Peal), whore a is any real numsber, as

n A1 Jd2 o
(3.3.4) det(Peac) = [> B33y e audgy ] et b
i=o
Y
Let Oae1 = %5:1)\" “~BAge =rkev),; and
m
60 = Zni Ai * u(t-l) )\”1 = rk
i=o
Hence
oth ,,L't ,L-t t-1
(3.3.5) det(mi') = @, 8 & - & Onel

We know from the result of Connor and Clatworthy ﬁ?] that the characteristie
roots of EN' can not be negative for an existing design. Thus we have the



following theorea i

THEOREM 9.3.1 1 A necessary condition for the existence of (mel)
associate "GPBIB" design is that 83 > 0 (1 = 1,2,.., mel).

Some exsmples of the non-existing designe, using the theorem 3,3.1,
will be given in section 3,6.

From (3.3.5), wve can classify existing (mel) associute “GFBIB"
designs into different classes. For example the {ollowing are the two cases,

(1) Group regular designs characterised by 65,1 = 0 and
8,> 0 (4=1,2,¢.,m)0

(11) Regular designs characterised by 8;> 0 (i=1,2,..,me1),

3.4, ANALYSIS OF (mel) ASSOCIATS "GPBIB® DESIGNS

The analysis of (mel) sssociate *GiHIB" design can be obtained with
the help of association matrices; this belng the purticular case of Shah's
generslised analysis / 56_/. With the ususl intre block model, the normal
equations giving the column vector of the intra block estimates of the
treatment effects T are
(3.4.1) g =¢C 7
where g_-‘r-}n;_mc-r‘x,-ﬁﬁn'

zmgumgth.eom-mw.o:mmmmnmnmm

respectively.
a
(3.4.2) ¢ = uz(Zcm)-kﬁic"
i=o
+ - - XN
(30‘.,) .° = )\. i .kr(k 1) » G’. = >-\—.:%-—& » !.II.I...,I.




Hence
m
(3.404) CoBlg. = Iy x (> esby )
- n
By the theorem 3,2 of Shah / 98_/, we can show that the iaverse of > 6484
i=o

]
is of the fors > dgBg « The solutions of d; are obtained from the
i=o

independent equations, namely,

s =
(3.4.8) 2.z ph ody = 1 if 1=0
i=0 j=o
= 0 if 13 1,2;¢eym
Hence we have that
~ - =
(3.4.6) T = [1,x > agy J g
i=o
(3.4.7) Vit eTy) = 2dg=-dglc? or
= zd°c‘2

muﬂinguthol“nndj“truﬁmhnoot’h

associstes (s=1,2,..,m) or
(lol)ul assoclates, where +* is the intrabloock error varisnce, The aversge

variance of the design is

a
(3.4.8) 2 (ve1)dg - = T2
and its efficiency is .
n -
(3.4.9) (22) Ltvetidg - >ty J

3.5 CONSTRUCTION OF "GPBIB® DESIGHS,
In this section we give some methods of construction of "GralIB®
designs by using balanced incomplete block ("BIB®) designs of family "A"
(0f. Shrikhande / 63_/), and some particular row-orthogonsl m:trices having
elements ¢ 1 and O with m associate "PBIB® designs., A "BIS" design with



the parameters v,b,r,k, » belongs to the femily 'A' if b = 4(r=- )\). Two
series of "BIB" designe of family 'A' wvere given by Shrikhande and Raghavarao
in 64/, A metrix X of order n x m, having the elements +1,-1,0 and
every row containing s seros, is roweorthogonsl if XX' = (m=s)Ipe When men,
X becomes / n,8,0_/(Cf. Chapter 2). For the construction of "GPBIB" design
ve use I, the row-orthogonasl matrix, which satisfies the property that whem
we change =12, +1® of X to serocs and seros of X to +1% the resulting design
is a "BIB® design. We denote this rowe-orthogonal matrix as X(m,m,s).

0 1«1 1 1 0)

oge X(3,6,2) = -« 01101
\1«1 0 0 1 1

If ¥ is any ineidence matrix of & binary design of order v x b, then
its complement design is given by N"(skyy~N).

THEOREM 3,5.1 ¢ Let Ny be a m assoclate "PBIB® design with the
parancters
(3.5.1) v'su, b’y vy ky 0y, Dgs oo PLRRA P; = “’;k.»
(1),821,3, <0 ®)
and let By be a "BI3" design of family 'A' with the parameters v =t,b ,r sk s}
then
(3.5.2) R = [I,xliol;xi;]

is (mel) associate "GFBIB® design, The parameters of the design are

(3.5,8) v=mut, b= b'b: r= r'r'o(b'- t’)(b”- r.), k=k'k'e (v'- k')(v'- k')
ng= ni. Bgey = u(tel), 2y = b'z\i o f (1=1,3,0.90)) Speq = f=8
vhere £ = (b"= r")(0'=2r'), g = (r"=")(b'=4r')



i | @
(5] 1
B Oy m
,1 = ’ P"l = : ®
Oa u(t=1) ) By
~n1wonn. ; u(N)J

1'1.‘. es p

PROCF 3 ' '
(3.5.4) Wi’ = g x By e Ny x By 7 g x By e iy xby 7

On simplification (3,5.4) becomes
(3.5.5) ' o= Iy x [b'llﬁi + g l'"'J ¢ (f=g) Eyy

Since N, is & "FBIB" design, we can show easily from (3.5 5) that ¥ is
"GPBIB" design with the persmeters given in (3,5.3).

COROLLARY 3,5.1+1 3 ¥ is group divisible design if Ny is a

"3IB" design.
COROLLARY 3,5.1.2 : N is group divisible 3 sssociate design

ir Kl is group divisible design.

THEOREM 3.5.2 5 Let By be a & associate "PHIB® design with the
paramsters given in (3.5,1), Further let u = 2k', Let X(t,n,s) be a
row-orthogonal matrix with the elements » 1 and O, Lot M be & "BIS" deaign
with the paremeters t,n,s,k", ." obtained from X(t,n,s) on changing seros
to +1% and +1° of X(t,n,s) to seros. Let L be a deaign obtained from
Z(tynys) on changing =1® to seros. Then
(3.5.6) N o= LxBy+ (B =L=Mxn
is (n+l) sssociate "GPFBIB® desigp with the parameters

veut, b=nb', r= (o-e)r', k = (t=k")k', ny = ni(m.ﬂ....-)

70
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i L}
(3.5.7) mng,,= u(tel), Ay = (M))\; (1=1,20009m)p Ay = - (“';" e

and P‘ ("1.'.....01) CL. ‘3-50’)

The proof of this theorem is similar to the proof of theorem 3,5.1
stmou-u', ve get 8 ., = 0, e may obtain regular designs by relaxing

the condition u=2k' and using partioular X(t,n,s) which gives both L and M
‘1

as "BIS® designs. =4 0 0 3 0 1 1
1-1 0 01 0 1%

eg. X(7,7,3) = 1 1«1 0 0 ¢ O

O 1 1«1 O 0 1

01011~ 0

| 0 0 1 0 1 1-1]

THEOREM 3,5.3 1 Let Ny be & m associate "PRBIS" design with the
‘parameters given in (3.5.1) . Then
".5.‘) N = It x '1 * (stt - lt) x %l

is (m+l) associste "GPBIB® design with the parameters
v=ut, buth, rer's (t=1)b’, k = k'e (t=1)u, 51"'1'.! Bpet™ u(t=1)

(3.509) Xy =2y o(tmi)b’y Xpgym 30" e(tm2)b" and Py (151,200 pm01) CF. (305.3)
(’b.l’n.oo..)

THEOREM 3,5.,4 ¢+ Let Ny be a (mel) associate "GFBIB" design with

the parameters
)
(30&10) '1 = nltt » '1. 21. ki. Bis )i' P; ("1'2.00’.’1)
- ' ]
Let K Nyq W = \
P = a;: I 11 "y Aael l"ﬂj.u;

° 1.1 = xl‘.”. ‘1

it

. '1@1



Let N be & "BIB® design with the parameters Uy, bgy Ta, kg® ty) A3 o
Substitute t, distinct Ny, in plase of t, distinct uaits and Oy, in place
of vg= ¢, seros in every block of Ng. The resulting matrix is (mel)
associute "OPBIB" with the parameters
v ® gug, b = bybg, r = ryrp, k = kyp 0y = ni, ey Uglve=1)
(421,200 ,0)

]
)‘1:1'3 )\; (1'1.3.0-")' A.ol - )‘. ’\nl

(3.5.11) - 1
| By
( i )) I
Py e ! lr = » B 0= - |
°1. | ﬂl('a'l) m+l : .
- %a
| <,
(1212500 8)  B10ge By | 8y {vg=2)|

The proofs of the theorsms 3,5.3 and 3,5.4 are evident and
hence they are omitted.

COROLLARY 3.5.4.1 ¢ Let Ny be & "SIB" design with the paremeters
ugby® ¥qp byy Py kgp Ay @nd N, be another "BIB" design with the parameters

Vae Dgs Ty Kgm by, Ag o Hrite

' ]
1 where ﬂu Nu )\1 Eulul °

|
|
1ty Jl

<

Ny

By the above theorem 3.5.4, we get & group divisible design with the

paraneters ' t
vemn, bubibg, r=rirg, ksk;, wevg, nmug,MIN » A= A Ny .

COROLLARY 3,5.4.2 : let uy = 1 in corollary 3.6.4e1. Then

we get "BIB® design with the parameters v=vy, bmb by, r=r rp,k=k, Am )«iz\a' *
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8.6 3 ASSOCIATE “GPBIB" DESIGNS

Bose and Shimsmoto / 21_/ classified 2 associate "PBIS" designs
as group divisible ("GD") type, "Ly" (i=2,3) type, trisngular ("T*) type,
eyclie ("C") type and simple ("S;") type "FBIB® desigms. iere, we classify
3 associate "GFSIB® designs as "GD" 3 associate, "GLy" (18,3), "GT", "GC®
and "08," type designs. Roy / 56_/ and Raghavarso / 53_/ studied ®0D*

3 assooiate dssigns in detail. In this section we give some combinatorial
properties and nonw-existence of curtain '01,' and "OT" designs, For the
details of °L," and "T* type designs ve refer /627, {617, £28.].

THEOREM 3,6,1 ¢+ In a (mel) mssociate “GPBIB® design with 8 ,=0,
k is divisible by t and further every block of the design contains k/t

treatments from each group.

PROOF ; Let e be the nusmber of treatments from 1! group in the

J
J“ block. Then
2 3 2 St .

(8.6.1) > o = wr, > o (e-1) = u (Z Ay

=1 J=1 i=1

Define o" % 1 2 ¥ = : +« Then
. = ¢ v %

(3.6.2) Z(t - ol 8 = ur e é“l)‘l) - msz/t,8 =0

J=1 ! 1=1

- urk
since re Zn]_,\1 = rk-vA . «»\.‘1 - “)hd = “)"l . -

1=1
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(3,6.2) shows that all o: (1=21,2,.4,b) are oqual; QJ‘ = oi = % an integer

for all i = 1,200t

3.8

o "Olg" DESIGHS

Hers, u (-a’) is a perfect square .
; 2(n=1)t (n—l)st. tel
(3.6.3) det(¥N ) = 9, & ®y g
where 8, =rk, 8 =7 e(n=3) ()1-»\‘) “Xgs 8 =71 »\,-z/\l and Sgmri=vig,

It can be cbeerved that &j(i=0,1,2,3) are the distinet eigen roots of Ni'
vith the respective maltiplicities 1,2(n-1)t, (n=1)%t, t=1. The designe
with the following parameters violate the necessary condition; vis.
theorem 3,3.1, and hence are impossible.

v b r k n t NN g
18 22 7 ¢ 3 2 0 2 3 (8g< 0)
2 27 & & 3 3 5 0 3 (85< o)
64 48 9» 1 4 ¢ 1 5 1 (84 <o)
70 50 12 18 5 3 » 2 2 (85< 0)

COROLLARY 3.6.1.1 3 A neceasary condition for the existence of
"Gla" design with 84=0 is that k ls divisible by t.

THEOREM 8,6.2 ¢+ In "Gl." design with 01-0 and 0,-0 s k 19
divisible by nt and further every group in every block of the design
contains k/nt trestments from each of the n rows (or columns) of tue “Ig"

association scheme,



Proof follows from the corollary 3.6.1.1 and theorem 2.1 in / 54_/.

COROLLARY 3,6.2.1 : A necessary condition for the existence of
"GLy"® design with @,=0, 83=0 and né is that k is divisible by nt.

We use the condition n # 4 in the above corollary because 'l,"
association schome is not unique for n=é. (cf. Shrikhande / 63_/).

The designs with the [ollowing parameters violate the conditions
of the corollaries 3.6.1.1 and 3,6.2.1 and hence are impossible.

w b r k B ¢ 1 rg g
18 16 8 9 3 2 $ 2 @ (eore8.6.1.1)
18 61 3% 8 3 2 6 21 16 (core3.6.2.1)
27 8 3% 12 3 3 6 21 16 (core3.6s2.1)
3 64 16 9 3 4 2 3 < (core3.6.1.1)
75 3% 12 8 5 8 5 3 4 {cor 3,6.1.1)

3.6y, NON~EXISTENCE OF CERTAIN SYMMETRICAL "GLg® DESIGNS

From Shrikhende's / 59_/ and Comnor and Clatworthy's / 277
rosults it follows that

THEOREM 3,6.3 : A necessary condition [or the existence of
symmetrical regular "Gly® design is that af,"“a‘ 85>  should be &

perfect square.
The following corollary is obvious.

