Covariance identities for exponential and related distributions
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Abstract

Bobkov and Houdre (1997) proved that if £, i and { are independent standard exponential random variables, then for any
two absolutely continuous functions § and g such that E| f{ §}|3 < oo and E|gi §}|3 < oo, the equality Cov( f(ELg(E)) =
Ef(E + 1) (€ + L) holds. We prove that the identity holds if and onlv if & yand [ or —Z,—n and —{ are standard
exponential random variables,
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1. Main result

¥

Suppose £, n and [ are ndependent standard exponental random variables. Then for any two absolutely
continuous functions f.g such that £| f{£)]* < oo and E|g(£)|? < o are finite, the identity

Cov[ £(E) gl =E[f(E+ma'(&+ ] (1.1)

holds. This result is due to Bobkov and Houdre (1997). We now prove that the identity (1.1) characternzes
the standard exponential up to a sign, that is, cither ¢ or —¢ have a standard exponential distnbution.

Theorem. Suppose that £, n, [ are independent and identically distributed random variables such that the
identity (1.1) holds for all absolutely continuows functions { and g such that E| f(£)* and E|g(&)]? are
Jinite, then either ¢ and hence nand [ are standord exponential random variables or —C and hence —n, and
—L are standard exponential random variables.

Proof. Suppose that the relation (1.1) holds. Let fix) = exp{irx) and g( v) = explisy) for some real ¢ oand s
Let ¢ps(t) denote the charactenstic function of £ Then Eqg. (1.1) reduces to

Ps(t+5) — Plt)pa(s) = —t5p{ )5 )t +5) (1.2)
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for all —oo < 1 & << oo, We claim that ¢hs{r) # 0, —oo < f < oo, In other words ¢b:(.) is nonvanishing on
the real line. On the contrary suppose that ¢.(f) =0 for some ¢ = . Then it follows from (1.2) that
ety +5) =0 —no<=s5< o0
Hence ¢h:(1) =0, —o0 <t < o0 which s impossible since ¢r:(0) = 1. Let ()= [ps(£)]". Then (s} is well
defined since d:(r) 15 nonvanishing, Note that (1) is continuous, Y(0) = 1 and () =y{—r). Eq. (1.2) can
be written in the form
WEn(s)y — it +5)=—ts, —oo <t 5§ < 00

Define 1t )= A(t) 4+ iB(¢). Then A(t)=A(—1) and B(f)= —B(—t) since (1) = yo(—¢). Furthermore, A(¢) and
B(t) are both continuous with 4{0)= 1 and 8{0) =0. The above equation implies that

(A H1B()NA(s) +18(5)) — (At +5) +1B{t +5)) =—ts, —oo <l 5 <00 (1.3)
Equating the real and imagmary parts of this equation, it follows that

A(F)JA(s) — Bt )B(s) —A{f +s5)=—fs, —o0 <L 5 <20 (1.4}
and

A(1)B(3) + BI)A(s) — B(t +5) =0, —oo <1, 5 < oc. (1.3)
Replacing s by —s in { L4), we have

A A —s) —B(1B(—s)—Alf—5s)=15, —0o < §<20 (1.6)
or equivalently

Al)As) + B B(s) — At —s) =15, —oo <l §<00 {1.7)
since A(s) = A(—s) and Bis) = —8(—s). Adding (1.4) and (1.7} lead o the equation

2A(1)A(5) —A{f +5)—A(f—5)=0 —oo </ s<o0 (1.8)

or equivalently
A(f +5) +A(f—5)=2A4(1)A(5), —oo<¥ 5 <00, (19}

where A(1) 1s continuous, A(0) =1, and A(r) = A(—r). Applying the theorem on p. 120 of Aczel (1966), it
follows that the function A(f) has to be of the form A(¢) = 0 for all ¢ or A(f) =cosh & or A1) = cosh for
some real constant b, The solution A(¢) = 0 for all ¢ is not possible since A(0) = 1.

