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INTRODUCTION

Ergodic theory is chiefly concerned with the study of
transformations on a measure space which preserve the measure.
Interesting classes of such transformetions are the classes
of ergodic, weskly mixing and mixing transformationss The
bulk of this thesis is devoted to the study of a cloéely
related family of transformations called the weakly stable
transformationsy these are more general than the weakly

mixing transformationse

This thesis is divided into three partse Part I
contains preliminary ideas, notations and some results on
the invertibility and continuity properties of transition
functions (Chapters 1 and 2). In Chapter 3 we collect
knewn results on the sblitting theorem and the ergodic theoren

in general Banach spaces for later references

Part II begins with motivating the introduction and
study of weskly stable transformations (Chapter 4). In
Chapter 5, some simple properties of weakly stable transfor-
mations are exhibited. Chapter 6 gives a generalization of the

classical mixing theorem for an invertible measure-preserving
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transformation and relates the weak stability of such a
transformation to the equality of the invariant o-field in
the product space with the product of the invariant

o~fieldse

In Chapter 7, we look at weak stability from a
different angles Here we introduce weak stability for semi-
groups of contractions on an arbitrary Hilbert space'using
reversible vectorss This coincides with the previous
definition if we consider the group generated by the induced
unitary operator in thke Lo-spaces Generalizgtions of the
results of Chapter 6 are proved for semigroups of contrac-
tions in a Hilbert space. As corollaries, we get some known
generalizations of the mixing theorem to semigroups of trans-~
formations, Chapter 8 gives another result on the weak
stability of semigroups of measure-preserving transformations
relating it to the gymmetric invariemt sets im the product

Spacees

Chapter 9 is concerned with a family of transforma-
tions on a probability space endowed with a probability
distribution. Associated with the‘family are a skew product

Transformation and a transition function. The weak stability
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properties of these are related to similar properties of the

family of transformationse

We study automorphisms of compact groups in Chapter 10.
Here the weak stability of an automorphism enables the sub=
space of invariant functionsg in the Lg-spaoe to be spamnmed
by the invariant characters. Part II ends with Chapter 11
-in which the ergodic decomposition of a transformation is
considereda ‘It is proved that if almost all ergodic compo=-
nents are weakly mixing, then the transformation is weakly

stables

The problem of existence of invariant measures for
families of transformations is considered in Part III, The
procedure of using Banach limits for the invariant measure
problem for a single transformation is by now Well.established;
The corresponding invariant means for amenable semigroups
are utilized to get invariant measures for families of
transformationss It is hoped that this will stimulate

further research in this directione

- e o
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PRELIMIDNARTIES



OHAPTER 1
BASIG IDEAS AND IEFINTTIONS

.Let X be an abstract set of points and & a c»fleld‘
of subsets of Xe The pair (X, A) is ocalled a measurable |
spacg, elements of Ay are measurable setse If X 1is a
topological space,FWe take 'g to be the g-field generated
'by the famlly of all open sets and call it the Borel d-fleld.

A transformation, or a functlon T from a measurable_
~ space (X, A) to a measurable space (Y, B) 1s called neasu-
E7rable if the inverse image of every measurable set in Y is
measurable in Xe The identlty transformatlon I on & - '
measurable space is trivially measurable. A measurable‘trans-:
formation T on a measurable space is’ invertible, if there o
‘.exists another measurable transformatlon p~l suoh that-
'_TT"l =T lT = I« We shall, throughout most of this work, :"

COnslder only meagurable gsets and measurable transformations.

A set A is strlc Ly invariant for a transformatlon
7 (or strictly Teinvariant) if T°F A = Ae A real - or complexe
valued Borel measurable function: £ on X 1is strictly
invariant (or strictly T=invariant) if £(Tx) = f£(x)° for 311
xX€ Xo TFor a given transformatlon T, the class of all strlctly_
invariant sets is a o~field. This we denote by 1° = _O(E)

and call the strictly invariant g-field. A measurable function




ig gtrictly invariant if and only if it is measurable with

respect to io.

Let m be a probability measure on (X, ;), iece, a non-
negative and countably additive set function defined on i
~with m(X) = 1. (Occasionally we consider infinite measures
n, but then we shall assume that X 1is the disjointvunion of
a countable number of sets A; with m(Ai) < © and call
such an m ow=finite.,) One of the basic principles of ﬁeasure
theory is that sets of zero measure are negligible., Thus we
do not distinguish between two functions or transformations
which are equal almost everywhere (lsee, outside a set of
measure zero); such functions are considered equivalents Two
gets A and B are equi?alent if their characteristic func-
tions 1, and 1y are equivalent, iece, m(A+ B) = 0. (+ stands
for the symmetric difference operations) Two subec-fields
4 end _52 of A are equivalent, if for every set in one of
them, there is a set in the other equivalent to the first onej
in such a case, we write just él = Aoe A subece~ficld Al of
A is called trivial if it is equivalent to the trivial o=field

consisting of the empty set and the whole space onlye
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The family of all eguivalence classes of measurabie sefs
is & Boolecan o=algebra with the natural operations of union
~and intersection. The measure on X taken over to the Boolean
owalgebra is positive = any non-zero element has positive
measuree This Boolean co=~algebra with this measure is called

the measure algebra of the measure space (X, A, m).

Given a measure~preserving transformation T on X,
we can define a mapping of the measure algebra as follows:
the image of an equivalence class of sets is defined by
taking one representative A and forming the equivalence

~l A+ This mapping, denoted by T“l, is

class containing T
well=defined and measurew~pregserving. If T 1s invertible,

then T'l on the measure algebra is an automorphism.

We now introduce the Lp-spaoes. The real
LP(X) = Lp (X, 4, m) (sometimes written as Lp) for 1 S p <
1s the space of cquivalence classes of real-valued Pfunctions
f with If[p‘f&ntegrable, The complex Lp-spaces are
simtlarly defined. Lp, for each p, is a Banach space with
norn ||zl = [/ |2(® an ] /v wnile I, is a Hilbers
space with inmer product (fl’ f2> = [ £ 52 dme (f denotes
the complex conjugate of the function f.) We denote by
L, (X) = L, the space of all equivalence classes of (real/
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complex= valued) essentially bounded measurabie functions

on Xe L_ dis a Banach space with essential gupremum

.as NoTme

Given a sub~c=field A of A, the conditional expec-
tation of a function f is a function B(f]| -Al) measurable

with respect to -A-‘]. and having the property
J fan = [ EB(f] 4,) dn
A A

for all A€ Ay. The conditional probability P(4 | 4,) of a

gset A 1is defined as the conditional expectation of 1A :

P(a | A =B, | 4 )

A set A is invariant for a transformation T (or
T-invariant) if m(4 + T75 A) = O. A function f is inva-
riant for T (or Teinvariant) if f(Tx) = f(x) aee. The
‘o-field of all invariant sets is demoted by I = I (T) and
called the invariant owfields A transformation T is called
measure-preserving if m(?™t 4) = m(4) for all Ag As For
a given transformation T, a measure m' is invariant if T
is measures=preserving in the space (X, 4, m')s. A transfor-
“mation T is nonesingular if m(4) = 0 implies m(7"t4) = 0.

Any measure-preserving transformation 1s nonesingulare



. Megsurable transformations are only a particular case .

of a more general class of functions called transition funce

- tionse A trensition function P = P(eys) on X 1is a funce

tion from X X A to the unit interval [0, 1] (with the usuel
Borel o=field) such that (i) for fixed xg X, P{:;c, o) is a
probability measure on (X, 4 ) and (ii) for fixed Ag A ,
P{s, A) is a measurable function on (X, 4 )s 4 measurable
transfonmation T dnduces a transition function P by the
formile P(x, 4) =1, (Tx) for all xg X, A€ Ae We call such
transition functions induced or degenerate. The transition
function P(x, 4) = 1,(x) corresponds to the identity

transformation and may itself be denoted by I.

The product of two transition functions Py and P2

is defined‘as the transition function ?192 given by

(?IPB}(X’ -é-) = f Pl(y’- A) PB(X’ dy)c

It Py and Py are both degenefate, then P{Pp 1is also so
and corresponds to the product of the transformations con-

- cérnede The above multiplication is associative in the set.
of all fransition functions on (X, A) and I(x, A)= 1A(X)
acts as the identity for this mzltiplication.
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We shall cail a transition function P invertible if
there exists another transition function P  such that
ppl = T, Then P P =T and P* is unique. We call P7T
the inverse of Pe It is easy to show that an induced
transition function P(x, A) = lA(Tx) is invertible if and
only if the inducing transformation T is invertible, The
following theorem goes further and shows that any invertible
transition function is induceds In proving this, we assume

that single point sets are measurables

Theorem 1.1. A transition function P is invertible if and
only if there exists an invertible measurable transformation

T such that P(x, 4) = 1,(Tx).

Proof, We need to prove only the ‘'only if} parte Let P

be invertible., TFor a fixed =x€ X, we have
~l
SR (v, {23 By dy) = 1.

The integrand lies between O and 1 and hence
Pt (v, {x1} ) =1 aees P(x, ¢)s Choose and fix a y,
such that P~T (¥, {x} ) =1. Considering the equation

S 2z, {y, }) Pt (v, d4m) =1,
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we see that P(z, { yo} ) =1 aece 27T (yo, o)s But the
‘_ measure P (yo, o) is concentrated at xs Hence

P (x, {yo } ) = Lo Defining T by the equation ¥, = Tx,
W see that .T is welledefineds Besides P(x, A) = 1,(Tx)
for al1 xg X, A€ A and hence T is measurable and

invertibles

A trangition function P is nonesingular with respect
to the measure m if m(4) = 0 implies that P(x, A) = O
aee This coincides with the nonesingularity of a transfore
mation when we consider the induced transition function. A
measure m 1is invariant for a transition function P if
m(4) = [ P(x, A)m (dx) for all A€ A. It is clear that
invariant measures for a transformation correspond to those

for the induced transition function.

Transformations and transition functions induce certain
operators in Lp—Spaoes which are of great interest in our
studiess Let T, respectively P, preserve the measure m.

In Lo or in L, , we consider the operator U given by

(Uf )(X) f(TX)9
(Uf )(x) =S £(y) P(x, dy)e

H

L
The operator U is always a contraction; on Lo, the operator



U induced by T dis an isometrys But on Ll, we introduce
operators in a different waye We assume 6nly that the transiw
tion function P is non=singulare. Then, for f¢ Ly the
measure m'- given by m'(4) = [ P(x, 4) f(x)nl(di) is
absolutely continuous with regpect to m and so there is a
ge I; with m' (A) =,£ gdm ¢ Defining a transformation V

by Vf= g, we gsee that V 1s a contractione Moreover,

the adjoint of V d1is the operator U on L, defined above.

For the case of a nonegingular transformation T, the opera=

tor V is givenby S Vfdm = [ fdm « The importance of
A -l
T A
V becomes evident when we consider the problem of the
. existence of a finite invariant measure equivalent to the
given measure me (See Part III). This problem is the same

as that of the existence of a strictly positive invariant

function for the induced contraction V on Ll'

- -



OHAPTER 2

CONTINUITY PROPERTIES OF TRANSITION FUNCTIONS

We discuss, in this chapter, the continuity, equicon-
tinuity and quasieequicontinuity properties of -
transition functionse The motivation for this discussion
comes from the recent work of Rosenblatt [ 49 ] on ergodic

decompositionss Some of the results are ugeful in Part IIl.

Throughout this chapter, X denotes a compact Hausdorff
space and A the Borel ow=field of X. The transition func-
tions P we study are aséumed to have the property that for
each x€ X, P(x, ¢) 1is a regular probebility measure. Let
o(X) be the Banach space of all realevalued continuous funoc-

tions on X with supremum norme We oonsider the operator U.
(UEMx) = [ £(y) P(x, ay)

induced by P on the space of all real=-valued bounded func-
tions on ¥X. Rosenblatt [ 49 ] makes assumptions of the

following kind on the operator Us.

(a) For each fe C(X), Ufe C(X).
(b) TFor each fe C(X), the family {Unf } s n=0,1,2,000

is equicontinuous.



(¢) TPor each fe 0(X), the family {U‘nf} n=0,1,2,...

is quasieecquicontinuous.

~(For definitions of equicontinuity and quasi~equicontinuity
of a subset of C(X), see Dunford and Schwartz [13 J].) Our
aim, in this chapter, is to show that these are equivalent
10 certain natural conditions on the transition function

itselfe

Let M(X) denote the Banach space of regular finite
signed measures on X with total variation as norms By
Riesz's theorem, C*(X), the conjugate space of C(X) is
isometrically isomorphic with M(X). Throughout what follows,
we shall consider M(X) with the C(X)~topology of C*(X),

A base v Be
called the weak topology of M(X). [ B¢ neighbourhood system
at me M(X) is given by

N(my fys0ee,fy3 €) = {m':|f fydmef fodm'|< €, 1i< 0}

where € > 0, n a positive integer and fireeey, £, € c(X)
are arbitrarye WM(X) with the weak topology is a locally
convex linear topologicael spacce P(X), the set of probability

megsures in M(X) is a compact convex subset of M(X).



The space X, being compact Hausdorff, has’'a unique
uniformity X dinducing the given topology. M(X) has a
natural wniformity M, a typical element of a base for which

is the set { (mq mg) m =-m, €4 } where A is a neigh=-
bourhood of the origin in M(X)e We consider X and M(X)

as uniform spaces with uniformities X and M respectively .

Definition 21 A transition function P on X 1is conti-
nuous if the map x «> P(x, &) from X to M(X) is conti=-
nuouss

It is immediate that the operator U takes C(X) into
C{(X) if and only if P 1is continuouse Besides the following
theorem holds, so that the continuity of a transition function

ls a natural generalization of that of a transformationes

Theorem 21 The transition function P(x, A) = lA(TRﬁ is
continuous if and only if the transformation T is a contie-

nuous map of X dnto itself,

Proof. Let D be the set of degenerate measures in 2P(X).
X 1s homeomorphic with D (in the relative weak topology)
under the map h : x => u (4) = 1,(x)s The truth of the

theorem is now immediate.,

_,.a-“" oy -

P P

RETITTE 7
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We now recall the welleknown definitions of equicone

tinuity and quasi=-equicontinuity in a general set up.'