COROLLAKY 3,6.3.1: For a regular symmetrical "GL," design, @,
is perfect square if t i3 odd end n is even; @4 is porfect square if t is

evone

79



The following desigms violate the condition of the theorem 3,6,3
and hence are non-existing.

veb r=k B ¢ S Ag Ay
18 7 3 2 2 1 3
36 10 3 4 & - 2
108 12 6 3 1 2 i
180 24 é 5 2 ¢ 3

FPurther necessary conditions for the existence of regular wax."
designs can be obtained with the help of the Hasse - Minkowshi invariant
(cf. chapter 3), From Singh and Shukla [ 05_7 we have the following theorem.

THEOREM 3,6.4 ¢+ If M is an irreducible positive definite,
rational symmetric and generalised stochastic matrix of order v, with the
rational eigen values ao, 8y 6, and €3 vith respective multiplicities
ol g=hs clgs g @nd g end G, Qp are the gramisns of the retional vectors
generating the eigen spaces corresponding to @,, 02 respectively then the
Hasse = Minkowski p inveriant of M is given by

Jd
(3.6.4) o’(H) = (.1...1)9 ( 8 p=v 011 ‘zz ) dgdg

3 1
m (-I.ﬁ)J'T"' (830 1091 )y, (Ggy 1Gg1)y (8gs¥iQqleiCglly

Lot M= iN's The o (5') can be calculsted in the usual way [ 47]
and by using (3.6.4), we get on further simplifiecation

Jals

by (01.031 (01.0,) (o,.e,;



(7

(o)t daplge1) t(tm1)
(3.605) o, (M) = (=1p=1)(=1,81),  (=1,85), 5 (-1,0,),5 (ty89),

vhere oy = (me1)% .

Simce Wi'~ 1,, we should have op(ms') ® (=1,-1), for all prines,

THEOREM 3,6.5 ¢ A necesssry condition for the existence of a

regular sysmetric "Gla" design is that
dg(gel £ (e
(ne1)t -.,-—1 .S,-H-
(-1.«139 (--1.0,,)P (-1.0,),, (s,e»,)p =1 forall
primes po
The following corollary can be deducod easily

COROLLARY 3,6.5.1 ¢ Necessary conditions for the existence of
regular symmetric "Glp" design are

(1) t =2 mod 4, n is even; (-1.0,)9 = 1

(11) tm1imod 4, nis odd; (85, = 1
(3.6.6) (111) t m 1 mod 4, n is even; (~1,8)); (ty8y) =1

(iv) ¢t = 3 mod 4, n 18 even; (-1.01)’ (-t.O')P =1

(v) ¢33 modd4, nis odd; (-t.O,)p = 1

The designs with the following paremeters do not satisfy the above
corollary and hence are non-existent:

v=Db r=k n t A M Ag
29 11 3 3 6 8 3
4o 13 3 5 5 7 3
72 36 o 2 23 2 10
108 28 6 3 14 16 3



3.6, ™GT" DESIGNS

RBere u = n(ne1)/2

. J
(3.6.7) L I A
vhere 8, =rk, 8 = r +(n=d)\y -(u-S)/\’. 8 = (""\1”\!) and @g= rk = Vig

It can be observed that 01'(1-0.1.8,” are the distinct charsseristic roots

of E¥' with the respective multiplicities 1ol .-(n-i)t,cl, = 2"."1& »
Js = tel, The designs with the following paremeters violate the necessary

1 48 d3
8

condition (of, theorem 3,3.1) snd hence are impossible.

v b r k n
12 3 6 8 -
30 60 20 10 5
30 20 10 15 &

COROLIARY 3.6.1.2 ;1 A necessary conditon for the existence of

t
2
3
2

N e
2 ¢
18 4
¢« 8

*GT" design with 84=0 1s that k is divisible by t.

THEOREM 3,6.6 ¢+ In a "GT" design with .1'0. 0,-0. 2k is divisible
by nt, further every group in every block of the design contains 2k/nt
treatments from each of the n rows of the triangulsr association scheme.

g
5
3
&

(8g< 0)
(0.< o)
(8,< o)

/8

The proof of it follows froe the corollary 3.6.1.2 and the theorea 1.1

of [ 54/,

COROLLARY 3,6.6.1 ¢ A necessary condition for the existence of

*GT® design with 01-0, 0'-0 and n # 8 is that 2k is divisible by nt.

The designs with the following parameters violate the conditions of

the corollaries 3.6.1.2 and 3.6.6.1 and hence are non-existing.
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v b o or kBt A 2y )y

12 8 4 6 4 2 1 4 2 (Cor. 3.6.6.1)
12 3¢ 8 3 4 2 1 0 2 (Core 3.6.1.2)
18 61 18 4 4 3 1 2 4 (Cors 3.64142)
30 25 10 12 5 3 2 é 4 (Cors 3.6.6.1)

We use the condition, n # 8, in the corollary 8.6.06.1,; because
triangular associstion scheme is not unique for n = 8 ['38_].

3.6, NON-EXISTENCZ OF CIRTAIN SYMMETRICAL "GT® DESIGNS
From Shrikhande's / 59_/, Gonnor and Clatworthy's / 27_/ resulte
wve have the following theorem.
THEOREM 3,6.7 : A necessary condition for the exiatence of symme-
tricsl regular 0T designs is that & 42 &> should be perfect square.
The following eorollary is obvious.

COROLLARY 3,6,7.1 3

(1) when t is even; 6y should be a perfect squere

(11) t is odd, n = 1 mod ¢; 8; should be & perfect square
(114) t is odd, n x o mod 4; @, should be perfect square
(iv) t 4s odd, n 5 2 mod 4; 6,8, should be perfect square.

The following designs violate the necessary condition of the above
theorem 3,6.7 and hence are non-existing.

v=b r=k n t )‘1 g P
i3 7 4 2 5 4 3
18 9 4 3 5 % é
30 10 $ 3 3 ¢ 3
45 12 6 3 ] & 2
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Purther necessary conditions for the existence of symmetrical
rogular *0T" designs may be obtained with the help of the Hasse - Minkowski
inverisnt, Using Ogavas results /47 _Jand (3.6.4) the o (¥8') cen be
evaluated; and on further simplilication we get

| " : e Vi 5 d (n=1)t .
(3.6.8) ‘9(” )= ('h"l)’ E(‘lteﬂp ‘%n) (elﬁo“) (51030‘)

v(n=1)

nla=3) N
“ooﬂp (toaﬂp < ('-oo,lﬁ (egoﬁ)p
Hence
THEOREM 3,0.8: A necessary eondition for the existence of & regular

BGT® design is that

‘.1(-1.0‘)“'&}""(01.3,),, (Old,.n-a)p (qo,.a) (t,il) “."};L,m%) (o,.u) =1

The following corollary can be deduced casily.

COROLLARY 3,6.8,1: Necessary conditions for the existence of regular
symmetric "GT" designs are

(1) tz2omxd¢, nzinedd; (-1,88) =1

(14) ¢t =2 mod 4, n = O mod 4; (—1.01)p =1

(114) t 1o 0dd, nzimed &  (t,8y), (n8)), =1

(iv) tisodd, n=x 3 mod ¢ (d.ﬁ)p(ﬁg.u)p(t.hlp =1

(v) tisodd, n 32 med ¢; (u.o,)p(ei.-eg)p(t.é,), = 1

(vi) tisodd, nzOmedd; (8 LL-‘."_(.L-i))p (t8), = 1

The following designs violate the above necessary condition end henece
are non-existiag.

v=b rsk -] t M A A3
by 7 é 2 8

30 8 6 32 1 3

30 i0 5 3 3
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CHAPTER 4

PARTIALLY BALANCED BLOCK DESIGHS WITH TwO DIFFENENT NUMBER
OF HEPLICATIONS®
4.1 INTRODUCTION

Sheh / 58_/ defined intra-inter group partially balanced designs
and he gave the intra block anslysis for the generalised desisms., In this
chapter we restrict our attention to designs of this type having two groups
to achieve pertial belance ( as in the definitiomn of partially balanced
designs) with in the groups and balance (i,e. treatment differences are
estimated with the same varience) between the groups. We shall call these
designs as partially balanced block designs ("FBBD"), In section 4.2, we
give the definitions and the relations of the parameters of the design.
Analysis part is dealt in section 4.3, 3ome methods of construction are
given in the last ssction.

4.2, DEFINRITIONS AKD RELATIONS

DEFINITION 4.8.1 ¢+ An incomplete block design with two different
replicates is said to be "PEB" design if it satifies the following conditions.

(1) The experimental materisl is devided into blocks of k plots
each; different treatments being applied to the units in the same block.

(11) There are v treataents divided into two groups of wand vy
treataents respectively; the treatment of 1*! group occur in exastly ry(i=1,2)
blocks.

(111) There can be esteblished relations of association between
any two treatmsnts in the 1%M(i=1,2) group satisfying the following requirements

» See the reference / 13_/



(s) 7Two treatments are either 1st, 2ndy .., or m "D associstes

(b) Baeh trestaent hes exastly nyg 3% sssoctates (§=1,3,.,my)

(e) Given any two trestments which are g associates, the number
of treatments common to the 8™ associates of the first and t'® ssgociates
ot’t.bouoodhp:.“ and is independent of the pair of treatments with
which we start., Also

a q
Fioot = Pits

(d) Two trestasnts whieh are j* associates ocour together in
exactly )\“ blocks.

(1v) Two trestments whiech are {rom different groups occur together X
times in blocks. |

fiow further define esch trectment in the 4P group to be its own
o'® assoclate and o'P agssoeiate of no other treatment, We asy thus consia~
tently write

o t t
(42.1) g = Fyo By = 1y By g0 = Gy Bygr Py og ™ Py, g0 ® It
Then the relations belween the parameters ure
o
bk = vre¢ Vory » ,{% By = Yy 0

& ]
k) f R R W Rty

s q
B Pigt = Paq Prgt ™ Ut Piqe (Wt = 0rlidiee,ny)

Let E-(::)hminumntruotthoduignm

Hy(121,2) is the incidence matrix of the 1% oroup treataments in b bloeks



satisfying the above conditions, let Bu be the associlation matrices
(ef. Bose and Mesnor /197, Shab [ 56_7) of the deaign fy (§=1s25e.,my)e

Hence we have

(4.2.3) WMy = é Ny By and
(4.2.4) P = [ M M :]
NgWy Nzhg
. -
(6.2.5) s F: My Py *Regvg

when \= 0, the design is disconnected and hence we give the
restriction \> 0. Obviously )\“ $ By With little algebre and following

trom [ 197 we get | )
n (]
(€03.6) dete BE' ® K¥( N 7T 6N g B |
ey 4 R

vhere em = ’52)\“ 'Lllj (n-o,l,...ni) is the charecteristie root us'

vith the sultiplicity oy 0 9, = rek=vpd (1,152,2 and $4°)

83

end 31‘;; are the distinet characteristic roots of BU' Since Hi' is positive

(or atleast semi-) definite, from the results of Comnor and Clatworthy / 27/

0“' must not be negative; also rirp-bi>o. Hence

THEOREM 4.8.1 : A necessary condition for the exiatence of “FBE®

design is that €,.> o and ryrg~b/> 0. Uﬂlgl....li end 1=1,2),

THEORSM 4.3.2 : In @ "FBB® design with rymy=b) , K, °(is1,2) are

*PBIB" designs.



FROOF htoubotbamborormmutmmﬁhm

oecuring in the J®® block of the design. Then

b b
= -l) = kel ) PN ' =
’%1.“ '1"1 » JZ.—l.u "u J '1 [l'i( }""'1 J (:;:. 1.3)
b e
Define o = 3%1'” / b = .é..‘.
b V, V(2. ro=b))
Then Z (.u' ®40 )' = 19 : 2

= 0, since bA® rorp

Honce o, =0, %. =eo, -B--hl(m)vhichunnuum. Thus
it follows that Ny is & "FBIB" design with the block sise k‘_ .