Replacing s by —s in (1.5), it follows that

A()B(—s)+ B A(—s)— B(f—5)=0, —00 <!l 5= 00 (1.10)
Adding (1.5) and ( 1.10) and using the fact that A(f) =A{—t) and Bis) + 8B(—s) = 0, we have
2BA(s)—Blr+5)—Blfr—35)=0, —o0c<f 5<2 (1.11)

or equivalently
Blt+s)+8(f —s)=28{1)Ad(s), —o0<f 5 <00, (1.12)

where A(¢) and B(r) are continuous with 4(0) =1 and B(¢) = —B(—1). Applyng Theorem | on p. 170 of
Aczel (1966), the most general continuous solutions of (1.12) are of the form

Bir)=0 for all r and A(r) arbitrary
or

Bity=ccosht + Csinbt and  A(t) =cos bt
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or

Bif)y=ccoshht + Csinhbit and A1) = cosh bt
or

Bity=c+Ci and A(t)=1 foral i,

where b, ¢ and O are arbitrary real constants. In view of the earlier remarks, the last three cases are the only
possible solutions of (1.9) and (1.12).

If the second case holds, then it follows that A(f) =cos bt where b is not zero and B(f) =c cosbr+ C sin br.
Since Bi(t)= —B(—t), it follows that B(¢) = 2ccosht, —oo < < 20, Sinee B(0) =0, we have ¢ =0. Hence
B(f)y=0 for all ;.

1f the third case holds, then it follows that 4(f)=cosh b where b 1s not zero and 8(f )=c cosh bt + C sinh bt
Since B(r)=—B(—r), it follows that B(f) =2ccoshbr, —co < ¢ < oo, Since B(0) =0, we have ¢ = 0. Hence
Bit)=0 for all r.

If the last case holds, then A(r) =1 for all 1 and 81 )= ¢ + Cr. Smee B(0) =0, it follows that ¢ = 0 and
hence 8(f) = Ct, —oo < f < oo,

Hence a complex-valued function i) = A(r )+ 18(r) with {0) =1 and )= y{—¢) is a solution of the
functional equation { 1.3) if and only if i) =coshi or i) =cosh bt for some constant b different from zero
or Yif) =14 1Ct for some real constant O

Since (f) is the reciprocal of a charactenstic function, it follows that [(r)| =1 for all ¢ Cleardy this
implies that (1) camot be equal to coshr for some constant b not egual to zero. On the other hand suppose
that i) = cosh bt where b is not equal to zero. Then it follows that

{E—IM g C.I"J }{_L y c—."r.'.'}
5 -
from Eqg. (1.3). Let s = —¢. Then it follows that

—f5, —Dpo<!<o0

(e -e"Y =4, —x<t<x
where b is not equal to zero. This is impossible. Hence
Wt)=1+iCt —oo<f <00

for some real constant O Let s = ¢ m Eq. (14). Then we have

A - B —A2)=—F, —-o<t<oa (1.13)
Since A(t)=1 for all r and B(f) = Ct, it follws that —C?* = —F or C* = |. Hence
f(r)=1+ir
for all ¢ or
wt)=1—it
for all 1.
This proves that either
de()={(1+i)7"'} (1.14)
or
pe(r) = {(1— i)~} (1.15)

Henee either £ or —£ 15 a standard exponential mndom variable. This completes the proof of the theorem. [
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Remark. (1) It is evident from the proof of the theorem that it is sufficient if sdentity (1.1) holds for functions
of the type fix)=e¢"" g(x)=e"",—oc <t 5 < oo for the vahdity of the theorem.
(2} Suppose & has an exponential distribution with parameter 4, that is, the density function of £ 15 given

by

pix)=de” Mo Dex <oa,

piAx) =0 otherwise
for some fixed 4 = 0. It 1s casy to check that for any two absolutely continuous functions § and g such that
E|f(£)]? < 0o and Elg(&) < o0,

2 Cov[ f(E)G(EN = ELS(E+ m)g (& + ). (1.16)

whenever £, and [ are independent exponential random variables with parameter 4 = 00 1t 15 casy to show
that the above mlation holds for all such f and g if and only if £,y and { arc independent standard
exponentials with parameter |4 or —£, —y and —[ are independent standard exponentials with parameter
[4]. In general for any absolutely continuous functions g and & with £, x, { standard exponential mndom
variables such that E| f(h()]* < oo and E|g(h{{)]* < =,

Cov( FREN.GREN = E[F(h(E+ ) (E+ g (h(E + DNA'E+ D) (1.17)

Conversely, 1f this identity holds for £, 5 and { 1.1.d. for all absolutely continuous functions (g and a fixed
ahsolutely continuous function f with #'(x) not equal to zero almost everywhere, then A(E) Aly) and A(L)
are Lid. where £, p and { are 11.d. standard exponentials or —£, —y and —{ are 11.d. standard exponentials.
This can be seen by an application of the theorem for the functions f{A(.)) and g{h{.)).