Definition 242 (Kelley [ 36])e ILet P %be a family of maps

from a topological space X 1o a uniform space (Y, z). F

is equicentinuous éﬁ x€ X 1if, for each A*¢ Y, there is a

neighbourhood N, of x such that (£(x), f(y)) € a* for
all ye N and all fg Fe F 1s eguicontinuous if it is-

equicontinuous at each x¢c Xe

Definition 243 (Bartle [ 2])e A family F of maps from a

compact Hausdorff space X +to a uniform space (Y,,i) is

quasi=equicontinuous if, given a net Xy converging to x,

for every A* € X'. and_ every Qoo there exist (xl-,dz seeey Ofn _Z
2 &, such that, for every f¢ F, there is an 1, 12 1'5 n

with the property that (f£(x, ), f(x))e a*.
| i

ofinition 2e4 e call a family { P } of transition funce

tions on X equicontinuous (quasi~equicontinuous) if the
family qua a family of maps from X +to the uniform space

(m(x), ﬁ) is equicontinuous (quasi-equicontinuous).

In a similar way, we consider equicontinuous (quasi=-

equicontinuous) family of maps of X into itself.
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Theorem 2;2 A family {TS } of measurable maps of X dinto
itself is cquicontinuous (quasieequicontinuous) if and only
if the family {PS } of induced transition functions is

equicontinuous (quasiweequicontinuous).

Proof, As in the proof of Theorem 241, we consider D
which is homeomorphic to Xe With respect to the relative
uniformity on D, the homeomorphism h (as well as its
inverse) is uniformly continuous. Using this, it is easy to

verify the assertions

The following result connects our definitions with

those of Rosenblatt [49 ].

Theorem 2,5 A family { P, } ~of transition functions on
X 1is equicontinuous (quasi~equicontinuous) if and only if,
for every fe C(X), the family of functions {U.f } is

equicontinuous (quasi~equicontinuous).

Proof, We give the proof for'the case of quasieequiconti~

nuitye The proof for the equicontinuity case is similar.

Tet { P } be quasieequicontinuous. Fix an fe C(X).
Let a net X, converging to x be givens Then for a given

we have to £ind ay,esssq, 2 @, such that

€20 and « n 2 %,

O’
_for every s, there is an 1 with the property that



e

~ldm

*

(0,0 (x, ) = (D) ] < e

Let A be the neighbourhood of the origin in M(X) defined

by

A= {m: | ffam]| <e },

LL)

..

Let A* = { (ml, m2)

m o~y € A } e« Since { P, } is
quasi~equicontinuous, given A¥ and 0y there exist '
Gppweey O 2 o such that, for every s, there is an 1

9 o)) PS(X’ o)) € A*.

with the property that (P, (x
i

o
Hence

| (Ugf) (x, ) =~ (U £)(x) | =
i
72 20, s 33) = S 2(5) 20xs ap)|
< €a

The other part is proved by (essentially) retracing the

stepse



CHAPTER 3

SEMIGROUPS OF OPERATORS

For semigrouns of operators on a Banach space, there
are two important results = the ergodic theorem and the
splitting theoreme Increasingly more general versions of the
splitting theorem were proved by Jacobs [ 30 , 31 ] and
deLeeuw and Glicksberg [10 Jo Ergodic theorems have been
proved, among others, by Alaoglu and Birkhoff { 11, Ebeflein |
(16 ] and Day [ 8 Je We give here an account of these results
in a form ﬁore general than what we need in Parts II and 1II;

we also mention a connection between these two.

We first present the splitting theorem following

deLeeuw and Glicksberg [10 1.

Let H be a Banach spaces Elements of H will be
denoted by f, g, h etce An operator semigroup (or a semi-
group of operators) on H ié a subsemigroup of the multipli-
cative semigroup of bounded operators on H containing the
identity operator Ie For an operator semigroup ﬁ, the orbit
(U £) of an element f € H is the set { Uf: Ug U }. We
call Q weakly almost periodic if eaéh orbit has compact
closure in the weak topology of H. Any such semigroup is

bounded : there exists a constant C such that ||U] < C
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for all Ue Ue If H is a Hilbert space, then the oconverse

is also true: any bounded semigroup is weakly almost periodic.

For any operator semigroup ﬁr we denote by w(U) the
weak operator closure of U, w(U) is again an operator semi-
groupe The weak orbit closure of an element f is denoted

by w(ﬁ fle We then have w(ﬁ f) = (w(ﬁ)f).

An element f 1s invariant (for or under a semigroup
U) if Uf = £ for all Ug U. A subspace T of H is
invariant if UL (C I for all UgU. It is easy to see that
the wesk closure w(U) has the same invariant elements and

invariant subspaces as U

We now introduce the reversible, flight and almost

periodic elements for a given operator semigroup U on He

Definition 3el An element f¢ H is reversible if for each

Ug w(U), there is a U ew(U) such that UUT = f.

The set R = R(ﬁ) of reversible elements is an inva-

riant subset of H but need not be a linear subspacee.

Definition 3.2 An element fg H is gi;ggg if 0¢g w(g e

The se$ F = F(ﬁ) of flight elements is in general

neither invariant nor a linear subspaces.
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We call a finite dimensional invarlanﬁ subspace L a
unitary subspace if U restricted to I 1is containéd in a
bounded group of operators on L. Any unitery subspace is

contained in Re

Definition 343 The set A(ﬁ) of elmosy perlodlc elements

is the closed lineay span of the unitary subvpaces;

We shall say that the splitting theorem holds for g .
weakly almost perfodic operaton semigroup U on H {if F(§)
18 a ¢losed invariant linear subspace of H, A(U) = R(U) and

= R(U) & FU).

Theorem 3¢l  The spllttlng theorem holds for any semlgroup

ardilrany

of contractions on a Hilberd space. If H is an pefonive-

Banach space and g is an abelian weakly almost periodic

gemigroup, then the splitting theorem holds for Us

We now turn to er§odic theorems. As before, ﬁ is a
Weakly almost periodic operator gemigroup on the Banach space'
He Besides U, we consider the convex hull {U} of U. We
say that the ergodic theorem holds for the semlgroup U if
for each fg H, there exists exactly one invariant element in

: W([U}f). (This is also the strong closure of the orbit
(Ll o).



Theorem 32 . (Jacobs [32 ], Theorem Lle2el)s The ergodic
$heorem holds for an abelian weakly almost periodic semigroup

U on a Banach space.

Suppose we start with a weskly almost periodic semigroup
ﬁ which is also convex, iece, closed under convex linear
combinationse An interesting result (Theorem 7+4) of deleeuw
and Glicksberg [1C0 ] for such semigroups asserts that the
ergodic theorem holds if and only if the splitting theorem
holdse

For our purposes we need a more general ergodic theorem
than the above one. To this end, we first introduce the

notion of amenable semigroups (Day [ 8 1)e

Iet 8 %be a topological semigroup, lece, a semigroup
as well as a Hausdorff topological space such that the map
(sg 8') = ss! from SXS %o § is continmuous. We denote
by C(S)“ the Benaeh space of bounded real~valued continuous
functions on 8§ with SUps TOTMe c*(8), as usual, will denote -
the conjugate space of d(S). Amean M on C(S) dis an
.eiement of 0*(8) such that, for each f¢ C(S), we have
inf f£(s) i M(f) 3 sup f(s)e I% is clear that an element M
og c*x(8) is a meansif and only if (i) f 2 0 implies

M(£) > 0 and (ii) M(1) = le 4An element M of C*(S) is
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called Tight invariant if M(R,E) = M(£) for all fe O(8)
and all s¢ 8, where (Rsf)(ST) = f(g's)s Left invariance of
‘elements of C*(8) 1is similerly definede A semigroup S dis
called right (left) omenable if there exists a right (left) |
Invarlant mean. S 1is amenable if there exists a meén Which
is both left and right invariante It is knewn (Day [.8 hH
that all compact and solvable topological groups as well as

abelian topological amemigroups are amenablees

| ‘We now give an ergodic theorem due to Day [ 8 ] and
. Eberlein [16 Jo« Let ﬁ denote a bounded operator semigroup

on He An element in the convex hull [U ) is called an
average of ﬁ. Q is said to be strongly ergodic under a net
Uy of averages of ﬁ if, for each Ue‘ﬁ, we have '
lan(U~ T)fll => 0 as well as 1KU-I)Uaf||—> 0 for every
fe H, |

et 8 %be an amenable topological semigroup and for

each sg€ S, U, be a bounded operator on H such that
Uslsg = USlUS2 for all 84,95, € 5 (lecs, 5 => U, is a
homomorphism onte an operator semigroup) and such that the
map s ~> @ (Usf ) for fixed fg H and v GH*;'the conjugate
gpace of H, is continuouse Let further U = { Ug: s€ S } be

‘a bounded semigroupe We call U a continuous bounded

~repregsentation of Se Theorem 841 (in conjunction with the
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remarks in Section 10) of Day [ 8 ] and Theorem 341 of

Eberléin £16 ] together yield the following resulte

The orem 33 A continuous bounded representation U of an
amenable topological semigroup S 1is strongly ergodic under
a net Ua of averages of ﬁ. Moreover the following four

conditions on an element f are equivalent:

1) ge w({Ulf) and g is invariant
ii) g = 1lim u,f
iii) g = lim U, f weakly

iv) g 1is a weak cluster point of the set {Uocf }.

Let us call an element f satisfying any one of the
above four conditions ergodice The following result is due

to BEberlein {16 J.

Theorem 3.4 The ergodic elements form a closed linear

invariant subspace H. o The transformation U defined on
H, by Uf = g is a bounded operator on H, with
T=0°=%0=07 on H for all Ug U.

In case U i1s an abelian weakly almost periodic semi~-
group, every element of H 1is ergodic and so Theorem 3,2

follows from the above resultse

O v G - ——



OHAPTER 4

INTRODUCING PART II

et T Dbe a measuée-preserving transformation on a
probability space (X, é,m), It is well-known (and ocan be
deduced from the individual ergodic theorem) that the sequence
m(?™ & ()B), n = 0,1,2,s.. 1s Cesaro convergent for every
pair A and B of-measurable sets. This property of the
sequences n(?™4 ()B) characterises, in a sense, all
méasure~preserving transformationse For, a result of Dowker
{12 ] implies that, under certain mild conditions, T is
essentially measure=preserving, in the sense that there 1s an
invariant probaebility measure equivalent to m, if and only

if, the sequences m(T'n A (")B) are Uesaro convergente.

Because of this property, we may try to study a ﬁrans—
formation T through the associated sequenses m(T™ 4 () B),
A, Bg La ‘Indced this approach is not new in ergodic theory;
Wﬁ.need to cite only the classical concepts of ergodicity,
weak mixing and mixing for transformationse T 1s ergodic,
we akly mixing or mixing according as, for every A.Be_é, the
sequence m(T""n A(T)B) converges in the Cesaro sense, in the
strong Cesaro sense or in the ordinary sense, to the limit |
m(A)m (B)e Another interesting clags of transformations is that

for @ach of which the gegueneesrﬁ(fanAf—)B) converge to a



limite These are the stable transformations studied recently

by Maitra [ 41 ].

Motivated by this obsérvation, we introduce and study
transformations T for which m(T—nA(jﬁB), for A, Beﬁé, is
strong Cesaro convergenf to some limite We call these the
weakly stable transformations. I+t is not difficult to see
that weak stability is just weak mixing minus ergodicity = a
neasure=preserving transformation is weakly mixing if and
only if it is weakly stable and ergodice (A similar relation
holds between stable and mixing transformations too,) This
makes it interesting and desirable to ask which properties of
weakly mixing transformations follow from the hypothesis of
ergodicity and which from that of weak stabilitye We shall
see that many of the well-known theorems on weak nixing have
their analogues in terms of weak stability, which simplify,
in the presence of ergodicity, té the corresponding'theorems
on weak mixings We shall also find some characteristic

properties of weakly stable transformations,

fince transformations are only a particular case of
transition functions, which themselves are a particular case
of operators in Hilbert spaces, it is of interest to know if

the properties we are studying of transformations are not
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essentially operatorstheoretice Indéed, we shall see.thaf“
weak stability makes sense and has interesting éonsequences
for contractions on a Hilbert spacee (Note that we cannot
talk of ergodicity or weak mixing in an arbitrary Hilbert
spaces) lore generally, we study the weak stability proper-
ties of families of contractionse Here it is natural to
impose some condition on the family as an abstract sete The
simplest one is to ask for the semigroup property; one could
go further gnd ask for the amenability of the semigroupe

In a different direction, one could ask for a measure to be
glven on a o~field of subsets of the familys We consider
all these situations and obtain generalizations of known

results for weakly mixing transformationse

- g ———- A e



OHAPTER 5

IEFINITIONS AND SIMPLEST PROPERTIES

In this chapter, we introduce the weakly stable and
stable transformations on a probability space and study some
of their elementary propertiese On the unit interval, we
notice the existence of non-trivial weakly stable non-weakly
mixing transformationse From the well-known category theorems,
we derive some corollaries on the category of sets of weakly
stable and stable transformations on the unit interval. We
end the discussion with the weak stability and stability

properties of powers and roots of transformations.

Let T %be o measure-preserving transformation on a
probability space (X, 5, m). T is said to be ergodic if,
for all A, Bg A, we have

Nl

lim g m(T"jAf")B) = m(4A)m(B),

n

n

Equivalently, T is ergodic if and only if every invariant
~set has measure zero or one (ile¢s, the invariant o-field is
trivial), or if and only if every invariant function is =

congtante We introduce the following definitiom.
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Definition Sel A measure-preserving transformation- T 1is

weakly stable if, for A, Be A, the sequence m(T “A()B) is
strong Cesaro convergent, iees, if there exists a constant

c{A,B) such that

T Nel

lin £ % |m(™a()B) - 0(4,B)| = o.
0

-

Maitra [41] calls T gtable if the sequence | .
n(TA) B) is convergent to a limit C(4, B) for A, BE A .
A transformation T is (weakly) mixing if it is (weakly) stable
with the constant C(4, B) = m(A)m(B) for all 4, Bt A.

BEvery stable transformafion is clearly weakly stables
Since strong Cesaro convergencé implies Cesaro convergence, it
follows from the individual ergodic theorem that, if T' iS
a weakly stable transformation, then GC(4,B) = BfP(ALI)dm.