4.3 ARALYSIS
The enalysis of these desiins be obtalned with the help of the
associstion matrices / 58_/. We use the notations given in chapter II of
Chakraberti / 35_/, Assuming the usuel model and denoting by T'and T the
veotors of the treatment effects with and without recovery of inmterblock
information, we get the solutions of the normal equations as

~

-1
(4e3.1) T = (CefBy) &
A % (] -l

T & (woefm'e¥¥rg ) P
[ a |

Cq4B
(43.2) CegE, = g“”

X % T

84
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(kel) ¢ A A= A

where B, = 1,1. 0 = . - » Oy = —T& (3=1,3,0. 08y 1=1,2)
and

% 248 0

4 1 e
(4:3.8) wC ¢ g Ku'e !E! A E" = j=o0 'y vive
.
'2'1 Jg»c’:. B‘J OJ

L] ]
wvhere .;0 = Ul". - ?(ti-/\). 0:4 = ?()\‘A“) (3-1.2....:,‘3 i=1,2)

Hence by the theorem 3.3 of / 58_/ we have

& -l
B 0 dq 4B
(4.3.4) ’5::14 b6 AN fi::: Uy 0'1'3
Ovavy "2_:2: "Bage ovzvl ‘2.-::33' Bay
and
FS"__-I'. B T = P ) )
0 g [ ) .
vV, ] -:lj Bay J ovavl ;ﬁ?.o‘lJ"?J'J
. - !
vhere cl“. d:,‘ are obtained from Lheir respective 1101 independent eguations,
nanely,
(4e3.6) 2'1 52 pl 8g dg,t =1 if 1=o0
_— =0 ifl= l.l....l‘
e O | 1 . ®
(€:3.7) ? % Py gt g4y =1 ifli=o
= 0 ifls tggpno..‘

(43.8)  WV(f,~ T) = 2(dgqed; ;) Af the troutasnts s and t are froa the 1P
group and further if they are j*’h associates (.14::....-1)
=1
= '(dlo + dy ) if they are from different groups.



(6.3,9) ¥(fa" - %4") = a(a], - 4j;) I the trestuents cand ¢ are from
the 1% croup and further if they are J"h assoclates (1-1.8....-1)
=1,2

= '(‘;o . d;o) if they are {rom different groups.

4.4 CONSTRUCTION
TIPE A DESIGHS 3 We achieve partial balance in the first group
and balance in the second group,
CONSTRUCTION dedel s Lot N, be the incidence mstrix of =

2
‘assoclate "FBIB" design with the parameters

» ™ -
(4a4.1) vye b.o l’;v k;o ﬂ;o 0;' ey l; ’ )\;Q)\a » 2o p >\: and Pg'k

(1.: ,kﬂl.ﬂ,.. ’I)
Let Ny be the ineidence matrix of & "BIB" design with the parameters
';. b" l’;. k; and )\' o Further let

n
(4e4.2) g-(é)mmhthlwmvntwuq

H m.'goo";

By, N} .. By
let '1 @ - 1. . 3, and

'g tises

8 “ e » h.

g 83 « o 21'

L] L4 L ] L] L] ’ ( Bl\)
(‘0‘0’) .' = . : ) . @ . ’ then N = "

B2 1ot By

is partially balanced block design with the paremeters
(44e8) v = v;o v; s b= v;b'. ry= vary , rg = v;r:. k= k;o kg

nyg * 85 Ny =X p:.u a p:; (1539151,2,0008) § pt= vy A" (be the number



of timses two treatments in the second group, together occur im the blocks),
LW
and A-rII.

FROOF :  Obviously, ve know that Ny is & "PBIB design having
the association scheme as H; and Ny is a "BIB" design, Further

P o r "l
:.l :: . o :1,; LA
v © . 8t
"
(4e4.5) Wy, = . + = "
. L] LA
L ]
| Bej B v e B | | B
® st % @
(4des) ® Rt B TRk Ry T AR
Exasple 1 0011 0111
P 0101 . 1011
5 ®li1010/ * % = |i1:01
1100 1110
d L
0011001100110011
0101010101010101
1010101010101010
N - 1100110011001100
= 9111101111011110
1011110211100111
1101111001111011
1110011110111101
. o

is "FBB® design of type A with the parameters v = 8, b = 14, rlnl.rz-n.

k=3§ nnna, nn-h,\u-«t,/\u-o. p;.u-o.pna. A= 6,

COROLLARY doéol.l t When Ny 1s & randomised block design i.e.
. 0
n'-s';b-, l-('i) is "PEB" design with the parameters

(4.4.7) v = v:o v;. b= b'. ry= t; » Fgs b'. k= v;t k; » Dgq = l;. Au -X;

i

P

41 = 9:; (1451 = 1,2,000m), Hub", A= l';
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TIPE B DESIGES 3 We get partial balance in both the groups.
COSSTAUCTION 4.4.2 ¢ Let llud lz be the inecidence matrices
of two "/BIB® designs with the parameters

]
(40‘.‘) 'i. bi. Pi’ ki. nh. )\hp Di.jz (‘.J.I = 1,2500p .1)
v;, bg.o ?n'o k;» l‘;ﬁ A;;'.P;:'J‘l' (4,551 = 1,354, ")

wttlmcondluonviok; = vgtkl « Then

is "FBB® design with the parameters
(6ede9) v = vio v;. b= b,'_o b;. r= r;_¢ b,', rg= rio bi, k= 'J'.’ k,'

‘u = ﬂi’ s )\u - A;j . b';'! P'L.t = P{.g (Jropt = 1:’|000-1 and

id's i,ﬂ). A= "1 N r'. .

14
The proof of this construction is obvious. [_0011_
Exaaple: 00110 1100
ll' 00011 1010
10001 , By = 0101
11000 1001
01100 (0110
" 00110121117
000111111 the paramcters are
100011111
110001111 v-u.b-!.rlso.rgnv.k-a.una3
011001111 g i s ksl
B = 111110011 = 3p = 3y = & P = 0y =1,
11113110 By2 11 12 1.11 P21
111111010 o S e e
1111101012 = & = 05 Age®™ % Py 1@ WA= G .
1111110012 " = . A1
111110110
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COROLLARY 4e4.2.1 1 If either Ky or Ny is "3I5" design, then
N is "PBB" design of type A.

CONSTRUCTION 4.4s3 ¢ Let !1 and u' be the incidence matrices of
two "iBIB" designs with the parameters as in (4,4.8) with the condition
vi-&i or v;-n; end by =by =b'. Then

By Bylp'= K N 8
1 ApthM| . 1 1

iy "2 b A= R

is "PBB" design with the peremeters

(4.4.10) B =

(4e6ell) v =vie vg, b =3b) ry= b’ or 2ry, rg= 2rh or b’y k = ki+ k3

ni.;' 'ij ’ >'td . 3»\1'4 ’ ’i.st. = 9"1.:% (Jospt = 12400 mg 802 L2 1) e "’ = ri

example 323:
B, & I =
1 3 1010
1100
roox:ooxx
01010101 the parameters are
10101010 ,
H = 11001100 veB8=b, ry=roum d, k = 4, = =2,
00111100 378 11" a1
10100101 1 N
bllOOOOlld phu-pz.n-o,kcl.

COROLLARY 4ede3.1 ¢ If one of the N,®(1=1,2) is & "BIB" design
in the construction 4.4.3, then N ls "PBB" design of type A,

COMSTRUCTION duded 3  If N is "PBB® design, then E = N is also
"FBB" design.

K a1
CONSTAUCTION et 3 uznx-(,:)mug-(,”)bom
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“PEE® designs, such that either all nu‘ (10§=1,2) are "FBIB" designs or
only N,, and ¥, are "FBIS" designs and the block sises of My , Ny are
the same. Then TR
S p—
PROOF : Let ), be the mumber of times that any two treatments
from different groups of N, (i=1,2) oscur together im the blocks of the
deaign 8, . Consider

(N, x
(4.4.12) o u .“J (9, x ¥, Ny x By, )

Lul.ﬂ x Nag

RTUTE L YL VW fvyvg
(¢.4.13) =

| M2z Fryry ¥1a%12 * F2a"2a

vhere v,(1=1,3) is the nusber of trestments of the 1*® group of N, Because
of the properties of partislly bslanced block desizn and the Kronecker product
of matrices [ 67_/ (see 2lso chapter 4), ve ean have the dlagonal matrices

of (4.4.13) are of the form as in (4.2.8). The purpose of the condition

that all "14 (4,)=1,2) are "FBIB® designs or By, ®ad N, baving the same blook

sises are "FRIB" designs is to attain constant bloek sizes for B,
COROLIARY dudeSed ¢ Lot Ny = (|11 ) 1s & "FED® design and
12

u,-x,zbz.um l-llaz'ab' is also "PBB® design .

TIPE C DESIGRS 3 We restriot that one of the groups is having
2 associate clisses.
B
CONSTRUCTION €46 s Lot ( u: ) be & "FEB" design such that

]
1
Ny is "BIB® design. Then N '()(sxﬂnl is "PBB" design of type e .
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The proof of this is similar to the proof of the construction 4.4.5.

CONSTRUCTION 4e4e¥ : Lot §j be & t associste "PBIB® design and
x; be & semi - regular group divisible design / 17_/ with the parameters

»
(€.4,14) 'fa ‘.’ l’;o k;l ﬂ:a /\;0 P;l {1505121,2y04,t)
. © »
';' b, Tas k‘. ..l n'i Ax..! >"

respectively, ld' . H.
Lt N = 3_7{,_) and let
n times
S et »
%21 a1 ) 121,200
® l;a ® 83 ’
l' = . further B" = . "
. . J = 1,8,y
N Ba*y
L 3l. - L -

vwo.“hthajwmneWthu’grmpofl;. Lat

. ney ] ..
oMo oa %
"i- N ° « o e and B, = .
| Bat Py o Bpdy | : | Fou® |

Then K s ::. ) 1s "PBB® design with the perameters

(4ede18) v =vpe v » b =n"" L b n'l‘;t " a’rﬁ » k = kiﬁ k; » By ® B,;u
&J = n‘AJ.. Hl..l - ﬁl:‘l (J!'ll = 1,’,-.")] ‘31 2 l.- 1'
5 a8

"23' (.:1)0.. )\zl = l./\;.g Aaa an /\a . n 4’ A= o r’.

where o'-k;/l'
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FROOF 3 We know that Ny is ¢ asscoclate "PEIB" design having the
association scheme as l; and N, is semi-regular group divisible design.

Further - uux; -
(4040 16) Ngly = | NpgMy vhere
| Paa® B
(404017) u“';‘ e ( Big * gy ¢ o0 * h") 'i (Mo'nc'l.)

Since ll; is senieregulur group divisible design, from [ 17] we have that
k; = ¢'n" and every block of it contains ¢* treatments from each group.

Hence I“R; = o'r; ‘n'v: vhich gives

'2!; = o'rj 2v]
CONSTRUGTION 448 1 Lot N; be & t assooiate "PBIB® design with
the paremeters given as in (4.4.14). Let Il; be & 'Ly’ type "FBIB® design

vith the parameters
2
(Ga18) vy= ™, b} £, Kye Bgy = 2(s"=1)y 03y = ("=1)0)g 00090 Py, yq™e =2

&

such that rgky = va Az, ® 8 (rg=3gy). let Hg = :3: where
N3e®

w .0t ® . #* e o @ ® a
Hagqliog = (q "\21) I.n * Aﬂl E'-'n and '21’83 = ()\31 '-)‘z)l.- 0,\’3 Bgege
19J%1,2)00,8" and § £ .
Gy
let N, = <1 | uhere pyy 1s the 1™ rov vestor of N3,

8%y
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rlnllu;' ¢ Be"y ]
' - Bzi Bpi+ ¢ Bug
S =
| BetiPyg ¢ ¢ Betau |

Ny o= (Mg By, . W), Wy = :;: ; them N = (1)
8“times . $
Bae®

is "FBB" design of type "C" with the paraasters
(4e6e19) v=vievy, b= 8", ry= 8", rp=e’ry, k= ky+ kg, nyg= n; s
| * * . * .8
Ag=Ne F’qu ® Pl.ql (3s01=152500pt)y 0y, = 2(8"=1), ngy = (8%-1),
o1i

2g1® 83310 Nga® 80gg P: = "2 and A= o'r] where o'=ki/s".

PROOF : Since N, is "L," type "PSIB" design with the condition
r) k§ = v3)j, = 8°(r} =333), ve have from /547 that kj = o"s" and the musber
of ones in every colusn of 331 (1=1,25¢+,8") 18 s,

]
Hence Ny = e"r{ By,y, + 4180 ve know that N; is ¢ associate “/3IB®
design having the sssocistion scheme as ¥ and it is secn that Hg s "L,"
type "FBIB® design. N is "FEB® desizn with the paremeters given in (4, 4.19).

CONSTRUCTION 4.4.9 1  Let Ny be t associate "PBIB" design with
the parameters as in (4.4.14). Lot Ny be a 2 assoelate cyelic *PSIB" design
with the parameters

(4.4.20) vas ®% T3, k3o myy . M3y s Xy, A22 Pg:u
8
# @ » . 8
Let '1 = '1 H1ooo nx and .3 - *
TR 7 b

vy times
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where By is the 1“ rov vector of l; (m.t....v; )s also let
] S 8 By, ]
: : : 2 N
" = ? ?’ : : :“1 » then i = (ﬂ:) is
| Bvp B¢ v By

"PREY design of type C with the parameters

(404021) vevievy,bmvgb, rymvir], rpeviri, k=ki+ki,

3 ]
ﬂu' ﬂ;v /\u = ';A;j B rhql = Pi.‘l (rtsl = 1,3504,%)) Ny ﬂ;;a ngo® ﬂ;,
¥ ¥ Y x 1 1% .8
Ngy ®Valgy 0 g SV lga e Py g TPy g0 AT T Ky
PROOF 3 Easily we can see that Ny is "FBIB" design having the
sssociation scheme as u; . M, 1is "FBIB" design having the assoelation
uho-oul;. The second one is due to the property of cyclic "PBIB®

'Ill'. = (h’ﬁ’""’;).;

=tk Ny
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CHAPTER 5
PARTIALLY BALANCED DESIGES WITH UNEQUAL
BLOCK SIGES
5.1, INTRODUCTION

This chapter deals with the analysis and constructions of partislly
balanced designs with unegual block simes. Section 5.2 gives the necessary
and sufficient condition for & connected design to be partially balanced and
also the analysias of the design. The anslysis of the design is obtained on
the assumption of equal intra block error variance for the blocks of different
sises. In section 5.3, we give some methods of conatruction of these designs
with the known incomplete Llock designs. In the last ssction we study equi-
replicate binary two associate partially belanced designs with two unequal
block sigses end some of their applications.