2. Extensions

We assume that all the expectations of mndom variables discussed in this section exist and E- Cove, ete.
denote the expectation and the covarance cte. with respect to the distribution of £,

Suppose that £ and &2 are independent random vanables with & as a standard exponential random vanable.
Let f(x. v) and g(x. v) be real-valued functions such that f, =7 /v and g, =cg/dx exist almost everywhere.
Then

Cov[ f{S1Ea gl .62 )l = EnlCovy (f(E1. S0 g{1.E2))]
+Cova Er (.G Eqgldn &)
= Es [Es y.c [ Fel&i +01.82)a 0 + L, D
+Covy(E: f(S1.82). Ex (1. 82)) (for Siom, and {) are iid. as £y)
= E[ fo(£ + m.Ea)gdEq + L. Ea)]
+ Cove Es f(E Ea) Ez gy, E2)) (2.1)

k]

In general if &) and (&a,.. ., 5y ) are independent and £ 15 a standard exponential random variable, then

Covl f (1,82, .08 ) K15 82,0 S)] = E[ £ (61 + 111582005 E)@n (61 + L1462, 00, 62))
+C{}'f';_~ ..... : }{£;|_fl{§hlv-- -75#]:£;|{ﬂ{':la- s fr)) (22)

for functions f and g with f; and g, finite almost everywhere. This can be seen by following the above
arguments using conditioning on ( &a,.. .. &) and the fact that &) is a standard exponental mandom vanable.
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Special cases: (1) Let f{x,.ox)=falx +---+x) and glx,..ox ) =golx) + - - -+x5 ) where fy and gy are
differentiable almost everywhere. Then £ (x...o.ox )= folo +-- -+ ) and gy (oo Y =gglo +---+x)
where f and g, denote the denvatives of fy and gy, respectively. Hence

Cov| foléi +--- + gl &+ --- + &)
=E[fgl1+m+ &+ +hle + O+ &+ -+ 6]
+Covy, s (s, fo(&1 + - + &) Eggo(i + - - + &)), (23)

whenever £y, 5y and ) are 1.1.d. standard exponential random vanables, & 1s independent of (Z,. ... &) and
o and gy are absolutely continuous functions with E| fy( &+ --- + & }|2 < oo and E|lgg(é +---+ & }i3 < 00,
(i) Let fixy,....x)= Zf:le and g(.) as in (i). Then §,, = 1 and applying (2.2), we have

k
Cov [Z Eratf(Eiais i)

i=1

='ELI:I.T|{£| + ;'1&21" '1&.‘:}]

&
+Covs, s (E_;, (Z IN) SErgléi.. & }) s (24)
i=]

whenever £ s independent of (&a,. .., &), and &) and [ are idependent standard exponential mndom
vanables and gixy.....x; ) 1s a function such that g,, exists almost everywhere, Hence

!
Cov [Z Erngl(fis. s )

i=1

=E[ﬂx|{_'=-:l +£I1-'-.~:21n'-'1n ':.‘:”

+Cove, s (14 &+ +EEgg(y,ba. ... 1))

='E[.qu|{_'=-=| +£I1-'=_=21n--'s'=-:i: }]
k
+ Y Covg_a(EnEng(Eraee o &) (25)
=2
{m) Suppose that £y,.. ., & are Li.d. standard exponential random variables, Then 2y =& +--- 4+ 54 has a
gamma distribution with density
k—=1,—z

. 220,
(k) (2.6)

paiz) =0 otherwise.

pziz)=

Applying the result obtained in (1), we have
Covl f(Z ). 9(Z)) = E[f(Z + ) (Zy +£1))+ Covy, s (Es (SZ)).E5(9(Z;)) (2.7)

for any integer £ = 1 where iy and {; are ndependent standard exponential random variables independent of £,
Let f{x)=¢"" and g{x) =¢"*. Then