It is immediate from this that (weakly) mixing transformations

are precisely those which are (weakly) stable and ergodice

The simplest example of a weakly stable transfbrmation
is the identitys. This is indeed stables If X is a finite
or a countably infinite set, i the class of all subsets of
X and m a probability measure giving positive mass to
gsingletons, then the identity is the only invertible weakly'

stable transformation on X. On the unit interval however,
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we have nonwhrivial examples of invertible weakly stable
transformations, In fact, we can find non-trivial exemples
of weakly stable transformations which are not weakly mixing

as the ensuing discussion showse

Let X be the closed unit interval, A the o=field of
Borel sets and m the Lebesgue measures ILet T be an
invertible weakly stable transformation on X. We shall show
that X 1is essentially the union of two disjoint sets on one
of which T 1is the identity and on the other, antiperiodice
In other words, we shall prove that, for gvery integer n'é 2y
the set A, of all periodic points of period n has measure
zeroe C(learly ’An is measurable and strictly invariant.
If m(A,) > 0, then by an argument similar o that of Halmos:
({22 ], pe 70), we may find = measurable subset B of Ay
such that B, TB,s.., T" 'B are disjoint, T.B = B and
m(B) = % m(A,)e But then the sequence m(T"B()B) is not
strong Oesaro convergent = a contradictions (This argument
shows, incidentally, that no periodic transformation of period
greater than one, on the unit interval, is weakly stable,

This is true more generally =see Corollary 6e5.)

Thie result may justifiably make one wonder whether
the weak stability of a transformation T which is not

weakly mixing is due only to the occurrence of a set of



positive measure on which T 1s the identitve This is not 80
In Chapter 10, we give examples of families of antiperiodie
weakly steble (in fact, stable) but not weakly mixing transfor=
matiohs on every k=~dimensional toruse. Since the normalisgd-
measure space of a torus is point isomorphic to that of the
unit interval, we may conclude that there exist such transfor- g

mations even on the lattere.

We now give some results regarding the category of sets
of invertible stable and weakly stable transformations on the
unit interval (X, A, m)s Let (Eﬁ, m*) be the measure alge-
bra induced by (X, 4, m) and T thé group of all automor-
phisms of (4% m*) ecquipped with the weak topology (Halmos
[24]; De 61)e Then with the obvious definitions of weak
stability etce, for elements of i, we have the following

observations:

(1) The set of all weakly stable automorphisms contains
the gset of all weakly mixing automorphisms and hence is a
dense set of the second category in i. It is not the whole
of i howevers 1In fact, any ergodic but not weakly mixing
automorphism is an exemple of an amtomorphism whi éh is not
weekly stable,
(11) The set of all weekly stable but not weakly mixing

automorphisms, being a subget of the complement of a dense Ga,



' 1s of the first categorye It is denses To see this, let T
be the automorphism induced by an antiperiodic, weakly stable
but not weakly mixing transformation on (X, A, m) (such‘an one
exists, as we noted earlier), observe that any autonorphism

4

conjugate to T 1is also weakly stable but not weakly mixing

and apply the Conjugacy Lemma of Halmos ([24 3, pe 77)s

(iii) The set of all stable automorphisms is a dense set
of the first categorye This is because, the set of mixing
automorphisms is a dense set of the first category and the se%
of stable, but not mixing avtomorphisms is, as an argument
similar to that in (ii) shows, also a dense set of the first

categorye.

(iv) The set of all weakly stable automorphisms which

- are not stable is a set of the second category. It is dense

since 1t contains the conjugacy class of every weakly mixing

non-nixing automorphisme

We now return to the study of stable and weakly stable
transformations on an arbitrary probability spaces A few
properties of these may be deduced from the definition. In
proving these and later too, we shall make use of the followe
ing two facts about strong Cesaro convergence without expliéiﬁ

mentione.
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(2) A bounded sequence a, Oof complex numbers is
strong Cesaro convergent to a if and only if there exists a
gset D of natural numbers of density one such that &,

converges to a on De

(b) If a bounded sequence a, ©of complex numbers is
_strong Cesaro convergent to a and D is any set of natural
numbers of positive density, then a, 1s strong Cesaro con~

vergent to a on D,

Theorem oel If T 1is weakly stable (and invertible)»then

so is ™ for every non-negative (and negative) integer k.

Proof. Tet T be weekly stables Tf k= o, =1 is we akly
stables Since T™% (when T 1is invertible) is easily seen *o
be weakly stable, to complete the proof, it is enough to show
that 1F 1s weakly stable for every positive integer ke But
this is true because the set of positive multiples of %k has

density %. The theorem is provede

Remark The analogue of Theorem 5,1 is true and trivial

for stable transformationsg,

Theorem 542 If T is weakly stable (and invertible), then
for every positive (ang negative) integer k we have

(T = 1(15).
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'22292. It is enough to prove that l(Tk) C;_;(T). for every
- positive integer ke Let Ae,i(Tk) and let, for arbitrary
Be.é, C(4,B) denote the strong Cesaro 1limit of the sequence
n{?™ 4(C)B)e Then ©(4,B) is also the strong Cesaro limit
of the sequence m(Tdnk AC)B). But, for every n, - .‘
(T4 B) = m(A()B) and therefore C(4,B) = n(A()B). On
the other hand, C(T™4, B) = 0(4,B)s It follows that

Ag i(T). The theorem is proveds

Corollary Bsl No weakly stable automorphism of a

measure algebra can have finite orbits of order greater than
ONe o |
While 1t is true that every power of a weakly stable

transformation is weakly stable, a similar statement does.not

hold for rootst) For example, 1f T dis a periodic trénéfbrmé~., :

tion of period n > 1 on the unit interval, then T'= IL i§:: :

weakly stable, but T is not weakly stable (as we have noted

earlier)s. We can however give a necessary and sufficient cone. . -

ditione

Theorem 5.3 If T is invertible and weakly stable and if

TO is a root of T, then To is weakly stable if and only if.
I(1) = LD, |

¥) We consider only measure-preserving rootse
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Proofe If T  ig weakly stable, then Theorem 5.2 implies

O
that I(T,) = L(T). Suppose, conversely, that I(r,) = ZI(T)

and that T- =

for a1l A€ A, the function B(A|ZI (1)) = p(4] (1)) is

(T
Ty X a positive integer. First, note that

invariant for T,» DNow, for every fixed r, O {r <k and
arbitrary measurable sets A and B, m(T"r-kn ACUZB) =
m (7™ A(_)Tr B) and hence is strong Cesaro convergent to the

1imit f P(a] Z(2,)) dm = fP(AlI (T,))dm. Since this
T B
limit is independent of r, it follows that the sequence

" A0)B) is itself strong Cesaro convergent for A,BE A.

T, 1is therefore weakly stable,

Jorollary 5e¢2  (Blum and Friedman [ 4 ])s Any root T

of an invertible weakly mixing transformation T is weakly

nixinge

Proof, Since T, is a-root of T, I (7,) (:_ I(T). Since
I(m) 4is trivial, I(T) C: I (T ) and hence (T ) = I(T) and
is triviale. By Theorem Sa3, T, 1is weakly stable and hence

weakly mixinge



Remarkﬁ The analogue of Theorem 543 1s true for
invertible stable transformations and the proof is, if
anything, easier in this case. We therefore have the -

following corollarye

Corollery Se3 A weakly stable root of an invertible

stable #ransformation is stable.

—— gy o



CHAPTER 6

THE STABILITY THEOREM -I | .

Thé ergodic end weak mixing preoperties of an invertible
measure-pregerving transformation T on a probability space
(X, A, m) are well-known to influence strongly the spectral
structure of the induced unitary operator U dn LB(X)‘ T
is ergodic if and only if the number 1 is a simple eigen
value of U; T i1s weakly mixing if and only if 1 is simple
as well as the only eigen value of U. The latter statement
is part of a result known as the TMixing Theorem! (Halmos
{24))s To introduce the other part of this theorem, we
consider the product measure space (X(g), A(g), m(z)) where
x® _x xx, a8 Ly X4 eand 1) 2n X n, Given any
neasure-preserving transformation T on X, we consider the
measure-preserving transformation T(z) =T X T on X(Z)
defined by T(g)(xl,xz) =(Txl, TX5) s T(g) is called the
Cartesian square of Ts The mixing theorem states that an
invertible T is weakly mixing if and only if T(2> is
ergodice Indeed, a look at the proof shows that T(z) is
weakly mixing if T ig weakly mixing gnd T 1is weskly
mixing if T(g) is ergodice This kind of splitting the
mixing theorem is very helpful in our analysis of weakly

gtable transformations.



In this chapter, we shall prove a generalization of the
mixing theorem to the case of weakly stable transformations.
We can, and shall in the next chapter, prove this result for
certain semigroups of contractions in Hilbert spaces, but
that needs more refined operatov-theoretical techniquese
Here, we shall prove the following 8tability Theorem by

elementary methodse.

Theorern Gal The following conditions on an invertible

measure~preserving transformation T on a probability space

(X, _&, n) are equivalent.

1) T 4is weakly stable.
2) The number 1 is the only eigen value of U,

3) T(g) is weakly stable.

o 1 (0®)y o (@) ®.

We shall need the following lemma for the proof of the
theorems We denote the subspace, and the projection into the
subspace, of invariant functions for U in LQ(X) by

K = K(U)o

Lemma €el T is weakly stable if and only if for every

fy 8 € Ly(X), there is a constant Cf,g such that
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vin =z [(Uf, &) ~c, _|=o.

n j=o0 8

If T 1is weakly stable, then Gf,g = (Kf, g) for all

The proof of the first part is straightforwarde The

second part is a consequence of the mean ergodic theorem.

Proof of Theorem 641 We shall first show that (1) <=e> (3).

(3) = (1). -If (2) is weakly stabley then for
4 B4, n(r™a0)B) = @B Gy O Ex D) s

strong Cesaro convergent and hence T is weakly stable,.

(1) => (3). Tet T be weakly stable. For rectangles
AXB and ¢X D in A®), we have that the sequence

m(z)(T(?’)-n(A XB)(XC XD)) = n(T™a() ¢)m(2"2B(7) D)

is strong Cesaro convergent, It follows that for every pair
A¥,B¥  of sets in 4(02), the field of finite disjoint unions
of rectangles in ‘A(z), m(g)(T(g)""n () B*) is strong
Cesaro convergent., Approximating now sets A%, B*E,;(2> by
sets from the field égf), it is not difficult to show that
the sequence m(g)(T(z)”n 4%(7) B¥) is strong Cesaro convergent

Fo the 1limit (K*1,,, lp,) where K* 1is the projection on
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the gubspace of L2(X<2)) consisting of invariant functions

for T(z). Hence .T(g) is weakly stable.

We shall next prove the implications (1) => (4) => (2)
=> (1). TFor notational convenience, we let i = I(T) in

what followss

+
(1) => (4) ) By the above part of the proof, the weak

stebility of T implies that of 72), Hence, for 4, B, C,
D e‘i, the sequence m(z)(T(z)"n (4% B)(T) (¢ X D)) converges
in the strong Cesaro sense to [ P(A X B i(T(g))) am(2) .
But C XD

nl2) (2B 5 By (6 D)) = m(T™A0) ©) a(r™PEC) D)

and so the sequence strong Cesaro converges also 40

éP(AI;)m % P(B|I)dm Thus

S { paxslz 0B wpalD) P3| }dm(z) = 0.
C XD
Fixing A and B, the integral vanishes over finite disjoint
unions of measurable rectangles and hence over all A(2)_

neasurable setss Thus

+) The muthor 1s indebted to Dre Je K. Ghosh for the
proof of this implication.
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P(AXB |I (T(z))> = P(A|I) P(B|I ) aece

The right side is an i(g)nmeasurable function. Moreover, for

any EBEx ¢ ;(2), since i(2) C; i (T(z)),

[PAlD pEIDan'® = feaxs iz (2(8)))an®
B B N

n{®) (4 xB)O) B*)

and so P(AXBI (22))) = p(axB[T(?)) ase.
From this it follows that I (7(2)) = 1(2),

(4) = (2): zet I(r(®)) =1I(®, 1r X i an eigen
value of U with-eigen function f, consider o
F(x,y) = £(x) £(y)s Then U(z) F=TF and hence F ig
;(T(z)) ~ measurable, ieca, 5(2)~measurable. Thus aecs
section of ¥ is i-measurable, ie€Cey invariant for Te
Teking a suitable section, we see that f is Teinvariant and

K"—: l.

(2) => (1)e If 1 is the only eigen value of U and
if E(e) denotes the spectral measure associated with U,
leCey,
U= [ AdE,
then for any fixed £ i K, the measure wu(A) = (E(A)f,T)

defined on the unit circle is non=atomices Then
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tends to zero as n ~> « (Halmos [24], pe 40). Tt follows
that (U°f, £) is strong Cesaro convergent to zero. Thig
cxtends, by standard arguments, to (Unf, g) for any gg Ly
and f] K. Since for fg¢K, it is trivial that (U"f, &) is
strong Cesaro convergent for any g¢g L2, it follows that T

is weakly stablee The proof of the theorem is completes
We now have a number of corollaries.

Corollary 6el T is weakly mixing if and only if 1 ds the

only eigen value of U and is simple,

Jorollary 6e2 If T is weakly mixing, then T(z) is weakly

nixingy if T(g) is ergodic, then T isg weakly mixing.

Proof. If T is weakly mixing, then l (T(z)) = i(g) as
well as I is triviale Thus I (22)) is triviel and so o(2)
is weakly stable and ergodic, is.ce, weekly mixinge If T(z)
1s ergodic, it is clear that T is ergodic angd i(T(g)) = i(g)

both being triviale Thus T is weakly mixinge

Corollary 643 T ig weakly stable if and only if every finite

dimensional U-invariant subspace of Lo(X) consists of inva-

" riant functions onlye



Préof. If the condition is satisfiecd, then 1 is the only
eigen velue of U and T dis weakly stables Conversely, if
L is any finite dim@nsionél subspace of L, dinvariant for
U, then U restricted to L is unitary and U £ I on L
would imply the existence of eigen values for U other

than 1

Corollary 6e4 If T d1s weakly stable, then U on Lo

has no finite orbits of order greater than one.

Proofse If there is a finite orbit of order k > 1 for U,
then there will be a finite dimensional invariant subspace on

which U is not the identitya

The converse of Coroll@ry 844 is not true in generale
Any ergodic rotation on the circle group will serve as a
counter=examples But if X is a compact abelian group, mnm
the normalised Haar measure on the Borel o=field of X and
T A

T a continuous automorphism of X, then the converse does

holde 8ee Corollary 10s41.

