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Abstract

In this paper we study finite clusters in a high density Boolean model with balls of two
distinct sizes. Alexander (1993) studied the geometric structures of finite clusters in a
high density Boolean model with balls of fixed size and showed that the only possible
structure admitted by such events is that all Poisson points comprising the cluster are
packed tightly inside a small sphere. When the balls are of varying sizes, the event that
the cluster consists of k| big balls and &> small balls (both &}, k2 = 1} occurs only when
the centres of all big balls are compressed in a small sphere and the centres of the small
balls are distributed uniformly inside the region formed by the big balls in such a way
that the small balls are totally contained inside the big balls. We also show that it is
most likely that a finite cluster in a high density Boolean model with varying ball sizes
is made up only of small balls.
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1. Introduction

The continuum percolation model on a o-dimensional Euclidean space consists of over-
lapping balls of random radii centred at the points of a homogeneous Poisson poinl process.
Formally, let X' = {x, x2, ...} be a homogeneous Poisson point process of intensity A on
24 Fix xg = 0, the origin, and let X = {xp, x1, ...} The point x;, i = 0, is the centre of
a ball 8, (x;) where each #; 15 a positive random variable. The random vadables {r; - i = 0}
are independent and identically distributed according 1o the distribution of a positive random
variable o, called the radins random variable. Further, the random vanables {r; o7 = 0} ane
independent of the process X. Let € = U, S, (x;) be the region covered by the balls and let
Wiy, the cluster of the origin, be the connected component of C which contains the origin.
Roy ( 1990), Meester and Roy (1994), Alexander ( 1993) and Penrose (1996) studied different
aspects of the model. (See Meester and Roy (1996) for a more detailed account. )

Alexander { 1993) studied the geometric structures of the event Ep = {#(W{0)) =k} ina
high density Boolean model with balls of fixed size (1.e. when p is degenerate) where #{ W)
denotes the number of Poisson points in the cluster W{l) of the orgin. Cleardy, for any fixed
k= 1, Fg oW = &) is very small for large & and Fg o #(W () = k) — 0 as
A — o0 where Ty oy 15 the probability measure governing the model.  Alexander showed
that as & — oo, such an event can occur only when all & points comprising the cluster W{l))
are packed tightly inside a small sphere of radius Q{k/3) centred at the origin and there is
an annular region surrounding the cluster which is free of any Poisson points. This gives rise
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FIGURE 1: A possible realisation of £(3, 8) with the centres of the big balls clustered in asmall sphere

nearthe origin and the centres of the small balls are distributed uniformly inside the region created by the

big balls. The annular shaded region does not contatin any point that is the centre of a big ball: another

annular region of width #; around the big balls clustered at the origin (not shown here) exists which will
not contain any point that is the centre of a small ball.

to the phenomenon of compression as &, the number of Poisson points in this small sphere
of radius €2 (k/L), is very large compared 1o the expected number of points L O((k/AF) (as
A — oc) given by the ambient density A of the underlying Poisson process.

Here we consider a continuum percolation model where o assumes two values rp and 2
{ry = r2) with probabilities py and p2 (p) + p2 = 1) respectively, ie.

Famlpg=nl=pm=1-—2npnlp=r

We refer to the balls of mdius ry as big bally and the balls of radius r2 as small balls. We
consider the event that the cluster of the origin, W (), consists of &) big balls and k» small
balls. Cleardy, the probability of such an event goes 1o 0 as & — oc. This paper is devoted
to the study of the geometric structures admitted by such rare events when the intensity of the
underlying process is very high.

When the origin is the centre of a big ball a possible structure of the event is that the centres
of all big balls are compressed in a small sphere centred at the origin and the centres of the
small balls are distributed uniformly inside the region formed by the big balls in such a way
that the small balls are totally contained inside the big balls (see Figure 1). This requires that
{a) an annular region of width r) surrounding the region created by the big balls be free of the
Poisson points which are the centres of big balls, and (b) another annular region of width
surrounding the region created by big balls be free of the Poisson points which are the centres
of small balls. 1t is clear that the volumes of these two regions will determine the probability
of the event we have considered. We show that the probability of the structure described above
will be much higher than the probability of other possible structures as the given structure will
minimise the volumes of the two annular regions just described (see Figures 1 and 2 for a
comparison of the volumes) and thus it is most likely that the above event occurs with such a
SEOMEeLric structure.