Cov [ fZ ) g(Zp)] = pz (1 +5) — Pz, (1z(s)
E[fNZ 4 n)g'(Z + L)) = —ts dz (1 + 5y, (1), ()
and
E-_‘| [uuzl = el ;:+---+:U¢,;I.[f )
Hence,

Cove,_ a(Ex (F(ZNEs(@(Zi ) = 95, (O () g+ rns(f +5) = borrssd i), (28)
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Identity (2.3} reduces to the equation
@z (1 + 5) — Pz (ghz(s) = —ts Pz,(£ + s)ehy, (1), (5)
+ s, ()5 (S pr,t s (E + 5) — Por s, (OPr 4.5, (5)) (2.9)
Note that iz (1) =(1 —it) ™, ¢, (1) =(1 —it) ™' = b, (1) and ¢y, 5 ()= (1 — i)~

It 15 casy to see that the functional equation (2.9) is satisfied by the above solution which in tum gives an
altemate proof for (2.7) by the bilincanty in f and g on both sides of (2.7) (¢ Bobkov and Houdre, 1997).

() Suppose Z is a random variable such that Z=¢ + W where £ and W are independent random variables.
Further suppose that the characteristic functions of Z, ¢ and W satsfy the functional equation

p(f +5) — hz(i dbz(s) = —i5 ghz(f + 5 st s (5)
ot bl (s ) e (f + 53 — e (£ Db (5 )] {2.10)

for —oo = 1, 5 < oo where (1) denotes the charactenistic function of £ Further suppose that the characteristic
function of W is nonvanishing. It is casy to see that the functional equation (2.10) reduces to

et + 5) — lt)Ps(s) = — 15 Pt +5)hs (8 )ps(s) (2.11)

for —oo = f, 5 << oo which characterizes the standard exponential distribution for £ by the results obtained in
Section 1. It can be checked that the functional equation (2.10) holds if and only if for every two absolutely
continuous functions f and g such that E| f(Z)|* < oo and E|g(Z)]* < ~,

Cov(f(Z).9(Z)) = E[ (Z + mg'(Z + )] +Covy (Ef f(E + W)L Es(g(E + W), (2.12)

where £, g and { are 1id. standard exponential random variables and Z = ¢ + W.

3. Covariance identity for the geometric distribution
Suppose X is a discrete random varible with the geometric distribution P(X =k)=pg*~', k=1, g=1—p.
0« p=1. It is casy to check that
P Cov[ f(X).g9(X)] = gE[(f(X +¥)— fIX+ ¥ —1))gX +Z)—g(X +Z —1))] (3.1)

for any two functions f and g such that E[f(X)]* < oo and E|g(X)* < oo where X.Y and Z are ii.d as X.
This can be seen by checking the identity (3.1) for functions of the type fix) = ¢"* and g(x) = ¢"** where
fand s are arbitrary real numbers and then using the bilinearity (cf. Bobkov and Houdre, 1997). For such
functions, we have the functional equation

Pl + 5) — dult)puls)] = g(1 — e )1 — e )ult +5)dul )i (s) (32)
and 1t can be casily checked that
px(t)= pe'(1 —ge')™!, —w<t<oo

is a solution of (3.2).
Let us now suppose that XY and 7 are 1id. nonnegative mteger valued random variables such that the
identity (3.1) holds. Let fi{x) =" and gix) =s" where ¢ and 5 are real. Then the identity (3.1) reduces to

p‘,[m{m ) — mit)mis)] =g(t — 1)(s — 1){ts) ' mits)m{ )m(s), 0 =t < o0, (33)

where mit) s the probability generating function of X It is casy to see that mit) 15 nonzero for all ¢ Define
Mey=tm{t)', 0 =t=o0 and pu)= fe" ) —o0 < u < oo Then Eg. (3.3) can be written i the form

W+ o= pudplv) — e —1)e' — 1), —oo<u r<oo {(34)
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with {0)=1land L=gp~ 2 >0 g=1—p, 0 < p< 1. Itisclar that

;{u}={1—qu“"}p“'¢ —D0 = N = 00 (335)
is a solution of (3.4) and hence

m(t)=pt(l —qt)”', 0<t<x

is a solution of {3.3) which s the probability generating function of the geometric distribution with pammeter
p. The problem that it is the only solution of (3.3) remans open. We conjecture that it is the only solution
following the analogy of the chameterization of the standard exponential distabution discussed in Section 1.
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