A sequence An of measurable sets in X is ecalled
a separating sequence, if, for every pair of points x £ y,
there is an integer n such that =x¢ A, and yeX m Age A
temma of Halmos and von Neumann {25 ] says that on a measure

space with a geparating sequence of gets, two invertible
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transformations which induce the same autcmorphism of the
measure algebra, differ on at most a set of measure zero,

This leads to the following corollarye

Corollary 6.5 If there is a separating sequence of sets in

Xy then no periodic transformation of period greater than

one cen be weakly stablece

Proof. If T =TI, n>1, then ¥ =T. So U will have
finite orbits of order greater than one, since U =TI would

mean, by the above remarks, that T = I asce

The conclusion of Corollary 645 may not hold if no
separating sequence of sets existe For example, if 4 1is
the trivial o~field, all transformations, including the

periodic ones, are weakly stable.



CHAPTER 7

THE STABILITY THEOREM~II

In this chapter, we shali show that the Stability
TheoremsI (Theorem 6el) can be proved in a failrly general seb-
up =~ fof certain gsemigroups of contractions on a Hilbert
space He We start with the #plitting ftheorem (see Chapter 3)
and define week gtability for a semigroup of contractions'in
terms of its reversible functionse For the semigroup gene-
rated by a single contraction U, the weak stability is
equivelent to the strong Cesaro convergence of the sequences
(v™f, g) where f,g¢ H, so that the weak stabllity introduced
here coincides with the earlier definition in the case of a
measure=-preserving transformations The main results
(Theorem 72 and Theorem 7e3) are about the tensor product
of operators acting on the %tensor product Hilbert spaces
Applying these to semigroups of contractions induced by
measurcepreserving transformations and trangition functions,

we get generalizations of the mixing theorems

Tet U be a semigroup of contractions on the Hilbers$
space He The splitting theorem (Theorem 3.1) then gives H
as the direct sum of the subspaces R = R(E) of reversgible -

elements and F = F(Q) of flight elements for ﬁ. The
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subspace R is spanned by a family of mutually orthogonal
finite dimensional invariant subspaces and the restriction of
the semigroup ﬁ to R 1is a group of unitary operatorse I%
is clear from the definition of a reversible element that any
invariant element is rewsrsible: K(ﬁ) C: R(ﬁ). The semigroups
of our interest &re precisely those for which these two sub-

gpaces coincidee

Definition 7el A semigroup U of contractions on H is

weakly sfablq if every reversible element is invariante

Bxamples of weakly stable semigroups are easy to find.
Indeed, it follows from Lemma 7.3 of deleeuw and Glicksberg
[L0 ] that any convex semigroup of contractions, ise., any
semigroup of contractions closed under the formation of convex

linear combinations is weakly stablees

Let us first consider the semigroup U to be {Un: ni O},

generated by a single contraction Us It can be seen that R

" in this case is spanned by the eigen vectors of U with eigen

values of modulus onee Hence U 1s weakly stable if and only
if every eigen vector of U corresponding to an eigen value
of modulus one is invariante Moreover the weak stability of
U cen be characferised in terms of the sequences (Unf, g)

where f, g & H, as the following theorem showse We need a
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lemma due to Foguel [17 ] for its proofe-

Lemnma 7,1- For a.contraction U on a Hilbert space H, let

L= (£ vPell=llzll o2l = fi2]] for n=0,1,2,... ]

where U* ig the adjoint of Ues Then L is a subspace of H
invariant under U and U*e The restriction of U %o L is

unitarys If g l L, then Ung tends to O weakly.

Theorem 7ol A contraction U on H 1is weakly stable if

and only if for every £, g€ H, the sequence (Unﬁv g) is

strong Cesaro convergente

Proofe Let U be weakly stable. By the gplitting theorem, H=

K(U)® F(U). We shall apply Lemma 7.1 to F=TF(U) and write

F:Fl

U, U on F, is unitary and U'f tends to O weakly for
1 £

& Fo where Fq and F2 are subspaces invariant under

every fe€ Fge It is immediate that the sequence (v™t, g) is
strong Cesaro convergent for all fg X & Fz and all g¢€ He
Let UO be the restriction of U to Fl.' Considering the
gpectral representation of U,s We can prove, as in Theorem
6el, that for all f, g€ Py, the sequence (U? f, g) is strong
Cesaro convergent to zeros Putting these together, we see
that for all £, g¢ H, the sequence (Unf: g) 1is strong Cesaro

convergent.



Let now (Unf, g) Ybe strong Césaro convergent for every
fy g€ He If U 1is not weakly stable, then there exists an
element f such that ||f|l=1, Uf =af, Al =1 and AL
Then QUnf5 £) = A" which is not strong Cesaro convergent = a
contradidtion, Thus U is weakly stable and the theorem is
proveds

A few interesting results on the weak stability for
nowers and roots%of s, contraction on a Hilbert space can be
proved as in Chapter S5 Indeed enalogues of Theorems Dal,

52 and 5¢3 as well as Corollaries 542 (for an Lg-space).

and Se3 hold goode

We now introduce the tensor product of two Hilbert
spaces M, and H, with inner products ( )l and
( ’ )2 respectively. Consider the set H* of all formal
finite linear combinations of formal products feg with

feHy and ge Hoe The product is assumed to satisfy the
relations (fl+-f2).g =2 fl.g + fz.g, f.(gl+vg2) = f.g1+ f.gz,
(af)e & = folag) = a(feg) for all complex numbers o and
Tyf1sf5€ Hy, &, g1y 5 € Hge The set H* is linears The
sensor product Hl X H2 is defined to be the completion of H*

with respect to the inner product.

(fl.gl’ fz‘gz) = (fl’fz)l (gl’ gz)g'

*) We consider only roots which are contractions.
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 If Hl = Hz.: H, the tengor product HX H is denoted by
H(g) and called the tensor square of He It 1is clear that if
H 1s the Lp=-space of a probablility space X, then H(z) is

the Lg~space of the Cartesian square X(g).

given a contraction U on H, we define its fensor
squarev'U(z) = UX U on H(z) by writing U(z)(f.g) = Uf.Ug
for all £, g€ He U{g) is a contraction on H(g). When U
is the isometry on ILg{X) induced by a RmeasuUTe=preserving
transformation T on X, U(g) is the isometry on LZ(X(Q))
induced by @(8>. For a semigroup g of contractions on H,
the set ﬁ(g) = { 0(2): Ue ﬁ } is again a semigroup of contrac-

tions on H<2>. We shall be using the splitting theorem both

for ﬁ and for ﬁ(z). Obvious notations will be used for the
subgpaces of reversible, flight and invariant elements for
Qtz). The tensor square of w(U) is denoted by w(ﬁ)(z); £0
also that of R(ﬁ) etce To prove our main results, we need

the following two lemmass.
Lemma 7.2 W(g_{g)) = W(E)(z)o

Proofs Let W(z)e W{Q)(z) with Wwe w(U)e There is a net

Uﬁ in ﬁ converging to W in the weak operator topologys
Then U&g) converges to §(2) in the weak operator topology
in 52 and nence w'®lg w(ﬁ(z))- Thus W(ﬁ)(z) Ci W(ﬁ(g)).
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If now W@ W(U(z)) then there is a net U( 2) in U( )
converging to W in the weak operator tOpology in H(2>
Since Uae;g C; W(Q) and W(H) is weakly compact, there
is a weakly convergent subnet U, with limit U, € W(E). Tt
follows that W = Uéz) € w(g)(g). Thus w(g(g))c; w(ﬁ)(z)

and the lemma is provede
Lemma 7e3 R(E(Z)) = R(E)(B).

Proof. We shall first show that r(y) (&) C r(@(®)). Tet £
and g be reversible elements for g and consider Tege
Since w(g(g)) = w(g)(2>, any element of w(g(z)) is of the
form W& for some We w(ﬁ). Since f and g are rever=
sible and since w(U) acts as a group of unitary operators on
R(U), given We W(U), there exists a W GW(U) such that, for
all reversible elements h, W Wh =h and hence (E)W(z)(f g)
= feg with. ng)e W(ﬁ)(g) = W(ﬁ(z)). This shows that

feg & R(UL2)), )

Begides, it is easy to see that @ F(E), ge H imply

(2))

that feg and gef are in F(U Thus F(ﬁ(g)) contains

the subspaces P X Ry, RX F and P X Fe Since
2l o R(ﬁ(g)) @ F(ﬁ(g)) as well as

=2®) 9 PXRERX F@®FXTP, we see that
R(ﬁ(z)) = R(Q)(z) e The lemma is provede



Our first main result shows that weak stability is
pregervaed under passage to tensor squares if there exists at

least one nonw~gero invariant eliement.

Theorem 7«2 A semigroup Q of contractions on H with
K(U) # 0 1is weakly stable if and only if its tensor square

9{8) 15 weakly stable.

Proof. Let é be weakly stables Then R(g) = K(ﬁ) and 8o
rw®)y < (@ ® = &) (® Ci k(U{®)). Since the opposite
inclusion holds always, Wé gee that R(g(g)} = K(é(z})w=K(§)(2}-
This shows that g(z) is weakly stable, "

~ Conversely, suppose that §(2) is weakly sbtable. Then
R(g(z)) = K(ﬁ(g)). If U is not weakly stable, then there
will exist a non~invariant vector £ in R(ﬁ). Let g be a
non~zero invariant vector. Then f.g € R(ﬁ) X R(ﬁ) = R(ﬁ(g))
(2)

but is not invariant under U - a contradictione The -

theorem is proved.

The condition K(U) # O is used only in proving that
17 U8 ig weakly stable, them U 1is weakly stables That
 this result may not hold if K(ﬁ) = 0 1ig seen by considering
the single contraction U = «I. In this case, U is net |
weakly stable but U(z) is the idéntity on H(g) and so is
weakly stables
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. We need to introduce some terminology before presenting

the next theorem. By a conjugation J = on a Hilbert space H,

is meant a one-one conjugate linear map of H onto H such that
72 = T and (3£, Jg) = (g,f) for all f, ge¢ H. 4An operafor
U on H is said to be igé; with respect to a conjugation J
(8tone [50]) if UJ = JU. Let us call a family U of opera=-
tors ggéi 1f there exists a conjugation J with respect to

which every Ug U is reals Out result below is for real semie~

groups of contractionse

Theorem 7.3 A real’semigroup H of contractions is weakly .

stable if and only if K(Q(z)) = K(Q)(z).

Proof, The proof of the necessity part (for not necessarily

real semigroups) is contained in that of the preceding theorems

Suppose now that Q is not weakly stable. Then, by the
splitting theorem, there exists a minimal finite dimensional
subspace R; of R which is invariant under ﬁ but does not
consist of invariant elements alone. Without loss of generality,
we can ascume that RiJ_K. Since U is real, J(X) = K where
J is the associated conjugation. Hence J(Rl)iiK.’ If
{ fl""’ ﬁn} is an orthonormal basis for Rl, then
{ Jfiseney Jf}l} is an orthonormal basis for J(Rl). It can be

n
shown that the nonezero element 2 (fi.in) is invariant for
i=1 '
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ﬁ(z)(using the fact that the restriction of any Ui:ﬁ to R
is unitary), but is orthogonal to K X K = K(E(g)). This
completes the proofe.

We shall now turn to applications of the above resultse

(2)

Let X Dbe a probability space and X its Cartesian squarce
As we have already noted, Lz(X(2>) is the tensor square of
Lz(X). We shall consider the natural conjugation J in

Lo(X) which takes any element f to its complex conjugate fe
The condition of reglity of a family ﬁ of operators then
means that Uf & UF for every f and every UE ﬁ. Let us
take a semigroup ﬁ of contractions on 'LZ(X). Along with
the weak stability of U, we can consider the following two

properties E may posSsesSsSe

Definition 7e2 A semigroup U is efgodic if every invariant

function is a constant,

Definition 7e¢3 A semigroup E is Wéakly nixing if it is

weakly stable and ergodic, iece, if every reversible function

is a constante.

From Theorems 7.2 and 73, we get the following results.

-

Corollary 7el A semigroup ﬁ with K(ﬁ) £0 is weakly mix-

ing if and only if its tensor square ﬁ(g) is weakly mixinge
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Corollary 7e2 A real semigroup Q with K(ﬁ) A0 is

weakly mixing if and only if ﬁ(g)' is ergodice

When U 1is a semigroup of isometries, the weak stabi-
lity of ﬁ can be defined without any reference to reversible

vectors, by virtue of the following lemnmae

Lemma 7ed A semigroup ﬁ of isometries on H is weakly
stable if and only if every finite dimensional invariant sub-

gspace of H consists only of invariant vectorse

The proof of this lemma is done by showing that any
finite dimensional invariant subspaoe‘of H is contained in

R(U) .

Let now Eo be an arbitrary family of isometries on
Lz(X). With the usual definitions of invariant functions and
subspaces for go, we call Ho ergodic if every invariant
function is a constant and weakly stable (weakly mixing) if
every finite dimensional subspace of Lo(X) invarient for
Yo consists only of invariant functions (constants, respec=-
tively)e It follows that the ergodicity, weak stability,
weak mixing and reality of ﬁo and E, the semigroup genera-
ted by U, are respectively equivalente Thus Theorem 72
and Cecrollary 7el held for an arbitrary family ﬁo of

isometries for which there exists at least one non~zero



invarimt vectors If this condition is satisfied and if U

is real, then Theorem 7¢3 and Corollary 742 also hold for U

We can apply these results to an arbitrary;family io of
measure-preserving transformations on Xe Let 'ﬁo be the
family of induced isometries on Lg(X)s Iet 322) be the
Cartesian square of the family T , ises, é(o‘?)c{T(z):@e;’l:b} .
Then the tensor square 6(2) of § is the family of isome=

0 |
tries on LB(X(2>} induced by ng) e Let I Ybe the owfield

of sets invariant under T o® 20 is ergodic if I dis trivial.

Clearly, io is ergodic if and only if U, is ergodice Let

us call 20 weakly stable or weakly mixing according as §O
is weakly stable or weakly mixing, The family U_ is obvi-

ously real and constants are non~zero invariant functions. 8o
the preceding results hold for Q s le€s, 20 is weakly stable
if and only if T(B) is so and also if and only if I(T(g)) =

(T )(2) (which is equivalent to the relation K(U(Z)) =

K(go)(z)}. Besides I 1is weakly mixing if and only if 222)
is ergodie. This generalizes the Cartesian square part of the
classical mixing theorems This result has been obtained by
Moore [42 ] for Borel transformation groups and by Dye [15]
for amenable topological semigroups of transformations. Dye
{15] has a1s0 obtained, for such semigroups of transformations,

another interesting equivalent conditione To this we shall
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return in a few momentse

The genocrality of our results enables us to apply them to
semigroups of transition functions slso. ILet £ be a semigroup
of transition functions with invariont measure m and let U
be the semigroup of contractions iaduced on L2(X). Q‘ then
is real and constants are invariant for Us Thus Theorems

7e2 and 743 as well as Corollaries 7.1 and 7.2 hold for U

It is clear that cur results in this chapter generalize
the equivalence of conditions (2), (3) and (4) of Theorem 6el-
For a single contraction U, Theorem 7.1 connects these up
with condition (1) of Theorem 6e¢l. It is interesting to note
that Dye [15] has suitably generalised condition (1) %o the
case of amenable topological semigroups of transformationg.