5.2 PARTIALLY BALARCED D:SIGNS AND THEIR ANALYSIS
Let there be v trestments and b blocks of ke, kg) eep ky plota
respectively and let the 1'® trostment be replicated ry times (1 = 1,2,..,v).
Following Chakrebarti / 35_/ we have that the normsl equations for estimating
the vector of treatment eonstants T can be written s
(S03.1) g = C°7
where

(8.2.8) g = f - N M(k:1 k;} sep gl‘) g

¢ = M(rlg Tas oo r') - H M(hl. . ev 3 k;l) ”.

The matrix C defined sbove is called C matrix of the design, If the design
is connected, C ous"hm-hmhruhmaumnmmm.
(5.2.3) tm (Cea,Ttg

is & solution of the equation g=¢ 1?0  /[s8/.
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DEFINITION 5,3.,1 ¢ A connected design is said to be partially
balanced, if it satisfies the following conditions

(1) There can be osteblished relations of association between
any two treatments satisfying the [ollowing requirements

(a) Two treatments are either lst, 2nd, . , Or a®® sssooiates

(b) Sach treatment has exactly n, i'! agscolates (1 = 1,2,..,m)

(¢) Given sny two troataents which are i%h ssscoistes, the number
of treatments which are common to the J'P associstes of the first and the kP
nomhhoottholmhp;k and is independent of the pair of trestments

with vhich we start,

Also P;'k = P:‘ ( 1535k = 1,200y w)

{11) All treatments are estimated with the same variance, say “o°" »
and vith @ different covariances, say U,c*, ugc®y eep Wo* . The covarisace
of 4™ and J'0 gstimated trestaments uukc‘ , if they are k' assccistes
(19§ = 158500y vond k = 1,3,.., B)s

Now define emch trestaent to be its own o'P associate and the o'h
associate of no other treatment, We may thus consistently write

(50’0‘) ﬂo = 10 P:t = st ﬂ. » P; = p:ﬂ = d.t (.'t = olll:'.'D.)

Then the relations between the parameters are

n n {
(50’0’) iﬂ: s v ’ kzépjk s n‘

i
ny ij =By P’“ = n, P:j (1,5, = 0y1,2540) ®)

Further we define the asscoiation metrices By, Bys +es By £ 1976



1 2 v
bia Pa v o By
1 v
p b . L] b
(3.2.6) B, = b q i = . ?gi h
L .’ ;
| %y by bys |

A
where bou = 1 if the treatments « and P are 1“ associates

= Q otherwise,

By

[
(1 = 0p1p25¢0p m)s Bvidently 3° = I, « Among the numbers bfo. b«fl' . ,bd.

only one is mt’ l.e. bfi.

utusy-m-um.ruumxonmhmmxm»mumxhu‘

1, if J and g are i‘humhtu. Hence
a
(5.2,7) E l!1 = g"

and also wve can deduce that

b}
(5;3.0) B‘ Bk = 3kB‘ = 1Z_n P}k Bl for all ‘.k = Oplyeey Be
From (5.2,3) we get
(50249) w?)

-1
= [coar,) - A5, 72
av®
Since the design is pertislly balanced, from the definition 5.,2.,1 we bave that

(5.2.10) v(T)

n
- 2
= > B
[Zwsy ]
On equating right hand side of (5.2.9) and (5.2.10), ve get

- ]
(Se2.11) (L e = dy By
i=0

where dk-ukO-f, (k = 0,152,005 M) Honce from the theorem 3.2 of
- &
(736_], we oan deduce that
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(5.3.“) C = Z ﬂia‘
i=0
whare °1. (4 = 60,1500, m) are real numbers obtained irom (5.2.11) and

satisfy the relation 5? ngeq= o » Thus, we have the following theorem.
i=o0

THROREM 5,2.,1 : The necessary and sufficient condition for a
connseted design to be partially belanced is C = > o8, where B," are
i=o

sssocistion matrices defined in (5.2.6), (5.2.7) and (5.2.8).
Hence, for a partially balanced design

~ B
(5.2.13) T m (S dyBg )
o 8

With the little algebre it can be shown that the 41' are the

solutions of the equations

n ] 1
(5.2,14) > S 9, e d = 1«3 & 1=o0
i=o jso & ) v
= -é ir 1'1.‘,.0...
b na
vhere e. = r =5 il and it is seme for all 1 = 1,2,..,v
° 1 3= kj

b n '
T - > -H;u where the treataents 1,1’

e
i j= ;

are ‘th associates ( 1’1' B 1.:’00. ') and i = 1.3.0-. ] )o

1A’
Since the (mel) equations in (5.2.14) are not independent, any = of them
ean be teken with an additional convenient restriction like

sz = o or for some J, diao

Finally we have

98
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(5.2.15) v( %.- :‘V = 2(d,~ dy) s® if the treatments s and t are
1'0 ggs00iates (8ot = 1,2,.e,v and 1 = 1,2,4e,0)

The average variance is given by

a
2
(302.16) Ee [v-10a, 2 mydy Jo

5,3 CONSTRUCTION OF PARTIALLY BALANCED DESIGNS WITH
UNECQUAL BLOCK SIZES

In the previous literature of pertially balanced designs with
unequal block sises, we have limitted number of designs which are confined
to "SUB" arrangements (of. Kishen / 41_/ and Raghavarso / 55_7J). Here we
give some methods of construction with the known incomplete block designs.

CONSTRUCTION 5.8.1 3 Let Njp gy eep Ny De 1 incidence
matrices of = associate partially balanced designs having the same assocle~
tion scheme. Then
(503.1) Hoom (Nylgee Wy

is algo m associste partially balanced desiin with the same associastion scheme.

PROCP Let Gx, C,. sep cl’ ¢ be the C- matrices of md“‘m

31. N'. sey ll and ¥ respectively. lLet
]
(5,3.‘) c’ = a‘usi (J = 1.3’00. 1)

where Bi. are the association matrices of the designs Nyy Ngs ey Ny o
Obviously
(5.8.3) C = 010 Ca# oo ¢ Cl
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(5.8.3,) C = é ‘Z:o o348
o 1
= E (12;;1 egq) By
1
Let ‘Z':lou = o, . Hemce
L)
(5.3.4) C = L2“_‘::,&;:‘

and by the theorem 5.,2,1, § is partially balanced design with the assoclia~
tion scheme same as ll: (J = 1,8,0ep 1)

COROLLARY 5,3.1.1 3 Let Ny, Ny, s, §y De the incidence matrices
of 1 , m- assoclate "FPBIB" designs having the same association scheme

Let uJ be having the pareameters

(5.3.5} 1) b:. l'" .‘. )\ut )\a‘ cey /\.J' ni’ ‘g' AR} ..l «’:" »
(‘ = 1,200 1 and i,u,w = §,2,.4, ®)

Then ¥ is binary equi-replicate m associate partislly bulanced design
having 1 differeant block sises with the perameters

1 3
(5,3.6) Vb= > Dy P= S ry Kyy Kap ees Ky 3 Ngs Ags ees Ay b
’ = jud 1 1 g n

b
01. Bop eey L | « ’:”» (l.ﬂ.' = 1,8,s¢p B) where Ai = JZ.,‘AM (4= 1,800}

be the number of times two trestments, which sre i'l associstes, ocour
together in the blocks.
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COROLLAEY 5,3.1.2 : let ¥y be & balanced design end llg be &
partially belanced where the number of treatments in both the designs is
same. Then N =(NyN3) is a partially balanced design whose associstion scheme
is senme as N,

The following are 3 examples based on the corollary 5.3,1.2
where the designs are non-equi-replicated partially balanced designs.

(1) - "
11111111000000110
11000000111100011

N = 001100001111102001
60001100111111000
000000112111121011200

In the above example 13 blocks are having sizes 2 each and the
remaining 4 blocks have sizes 4 each. The first treatment is replicated
10 times and the remmining treatmeats are replicated 8 times each.

(14) ,

F 2220000112

¥ = 100110101

010111010

L 001111100
(414) - -
2222000010110
1000011101011
¥ o= 0100101110101
0010110111010
00011110011014

Examples (1i) and (i11) are ternmary partially balanced designs.
In (11), the Iirst 5 blocks have sises, 3 each and the remaining ¢ blocks
have 2 plots sach. The first treatment is replicated 8 times and for the
remaining treatments, esch is replicated 5 times, (o (1i1) the design hes
equal block sizes. The {irst treatment is replicated 11 times and the rest

are having replications, 7 each.
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When the design has constant block sises (k), we know that
b

¢, = - Elnij/k (1= 1,2p00p V)
b
= kry- > o}
1 j= 1

Further, when the design is binary

1'1 (l'l)

¢, = mpea i.0, ry is constant.

Thus, in a binary partially balsnced design with equal block sises,
all treatments are replicated with the same number of times .

CONSTRUCTION 5.,3.2 3+ The Kronecker product of two equi-replicate
partially balanced designs N, and Ny ( ¥ = Hyx Nz) with 8 and ¢ assocolate
clagses 1s an equi-replicate partially balanced design with atmost tesest
assoclate classes.

(This construction is similar to the construetion 4-2.0f [/ 677
The proof of this is given with the help of association matrices. For the
properties of Kronecker product of matrices, see the section of the 1st chapter)

PROOF s+ Wy and Ny are two equi-replicate partially balanced
designs, Lst their paramsters be

i

¢ §

(‘o,o') '1. 51. 1'1. Iltil » hpjlkl (11. 11. kl = 1.3...’.)
iz

Vae B2s T2p 25, 0 235k, (g0 Jgo kg = 1s25e0,t)

Let Bul(ll = 0plyeepBly Baig (‘Q' 0.1.’....‘) be the corresponding

association matrices, Let
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Let Bn "»x L 0'1’...!). 5’1‘ (‘.a = o.l.a,...t) be the

corresponding uaocuuon matrices, lLet

(5.8.8)

c, = i"";x By, » i %31, Bag,

be the respective C - matrices of N, and N, . Let C be the C -~ matrix of

N and it is given by

(5.3.9)

(5.3.10)

(5.9.11)

where
(5.8.12)

s t
= 7l E.o'nfu,_) X Iy ¢ Fily x ( E_o“u,“u,’
3 t
- ( E'ociilﬁul) x ( Enﬂgiaazia)

= Z - 0y, By, Ehyy) v 7y > %21, (10 * Bay,)

ig=0
s t
8 t
¢ = > > ‘“10 ig) 3(110 iz)
1,0 %0

3(11. i') = Bu1 x 531’ (11 = 0pls0038) 1,‘9.1... ot)

e(oy0) = T2 %0’ "1 %0 " %10%0

0(11p°) = (Pg“ 330) Oul “é = 1,250098)



elo,dy) =
°(110“) =
Further we have
(5. ,o ”) B (O'Q) =

s t
11-0 1,-0 iz

(5.3,14) B(1,,1,)8(J4,85) =
-
=

(5.3,15) B(1353308(J40d3) =

(5.3.28) B(1,01,)8(J3sdq) =

Also from (5.3.14)
(5.3.17) B(1;,12)8(J10dg) =

=
Let ; )
1
(5.3.18) ’“xois)(h-.iz‘)'
Hence

(5.3.19) B(15,13)8(J10dp) =

(rg= ey,) ®o4, (1, = 1,2,..,t)

- 0111 °3|.z (11.1.3”-..3 1,‘1.’.0-.*)
!'1: I"2 = I, where v = vyvp
fov

P11, Py, * Poy, Pay,
Byy, Pag, ¥ Pag, Payy

B(Jgedgle Bliy, 43)

S apt o,
(fmo BPaygy Bayy )% (2 2aPuy, Pany)

0 : h * ‘2 (Bqy x Boy )
]%-o E:-oﬁlp*ﬂl 3"3‘2 ux ’1:

p‘x ) ’p::‘z

14,4,

[ ¢

(13015

B(1y515)
i,=0 1%-» P(13010)U30d2) s .

104



Thus, we get N as equie-replicate partially balanced design with
atnost setest associete classes having the parameters

(5.3.20) v = vyvgy b = biby, T = ryry, nligip) = B, By, where

(14545) 110030k = 0plp2peeyn

Bio = =13 P
10 = o (330d3)(kqskg) ig0dgakig = 0plsdpec,t
and 8(11,1')' are the associastion matrices of the scheme .