When the origin is the centre of a small ball, the structure of the event is very similar. The
possible structure here is that the centres of the big balls in W) are clustered in a small sphere
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FIGURE 2: A possible realisation of E{3. 8) when at least one centre of a big ball (here the one on the

left-hand corner of the triangu lar region which contains all the centres of the big balls forming the cluster)

is far away from the origin. The shaded region A does not contain any point that is the centre of a big
ball; the shaded region B is the one we consider in Lemma 3.

iwhich is not necessarily centred at the origing in fact the centre will be uniformly distributed
inside a ball of radius {(r; — r2) around the origin) and all the centres of the small balls are
distributed uniformly inside the region formed by the big balls in such a way that the small
balls are totally contained inside the big balls. As before, there are two annular regions: one
of them contains no Poisson points which are the centres of big balls and the other is free of
Poisson points which are the centres of small balls. Once again, it is this structure that has the
largest probability and hence this is the structure we observe when the origin is the centre of a
small ball. It is clear that this structure is obtained from the previous case (when the origin is
the centre of a big ball) by just a change of the position of the orgin to a random point which
is uniformly distributed inside the sphere of radius (r; — r2).

If W) consists only of big balls or only of small balls, the scenario observed is similar to
the case when we have fixed sized balls. In these two cases, the centres of the balls are tightly
packed in a small sphere near the origin and two regions are created, one of which does not
contain any Poisson points which are the centres of big balls and the other is free of Poisson
points which are the centres of small balls.

When the cluster Wl admits at least one Poisson point which is the centre of a big ball, the
centres of the small balls are distributed uniformly over a sphere of radius (rp — r2 ). Typically
such a region should contain A, (r) —r2)? Poisson points whereas the cluster W(0) consists of
only (k; +k2 ) Poisson points where 7y denotes the volume of the unit sphere in o dimensions.
This gives rise o a different phenomenon, which we call the rarefaction phenomenon as the
cluster contains fewer pointsthan are allowed by the ambient density of the underlying process.

However, in the case when W) comprises only small balls, the volume of the two regions
described above is much smaller than the volume of the corresponding regions in the cases
when Wl admits at least one big ball. Hence, the probability that Wil) comprises only
small balls dominates all other terms in Fy o (#8(W (D)) = k) and thos it is most likely that in
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a high density Boolean model a finite cluster comprises only small balls.

Our results hold for more general varying radius distribution; however, for the sake of
simplicity we restrict ourselves 1o the case when there are only two distinet sizes of balls.
Moreover, besides balls of varying radius, the results hold for more general convex shapes.
We discuss this in the last section,

2. Statement of results

The independence of the radius random variable and the driving Poisson point process
uarantees that the centres of the big balls, other than the point at the origin, form a homo-
seneous Poisson point process of intensity Ap). We denote this process by ¥ and its points
by v, va, ... Similarly, the point process consisting of the centres of the small balls, other
than the point at the origin, form a homogeneous Poisson point process of intensity dps. This
process 1s denoted by Z and its pointsby 2y, 22, ... Moreover, ¥ and Z are independent point
processes. Clearly, the union of the processes ¥ oand Z comprises the original Poisson process
of intensity & without the point at the orgin. Thus, to arrive at the continuum percolation
model, we add one point at the origin to the union of the processes ¥ and Z and place either a
big ball or a small ball at the origin, independently of the processes ¥ and Z, with probabilities
1 oand pa respectively. Hence, we view the model as the superposition of two independent
Poisson processes ¥ and Z and the point at the origin, where all points of ¥ are the centres of
a big ball and all points of Z are the centres of a small ball. The point at the originis the centre
of a big ball or a small ball with probabilities p; and p2 respectively.

Now we encounter two possibilities: (a) the origin is the centre of a big ball and (b) the
origin is the centre of a small ball. The conditional probability measure given that the origin
is the centre of a big ball is denoted by g while the conditional probability measure given
that the origin is the centre of a small ball is denoted by Fg. The original probability measure
P can be recovered from these two measures by setling

Zam) = p2sC) + pas(). (1)

We define two events E(ky, &2) and E° (k. k2), as follows:
(1) given that the origin is the centre of a big ball, we define

Eiky . k2) = { W) consists of (£ + 1) big balls
(including one centred at the origing and k7 small balls},

(i) given that the originis the centre of a small ball, we define

E'(ky. k2) = {W(0) consists of & big balls and
bz + 1 small balls (including one centred at the origin)}.

Using a simple marked point process argument, we can derve a relation between
Tl E(ky, k) and Pgl E'(ky, k2)). We say that a cluster is a finite (k) , ko )-cluster if it consists
of only &) Poisson points which are the centres of big balls and k> Poisson points which are
the centres of small balls.