We now describe this part of his results along with a corollar—~

on the weak stability of such semigroupse

Let S De an amenable topological semigroup (see Chapter
3) and C{(8) +the Banach space of complex-valued continuous
functions on S with supe.norme (For the following results,
Dye requires only the existence of both a right mean and a left
mean on C(S).) We say that a function g C(8) 1is almost
convergent with limit M_ if M(f) = M, for each right mean

and each left mean M on G{8).



Let U ='{-Us } be a (weakly)continuous representation
of S onto a semigroup of isometries on a Hilbert space He
As we have already noted, any finite dimensional subspace of
H invariant under ﬁ is contained in Rs This together with
Lemma 3e4 of Dye [15 ] allows us tc identify the subspace
P = F(ﬁ) of flight vectors as:

F(Q) ={ f3 I(Usf, g)| is almost convergent to O

for every g€ H } .

The proof of the following result (part of Theorem 1 of Dye
{15]) is clear.

Theorem 744 Let ﬁ be a continuous isometric representa-
tion of an amenable topological semigroup S on H. Then U
has no finite dimensional invariant subspace if and only if
for every f, g € H, the function |(Uf, g)| is almost con-

vergent to zerce

Prom this, we get the following corollary on the weak

stability of Us

Corollary 7e3 1Let U be as in Theorem 7.4. Then U 1is

weakly stable if and only if for every f,g€ H,

](Usf, g) - (K(ﬁ)f, g)| is almost convergent to zeroe

Proofe One applies Theorem 7e4 to the restriction of

U o K(U)te



To apply this to the case of measure-preserving
transformations on X, let g => Ty be an anti-homomorphism

(i‘e., T

S T, T, ) into the set of measure~preserving
1% Y2 M -

transformations on X such that the map s => m(T'S'l A O)B)
is continuous for all A4, B¢ ;. Then we have the following

results

Corollary 7e4 For a semigroup { T } of measure-preser-

ving transformations on X with the above-mentioned proper-
ties, the weak stability is equivalent te the almost conver-

gence to zero of the functions Im(T's'lA(—) B) - [ P(a] I)dm |
- B

where A, BE 5;.



CHAPTER 8 : .

THE STABILITY THEOREM-~ITI

There is another interesting mixing theorem due‘ to
Hopf [28 ], concerning the weak mixing of a measure-preser-
ving transformation T on a probability épace (X, ;, m)e We
consider again the Cartesian square (X(z), ;ﬁz), m(g)) of

T(g)-of the transforma-~

(X, ;, m) and the Cartesian square
tion T. A set i*e A'Z) 1is called symmetric if

m(z) (A% + A*) = 0 where A* =~.{(x,y): (y. x)€ A*} e Let
é(g) be the cwfleld of symmetric sets in A‘z) and m(z) the
restriction of m(z) to‘_éézz Since the inverse image of a
~symmetric set under T(g) is symmetric, T(g) ‘may be restric-

ted to a transformation Tég) on the measure space

(X(g), é(i), mgz)). Hopf [ 28] has proved that T is weakly
mixing if and only if Téz) 1s ergodice Since this means that

T(g)—invariant gset has measure © or 1_fhen

if every symmetric
T is weakly mixing, this result, in a way, is stronger than

the mixing theorem we have referred to earlier. -

In this chapter, we shall prove the following generali-
zation of the above symmetric mixing theorems Recall the
definitions of weak stability, weak mixing and ergodicity for

a ‘semigroup T of measure~preserving transformationse



Theorem, 8e1 A countable abelian gemigroup T of measure-

pregserving transformations 1s weakly stable if and only if
aece section of every symmetric i(2>-invariant get is

Ieinvariante

Proof. The necessity part is true for the none-abelian case
alsoce Let i be weakly stable and ﬁ the semigroup of
induced‘isometrio operatorss. Let A* be a symmetric
2(2linvariant sete It is sufficient to show that almost every
y~section of the real symmetric function 1, (xy ¥) is
iﬁinvariant.

Consider the compact Hermitian operator V on L2(X)

defined by
(VE) (x) = S 144(x, y) £(y) m(ay).

Let ho = 0, xl, kg, ees be tke eigen values of V and

Kos n=0, 1, 2yees be the corresponding eigen subspaces.
Since, as is easily verified, V commutes with each Ue{ﬁ ’
every K, is invariant under E. But X, for n Z 1, is

- finite dimensional and so, by the weak stability of U,
consists only of invariant funetionse It follows that Ul= L

for each Ug Us iecs, for each T ¢ I and fe Ly(X),
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f 1A* (TX9Y) f(y)m(dy) = f lA* (X’Y) f(y) m(dY)o

From this, it is easy to deduce that 1,4(Tx,y) = 1,,(x,y)

£(2)

aeCe O for all Te:i and hence aees y=section of

lAﬁ (x,y) is i—invariant.

To prove the sufficiency of the condition in case T
'is abelian, we first note that the splitting theorem
(Theorem 3+1) for the abelian case gives R(ﬁ), the sub~-
space of reversible functions for ﬁ, as the direct sum of
one dimensional invariant subspaces; each one dimensional
subspace being characterised by a function Ay on ﬁ of
modulus one with the property that UL = A;f for each
Ué:ﬁ and f a non-gero function in the subspace considereds
Thus to show that ﬁ is weakly stable, it 1s enough to show
that every such Ny i1s identically equal to le Assume the
contrary and let Ay # 1 and f be such that UF = A f
for ell UE U. Then £ | K(U). Consider the non=zero
ﬁ(zlinVariaﬁt function PF(x,y) = f(x) f(y). If
f(x) = £,(x) + 1f5(x), then Re F(x,y) = £, (x)E; (y) +
£,(x) £,(y) 1is a real symetric invariant function for U\Z)
and so the assumed condition implies that aeee y=section of
Re F(x,y) is ﬁ-invariant. Since £ K(U), f; as well as £,
are orthogonal to K(ﬁ). For a fixed vy, Re P(x,y) is a
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tinear combination of fl(x) and fz(x) and so orthogonal to

K(ﬁ). Thus we get a contradiction if we can find a y_ such

that Re F(x,yo) is nonezero and invariant under U.

Since f # 0, the set { x: £(x) #0 } =B 1is of posi~

tive measures We have B = Bl (:)BZ'Q}IBS where
Bl = {xt £3(x) =0, f,(x) £0 }, By = {x: £,(x) #0,

fz(x) =0 } and By = {x: fl(x) #£0, £(x) #£0 } o If By has
positive measure, a suitable Y, can be taken so that

Re F(x,? ) 1is a non-zero U-invariant functions Similar is

0
the case if B2 has positive measuree. In case B1 as well as
By, are of zero measure, B3 must have positive measures. If
By is the singleton set { yo}', then Re F(x, y, ) % O if
there exist two points y; and y, in By such that

£, () ) £, (yg)

£ (y,) T (yg)

&1 2 2
then Re F(x,y)=0 over By X B would imply that
£1(x) = £5,(x) =0 over By = a contradictione So Re F(x,y)#0
over B33K Bz and a suitable yo—section can be taken for
which Re F(x,yo) is nonwzero invariant. If finally
£, (y7 £, {27
1 _ 1 = Xk
?2!y5 - fZ(zi -

for all y and z in Bzs then Re F(x,y)=(k2+l)[fz(x)fg(y)]ﬁo
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over By X B and hence again a suitable yo-section can be

3
taken, Thus in all cases, there is a y_~section such that
Re F(X,yo) is non~zero and invariant. The proof of the

theorem is complecte.

Corollary 8.i A countable abelian semigroup i is weakly
7(2)

mixing if and only if every symmetric ~invariat set has

measure zZero Or Ones

Proofe Let the cogﬂition be satisfiedes Clearly i is ergodic.
If A* 1is any symmetric é(z)—invariant set, then asecs section
of A* has measure one if A* has measure one and megsure
zero if A* Thas measure zero. In either case, ase, section
of  A* is i—invariant and so i is weakly stable. Thus i is

weakly mixinge

If v is weakly mixing, then for any symmetric
invariant set A%, aece y=section of A* is .E-invariant
and hence has measure zero or onee The gset { y: y=section of
A*  has measure one } is i-invariant and has measure zero

or onee Then A* itself has measure zZero or oOnee.

Corollery 8e2 T (E_(g)) - 1(M®) ir ana oniy if

;ﬁ(g(z)) = l(i)(g) for a countable abelian semigroup i,



The proof is done by using Theorem 8.1 and the
results of Chapter 7. The point of interest here is that

weak stability is used in proving a general assertion about

certain o~fields in the product Space o

T W e s . - —



CHAPTER 9

SKEW PRODUCTS AND TRANSITION FUNCTIONS

. In this chapter, we continue our study of families
of measure-preserving transformations on a probability
space (X, 5, m) but now with a different set upe ILet
T = {Ty t Y6 Y } be 2 family of measure-preserving trans-
formations on X. We assume that Y ditself is a probabi-
1ity space (v, ﬁ, t)s This set up has been considered by
various authors (see Gladysz {19 ] for references) and
réndom ergodic theorems have been proved, Kakutani [34 ]
discussed the ergodicity of the family 2 and Gladysz
{191 followed up with a discussion of the weak mixing-
properties of i; The interesting results relate such pro-
perties of the family ﬁ with those of a certain 'skew

product' transformation and of a transiticn function = which

we proceed Lo introduce.

We shall assume throughout this chapter that the
Tamily 2, satisfies the following property: AG:; implies
that the set { {x,v): Tyxe A } is a measurable subset of
XX Y, The definitions of invarient sets, functions and

subspaces for i, used earlier, have to be modified slightly
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in accordance with the principle that sets of zero measure

are negligible; cege, 2 subspace L of LZ(X) is invariant
if UyL c; L fqr almost 211 ye€ Y, where Uy is the isometry
induced by Ty' This has to be kept in mind when we talk of

ergodicity, weak stability etce, of the family 2.
The family 2 induces & transition function P(x, A)

on XX A as follows. (See Kakuteni {34 1)

P(x, &) = {y: T,x€ A } xeX, ACA o

y

This transition funection leaves the measure m invariant:
S P(x, &) m(dx) = m(A).

The contraction U on Ty(X) induced by P{x,A) satisfies

the relation:

(UEX(x) = [ f(TyX)u(dy).
¥

Hence we also have

(U‘kf).(x) = foed (D, Ty oo TRy ularp) e wlan)

fOI' k = 2,5,.0v

Let (Y*, B*, u*) be the one=gded infinite product of

(Y,B, p) with itself. The nth coordinate of a point y*€ Y*



ie denoted by yn(y*) for n = 0,1,2,e.. The shift X 1in Y%
defined by y, (X y*) = yn+l(y*) is a measure-preserving trans-
formation on Y*. The skew product transformation Q is defi=

ned on (X X Y*, g:%g*, m X p*) by the equation

C{)(X,y*) = (Tyo(y*) Xy x y*).
The transformation Q preserves the measure mX p*e. It is

easily seen that
n * = L S n *
? (ny ) = (Tynwl(y*> Tyo(y*)l{yx Yy )

for n = 1,2,e0« @

Kakutani [34] proved that the ergodicities of I, U and
9 are equivalent. He posed the interesting problem of discus-
sing the wesk mixing properties of T, U and §. In this
chapter we shall discuss the weak stability properties of i,
U and ? and obtain, as a corollary, a result on their
wegk mixing properties., More precisely, we prove that the
weak stability of @ and U are equivalent and equivalent to
the following property of the family i which, as we shall

see bflow, is weaker than the weak stability of IT.

Definition 9s1 The family T is oalled weakly G-stable if

Inl =1, fe L2(X) end ny = Af for almost all y dimply
that XN = L.



This definition corresponds to the definition of weak
mixing (hereinafter referred to as weak Gemixing) of the family
2 according tec Gladysz [ 19]. Gladysz has proved the equivas
lence of the weak G-mixing of T and the weak mixing of 9.
Here we go a step further and bring the operator U into
the picturces Besides we do not assume the invertibility of
the transformations in Te TFirst of all, let us establish
that the weak Gestability of T is weaker than its weak

stability.

If T is weakly stable and if there is an f¢ L, (X)
and a cbmplex numbér A of modulus one such that ny = Af
for almost all y, then the subspace spanned by f 1is an one
dimensicnal invariant subspace and so conéists of 1nvariant
functions, lees, f is invariante Hence i is weakly
Gestables But the converse is not true in general., Consider
X =Y = the circle group with Legesgue measure and Tyx = XYy
for ali x€ Xy, y6 Yo The fanmily i is then weakly G-mixing
and hence weakly Ge-stables For, if f¢ Lg(X) with ny = Af
for almdst all y, A =1, let £(x) = L oyx"s (We know that
the functions f (x) = ¥, n =0, £ 1y + 2, eoo form a complete
orthonormal basis for Lg(X).) Then (Ujf)(x) = X cnxnyn =

-

X qnlx@' and hence cn:y'n = A ) for all ne If f 1is not a

constant, some c, with n #0 is non-zero, say, c, # O
. 0
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Then vy © = Ay 1e€e, ¥ is a root of A. Thus ny= Af can

hold only for at most a countable number of values of ¥y
(those y which are roots of A\) = a contradiction. Hence

f must be a constant. However, the family i "is not weakly
stable, since the one dimensional subspace of Ly (X) gene-
Aated by the function f(x) = x, n #£0 is invariant, but

X . . , n
contains the non=invariant function f(x) = x .

Por proving our main result on the weak G-gtability of
the family 2, we need the following special case of a

lemms of Gladysz [19].

Lemma 9s1 If F(x, y*) € Ly(XX ¥*) is such that

P9 (x, y*)) = a? (x, y*) BeCe

for some constant a of modulus one, then there exists a

measurable function g(x) such that
P(x, y*) = g(x) QeCe

Theorem 9«1 The following statements are equivalent .

(1) i is weakly Ge-stable
(2) U is weakly stable
{(3) ¢ is weakly stable.
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Proof. e shall prove that (3) => (2) => (1) => (3).