5.4 BQUI-REFLICATE BINARY TWO ASSOCIATE PARTIALLY
BALANCED DEIIGHNS WITH TWO UNEQUAL BLOCK SIZES.

lntlludl’bomzmuhu'wm'duimhﬂhgthuu

association scheme, Let the perameters of these designs be
(5.4.1) ¥y bl' rl' kx. )\ui xgli 510 Ba» Pil

Vs Bys Foo Kg» Nao» Agge By» Bgo Ph

respectively, Then by the corollary 5.3.1.1 we have
(5.4.2) § = (Ny Ng)

105

is an equi-replicate binary two associste partially balanced with two unequal

block sises having the parameters
(50‘0’) Vs b= bl’ b’. r®Rryerg kl" .'. )\1- '\11.’)12' )\,O&IQA:,

1
lllo l'. Pn .

Table Ho., S.4.1 gives & list of these designs which can be cons-

tructed wvith the help of 2 assoclate "PHEIB" design tables of Bose, Shrikhande

and Clatworthy / 34_/.
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In agronomic experiments it is sometimes not agriculturally feasible
to layout blocks of equal sizes, It was, therefore, Kishen / 41_/ introduced
sysmetrically unequal block arrangements which share the property of complete
balance (in the sense of constant \ i,e. any two treatments together oscur A
times in the blocks), but which involve blocks of different sizes. The
analysis of these designs is obtained on the assumption of equal intrablock
error varisnce or blocks of different sises. This assumption may be reasons-
ble when the block sizes do not differ much. We hesitate to use these designs
when the block siszes vary too much. In such situations we may prefer pertially
balanced designs, whose block sizes are not varying such, to "SUB" arrangements,
howsver "SUB® arrangements give better efficiency. For example the design ,29

of the table Ko, 5.4.1 with the parameters

v=15, b = 33, r = lo, k" 10, ky= 4, ny= 4y np= 10, = 3, P:x" 3 has the

efficiency 0.84 and the design />S5of the table S.4.1 with the parameters
VUIS,UISS. "10.‘1-5. ka-‘. nliﬂ, %'u,xlgﬂp)‘a'ay ph‘ll

has the efficiency 0.83, Here we prefer the second design to the first for
the analysis purpose. DMoreover, "SUB" arrangements are particular cases of
partially balsnced designs with unequal block sizes [ 55].

Also we can construct pairwise balanced (which are also partially
balanced under section 5.4) designs and balanced designs with the help of
"PRIS" designs. An arrangement v objects (called treatments) in b sets (ecalled
blocks) will be defined a pairwise balanced design of index Nand of type
(¥) kyp oo » ky)y 4f onch block conteins either kyy kgeees Ky treataents
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which are all distinct and every pair of distinct treatments ocours in

blocks of the design (of. Bose and Shrikhande / 23_/). It is obvious that

B defined in (3.4.2) is also pairwise balanced if X ;= Aa(=)) in (5.4.3) 5
such & pairwvise balancoed design is "SUE® errangement if one of the 231' (1=1,2)
is simple "PBIB" design (ef./ 2/_/ and ef. Raghaverso / 55_/. Let us denote
¥ which is partially belanced and pairwise balanced as "FBFE" design.

COHSTRUCTION Se4el Let El' Ky be 2-agsociate "FOIB" designs
having the same association scheme with the parameters given in (5.4.1). Let

(S.4e4) M = -

A3z = M2 -

vhere 1 and m are positive integers. Then

(5045) N om (N Hp)
where l; = (Bl lr. ll) ’ '; B (nz sgoo K‘)
m timeas 1l times

is & "PBFB" design of index )\ ( = mAj, ¢ vn) and of type (v.kv k)

PROOF :  Bvidently we know that K, Ny are 2-associste "PBIB"
designs with the same association scheme. Then N is equi-replicate binary
partially belanced design with two unequal block sizes having the parameters.

(5.‘.6) 'pb.ﬂt‘%"-'1’ha’.1,kz'x1.%01)\1’.

Ag = Mgy * Lggs Bys Bz Bl

By (5.44) we bave that A, = )y « lence i is "FBFB" design. (when we want
that r to be small, then we take 1 and m in the comstruction in such a way
that they are prime to each other).



COROLLARY S.4.1.1 @ mauszw-lumuumm-w
with index ) and of the type (v, Kqo kg) is again "FBFB® design with the
index X =b - 2r ¢ and of the type (v, veky, v-kp) o

DEFINITION 5.4.1 : The partially balanced design (F) defined
in (5.4.2) is regular if NN is non-singular.

LI 5.6.1 ¢ If A is non=singulsr matrix of order v such that
(1) AE,, =0E,, (11) u’-su =di , where ¢ and d are scelars, then

. . ¢

The proof is obvions and is omitted.

THEOREM 5.4.1 : In & regular binary equiereplicate pertially
balanced design with different block sizes, b>v .,

FROOF : e know that in & regular partially balsnced design
defined in corollary 5.3.1.1 with the parameters given (5.3.6) with b=,

BE,, = ¥y,

]
| B
RN'E,, = (r ¢ = ni)\i) Eﬂ.

i=]
Hence by the above lomma we get
e
¥ &'1 = r E'l

which shows that all the biock sises are equsl. Thue we have, in & regular
binary equiereplicate partially balanced design with different block sises,

b>v.
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COROLLARY 5.4s1.1 ¢ In a "FBFB" design with different block sises

b>ove

# See reference ( 9_/



109

(5.4). BALANCED DESIGES WITH TWO UNEQUAL BLOCK
SIZE8

Let the Cematrix of the design N defined in (5.4.2) be

(5e407) C = egl, e By +ecyBy
wvhere 2

ry(kg=1) M2 X dag 22
(5.4.8) ¢, = E&. —-—EZ-—" » o= - ( T . ’Eh Gy= "('it' ‘g;)

For the design N to be balanced, we must have
A A A A22
* = »
tx ‘g ex kg

M1 " A
(na9) e g = A

CONSTRUCTION 5.4e2 ¢ Lot Nyp Ha be two 2-associate "FBIB" designs
having the same agsociation scheme with the paremeters given in (5e4e1)e Lot

1.2 M 4
(5.4.10) 5 ; and ey -

where 1 and m, p and q are positive integers. Then

(5.4011) Nom (R Np)
where Ny = (Ny Fy oo Ny) s N = (B Moo Fy)
pa times ql times

is an equi~replicate binary balanced design.

PROOF ¢ It is evident that u; ’ l(; are 2-associate "PBIB® designs
baving the same associstion scheme with the parameters
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(&‘-ﬂ) '.- vy ';. pa bl’ r;a p.l'x. k;' kl. )\;1 = mku P
gy = #8 hggs By = By, B = ngy PR} = Y,
v"s v, b= ql by, rp= ql 7y, kg= kg» Miz= al Myz o

Az = a1 Aggs 8] = B30 B3 = 0y BYy = By,
Consequently

AMihay o P Oup-hg) o kg
Az - M al (Agg = Na) q 2 .k.i

(5.4.13)

Hence N is equi-replicate balanced deaign.

(when we want the number of replications to be smsll, then we teke

Ny = (g By)y By = (pllge. By)
u times w times

where o= -ﬁ-. u and v are positive integers prime to each other,)

COROLLARY 5.442.1 : The design £~ §, where N 1s defined in
(5¢4,11), is never a balanced design unless k, = k; 1in which case i is &
"BIB® design.
“LoHEOREM 5,403 1+ When b = v, thers will not exist an equi-replicate
binary balanced design with different block sizes,

PROOF : When the connected design is balanced, Cematrix of the
design can be written as
r=b -
(5.4.14) ¢ = -3 (1, - -'L By’

O‘Sumnforonu[m_?
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(5.:4015)  Lee. N dtagliyy Kp'y ooy kgt) B = e [ver)o(reuis, ]

Since N is none-singular, we have that

(50426)  (5')7" atagly, kgpeesly) 80 = 2 [1 - ﬁ; i, J
Hence

1 1o
(5.4017)  Diaglkyy kgyess kp) = = [u'n- o= Y A

From (5,4.17) we got

Vel rel 3
(5.‘01‘) k: e — kJ" ("l‘)l‘ kj (Jtl.a....ﬂ
(504019) ° = Ebyy- re kaky (adshedeensv)

i#
Equations (5.4.18) and (5.4.19) give that N is "SIB" design. lence we have
that in an equi-replicate binary balanced design with different block sizes
b >V
We give some equi-replicate (r <15) binary balanced designs with
2 different block sises using 2-essociate "PBIB" design tables / 34_/ in
table Hos 5.4.2.

IABLE 5,41
(r <10)

S.Fo, Refereance v b r ky k, SRS | ng oy

1 8, * Siy 6 11 6 4 3 2 3 1 4 0
2 8y + SRy 6 15 & 4 3 2 4 1 & 0
3 84 ¢ SRhy o 19 10 4 3 3 -] 1 % 0
- 8y ¢ By 6 $ 5 4 3 ¢ 2 1 & 0
5 Sy + SRy 6 10 6 4 3 4 3 1 4 0
6 8q + SRy ¢ 18 10 ¢ 3 4 5 1 & 0O
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s

%]

L % 5

v

Reference

84 No.

82 ¢ K1

10

18

K2 ¢ RS

13

88 ¢ SR1

by

58 ¢ SR2

10

15

83 ¢+ R1

i1

10

54 « BR1

3R1+ Ré

13

10

86 o 87

14

14

86 ¢ 59

15

16

37 « 58

16

87 « SK7

17

14

86 « B3 8

18

16

87 o SR8

19

20 10

59 « SR7

20

16

S9 ¢ kS

21

16

3R7+ RS

22

20

SR8+ RS

21

812+ SR13

24

512+ R8

S12¢ RY

26
27

21
15

512+ R10
813+« k8

21

513« B9

18

514+ SH1Z

30

15

513+ SR12

31
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g B By Ph

A

ky

v

S.No0, Reference

® 10

316+ RS

18

SR13+3R14
ER12+R8

18 10

SR14+18 9

24

*i9

10

181 +133 9

»
29
0
41
4

21

151 «I36
131 <138
181 «I310

15

10

24

133 +1S8
156 <158
186 +1510
138 <1810
817 +818

43

21

44

15

15

10

10

46
47

10

20

817 «819

518 819 10 10

48

49

10

517 +5R16
8518 +5R16

518 +8R17

13

10
10

80

10

17

1

16 10

10

519 «SR16

T1 oT6 10 15

T1 17

25
17

10

10

10

T1 »T10

T

10

+T15

36
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AN M M Pil

ke

ky

B¢ NOo Reference

15

10

TL < Tié

™ » T19

13

10

28

20

10

*

10

10

+» T

60

16

10

« 79

81

10

10

T + Tié

i3

TR +T15 10

20 10

10

T™ + Tié

20 10

10

™ +T18

2%

™ + 76 10

66

21

+ 19

20

10

TS +» T15

10

T6 + T10

69

Té + T15 10 15

70
71

26

10

T6 < T16

20 10

10

Té + T19

72

10

+

73

30 10

10

T « Ti2

74

10

™ +T15

75

16

10

79 o« T12

76

9 + Ti4 10 26

77

10

T «T15

v8

T9 + T16 10 16
9 + T18
™

79

10

80

10 16 10

+« T19

81
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o
=

S8.Ho. Reference v b r ky &y ’\L Mg 8, by
a2 T10 « T12 10 22 10 5 ) 3 ® 6 3 3
83 TIO« TS5 10 17 9 $ 6 4 5 ) 3 3
84 Ti2 + T4 10 30 10 “ 3 2 @ ) 3 3
85 Ti2 « T15 10 15 7 4 ® 3 8 6 3 3
86 Ti2 » T16 10 20 10 @ 6 ] & 6 3 3
o TR «TA8 10 20 10 o 6 “ 6 6 3 3
88 Ti4 + TA5 10 25 9 3 é 3 3 6 3 8
89 T15 « T19 10 15 10 6 7 7 5 6 3 3
90 523 + 8¢ 12 10 6 6 9 é 3 2 9 1
) 1 524 « 829 12 16 ] ] 6 9 e 2 v i
92 823 « 831 12 14 9 é 9 ) S 2 9 i
93 526 + 827 12 3 10 W 6 10 3 i 10 7]
24 526 + 8538 12 21 10 4 10 10 $ 1 10 0
25 827 « 828 12 16 10 é 10 10 é i 10 0
96 SR20« 5H26 12 18 L W 8 3 ] 1 10 0
o7 SR81+5R25 12 28 10 3 6 2 4 3 8 2
98 R15 « R17 12 36 10 “ 3 4 2 i 10 0
99 322 «SR25 12 15 8 8 6 4 4 3 8 2
100 823 +SK37 12 8% 10 8 3 2 3 3 8 2
101 822 +R18 12 31 9 8 3 @ 2 3 8 2
102 823 «3R20 12 15 é é e 3 2 1 W 0
108 823 «5R26 12 15 9 6 8 6 5 i 10 0
104 835 +5R35 12 18 10 8 é 6 8 3 8 2
108 826 +SR22 12 a3 9 3 é 5 8 i1 10 0
106 526 + R1é 12 85 10 L 3 - 2 i 10 0
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e b % M