Letusfix i = Oand &y = land ks = 1. Let B, = [—n. n]? and define M,.(B) to be the
number of Poisson pointsinside B, each of which is the centre of a big ball and is a constituent
of a finmite (k). &2 )-cluster.
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We calculate the expectation of M, (B) using marked point process argument. Let M be the
space of marks, which in our case is just the set {0, 1} as we shall see shortly. Let M; be the
mark at the point x;. Campbell’s theorem for marked point processes (see Hall (1988), p. 2007
euarantees that if the marked point process {x;, M; - is stationary then for any non-negative,
measurable function f on 29 x M we have -

__i( E Fixi, Mj}) = ME( fix, M]Id.l.‘)
i R
=)Lf E f(x. M)dx, (2)
B

where M is g random mark having the so-called ‘mark distribution” and £ is the expectation
operator corresponding Lo the measure Fy . Inour context, o apply Campbell’s theorem we
Lake the mark
1 if x; is acentre of a big ball and
M; = x; is a part of finite (k) , k2)-cluster,

0 otherwise.
and

F(x, M) {M,- if x = x; for some x; in B,
X, =

0 otherwise.

Thus,
Mu(B) =) fixi, My).

i=1

Hence, from (2) we oblain

(M, (B)) = 2-( Y fln, M,-})

i=1
:)‘E(f Fx. M}d.r)
B
= i(2n) piTg(Elky — 1, k2)). (3)

Now let M, (5) be the number of Poisson points inside B, each of which is the centre of a
small ball and is a constituent of a finite (&, k2)-cluster. Using a similar marked point process
argument we obtain

(M, (5)) = A(2n) pal (E'(ky L ko — 1)). (4)

Let £, be the number of finite (&), kz)-clusters inside B, such that all the (k) + k) points
in cach of these finite (&), &2 )-clusters are contained in 8,. In our definition of M, (B) and
M, (8) the finite (ky, &2) cluster need not be completely contained in 8, so it is clear that

ki Ry = My(B) and kR, = M(S5). (3)
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Further, any finite (k) , kz)-clusters, at least one point of which is inside By, must be totally
contained inside By g, + 0020 - Hence, we also have

kit Bys iy +0n12e, = My (B) and kz Ry ipy 41002, = Mu(S). (6)

Now combining Equations (3)—(6), we have

ApptelElk — 1. k) k=

W

B

=
=

H— 0 {2!!}"1-

< | Rn+ik1 +k2 12y )
= ISP Bl + (o + )2l
lirn sup :{M”{S}} x {EH}J
n—-;.’:c -kluﬂ}'d {2{" + (& +k2}'2rl}'}""r
Lo BM(8) (2n)"

IV

ky nsoo (2n)d n—lx::: (2(n + (ky + k20200
= ApalFs(E'(ky, k2 — 1))/ k2.

A similar calculation yields
ApalFs(E'(ky kz — 1)/ k2 = Apn PR(E (K — 1, k2))/ Ky
Combining the above two inequalities we obtain the following proposition.
Proposition 1. Ford = 0and k), ka = 1, we have
p12BlEK — 1 k) by = p22s(E' (ke — 1))/ ko (7)

From this proposition, it follows that the results in the case when the origin is the centre of a
small ball can be obtained from the results in the case when the origin is the centre of a big
ball. So, unless specified, from now on we will assume that the origin is the centre of a big
ball.

We define the measure of the size of the cluster Wl by

d{ W) := ma{d (0, x) : x is 2 Poisson point in W ()},
The relative density of the cluster W (0) of the originis defined by

S0) = #{W(0))

T Amad(W () ®

Alexander (1993) showed that when the balls are of fixed size, for £ fixed or £ — o0 but
kfd — 0,
Do mBh) = oo | #(W(0) =k) > 1 ask — oo

This phenomenon was termed compression by Alexander.
In the case when the balls are of varying sizes, the resulis are best understood when we
divide them into different cases. We first consider the case when both &) and &2 are fixed.

Theorem 1. Suppose that both k) and kz are fived. Then we have, as . — oo,

TR(E(ky, k2)) = exp(—dmaElp + n)? + (k2 — ki(d — 1)) logh + (1))
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and

(i) Pp{d(W{0)) = a1 () | Elky k2)) — 1,

() Tld(d)y —= 0] E(ky. k2)) — 1
where ay(}) is function of & such that a; (1) — O but May(0)? — ocas b — oo and Z is the
expectation operator according to the distribution of p.