If ¢ is weakly stable, then for P, ¢ g Lo (XX 1*),
the sequence (F(@k), G) 1is strong Cesaro convergent. Taking
now f, g€ Iy(X) and putting F(x, y*) = f(x) and
G(xy, ¥*) = g(x), we have

F((Pk(x, y*¥)) = f(Tylrul(y*) eoe Tyo(y*} x)

and g0

(P(9%),0) =

zx ){Y\kf(m&k 1(3’*)" .Tyo(y*)x)g(xi m(dx)g*(dy*)

-

It}

§ §.'.{f(Tyk *..?yox}é(iy n{ dx) ngdyknl?...n(dyo)

-

(ka, )

H

and hence the seguence (ka, g) is strong Cesaro convergent.

By Theorem 7¢l, U is weakly stables Thus {(3) = (2).

Let U be weakly stable. If 2 is a complex number
of modulus cne such that, for some fg T (X)), (ny}(x) =
Af(x) aece (y), then

.(Uf)(X)

]

fﬁ%fNX)uUW)
¥
AT (x).

i
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.

Thé weak stability of U dimplies that X\ = 1 .and hence
(2) => (1)

Let now i be weakly Gestables If ? is not weakly
stable, then there is a XN #£1, |A| =1 and an FEL, (X X ¥*)

such that

F(q (xy ¥*)) = X P(x,y*) AeCe

By Lemma 941, there is a function g¢ Lo(X) such that
F(x,y*) = g(x) Se€e
Hence we have

g(T ) X) = hg(X) 2eCe

¥, (y*
It is now easy to see that for almost all YV

g(Tyx) = Ag(x) aece(x)

Since T dis weakly Gestable, A =1 = a gontradiction.

Thus (1) => (3).,

Gqfolla;y el The following statements are equivalent.

(1) T is weakly G-mixing
(8) U 1is weakly mixing
(3) ¢ is weakly mixing,
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Tt would be interesting to extend the reewlt of this
chapter to families of contractioné on an arbitraryogilbe;t
spacee Specifically,let (Y, B, u) be a probability space and
let, for each yeE Y, Uy be a contraction on a Hilbert
space Ho The weak G-stability of U - { U, } is defined

in the obvious waye The cquation
(ve, g) =f (nyy g) uldy)

for f, g € H, yields a new contraction U (under suitable
measurability assumptions). Is the weak stability of U
equivalent to the weak‘G—stability of the family g? It is
casy to see that if U is weakly stable, then g is weakly
Gegtables We are unable to answer the other part of the

quegtione.

Y O — g -



CHAPTER 10

AUTOMORPHISMS OF COMPACT GROUPS

Throughout this chapter, X 1is a compact topological
group with A, the o-field of Borel sets and m +the norma-
lised Haar measure on Xe Our aim 1s to study the weak
stability properties of continuous automorphisms of X
For this, we shall need the following facts fromdthe repre-

sentation theory for compact groupse

A representation i.= { V(x) } of X in a Hilbert
space H 1is a strongly continuous homomorphism x -> V(x)
of X dinto the group of bounded invertible operators on
He TIf H is finite dimensional, we call i finite dimen-
sionale If V(x) dis unitary for each =x& X, then i is

called a unitary representations

Iwo representations V; and ie of X in Hilbert
spaces Hy and H2 respectively are called equivalent if
there exists an isomorphism W from Hy to Hy such that

Vl(X)W = WV2(X) for all x€ X.

A representation ¥V of X in H is irreducidble if
no proper subspace of H is invariant under all V{(x),

X6 Xe
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An important result for a compact group X is that
every fepresentation of X in a Hilbert space is equivalent
to a unitary representations Moreover,.every irreducible

unitary representation of X is finite dimensional.

Let { V(x) } be an irreducible representation of X
acting on He With respect to some orthonormal basis for
Hy we may consider the representation as a set of matrices
{‘vii(x) } e« For fixed i and J, the function vij(x) on
X 1is continuocus; the functions {'vij } are called the matrix
functions of the representation. The trace of the matrix
{vi3(x) }is called the character of the (irreducible) |
repregentation; it is independent of the orthonormel basis
chosens Two irreducible representations are equivalent if
and only if they have the same characters We denote the set

of 211 characters by Ch{(X).

Let the family of all equivalence classes of irreducible
‘representations of X beﬁinéexed by a. With the equivalence
class with index «, we can‘ag;;oiate uniquely a finité dimen-
sional subspace §, of Lg(X), spanned by the matrix func=
tions of any representation in that classe The eelebrated
Peter~Weyl theorem then says that the Sérs are mutually

orthogonal and ILo(X) = @ 8,
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If X 1is a compact abelian group, the foregoing theory
gimplifies very muche Here every irreduoible representation
is one dimensional and so an irreducible unitary represe nta-
tion of X is only a continuous homomorphism of X into
the circle groupe This is also the character of the repre-
gentatione The set of all characters is a group and forms

an orthonormal basis for Lz(X)-

We now come to the study of continuous automorphisms
of the compact group X. These are invertible measure -preser-
ving transformations on Xe For convenience in presentation
and for motivating the results in the general case, we shall

congider abelian groups firste

Let T be a continuous antomorphism of the compact
abelian group Xe The induced unitary operator takes charac~
ters to characters and indeed is an automorphism of the
character group Ch(X)s It is well known that T is ergodic
if and only if U on Ch(X) has no finite orbits on the set
of non~constant characters in Ch(X)e Besides, the ergodicity
of T 1is equivalent to its mixing (Halmos [24 })e Motivated
by this result, Maitra [ 41] has shown that T is stable if
and only if U has no finite orbits of order greater than

one on Ch{X)s The following theorem and its corollary on
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the weak stability of T are immediate consequences of this

result and Corollary 6Ge4s

Theorem 10a1 T 1is weakly stable if and only if U on

Ch(X) has no finite orbits of order greéter than one.

Corollary 10e1 T 1is weakly stable if and only if U on

Lg(X) has no finite orbits of order greater than one.

Note that Theorem 10el and MaitraTs result quoted above
show that every weakly stable automorphism of X 1s stable.
An example of an automorphism X which is not weakly stable
is the automorphism which takes every element of X to its

inversee

We shall now consider examples of weakly stable automor-
rhismse If X 1s the circle group, then.the only weakly
stdble automorphism of X d1is the identity. On the tori,
however, we can find examples of non=trivial weakly stable
automorphismse To see this, let, for any integer k > 2,

X(k) be the kwdimensional torus. We know (see Jacobs [ 33])
- that there exists a one~one correspondence between automor-

(k)

phisms of X and matrices of order k with integral
entries and determinant + 1 such that if T is an automor-

phism and (tij) the corresponding matrix, then for every
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(le Xogewey X'k) e X(k)y T(lexgy'O"!xk) (XE’X;yOO"x;C)
T, -

; 15 Yo Yy >
where xj =X XZ“J... X © for 1 £ j £ ke Moreover, the

character group on (x5) of X(k)

()

may be identified with
, the k~fokd direct product of the group of integers 2
with itself such that the action of U on Oh(X(k)) coin=-
cides with the action of (t;5) on 2(8) gefinea vy

(tij)(n15 n2!""nk) = (ni5 né,...,n£ ) where ni = I njti"

T 1is &herefore weakly stable as soon as (tij) does not have
orbits of order p >1 on Z(k)e For this, a sufficient con~-
dition is that no eigen value X #£1 of (tij) should be a

root of unitye (For, if T were not weakly stable, then

there would exist an element ng¢ Z(k) of order p » 1 for
(tij). T+ can then be seen that (tij) must admit an eigen
value different from unity, which is however a pth root of
unitye) This condition is mild enough to enable us to cong=
truct many weakly stable automorphisms of X(k). In fact, we
can have families of weakly stable automorphisms none of which
is weakly mixing. Eege, if (tij) is an integral-entried
matrix of order k such that t;; =1 for 1 S i<k, tij= 0
for 1> j, 1 <1, 3 <k and %o # 0, then the corresponding
(k)

automorphism on X is antiperiodic and weakly stable but

(see Jacobs [ 33]) not weakly mixinge



An interesting property of weakly stable automorphisms

of a compact abelian group 1s given by the following theorem.

Theorem 10,2 An sutomorphism T is weakly stable if and

only if the subspace of invariant functions in ILo(X) is

spanned by the invariant characters in  @h(X)e

Proof. Let T be weakly stables K(U) denotes the subspace
of invariant functions. Let { T, } be the family of non-
invariant characters in on(x). To show that X(U) is
spanned by the invariant characters, it is enough to prove

that if f = 2 cafa with 2|0a|2 { o dis any invariant funce

tion, then f = 0, But this follows ecasily from the fact

that U has only infinite orbits on the set { fa } .

If T 4is not weakly stable and g 1is any nom -invariant
character in Oh(X) such that for some integer p > 1,
UPe = g, Ugyeeey, UP™F g are al]l distinct, then the function
h =g+ Ug + see + ¥l & is a nonezero invariant functiona
h is therefore in K(U) but is not in the span of the

invariant characterse.

We shall now consider T +to be a continuous automorphism

of a general compact group X



Given an irreducible representation E = { Vix) } of X,
let us write @ ¥ =¢ {7(x) } = {V(1x) } which is another .
irreducible representation of X acting on the same Hilbért
space as Ve It is trivial that 9 takes equivalent repre=
sentations to equivalent representations and so induces a map
of the set E of all Sé s onto itself, which also can be
denoted by 9. Indeed Q(Sa), for any «, is the image of
S, under Us It is easy to check that the action of ¢ on

F may be identified with the action of U on ~Oh(X) and

hence that U maps - ‘Qh(X) onto itself,

Kaplansky [35] has observed that even for the non=
abelian case, the conditions of ergodicity and mixing are
equivalent for automorphisms T of X and that T is
ergodic if and only if U has no finite orbits on the set
of non=-constant characters in  Ch(X)s TLooking at this
result and Theorem 10.l, one is tempted to conclude that,
even here, T is weakly stable if and only if U has no
finite orbits of order greater than one on Ch(X)e. But
this would be rashe For, if T is any inner automorphisgm
of X, ie€s, Tx =yxy L for some ye X, then U is the
identity on  Ch(X), but no inner automorphism, except the
identity, can be weakly stabley in particular, no inner

automorphism can be ergodice For, if T is an inner



automorphism of X, then Q(Sa) = 5, for every a and hence
every Sa is a finite dimensional invariant subspace of U
When .T is weakly stable, U dis the identity on every Sa
and hence on ILg(X). The following result explains the

situations

Theorem 1043 T is weakly stable if and only if for every

irreducible representation i of X, 8 ﬁ is egquivalent to
}{ implies that 9i=i and U on ©Ob(X) has no finite

orbits of order greater than one,

Proofse TLet T be weakly stables Buppose that ¥V is an
irreducible representation of X of type ae If 9 i is
equivalent to i then Sa is invariant under U and hence
U is the identity on Sa' If viy &are the matrix functions
of \i,»than vij(x) = vij(Tx) aeey for each fixed i and
je Since vy, »is fontinuous, vij(x) = vié(Tx) for all

x€ Xo Thug 9 V = V. The gecond part is a consequence of
Corollary 6s4 and the fact that U leaves  Ch(X)

invariantes

Conversely, let the automorphism T satisfy the cone-
ditions of the theorems Let E,  be the subset of F cor=

responding to invariant characters in Oh(X). The first
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condition shows that U is the identity on every S € E..
The second condition implies tﬂat ¢ has only infinité
orbits on E =Eg. It follows that for every funotion £¢
8, © F o~ Eo’ the functions £, Uf, UL, ees are mutually
orthocgonale A proof similar to the abelian case yields the

result that T is, in fact, stable.

Corollary 102 T ig weakly stable if and only if, for every

irreducible representation i of X, 9 ¥ is equivalent to

v implies that 9V =3 and U on Lg(X) has no finite

orbits of order greater than one.

Corollary 10.3 Bvery weakly stable automorphism of X is

stable *

The following theorem generalizes Theorem 10e2e

Theorem 10e4  An automorphism T is weakly stable if and

only if the subspace K(U) of invariant functions in LZ(X)
is the direct sum of the S& s corresponding to the invariant

characters of X.

Procfs As before, let E_ be the set of S s corresponding

to invariant characters and let S =& {8: S, € E, } Ve



have to show that T is weakly stable if and only if
S = K(U),

Let T Dbe weakly stables If SOC € B,y then U leaves
S, inveriant and hence is the identity on S,+ Therefore
S C; K(U)s Tet fe Si and invariante f can then be written

(uniquely) in the form Z 8, with f ¢S €F = F . Since f
is invarisnt, Zf, = 2 Unfa for n =1,2,ee. . The fact

that ¢ has only infinite orbits on F = . now implies
that, for every fa’ there exists a sequence Qe of distinct

a's such that ||f ||= ||f || for a1l k. Since
o 0y
X !lfa\Faz l|f|12 < w, it follows that f = O,

Conversely let § = K(U)s If ¥V is any irreducible
representation of X, of type «, say, such that Qi is

equivalent to i, then Q(Sa) =8, C 8 =x(U) and so U .

i<

is the identity on S, . This in turn implies that 9V =
Since we can show that U has no finite orbits on *the non-
invariant characters just as in the abelian case, an appli=-

cation of Theorem 10e3 yields that T is weakly stable.

It would be interesting to diécuss, more generally,
what subspaces associated with T are spanned by the Sa’s

corresponding to the characters lying in the subspace {(in the
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abelian case, by the characters lying in thaf subspace). For
instance, is this true for the subspace of reversible funce
tions? We conjecture that the subspace of reversible
functions is always spanned by the Sa?s corresponding to
the reversible characterse This is trivially true for
weakly stable automorphismse When T is not weakly stable,

we are unable to say anything definite.