kB XN

ky

Reference

3. No.

10

12
12
12

528 <+8R22 12

837 +5R82

107

10

10

30

537 « R1é

108

10
10

18

109

838 « R15

10

14

110

10
10
10

12 20

i11 SK28+ R1S
112 SR2%+ R16 12

113

24 10

13

14

SH24e R15

14

540 » 541

114

540 « 542 4

115

10

28 10

14

541 « 542

116

10

4

K24 + R25

117

19

14

540 + 3R33

118

119

120

21
35

14

540 » R24

14

840 ¢ R25

10

19

841 +5R33 ié

121

21
35

541 « R3¢ 4

122

123

10

14

541 ¢« R25

10

542 o5R32 14

124

14

5R32+ R24

125

10

14
1%

SR33« R24

126

10

10

20

547 « 849

137

45 10

15

R27 « R28

i38

0

18 33 10 10

846 ¢ R31
347 «SR37

129

10

15

130

as

547 « R27 15

131
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T T W T S T

v

Se o, Refl erence

40 10

547 » R28 15
8548 +BR36

132

133

10

10

i
25

15

10

15

549 « R37
SR37+ R2T 15

134

10

185

T20 + T23 15

136
137

10

15

T20 ¢« T24

T20 « T25 15

138

10 10

T20 « T26 15

139

T20 « T29 15

140

T20 « T22 15 22

141

T21 « Ta3 15

142

T21 + T35 15

143

T21 « T28 15 27

144

16

15

T22 « 125

145

146 T22 + T27 15 20 10

147
148

25

15

T22 « T28

€0 10

15

T22 « T29

T28 « T28 15

149

16 10 10

TS5 » T27 15

150

10

10

T35 » T29 15

151

15
16

T27 « T28

152

554 «5R40

153

554 « R35 16

154

30

854 « R36 16

155

28 10

585 +SRe0 16

156



118

S.No. FReference v b r ky kg e ny ny p}:
1357 5He0+ R85 16 @8 10 4 3 0 2 3 2 2
158 560 + 361 18 as 10 ] 9 10 8 2 15 i
159 568 +8R52 20 a1 8 10 4 3 2 4 13 3
160 569 «5R51 20 26 8 8 ] ¢ 2 3 16 2
161 877 « 878 21 28 9 9 -] 9 3 2 18 1
162 584 + RS 24 39 10 8 5 5 2 3 20 2
163 887 «SR64 25 35 9 10 5 4 2 “ 20 3
164 596 «8RT0 30 40 10 10 6 ] 2 é 25 3
TABLE 5.4,3
SeKos Reference v b r ky kg ]
1 5%2 + S5K3 & 18 8 2 3 75
2 H®4 + 52 [ 18 8 2 4 75
3 SRS + 54 o 24 14 3 = «86
4 847 <« SR7 8 12 5 2 L «80
5 R5 « 59 8 16 9 3 é <89
é 3%9 « SR10 8 24 10 2 4 <80
7 5%9 + R6 8 a2 11 2 3 73
8 SRT + 811 8 20 13 L 6 92
9 Ré + 58 8 36 135 3 é «80
10 SR13+ 313 9 15 7 8 6 «86
i1 R11 + 513 9 27 11 8 é .82
12 S*1248R"13 ? 21 i3 8 é 92




SeNo. Refarence v b r kl &, @
13 189 «+ 1S3 9 30 14 3 ] 86
i4 8%21+SR19 10 30 12 2 5 «83
15 Tié « Ti6 10 30 12 3 é «83
16 S*18eii%14 10 25 13 2 ] 89
17 SR28+35H24 12 18 4 2 é <86
18 R17 +5E22 12 32 10 8 é «80
19 R22 « 323 12 46 i3 3 é 77
20 K28 «+ 525 12 36 ié 4 -] « 86
21 £24 « 541 14 21 8 + 8 «88
23 R25 + 540 14 35 ] 3 6 77
23 R28 + 549 15 L) 12 3 9 .83
24 SReVs 554 i6 22 7 4 8 « 86
25 R39 » 854 16 42 12 4 8 -83
26 S48+ 855 16 a“ 14 % 8 « 86
a7 SR46+ 561 18 28 b § § 6 9 91
28 R41 +SR47 18 66 15 3 ® «80

In the table e is the efficiency of the design and N° implies
the complement of M.

119
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CHAPTER 6
DESIGNS FOR TWO=WAY ELIMINATION OF HETEROGEREITY
6.1 INTRODUCTION

Some times in a design the position within the block is importent
as a source of variation, and the experiment gains in efficlency by eliminae
ting the positional effect. The classical example is due to Youden in his
studies on the tobaco mossic virus., Different types of designs for two-way
elimination of heterogeneity, i.e. latin squares, Youden squares and other
extended designs, have been studied, For these designs, the row-column
incidence matrices are complete; i.e. information is available in all the
rovecolumn cells, Pottoff / 49_/ studied some designs where the row-column
incidence matrices are incomplete. In this chapter we shall study some
designs which possess the properties of orthogonality and balancing. The
row-coluan, treatment-row and trestment-coluamn incidence matrices of our
designs need not be complete, In section 6.2 we give the preliminaries
and the analysis of general two-wey designe In section 6.3, using the con-
cepts of balancing and orthogonality we give the classification of two-way
designs. Sceotion 4 presents the study of some of these classes in detail
where the incidence matrices (i.e. row~golumn, treatment-row and treatmente
column incidence matrices) obtained are binary designs. Seotion 8.5 deals
vith some constructions for some particular classes. A measure ol non-
orthogonelity is given in section 6.6 Finally at the end of the chapter,
an appendix of 60 designs, which give incomple row=-coluamn incidence matrices,

is added,
6.2 PRELIMINARIES AND THE ANALYSIS OF TWO-WAY DESIGH

Consider & two-way design (i.e. & design for two-way elemination
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of heterogeneity ) with u rows and w columas. Let thers be v treatments;
the 40 treatment being replicsted ry times. Let 1, demote the musber of
times the 1% trestment occurs in the §*P row, nyy denote the musber of
times 1*® trestment ocours in the §'*P column and nyjtbe the pusber of plote
in the (J,J9%0 coll. 4 = 1,2500s¥5 J = L,3500pu5 §' = 153500y wo Lot

(6.2.1) L o= (1440, M = ((mgqgedp W -((n“'» and
v
Py Rl LI PR .-
i=1 = ] =y =n
R 1 :l“

We esll L,M,N as treatmenterwo, treataentecolumn,row-column iucidence matrices
respectively, Let R = (Ryy Bgy ooy Byls Q = §C1r Cgo eep Oy} » 2 =
{710 Tgs vos Ty | donote the colusn vestors of row totals, coluan totels,
treatment totuls, Let G =§' B, =C'E,, = I'E, be the grand total. lLet
the expsctation of the yleld of the plot in the JU0 row and §'®P columa heving
treatment i be pedy +fjie Ty where Ay ® the effest of 348 row, fyr = the
effoct of 't golumn and Ty = the effect of i'® treatment, Let £, p,

o ’?1' respeetively., The normal equa=

be the columm veetors of o; ¥, pyt

tions are
pare - -
o al, By ding(sy,890008,)
B dill(lp'zo-- ,‘u)‘ul d“‘('xl"." ..ﬁ)
(6.1.2} = ’ .
e diag(ty,taseeatyii,q ]
L I ) thl(fpfgo"otv)xyl L
E, diag(t a1 & T
1w 1 ftg.o . .t") Exvd“‘(rl”ﬂ'“ .l") M
N L' &
dlag(tystape. vyl M P
M dh‘(l’l‘.rz.oo.l") '_l_l_: i
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On premultiplying (6.2.3) by ( 0y = L diag(siiezsscosg) Oy, 1,/
on the both the sides we get

(602.3) B = FR e D7
where Bi = I - Ldiaglss sr «e» 850) &
(6e2.4) F = M - Ldlag(s]r 835 eep 8g2) K

D1 = dhg(rl. 3‘3. eep l") - L du‘(l;} .;} es p .;1) L'

and again on premltiplying (6.2.2) by [0, - N'diag(s]s sgreer 830) I, Oy 7
on both the sides we get

(642.5) Bp = D o¥'T
whers Bg = & - 1 dalegls]} s3hees 53') B
(602.6) Dy = (dlag(ty, tgeees t,) = H'disg(e]} s3hecs s51) B

let D] be the pueudo iaverse of D L.e. Dyilgly = Dg end DyDaly = Dy

DEFINITION 6.8.1 : A design is said to be singly connected if
all the elementary column or row (treatment or row; treatmeat or coluan)
contrasts are estimesble when treatment (column; row) effects are neglected.

DEFINITION 6.2.2 1 A singly connected design is ssid to be doubly
connected if all the elementary treatment (column; row) contrasts ers estimeble.
Wo assume here that the design is singly connected in the column-

rov sense., Hence the ramk of Up= wel. Alaso, we have
Al N
DyEgy™ Opge DaByy®™ Oyps FByy= Oype F'Egy™ Oupp Thyg™ 0 £E»= 0 o

From (6.2.3) and (6.2,5) we got that
(8.2.7) B -FDp gy = (D =FOF') T
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Let
(603.8) g = gy - Dk
A - - PD;P' Hence
(6.249) g = AT
Evidently
(6.2.10) gl@= AT ,
v ) = aF (By means expectation)

where & is the error variance. Qi. (L = 1,2,00yv) are adjusted treatment
yields. A is similar to C-matrix of the treatment block design. Whea

B = L., ¢ ve have

LR MO L G

(602.11) g = I - == - e Eug
' L L
A = du‘(rl’rz....r ). %- M' -;n—znu.

The following table 6.3.1 represeis the enalysis of variance table
for a twoeway design. Let ve~l be the rank of A,

IABLE 6.3.1
Source Degrees of Sum of Squares Sum of Squares Degrees OSource
freedon of
freedon
Rows (ignoring u .2 2 u .2 2 Rows(iznoring
columns and U=l > 31 - 2— - ’.11 - %— u~l columns and
treatments) J=1 8§ J=1 8 treatments)
Columns(eli~- " e
ninating rows  wel Py Dy By wel Coluans(eli-
and ignoring ainating rows
treatments) and treatments)
Treatments(eli- v i - Treatments (eli-
ainating rows  w-l > TyQ By Dy By v-1 minating rows
and columns) i=1 and ignoring
columns )
Ervor Dl * - Iyewlhewte
ved ved Error
2
Total o=l sy*- & Syt- g'; nel  Total

+ Obtained by subtraction. We assume that the rank of D= vl .
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6.3 CLASSIFICATION OF TWO-WAY DESIGHS
Orthogonality and balancing are the desirable properties, because
they increase efficiency and also simplily the analysis.

DEFINITION 6.3.1 : 4 design for obtaining information on several
sets of perameters is said to be an orthogonal deaign if the estimates of
estimeble parameters of the different groups are uncorrelated.

In the design for two-way elimination of heterogeneity we have 3
sets of parsmeteres in which we are interested. They are the row sifects,

column effects and treatment effects,

DEFINITION 6.3.2 :+ A doubly connected design is said to be balanced
if all the elementary treatment (row; column) contrasts are estimable with
the same variance.

f.ec A osn be written as O(I,~ éln) where 8 is the nonesero
characteriatic root of A with the multiylicity vel,

From the normal equations (6.2.2), we get the cstimated treatment
effects, estimated column effects &nd the estimated row effects and they are
given by (we assume here the design is doubly connected in treataent, row

and column senses)

A

(6.3.1) Q@ = 43T s Qg T S84
(603.2) & = Ng P v Qs = A
(63,3 N
where - » .,
= By -Fighy s Ly = Dy -0
(6.3.4) R O T

Eq - H'D3 Bs s Ly = Dy - B'D§
® pg-HDyR', [\ = Dy- il Dg'

reEer
)
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(6e3.4) [Q, = g~ E'Dsps » Ay = Dg - E'Dgk
I
and
'z, = 1 - Hatagtigte., W ¢
b= & - vasmgCrhgh.oagh ¢
B, = & - L'atgtrihrgte., fSh 1
Bg = & - M'dtag(xTlyrgtsee, 530 1
s | ® " dlag(ry,rgeeesry) = ¥ atagltil,tzh,e., 1) o
Dy = diag(syssgseerny) =~ ¥ dm(t;".t;l.... t;l) '

Ds = dw(';"ﬂ""'u) - L.dl“(f.l.f.lpoo. l‘;") L
Dy = uu(m,.t,.-..t.) - M dmz(q oT330ees 232 M
H E L - Ndh‘(t1 ." prey tv ) '

E = B - L'M(rzlprglpo.. l" ) M

We can sssily show that §, = Qg » g =G5 end Qg = G slso
0, = A‘, A'-Asm A.-A‘s Q1 » §2 » §3 ere the columa vectors
of adjusted treatment yields, adjusted column ylelds, adjusted row ylelds
respectively,

In order that the adjusted treatment yields ere orthogonal to the
adjusted column ylelds, ve must have  Expectation ofi(gy Gg) = Oy, end
(6.3.6) B () = B (B = F Ogy)(Eg= PyDyF)

= 2 (g3 B3) - F DaBy(PaP3) = Ex(BaR1) DyF #
7 03 B (Egky) Oy
B, (1-1 dm";l.’;l.". -;1)5_7

[I.' 3' dul(';"'l;lnu ';1"‘.7
2

B (£

= Dlo-
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Similarly we have
5B Bo) = D3

Hence El(r'l Eﬂll = §o?

(603.7) 5,09 G) =-0y 0 F o
When (‘0306} holds, we have A1 9; ¥ = OW .0,
D;F = ["13'1"23'1'°' "UEVIJ

where 8y 89y oo » @, Gre real numbers. This equation gives that

(6.3.8) F = 0, L. N = th((n';l.o;i.... |;1} K

Thus, inorder that the adjusted treatasnt ylelds may be orthogonal to the
adjusted column yields, the design should satisfy the condition (6.3.8). In
& similar way we cen show that the adjusted treatment ylelds may be orthogonal

to the adjusted row ylelds if

(603.9) L = Natag(til,egl,.., 1) '
and the adjusted row ylelds are orthogonal to the adjusted column ylelds 1if
(6.3.10) o= L'dm(rzl.r;l.... r""‘) M

If the adjusted treatment yields are orthogonal to both the adjusted
rov ylelds and adjusted column yields, we get from the equations (6.3.8) and

(6+3.9) that

M dh‘(t;lgtglooo. ‘:1) Dz = Ow
(643.11) ot 1 oy
L dh‘(.i 283 seey 8, ] D‘ - ow

and (6.3.11) gives

' '
(6.3.12) :tyT is constant for all J'(J ‘= 1,25009w) Leo. % = 1(“’)
J J

1l 1l
-.ﬂ- is constaat for all J(j=1,2,..,u) ise -%1 = ol(aﬂ
J J

(6.3.12) can be written as



v
b = :& = :g |, . = ."" = f;l m’-J' = ri
(603.13) . 5 Y LY n
fa
1 wu
e = i& = ..’:3 s, . = }-1.! - ﬂ:ﬂ = -:%
. " n W F% ®

Thus from (6.3.13) we get
r.t,
(6.3.26) M = ((mgeu= (Soby L=l = &

ti.

i
13 1,%,009v § = 1,2,005u5 §'= 1,3,00pW
Similary if the adjusted column ylelds are orthogonal to both the
adjusted treatment ylelds and the adjusted row ylelds, then

ryba L
(6.3.15) M o= «-5;‘-» » N = ((:4|4-))

and if the adjusted row yields are orthogonal to both the adjusted treatment
yields end adjusted column ylelds, thea

r.e 8,bp
(6.3.16) L = ((-%-1» » N = ((-4;1-»

Finally, i the adjusted treatment ylelds, the adjusted column
yields and the adjusted row ylelds cre mutually orthogonal, then

t t,
(68.17) L = ((:%:1» ’ M= ((:-’=;1'-3 » N = l:'l;l-)

Fow we classify the design on the basis of the following two
properties (1) orthogonality or none-orthogonality (ii) balancing or
non~balaneing, Let 'B', 'NB', '0', 'NO' denote for balancing, non-
balancing, orthogonality, non-orthogonality respectively. Let

'T'cgu’mgo

P "R’ ,c'.a".m'

122
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be a triangle whose edges represent treatments ('T'), rows ('i') and

columns ('C') with the second propsrty mentioned above, The sides of the

triangle represent the first property between ('T', 'R') ; ('R*, 'C'jand ('C','T'),
Hence we get 64 classes of designs. Out of them we study 33 classes where

treatments 'T' takes the property 'B'. See the following 32 classes.
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6.4 STUDY OF THE CLASSES WHERE TREATMENTS TAKES THE
PROPERTY, BALANCING

In this section we study the designs, where the treatments are
attributed with the property balancing. We restrict our attention to the
designs for which (1) ryg=r, tym ¢t , sy= 8 (1 = 1,2,.09¥ $'= 1,2,00,%

i = 1,2,00,u) (11) the incidence matrices L, M and N are binary.

end ‘T’

CLASSES 1-4 ¢ The sides of the triangle TRC, i.e. 'TR','RC' take
the property '0'. Also n = vr = us = wt., Hence by (6,3,17), ve have

L o= iy ® & B
(6eda1) Moo= EE, o= SR,
voe Ryt TR

Since L, M, N arebinary, ve get v usw=pr=g=t i,e two-way
deaign is latin square for the classes 1-4.

CLASSES 5«8 3§ The sides 'TR', 'IC' take the property '0', By
(6e3.14) we get
(6.4.2) L = Ey, M= £  “s=tsvadr=uswv,

CLASS 5 s The edges 'T','R','C' take 'B', Then we sust have

(60403) By, = Dy =FOpF' = 8y(L- i)
(604.4) Dg = D =FDF = (L~ g5 )
(6.4.5) Dg = Dy =H'DgH = ey(L~ 48

vhere ;) 8, 6y are the non-sero characteristic roots of 4,, O, 4y respectively,
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From the property of orthogonality we have that ¥ =0, = H . Hence

(6.4.6) Ay = Dy = u(I~ -%-E,v) i.e. 91“
(6.4.7) Dg = Dy = vln--é-u-li'
(604.8) Dy = Dg = vI = 'y

Honce £rom (6eded)y (6s4.5) and (6.4.7), (6.,4.8) we have

a’-a,- 3:-5-:2 and luxmu'v-uarany-otrial

"BIB® design if vdCu.
CLASS 6 3 The edge 'R' takes 'B', By (6.4e2)) (6e4e5)y (6e4e8)

ve get § =K, if v = u or ¥ is symmetrical "BIB® design if v<u . Thus,
cless 6 reduces to the class 5. Simllarly ve cen show that class 7 reduces

to the cless 5.

CLASS 8 ; The edges 'R' and 'C' both take 'MB'. In this case we
get K as incomplete design with u rows, u columns which is not "BIB" design.
In the next section, in the construction of this class of designs we get N
as symmetricsl "FBIS® design.

CLASSES 9=12 : The sides 'RC', 'CT' take '0'. By (6.3.15) we

have
(604.9) M= B, e By andvsu=t¢, w=r=g

which shows that '
LL .

Ay = D, = rly - ";"%,“v"é“h)

and hence L is either symmetrical "BIB" design or E . The classes 10,11,12

reduce to the class 9.
Similarly we can show that the classes 14,15,16 reduce to the

clase 13 and here M is symmetrical "BIB" design or E __
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CLASSES 17«20 3 The side 'RC' takes '0', Henoe by (6.3.10)
we have

(8.4410) PH = L'M and E =0,

CL4SS 17,18,19 : All edges 'T', 'RY, 'C' take '3'. Hence from
(60443), (6e4e4), (644.5) and sines A =g we got

(6s4011) 87Dy = & DyF
(604.12) 8y = &y gt
(604413) o= :%(v} - 8,0, )
(6060 16) PP o= % (0§ - 8y05)
(6.4.13) ' = =2 (U3 - €,0y)
?i 03 - 9.0
6 .4.16) B'E = g (0} - 8y0,)
Also by (6.4.10), (6.3.4) and since Dg =Agy Ay =gy we got
(8:4.27) By =t =N = (1, - de
(6.4.18) ng = ol - L'l = egL, - diy)

vhich show that L' and M' are "BIB® desiins., Again from (6e4.11) and (6.4.12)
we get ruspectively

(6e4a19) 8Dy = 8D

(6.4.20) 8Ly = 8,04L

and on premultiplying (6.4.19) by M' on both the sides, we deduce that §' is

@ "3IB" design. Then Dy = ©(I, -~ & ) where © = ‘-‘;‘-__‘iﬂ slso a,-!‘('{-;-‘-l.

The nonesero characteristic roots IF' and F'F are the same. Hence from (6,4.13)
and (6s4e14) ve see that the non-serocharacteristic roots of D, are 9; and %
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vith the multiplicities vew and wel respectively. and from (6.4.19) ve get
2

that réy
by = (1, - 48,

vy * 8(0y-4)
Hence ]
r% = @  which gives O, = vis=r)(r-1)
réye 8, (685-t) 3 (vet)(o=1)

3ince 01>o end v>t, we must have s>r 1.6, v >u. Then there will be
atlesst v-u non-sero characteristic roots for D equivaleat to r, lede Gy=r

% does not teke the velues r.

o, _ o Yo=r)(r-1)
or -3'; r. Since 01 --—--—--('_"('_“ »

Bonooé,_-r, and

(6.4.21) troy = (vel)d, = (veljr
Also
(6.4.22) tro = n-u-%tﬁﬂ'-w-u-%(v—u}.

On equating the right hand sides of (6.4.21) and (6.4.22), we get

(we1j(s=r) = (r=1)(s=v) ice. 8>v which is impossible . Hence
class 19 is impossible, Similarly we cen show, on considering (6.4.12),
(6e4e15)y (604.16) and (6.4.18), that clsss 18 1s impossible. Since class 17
is & particular cese of cluss 18 or class 19, ve get class 17 is also lmpossible.

CLASSES 21«24 3 The side 'TC' takes '0' , Hence by (6.3.8)
(6.4.23) s = LN

o '
Al = Dl- rI'-.-.-

(6.4026) Dg = Dy = “u"?‘é!
Dy ® D‘-H'D;R and n--t‘gi

b
From (6.4.15), (6.4.16) and (6.4.24), we can show in a sisilar way
as in the cases of classes 17,18 that classes 21,22 are not possible.
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CLASS 283 ¢ 'T' the treatments take '5' and 'C' the columns
take 'B's By (6.4.24) we see that L and ¥' are "BIB" designs. Some construce
tions for the class 23 are given in the next seetion.

CLASS 234 :  'T' takes the property '5', Hence L must be a "BIB"

design.
CLASEYS 26«28 ¢+ As An the ocsse of classes 251,32, we bave here

that classes 25, 27 do not exist, Classes 26, 28 are sinilar to the clasecs
23, 24 respectively, Here the properties of L, §' are attributed to M,¥
respectively.

CLASBES 29«32 3 All sides of the triasngle teke the property 'NOY,
CLASS 29 ¢+ All edges take the property 'B'. Hence addition to the egquations,
namely (6e4e13), (6.4e14), (6.4,15) and (8,4.18), we have

(6.4.25) ' = e (D: - GgDg)

(6.4.26) E'E = 2 (n: - 8gi4)

Let
[ 5 (1= 1,3,00,v-1) be the non~sero charscteristic roots of b,
8y (3 = 152500,w=1) be the non-sero characteristic roots of iy
agt (1'= 1,200 y9=1) be the nom=zerc characteristic roots of Dg
(64210 83* (4" = 1,300 ,u=1) be the non-sero characteristic roots of Dy
Pp (k = 1,3,,.,u=1) be the non-sero characteristic roots of Dy

F'h' (k'= 1,2,0,w=1) be the non-sero characteristic roots of Dy

e

Thus the characteristic roots of
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' % 3
FF' are given by 32('\"01’\1)

F'F are given by 2—- (6;- dg 5,)

fm. & ‘/\ -3 A.l
(6.4.28) oro glvenby 5 V4 =9 1)

B'H  are given by :-‘;(di.-o,é‘.)

2
BE' are glvenby o8 (F, =8P, )

. lg 1
] E'E are given by E;‘Pk"elPk')

4150 we know that the non-sero chsrascteristic roots of F¥' and F'F are the same;
the nonesero characteristie roots of 4’ and H'H are the same;
the non-sero characteristic roots of ii' and E'E are the seme.

let vsw<u. From (6.4.28) we get
- e' 8
&h = 5; Ay (i=1,3,,4,v=1); for the remaining w-v d,. cach 5,- €
(6.‘.39) 5;| = ? /\|" (‘.'1.8... .'*’1)] for the remaining uw-vy d;?,mh d,j' e’
it 1

Pkk'. g P'k' ‘:k.'la‘n- pw~1)} for the remsining u-w P: »sach Pka 8

Again from (6.4.237) we obtain

2
Py = &3, (4L2,00,v-1); for the remining u=v fy, sah Fy= o

(6.4.30) 5;; = %d" (J=1,2,0.,w=1); for the remaining u-w 5‘;-' mhdjﬂ 8

\ ) ' 8 '
L Pk'y. -:-'-)\lo (1:'-1.3....”1); for the remsining wev Pk' .outh-- t

From (6.4.29) and (6.4.30) we see
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B, = & A (1=1,2,.., v=1), = 5 (the elgen valucs ere u-v
in number) and

(6.4.31) 2 ) e,s(
R = i=1,3,00y V=1), = the eigen values are wev
x T M 22900 ’ -5; .- ),
= 8y (the eigen velues are u-w in number).
Hence 93-3 and 8,-t. Further

tr i'Dg B = w(t~l) - s(u=1) = s=v which 1s impossible unless s=w,
in which case H = 0, Since we are considering non-orthogonal design, H
unnotboow. Thus the above (6.4.81) holds only when u = w = v and
hence & =8, =83 and r=sst, Evidently if N is symmotricsl "31I8"
design, L and M are also symmetrical "BIB" designs with the same parsseters.

6.5 CONSTRUCTION OF DESIGNS IN SOME PARTICULAR CASES

The construstions, which we give in this seolion, deal with the
designs for which the row-column incidence mstrices are incoamplete .