Before closing this chapter, we wish to remark that
the necessity parts in all the theorems and corollaries of
this chapter (excepting, of course, Corollary 10e3) hold for

groups of automorphisms on X alsoOe

D e B - -



CHAPTER 11

ERGODIC DECOMPOSITIONS AND
WEAK STABILITY

It is a well=known result in ergodic theory that, under
suitable conditions, a measure=-preserving treansformation on
a probability space may be expressed as a direct integral
of ergodic transformations in an essentially unique fashion.
Since, in a memner of speaking, ergodicity is to measure-
preservingness what (weak) mixing is to (weak) stability,
it is reasonable to ask whether (weakly) stable transforma-
tione are expressible as direct integrals of (weakly) mixing
transformationse Maitra [ 41 Jhas considedred this questioh
and answered it in the negative. He has an example of a
stable transformation none of whose (ergodic) components ls

even weakly mixingo

In this chapter, we shall show that while the compo=
nents of a weakly stable transformation need not be weakly
mixing, it is nevertheless true that if T is a transfor-
mation almost all of whose components'are weakly mixing,
then T is weakly stables Indeed our result of this

chapter shows that T ig weakly stable under even a weaker
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condition on collections of conmponents of T.. We are unable
to say anything similar for stable transformations,vsince we

use spectral methods for proving our resulte

Let us first give a brief sketch of the decomposition
theory. Let (X, A4, m) be a probability space for which

the following two conditions Mold :

(a) A is countably generated,

(b) For every countably generated sub=o=field B of
A, there exists a real~valued function P(Alé)(x), x € X,
Ag A such that

i) for each x¢ X, P(A|é)(x) is a probabilify

measure on (X, g)

ii) for each Ag A, P(A|B)(x) is a Bemeasurable

function and

i11) for each Ag A4 and Be B, [ P(A|B)(x)m(ax)
B
= m(A(-) B)0

The simplest example of a space with these properties
is a Borel set in an Buclidean spaces Other examples are
Lusin spacesy more generally perfect probability spaces
(see Blackwell [ 3 ]). TIn what follows, we assume that con-

ditions (a) and (b) hold for the space X.
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Let T be an invertible measure-preserving transfor-
mation on X with the property that io, the owfield of
strictly invariant sets is countably generatede One can then
show that there exists a set Ng i? with m(N) = 0 such
that for every A€ _1.:0’ P(A|;I:O) (x) = IA(X) for all x g N.

Since I° is countably generated, it has atoms and
every set in i? is a union of gﬁoms. Let the atoms of
I° which are disjoint with N be indexed by a set ¥
and let for ye Y, X& denote the corresponding atome Bach
Xy is made into a probability space by requiring the measu-

rable subsets A, of X, to be of the form xy(") A with

AB‘A and defining a measure my on (Xy, AW) by

my(xy'(j.A) = P(A|I°)(x) where x¢ X, 1is arbitrary. (my

is well=~defined because the function P(A[io)(x) is constant

on the Xy;s for every A€ As)

We convert Y itself into a probability space
(v, Q, i) by declaring a subset of Y +o be measurable if
and only if the union of the corresponding atoms of io is
in Lo and defining the measure un of this subset to be

the m-measure of tbe corresponding set in io.
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For eaph vevy, X, is a strictly invariant set and
so the transformaticn T may be restricted to an invertible
map‘ T, of Xje The decomposition theorem of Halmos [22 ]
then says that for almost all yeY, Ty is measure=
preserving on (Xy L my) and, indeed, is ergodice The
transformations Ty are called the components of T and
T is said to be the direct integral of the Ty}s over the

measure space (Y, C, i)e

We are now in a position to present our theorems
Let Y, C Y ve the set (of measure one) of all y such
that T i1s an ergodic measure-preserving transformation

y
on (Xy v m ). For each ye€ Y s let U& denote the

induced @nitary operator on Lz(Xy).

Theorem 1lel  Let, for any complex number A of modulus
one, C, denote the set of all y €7 such that A is
an eigen value of U_e If the inner measure of Gx is

y
zero for every X # 1, then T i1s weakly stable.

Proof Suppose T %o be not weakly stable and let
A # 1 be an eigen value of Ue Choose and fix a bounded
measureble function f defined everywhere on X and a

gtrictly invariant set A C: X wlN - %;) Xy of positive
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measure with the property that, for every x¢€ A,
£(x) = Nf(x) # 0. Then, for every X, C A, the function
£ restricted to Xy’ say f_, is a non-zero bounded measu-

y
i A == f
rable function on (Xy, gy, my) and fy(Tyx) hfy (x) for

all x& Xy, so that A is an eigen value of Uy. If now
C is the set of all y¢ Y, for which X, C A, then

¢ C Cx end wM(0) = m(4) > 0. Hence the inner measure of

Ch is positives

Corollary 1lel If Ty is weakly mixing for almost all
ve Y, then T 1is weakly stablee |

Remarks (1) The above corollary can be generalised to
locally compact groups of transformations acting measurably
on sufficiently smooth Borel spaces, using the decomposition

theory for such cases, given by Varadarajan [ 52 ].

(8) TLet T be an invertible measurable transforma~
tion on a measurable space (X, A)e Then the set P (X) of
2ll invarient probability measures is a convex set of which
the set of extreme points is the set P_(X) of ergodic
neasures. (A measure m is ergodic, etce., if T 1is
ergodic, etce, in the space (X, ;, m)e) Under the assunmp-

tion
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(A1) 1If all ergodic measures vanish over a strictly invariant
set A, then all invariant meeasureg vanish over A

Blun and Hansen [6] have proved that any invariant measure ' m

has the following integral remresentation with respect to a
unique meagsure Hpn on a certain ow=field = of subsets of

Pe(X).

(*) n(a) = [ oAy (do) AE A o
P (X) |

The set PWS(X) of weakly stable measures forms a
convex set of which the get Pwm(X) of weakly mixing
measures is the set of extreme pointse We can now ask if
every weakly stable measure can be represented as an integral
over the set P __ (X)e TLet us make the following parallel

assunption:

(A2) If all weakly mixing measures vanish over a strictly
invariant set A, then all weakly stable measures vanish

over A,

Under (A2), we can show that the set Pom (X)) is
a thick subset of the measure space (P, (X}, =, )

whenever m 1is weakly stable., In such a case we can



restrict. p, and ® %o the set Py, (X). Thus under
assumptions (A1) ‘and (48), the equation (*) holds,
where now m is weakly stable and the integral is over

the set P (X) onlye

Let X Dbe a compact Hausdorff space and T a
homeomorphism of X Then P _(X) is non-empty and the
assumption (A1) holds by Lemma 45 of Varadarajan [ 521].
If further the set Pyg (X) is non-empty and closed
(in the weak topology) then the same lemma implieé that
(A2) also holdse We are unable to decide under what

additional conditions By g (X) is a non=empty closed sete

— e Bm W -



PART TI1II

IMVARIANT MEASURES



CHAPTER 12 -t

INTRODUCING PART III

There are two kinds of guestions regarding the exis-
tence of inva?iant measures for a given family of measurable
transformationse. One may take just a measurable space and
ask for a measure invariant under each one of the trans-
formationss Or one may start with a measure, space and ask
for an invariant measure which is s¥ronger than the given
measurce The former is important, Bege, in the context
of ergodic decompositions = representing an invariant
meagure in terms of ergodic measurese Then it is necessary
to know that there exist nonetrivial invariant measurese.
Kryloff and Bogoliouboff [ 39] (see Oxtoby [ 47]) discussed
this problem for a homeomorphism of a compact metric space
and Fomin [ 18] for groups of homeomorphisms. The latter
problem comes up when we want to see if the individual
ergodic theorem is valid for a given measurable transforma-
tion in 2 measure spacey it is valid, for instance, if
there exists an invariant measure which is stronger than
the given meagsures This problem has been fruitfully invegs
tigated by numerous authors and has a long history. We

shall content ourselves with mentioning the works of -
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Hopf [ 27], Halmos [ 233, Dowker [ 12], Hajian and 'Kakutani

{ 211 and Sucheston [ 51 )]s There have been fewer investiga= -
tions on (stronger) invariant measures for families of
transformationse Cotlar and Ricabarra [ 7 ] and Recherd

[ 48] and most recently Blum and Friedmen [ 5 ] have made

interesting contributions in this directione

One of the problems of ergodic theory is to investigate
what properties possessed by transformations allow themselves
to be carried over to transition functions and pore generally
to contractions in Ll~spaces. The problem of existence
of an invariant measure for a transition function is of
independent interest and has been studied, among others,
by Doeblin [ 11 ], Kryloff and Bogoliouboff [ 373 38) ana
Harris [26]. Ito {[29] obtained a number of interesting
necesgsary and sufficient conditions generalizing from the
transformation case. Some of the results of Ito [29] were
generalized to a positive contraction on an L1~space by
Dean and Sucheston [ 9 ], Neveu [ 48] and Hajian and Ito
{201,

Our work, in the following two chapters, is concerned
with both the questicns mentioned in the beginning. In

Ghapter 13, we consider the existence of an invariant
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measure for families = more precis@l&, gsemigroups « of
continuous mappings on a compact Hausdorff space and obtain
o unified generalization of the results of Fomin [18]., 1In
the last chapter, we consider the existence of a finite
invariant (eqnivalent) measure for familieg of transférmaw
tions, transition funciions and contractiocns on Ll-spaces
and obtain generalizations of the results of Cotlar and |
Ricabarra [ 7 ], Rechard [ 48] and Blum and PFriedman [ 5 ],
The main idea in the proofs is to use invariant means for

amenable semigroupss

e v TG s T 4 -



CHAPTER 13

INVARTIANT MEASURES ON COMPACT
HAUSDORFF SPACES

In this chapter, we prove two results on the’existencé
of an invariant probability measure for a family of transi-
tion funétions or transformations on a compact Hausdorff
spaces The first result is for amenable topological semi-
groupé of transition functions, from which the resulﬁs of
Fomin {18 ] follow as corollariese The second one is for

an equicentinuous group of homeomorphisms.

Let X Dbe a compact Hausdorff space. We shall use
the notations and definitions introduced in Chapter <. We
note that if P

and P, are regular continuous transition

1
functions, then P1P2 is also a regular continuous transi-
tion functione This can be proved as in Lemma 2 of
Rosenblatt [ 49]s If S8 dis an amenable topological semi-
group and if s = Ps is a homomorphism into the set of
regular continuous transition functions on X such that for
each fixed x€ X, the map s => P (x,4 ) from § %o M(X)
(with the weak topology) is continuoué,‘then we call -

P= { P, s€ 8 } a continuous representation of S Dy

regular continuous tremgition functions on X. Similar is



the definition of a continuous representation of § by
continuous transformations on Xj; continuity of @he repTe -
gsentation means that the map s -> T x for fixed =x€ X is
continuouss We note that if T =T T then the
8+ Sa 8,8

B R 1 72
induced transition functions satisfy the relation
P “‘“‘Pc:' *

51%2 %1%

Theorem 1341 There exisgts a regular Borel probability

measure invariant for any continuous representation of an
amenable semigroup by regular continuous transition funce

tions on a comnact Hausdorff space.

Eroofe ILet 3 be a continuous representation of an
amenable semigroup 8 by regular continuous transition
functions on the compact Hausdorff space Y. Consider the
transfornations Us defined for bouwnded realevalued funcw

tions on X Dby the equation
(Usf)(x) = [ £(y) Ps(x,dy).

By the continuity of PS, the transformation US ig an

operator on C(X), the Banach space of bounded real=valued
14
continuous functions on Xe Let us fix an x6 X and an
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fe C(X)s Since the maps s => F (x, ¢) and P/ (x, o) =

J £{y) p_(x, dy) are continuous, it follows that the

bounded real-valued function (U f){x) on § is continuous.

Tet M be any invariant mean on C(8) and put
AME) = M((U ) (x)) £ ¢ c(x) .

Then A 1is a nonenegative linear functional on C{(X) with
the property A(1) = M(1) = 1. Moreover, it follows from
the (left) invariance of M that A(f) = a(UL) for all
s€¢ 3¢ The meaéure m  which corresponds to A by Riesz's

theorem, has the Ffequired propertiese

Remarks (1) The above theorem remains true if § 1is only

left amenable.

(2) Instead of fixing a point xg X, we may fix
a probability measure u on X and assuming that the map
5 => [ ?S{x, o ) p{dx) is continuous, get an invariant

measure from the linear functional

AME) = ul fu £)(x) ulax)).
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It is clear that all the invariant measures are obtained

in this waye
1 2

(3) The above result was obtained independently of
the work of Lloyd [40 } where many interesting properties
of the set of invariant measures are proveds The author

is indebted to Mrs. Ko Viswanath for this reference.

Corollary 13l  There exists a regular Borel probability

measure invariant for any continuous representation of an
amenable semigroup by continuous maps of a compact

Hausdorff spacea

Since any abelian, solvable, or compaet topolagical
group is amenable, the existence of an invariant'measure for
such groups g of homeomorphisms of a compact metric gpace
X such that the map (s, x) => T x is continuous, is

immediate (Fomin [181]).

The next result ig for groups of mappings on a
compact Hausdorff space Xe By virtue of Theorem l.1, we
regtrict ourselves to homeomorphisms of Xe The space X
has a unique uniformity i inducing the given topology

of X. Recall Definition 242 of the equicontinuity of a
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family of maps from a topological space to a uniform space.
We also need the following definition (Definition Vel0e7?

in  Dunford and Schwartz [13 1) «

Definition 13,1 A family P of linear maps of a linear

topological space X 1is equicontinuous on a subset K of

X, if for every neighbourhood A of the origin in X, there
is a neighbourhood B of the origin such that if m s

mg € XK and m ~my € B, then f(ml - m2) € A for all fg 7.

We now have the following theorem for groups of

mappings of Xe

Theoren 1342 There exists a regular invariant Borel probas=

bility measure for any equicontinuous group of homeamorphisms

on a compact Hausdorff spacee

Proof. Let i be the given equicontinuous group of

homeomorphisms on Xe Let, for each s¢ S, ns(m) =1m T;l
for mg M(X). Then»{ Ny } is a group of continuous
linear maps on M(X) leaving P(X) invariante We shall

&
show that { ny } is equicontinious on P(X),



Tet A be g neighbourhood of the origin in M(X),
® Bm given by

A = {m: | [ fid.m\ < €, 1< 1 i n }

where € > O and fjseeey L € C(X)e Since each f; 1is
uniformly continuous, given 98 2 0, there ecxists a

¢t € X such that (x, y) € Of implies that | £, (x) -5, (3) <o

Putting C* = (1) 0%, we see that OC* is noneemptys Since
T is equicontinuous and X compact, i is uniformly
equicontinuous, iees, given OC* € i, there is a x e i
such that (x, y) € D* dimplies (T, X, Tsy) € Cx for all
s end hence | £, {2 x)= fi(TSy)l <3 for all s and all
i =1,2y2e.5 ne This shows that the family of functions

{ fiTS 1 <1 S n, sE£S } is equicontindouse Being
bounded, this family is conditionally compact by Arzelafs
theorem and so totally boundeds ~ For the € > 0 associated
with A above, there exist functions gyseees & e ¢(X)
such that for any 1 and any s, there 1s a j with

| £,24 = gj|l< % e Define a neighbourhood B of the

origin in M(X) by

B=dm | fgaml < §, 124 <k }a



It can ke seen that for my, mg € 2(X) such that my=my,€B,
we have ng(m = mz) ¢ A for all s, iee., { ng } is equi~-
continuous on P(X)e Hence, by Kokutanits fixed point
theorem (Theorem Ve 1048 in Dunford and Schwartz (130,
there exists an m ¢ P(X) such that n ,m=mn for each

s€ Se This is the rocquired invariant measure.

The above theorem and its proof generalize the
method of Dunford and Schwartz [14 ] for getting the Haar
measure on a compact groupe As a corollary, we get the

following result of Fomin (18 ].

Corolleary 13e2 Let { TS } be a compact group of

homeomorphisms of a compact Hausdorff space X such that -
the map (s, x) => T x  is continuous. Then there exists

a regular invariant Borel probability measure for { Tq }.

Proof. Under the assumptions, the group is equicontinuous,

by Thecrem 7.16 in Kelley (36]).

- .
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FINITE INVARIANT EQUIVALENT
MEASURES ON MEASURE SPACES

In this chapter, (X, é, m) will denote a fixed proba=
»ility spacee. We cousider the question of existence of a
finite measure equivalent to m and invariant for a family
of transition functions on X« We agsume that the transi-
tion functions under considefation are all nonesingular with
regspect to me We also consider, more generally, the exis-
tence of a strictly positive invariant function for a family
of contractions on the real I;(X)e Our results are for
(weakly) continuous representations of amenable semigroups

by contractions and generalize a number of known resultse

We could start with a o-finite measure space and ask
for a finite invariant measure stronger than the given measure
and then, by standard procedures, reduce this to the above

probleme We do not give the details heree

Recall how a none~gingular transition function P induces
a contraction V on Ll(X) (Chapter 1)s This V is given

by



OB

[ veam = [ P (x, 4) £ () m( dx) a6 A.

The existence of a finite invariant equivalent measure H
for P is eguivalent to the existence of a gtrictly positive

invariant function £ for V, via the equation
pla) = S £ dm AC A
O -
A
We denote by L'{ and L':O respectively the cones of

non~negative functions in Ll and L_e The adjoint U of

an operator V on L is defined on L, by the equation
X Vi, 8> = < £, Ug>

where, and in what follows, < £, g> =/ fgam with fg I
and ge L, In case V is induced by a transition funce

tion P, U igs the familiar operator

(Ue)(x) = [ £{y) P(x,dy)

acting on L e

If 8 is an amenable topological semigroup and s «> Vg
a homomorphism of 8 dinto the set of positive contractions

on Iy such that the map s => < st, g > Tfor each
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€L, and g€ L, is continuous, then we aall i ={ v, } |
a contiﬁuous representation of 8 | by positive contractions
on qu The continuity condition, for the case of transition
functions, is that the map s > f P (x, 4)£(x) m(ax) for
every fixed A€ 2 and € I, 1s continuous; for the case of
transformations, that the map & «> m(T;1 A () B) for every

vair A and B of measurable gsets is continuouse

We use the methods of Neveu [ 46] and invariant

means for amenable semigroups in proving our first result,

Theorem 1441l TFor a continuous representation. ¥ of an

amenable semigroup S by positive contractions on Ll(X),

the following ctnditions are equivalent.

(A) There exists a strictly positive invariant func=-

tion f in Llo

(B) ge Iy and inf < V.1, g> =0 imply that
3
g =0 QetCs

Proof.  Let (A) holds Fix ge Ll end let f 617 »
The general inequality £ < & + (£ =a)¥ inplies that

CVELEe><a <Vl g>+ || (g%l Hell,
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for any.real number a and for all s, since Vg 1s a contrac-

tione Heace inf < V. 1, g > =0 dimplies that inf < V. E s8> =0,
s s

Taking the given invariant function f for fo’ we see that

< fy, g>=0 and hence that g =0 a.e., isce, (B) holds.

Let now condition (B) be satisfieds. For any fixed
g€ L, , the real-valued function < Vsl, g > of s is
bounded and continuouse Iet M be any invariant mean on
C(G) and put A(g) = M(< V.1, g > )» A is then a positive
linear functional on L_ » Besides, A(Usg) = a(g) for
every s€ 5, as can be seen by using the invariance of M.
We can now use Lemma 1 of Neveu { 46 ] in the same way as
he does, to get a strictly positive invariant function £

in Ll .

Jorollary 14,1 There exists g finite invariant measure

equivalent to m for a continuous representation P of an
amenable semigroup § by transition functions on X 1if and

only if the following condition holds.

(B) n(4) > 0 implies that dinf Q(4) > 0
8

where QS(A) = [ PS(X, Am(dx).
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For the case of trensformations, condition (B) says
that if m(A) > 0, then inf m(25- A) > O. Applying
8
Gorollary lé4el to an abelian semigroup of transformations,

we get Theorem 4 of Blum and Friedman L 5 1.

We shall now sbudy the following condition for a family

{'VS }raf positive contractions on I

Condition (B). Given & > 0, there exists a 8 » 0 such

that m(A) ¢ 8 dimplies that sup {'Vsldm < €

w2

Nean and Sucheston [ 9 ] have proved the necegsity of con=
dition (B) for the existence of a strictly positive inva-
riant function in Ll for the semigroup generated by a posi-
tive contraction on DLqe The same proof goes through for

the case of a family of positive contracticns 81ls0e ﬁe

include the proof bvelow for the sake of completenesss

Theorem 142 For any family'{ Vé'} of positive contractions

on Ll’ condition (E) is necessary for the existence of a

strictly positive invarient element in L.

Proofe We remark first that [ V 1dm = JUul,dm. Tet £
A b3

be a strictly positive invariant function in Iy and let



-102=

{ x: £(x) >a} ,

and 8o

€ >0 be givens Considering the sets F,

fav) fas B

we man find an « > O such that m (}?;) ¢

S U 1,4 m - < % « On the other hand, as is easily seeny
Fe,
o

[ U 1,am <%Z [ fdme Ws asn choose a @ > O such that if
7 A
&%

m(a) < 8 then [ fdm < &% oand hence, m(4) <@ implies
A

that [ Ul,dm < € for all se This proves the necessity

of condition (B)e

For the group generated by an invertible transformation,
condition (E) is sufficient for the existence of a finite
invariant equivalent measure, but it is no longer sufficient
if +he transformation is not one-one. Rechard [ 48 ] has
proved interesting results in this direction, using mean
ergodic theorems. Ito [ 29 ] has generalized Rechard's
methods for the case of the semigroup generated by a transi-
tion functions Our resulits bvelow, for a continuous repﬁesenu
tation of an amenable semigrbup by positive contractions are
based on this method and we use Eberleinfs ergodic theorem.
For transformations however, we give a simpler proof,

similar to the one by Hajian and Xakutani {21 1.
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Following Rechard {a81], we introduce the notion of a
measure being asymptotically stronger than a given measure

with respect to a family of contractions on Ll'

Definition 1441 A measure m* 1is asymptotically stronger

than m for a family { Vg } of contractions on Ll if

m*(A) = 0 dimplies that inf [ V. 1dm = O.
: s A

The definition may be adapted to families of transfor~
mations and transition functions by considering the induced

- contractionse

We first consider the case of transformations. Recall
that a (nonwesingular) transformation T is called conserva-
tive 1f any measurable set A such that the sets T 4,

n 2 0 are disjoint, has measure zero., This is equivalent to
ingompressibility: n(T™4 - &) = 0 for a measurable set A
imﬁlies that m(A - T*lA) = 0.. If T is conservative, then
™ is conservative for every ne We may call a semigroup

{ T } of trensformations conservative if each T, is

congervatives,

Theorem 14e3v Let i be a contingous representation of an

amenable semigroup S by transformations on X. If condi=-

tion (B) holds, then there exists a finite invariant
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measure m¥ weaker and asymptotically stronger than me If
S is a group or if { T } is conservative, then m* is equi=

valent to e

Proof. Fix some inveriont mean M on C@) and let

m*{A) = M(m(T;l A)) for A€ é. mw* 1is a non-negative,
finitely additive, invariant set function with m*(X) = 1.
Given € > 0, by condition (E), there is a 8 > 0 such that
a(A) < 8 implies that m(TT" 4) < € for all s. Hence

¢ (A) = M(m(T;I A)).i €e This implies that wm* is continuous
and so countably additives Besides m* << me If w*{4) = O,

then  inf m(T;lA) j M(m(Tgl 4)) =0 and so ¥ 1is
S

agymptotically stronger than me

If 8 1is a group, 1lecs, é is a group of invertible
transformafi@ns, it follows from Theorem 1 of Rechard [ 48 ]
that m* is stronger than m. ILet now T be conservatives
Write m*(A) = J fdm and B ={ x: flx) = O} . We claim
fhaﬁ B is iﬂvagiant under each TS. For, consider the setsg
-1

' B .B. If n(ITT B=B) > 0 for some s, then
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a contradictione Hence m(TngujB) =0 for egch se The

conservativeness of T, implies that n(B= T;l B) =0 for

each s and hence B 1is invariant. Since

0= [fdm = m(B) = M(n(2'B)) = m(B), we sce that £ >0
B

QeCe Hence m << m* and the proof is complete,

Theorem 1444 TLet T = { T, : s¢S } be an arbitrary semi~
group of transformations on Xe If there exists a finite
measure m* invariant under i which is weeker than m and
asymptotically stronger than m, then, given € > O, there
exists a‘ @ >0 end a s, such that m(4) < & dimplies
that m(T;i A) <& for all s If S is a group or if

0
n < < m*, then condition (E) holdse

Proof. The first part is essentially contained in Theorem 3
of Rechard [48). If S 4is a group, S = { s 8,% 8C 8 } and
so the second assertion followse The third assertion follows

from Theorem 14e¢2,
Pl

A positive contraction V on Iy is called conserva-

tive if for some strictly positive f€ Ly, we have

o0
g T = o aece If this is true for some such I, then

this is true for every such f, so that the definition of
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conservativeness is independent of the function chosens If

Vv 1is congervative, then v is conservative for evéry
positive integer n. One way to see this is to use Lemma 6

of Hajian and Ito [20 ] which states that V 1is conservative
if and only if every Umsubinvariant function (iee, g€ T,
such that Ug é g) is invariant. We shall dali a semi~

. group { Ty } of contractions conservative if each Vg ig
conservatives A transition function may be called ooﬁsérva-

. tive if the induced contraction is congervative.

Theorem 14,5 - For a continuous representation‘ 3 of an-
amenable gemigroup § by positive contractions on Ins
condition (B) is sufficient for the existénce of a nohunegative
invariant fun%fion in Iy If ﬁ isvconservative,»then‘the

function obtained is strictly positive.

'Proof. We use the results mentioned in Chapter 3. By
Theorem 343 the semigroup YV 1is strongly ergodic under a net
Va' of averages of { vy } o We first show that for each

£=1,, Ach, the orbit{ 7V £} is conditlonally weakly

A,
compacte It is sufficient to show the conditional weak
sequential compactness of { ng } . Por this, we need only

to show by Theorem TV.8+9 in Dunford and Schwartz [13 1,
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that the set { vt } is bounded (cbvious) and that given
€ > 0, there exists a 0 > O such that for any set B with

m(B) < &, we have sup [ V,fdm < ¢. Since V_ 1is positive
s B :

and f =1, 2 1, Jv . fdm < [ vV ldm and so, by condition
F: S B O - B
(E), this is fulfillede. Hence, for each f = 1,s the orbit

{ mxi'} contains a wenk cluster point and so the element £
is ergodics Since, by Theoren 344, the set of ergodic .~
elements forms a closed linear subspace, it follows that all

the elements in L are ergodic and there is an operator

1
such—that

T on L lim Vaf in norm for all fe€ Ll
o

for 211 s. The function V1 is

1 £f=
and vvozvsv=v8=v
a non=negative invariant function. The measure

m*(A) = [ T1ldn is weaker and asymptotically stronger than
A

e If the semigroup ¥V 1is conservative, 1t can be shown,
as in Hajian and Itc [ 20 ] that V1 is strictly positive.

m*  would then be equivalent to me The theorem is proveds

A sinilar result holds for the case of a continuous
representation cf an amenable semigroup by transition func-

tionse

We finally come to two simple necessary and sufficient

conditions for families of transformationse The first one is
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a generaligzation of the notion of weakly wandering set due

to Hajian and Kakuteni [ 21 J.

Definition 14,2 A measurable set A 1s weakly wandering
for a femily { T, } of tremsformations if there exists a

sequence g of indices such that A, Tgl Ay T"l Ay o
1 .

41 32

are all palrwise disjoint.

Let us csll a transformation T Dbothways measurablel “

if Ag 4 inplies that T

AeA ond TAE Ae T is both- .
ways non-gingular if m(4) = 0 dimplies that m(TA) =0 =

G

Thenremn 146 There exists a finite invariant iquivalent‘

measure for a continuous representation of an amenable semi-
group by bothways measursble and bothways non=singular trans-
formaticns if and only if every weakly wandering set has -

meagure zZeroe

The proof is done by showing that if every weakly
wandering set has measure zero, then condition (B) is satis=
fieds. Since a proof of this has already appeared
in print, in Blum and Friedman [ 5 ], we refrain from giving

the proof*,

* The author proved this result independently of
Blum =snd Friedman.
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The concept of boundedness for a group of transforman
tions has béen introduced by Cotlar and Ricabarra [ 7 J.
Let T = { T } be a group of (invertible) transformations on
Xs Two measurable sets E and F are called equivalent
if E:(_;Ei,Fz(;Fi, B, (OE; =g, Fi(")Fj-g! for all
i # J and there is o sequence s; of elements in 8§ such

;1 B, for each i. 4 set E dis bounded if 1t
1

1s not equivalent to any proper subset of itself. The group

that Fl = T

I of transformations is bounded if the whole space is

bounded,

Theorem 1447 There exists a finite invariant equivalent

measure for a continuous representation T of an amenable

group by transformations on X if and only if 2 i1s bounded.

Proof. It is easily shown that the condition is necegsary.
We assert that if 2 is bounded, then every weakly wandering
set has measure zeroe If not, let A be a weakly wandering
set of positive measure and S the associated sequence

L )
of elements of 8. Then the sets E = A() gg Tgl A and
i

F o= (T)T;% A are seen to be equivalent and mn(E- F) > 0,
i

Hence I 1is not bounded and the proof is completes

- g e -
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