DESIGNS FOR THE OLASSES 5 AND 8 3 let there exists an Youden
square which corresponds to a symmetrical "BIB" designj the parameters of the
"BIB® design are vicus= W) r(= Vi )\' « How write the above symmetrical
"3I5" design end keep the integers i (1=1,2,.., v) in the place of units of
the design in the following way. Demote the unit by 4, where 1'" treatment
ocours in the ku' block, if 1"‘ treatment ocours in k"h colunn, A% poy of
Youden equare (1 = 1,250y U j k = 1,200, u)s The numbered matrix thus
obtained is our required design for the class - 5.

Sisilarly, we can construot twoeway design for the clasa -~ 8 using
extendsd Youden square / 18_/ of & symmetrical "FBIB® design. When the number
of treatments is saall, it is some times useful to have design of clase~d or
clags=8, where the number of replicates exceeds the number of treatments.
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CONSTRUCTION OF TWO-WAY DESIGN FOR THE CLASS 29 IN A PARTICULAR
CASE 3+ let L = Hor B,  «- Mg I, L=K which ere symmetrical "BI5"
designs, such thet LsM=sNsE =L, or Lel sz, sl ,Mei's
By 2 1y e

THEOREM 6.5.1 ¢+ There always exists a two-way design for which
L=M=N=sE_ - I, where vE2,6.

PROOF : e know that there exist at least 2 mutusl orthogonal
latin squares of order v where v # 2,6, Let 'Ly’ and 'Ly' be two mutual
orthozonal latin squares with the numbers 1,2,.¢p v . Now perform the cpere-
tions of interchenging rows snd colusns in'ly’ to get 'Ly’ in such & vey
that the disgonal nusbers in 'Ly’ being the ssme. Let 'Ly' be the resulting
htuuquncot'l,'dmmfmmmwnmuinmmet
'Ll'to'!.;'. Hence by the property of orthogonsl latin squares, we got
thodugudohmtlof'l;' are 1,35.0» Vo On eliminating the diagonal
elements in 'x;' ve obtain our required design which satisfies the condition

thtt!.-ll-!-g"-l'.

THEOREM 6. 5.2 3 Mvgamcnynuhwopuprhomdu
is any positive integer, we can always construct two-waey design for which
L-s-n(c-s,,;x,-u)u-mnuu-am'mmmmz
el mB 2l

Let the elements of GF(p") be o, x° x}) 0y 23, Lot us denote
them by 1, 8, 3, .oy v respectively. Write the matrix X where
(6e501) X = (xu))- ((x‘.-x".))

o-x's ' 12k 1s even
= ° othervise
L,i=1) L, 3=22; 4, =33 cecea by j=v
xi, x'=0; 13 =0} 1) I'T1; eeeee 1) vl
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Then rewrite the matrix X with the numbers in such & way that
X' 1n 4™ rou takes the corresponding rov nusber of x&' in 1% golumm. The
matrix thus obtained is our required design.
FROOF 3 Let 1 be the row nusber of x in the § column where k'
1s oven, Let (xk', 1); =1 Lo, the element of xk' in the j® rov, 1%
column takes the number i. Suppose
(*, 1)y = G, 1, = 1

We know that the elements x£j x& are obteined on subtraction of xJ~%, x3*3
from tl"a. Hence

tex = xk' 2
(‘osoa) ’1 - xq - xk.’ 3
Also

et = K*2
(6.5.8 ) A :‘ . }n. 2
From “0503) and (‘o’o’). we m

xt . x‘ = 8:‘

= uq

which is impossible unless j =q . Hence
(6.5.4) o, 1, # (o, 1,

) ’ ' 8
Let xX* be even if k' 1s even. Inordortogotwu(}) in the

1“001»&.3 takes a set of ?:i.-lulnu. low we show that 1 is one of
them or i does not belong to this set,
o, u, = 4
oo w02 o Payd = ot
i.e. ?exd = 2t



Let 2 = x% ., For x'= x* to be sven, x® should be oven, Thus, when xd is
even, i belongs to the set of K;:*nmumtimdtbwoudvhuth
odd, 1 does not belong to this set.

We know that N is symmetrical "BIB" design (of. Bose ( 16_/) such
that 5 ¢ ' 1s By = I, + Also we can show casily that L= Nand L= ¥
if2=x'doevenor LeNend Lu g =1 -H if 2 =x? is odd

If we introduce the elements 1,2,.., v in the diagonal of twoeway
design obtalned above in such a way that no two same integers are repeated
in any row or column, then we get & twowway design for which L = H = ¥ are
symmetricsl ®BIB" designs such that L= K= N (or = B + I = M) and

Eel's Byely,
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CONSTRUCTION OF THE DESIGH IN SOMS CASES FOR THE CLASS-23 : I. Let

there exists & symmetrical "BIB® design with the parameters (v, r, Ajs Then
two "BIB® designe with the following perameters are possible.

L ] L @ « B
v b r k A
(1)

(605.5) r vl Vepr r=A Volre A

(41) ver vwve=i r re ) A
We construct two-way design in some particular cases for which
L takes ome of the above two desizns, §' takes the other and M= E . .

Jo
THEORZM 6.5.3 ¢+ For aymmstrical "BIB® design (v =23n + 1,

(or By vr
ranzs i, A\ uhmn-p..puprinmdlumtu\n integer, if the
t L
preaitive root x of GF(p™) has the property 2 = x° ; 1 ¢ el 48, 4, 6"
are sither both even or both odd positive integers and t(# 2;-'!)“ any
positive integer, then there exists & twowway design for the class - 33,
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Write -

“Bp = In Sp~ I Enl- T “Spm Iy =L, By
(6.5.6) %:01 = Sp=Iy Sp*ly ~Epy |lop| Zn* I m-In ~Ey
b “p “E4n Bqq -1

mm”oisnud Z‘ are the same a3 defined in chapter 1.
We can show ecasily that 2;..1 consists a "SBIB" design, when ve change
negative units to seros in it and also we know that sn does not sxist for

o E3mod 4 Z, does not exist for n 3 1 mod 4. Let

part 1 part 2 part 1 pc'rtﬂ
(4 B> (Spely l=Sy eIy o (Z, el ! 3ol

(6.5.7) Sp=I, | Sy 1, ZrtL -1
(1) Lo . | = L g

1n 1o “E1n 1n

be two matrices obtained from z;nq o (1) and (41) consist two "BIB" designs

if we elininate negutive units in them., We construet two-way design for which

N' corresponds to the first "BIB® design, L corresponds to second "BIB® design .
Case (1) nzimod . WriteS, - 5, in terms of Galois Field

elements as L
’.53.l = (xu)) = (x’-: J vhere
e xi' = xk if k is even
= o other-wise and
o s, = Gxgho= (F-xt'y vhere
Wil & & arkisoma
= o otherwise.
L = 1; L,i=2; 4,J=23; wovej Li=n
x"'xJ' o ' ', Ve
) = b Limo; 4,315 eeeey i) ==

Also we know 5, is symmetric matrix.
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(a) Lot 2 = x®' where 8' is cven. HNow place the numbers (i) in
the place of Gelois Field elements of S, as (X, 1), = 1. Since 2 = x*
is even, i takes the saue set of values as j takes, but in different order,
The last troatment of L, namely n « 1 is kept in the diagonsl units of the
first pert of N'; and the treatments arranged in S, ere transiormed identi-
ulumsncrmtmsmau'. Now remains the trensforming of the
treatments in the 1™ column in the 2nd pert of L (1 = nel, ne2, .., 20) %o
the second part of H' such that every row of N' contains all the treatments,
Take =3, Lot x**} is the element in the J* row, 1*® colum of 5, .
ot (2P0 gy = 1 an-s,, i 2E) oooure 1a the g
column, 1% roy of Sn « Hence

kel = P L and
xﬁtol(!l.-i- ,J-z) - x,1-'2 - ‘.‘l-!

Suppose 1l=41i d.es (1 ¢ Bt (1%, ") = o vhich shows that
odther 1 + % 20 or J=1., If § =1, the Galois Field element is
sero. Hence no question of transforming element for the number 1.
x2%*1 = o3, then t = E;-"- . We eliminste this value, because we do not
want the 1Y treatment in the 1% golumn except in diagonsl places. Consider

Bl (A2 A=) o (), BN (I3 412,

Shu:"z— x“hmnpmofx. for lelt hand side to be even,
lox’t'lnhmldbowcapworot:. Thus, for 4 belongs to the set of
values which j takes, 1 :""1 = l’. where 8" is even positive integer,

L]
Let 1 » x°°"2 = x® Dbe even, Now place the numbers & in the
place of Gelois Fleld elements of =5 . Hence 1'® golumn (1=mel, ne2,..,2n)
treatments of the second part (corresponds to L) are transformed to the



142

1*® row (1 = 1,3,00, n) of = 3¢ Sinee - 5, 1s symmetric, we transpose the
nusbered - S, and place in the second part of (1) which corresponds to N'.
We transpose the numbered - 5, for ocbtaining all the trsatments in every
row of N', Different troatments 1,2,.., n are placed in the diagonal units
of the second part of (1),

(b) 2=x8", 1¢x2%1 o x%" where s', 8" are odd. The
integors of 1%® (1 = 1,3,4., n) column of S, of the first part of (i1, are
transformed to the 1 row of 8, (1 = 1,250y n) of the first part of (1)
and transpose the numbered S, in place of 8 of the {irst purt of (1)e For
- 8, of (1), kesp the numbers 'i' as

(B letel) 1)4 = 1, A Llhotel) s 1n the jtb
column, 1®® rov of S, vhere x?6*1 15 the element of - 5 in the §'® row,
1% golumn,

Case (ii) n = 3 mod 4. In order to get a twoeway design, we use
similar procedures as in the case of n & 1 mod 4. Here we use skew symme-
tric -3 instead ol symmetric S,

I1I, Conmstruction of design for the class-23 where M = L, - L,
L, §' ere "BIB" designs.

We have thet (for n = p®) where p is prime and m is positive

W s, =7 o [=,! =37
(1) (=, | S o [=3,\ =7

Correspond to two "BIB® designs vhen we eliminute negative unite

1‘““? )o

(6.5.9)

in (1) end (i1) . Let B' corresponds to ome of them and L corresponds to
another, Then ve can construct two-way design in a similar way as in the
theorem 6,53, Here M3 E,, - 1,.
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Construction of the design for the class-31 : We consider a-
muntawumx.-u‘mu-s"-x,. Consider

W) [t @« (=, 1-357
(1) (3,0 =7 o [= |-57

which contain the same "BIB® designs vhen we eliminate negative units in
thenm, Bomcmtrutwroqu&rddum,whmn-p'.byuugm
method given in the theorem 6.5.3.

(6.5.10)

6.6 A MEASUHE OF NON~-ORTHOGONALITY OF A TWO-WAY DESIGN

Mucnwcmmrthomulmormmluphwuhnm
between the ostimates of estimeble contrasts Jy Ay T  and the regression
fanetion of loAgf » dgDayk (where )y, loy Ay are ve-column, w -
column u - column vectors respectively) 4is given by
2 T33 * %13 T2g 1z 13 a3

(6e6e1) R®

011 (9220 33 °°‘aa§)

vhere Gy, 1s the covariance of 1,j (1) = 1,2,3) fusetions, vis. Iy &4 C
19037 » lgO3d o Onmexisising R? subject to the conditions
1004 =1 Jglgldg =1 lgAgly =1, the folloving oqustions are

Obmldo e @ '3 .
-1, FD;  HDg

(6.6.2) dot. Py I, -0} = o
| W'y D L,

Sinee the rank of A -n-xm-‘-su is the normslised eigen vector
. /e
twthommtofa'.ﬂnn



L -
det. [-E.D: 1, ] # o

Honce (6.6.2) ean be written as
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2 @
(6.6.3)  dets [ R, - (rm nn})( I, -sn;) (r'rﬁ)] = 0.

-5'Dg I i'Dy

By & similar argument as Sheh / 57_/ made in his erticle, we have a
measure of non-orthogonality as

(606.4) § = TT(1=R)
where R: are the nonegero eigen values of
-1
(FD§ KDy ( I, -an) (F'D;)
-&.D: I‘ H'D;

which are different multiple correlation coefficients; and ¢ lies between

oand 1.,

Sxample; Let us find the measure of nonworthogonality (givea

above) for & twoeway design whose incidence matrices are Lz MsNs=E, - L, .

The eigen values K; are found to be T;I%;'-ﬁ with the

multiplicity vei, Hence
- v(ve8) el

R v R



APPENDIX 6.1

Appendix 6.1 oonaslsts of 60 two-way designs whose row-columan
incidence matrices are binary snd incomplete. The integers (1,2,.4, V)
in the matrix K (or N') represent the treatments. If we replace them
by units, then X booelu row-golumn incidence matrix.

-~
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24
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11

10
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10

14

15

11

17

19

20
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10
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22
28"

24

19

15
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26
27

29

31
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14

14

31

23

ié

10

10

10

33

23
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23

ié

10

i0

31

18
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10

10

81

449

10

10

10

&7

10

i8

10

10

15

10

49

10

10
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Class

10

10

10

a9

10

Design

10

10

10

55

19

19

19

-1
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The construction of the design is arbitrary
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