MNext we consider the case when &7 is fixed and k) — oo but k) /h — Oas b — oo

Theorem 2. Suppose that b is fived and k) — oo but ky /) — Oas L — oc. Then, we have,
as b — oo,

Fr(E(ki, k2)) = exp(—ima=ip +r)¥ — (d — Diky log(h/ k) + ka logh + Ok )

and
(i) Peld (W) = az(d) | Elky, k2)) — 1,
(1) TRl (A) —= 0| E(k k2)) = 1
where ax(X) is a function of X such that az(%) — 0 and Ma2(0))¥ j k) — oc ask — oo

Now we suppose that &y is fixed and k; — oo but bz /b — Oas b — oo

Theorem 3. Suppose that k| is fived and ka — oo but ka /) — Oas L — oc. Then, we have,
as b — oo,

Pa(E(k: . k2)) = exp(—mgip + )Y — (d — Dk logh +kz log(Apa/ k2) + O(k2))
and

(i) "e(d(W(0)) = a | E(k1,k2)) — 1,

(ii) *p(8(A) = 0| Etki, k2)) — 1
Sforevery fived 0 =a <=1 —ra.

Now suppose that both &y, ks — oo butky /L — 0 ka2 /h — O as b — oo

Theorem 4. Suppose that both k), ky — oo but by /b — 0,k /) — Qas ) — oo Then, we
have, as b — o0,
Ig(E (k. k2)) = exp(—imy=lp + )Y — (d — Dk log(d/ ki)
+ k2 log(Apa/ka) + Ok ) + O(k2))
and

(i) Tgld (W) = a | Elk, k) — 1,

(i) Ppld(d) — 0| E(ky, k2)) — 1
Sforevery fived ) =a < —ra.

Next we consider the case when cluster of the origin W{ll) consists only of small balls or
only of big balls. Let E{k. 0) be the event that the cluster of the origin consists only of k£ + 1
ik = 0) big balls. Similarly, let {0, k) be the event that the cluster of the origin consists only
of £+ 1 (k = 0) small balls.

Theorem 5. Let k be fived or k — oo but k). — QDas ). — oc. Then, we have
(i) PR(E(k, 0) = exp(—AmyZp + ) — (d — Dklog(h/k) + O(K)
(ii) 25(E'(0, k) = exp(—Amglilp + r2)? — (d — Dklog(h/k) + O(k);
and finally
[, s E(0, k) | W) =k+1) =1 9

as b — oo
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3. Lower bounds

In this section, we obtain the lower bounds of the probabilities of the events we have
considered. Since we use Stirling’s formula quite often we state below the resulls we need
(Feller (1968), pp. 52-54).

Stirling’s formula:

n!

lim ———— =1.
= oo .-'2_,-”!.1?+l.-'lc—n

Alsa, foreveryn = 1,
V2an ™t e =t = gt e exp(l/{12n)).

Let Ny(A) and Nz{A) be the number of Poisson points inside A of the point processes ¥
and Z respectively. Let »U7 be the ball of radius r centred at the origin and x + r7 be the ball
of radius r centred at the point x.

Lemma 1. Ler (i) &y, k2 be both fived or (ii) k) be fived, bz — oo but bz (. — Qor (iii) ka2 be
Sixed and ky — oo but kb fh — Qoriv) both by, ka — oo butky /). — Qandka /). — Ofas
A — oc). Then, we have, for all large X
Tp(E(ky, k2)) = exp(—hmgllp + )" — (d — Dk log(h/ k1)
+ k2 logldpa S k) + ik + o2k + gk, k2, 2D, (10
where o and o3 are constants and gik), ka2, 3) is a function of k), k2 and 3.

Proaf. Since the origin is the centre of a big ball, if k) pointsof ¥ in W{l}) are placed in a ball
of radius aik; /), they will belong to the cluster Wilh) for all large 3 where
@ = primg(2r*= 17" (see Figure 1). Note that if we assume that there are only big balls
available for the cluster W(0), then the optimal radius inside which all the Poisson points are
packed is a (k) /3) (see also Alexander (1993)). Now the small balls can be placed inside a
sphere of radius (r; — r2) centred at the origin without affecting the region covered by the
balls. This creates two annular regions, one free of points of ¥ and the other free of points of
Z. Thus we oblain

Ie(Elky, k2)) = FeiNy (lwk [AU) = ki, Nz((n —r2)U) = k2,
Ny (2n + alky AU (@l /A)DU) = 0,
Nz(((ri + r2) + (oky SANU N (n —r2)U) =0)

(A prlaky fh)7 )"
= exp(—imy pi(aki /A)7) o
1!

exp(—Amgpair — r)®)

o Gmap2(ri — )k
k2!

x expl(—isy pa(i(r + r) + (aky /AN — (n — ).

exp(—Aimg p1{Qry + (aky A — (aky fA)))

We now use Stirling’s approximation for &) ! and k2! 1o obtain
Da(E(k1. k2)) = exp(—myElp + )" — (d — Dk log(h/ k) + ki loglemy pra®)
+ kalog(hpa/ k) + k2 loglema(rt — r2)") + g1(kr . k2))

a
) ) . |
* eXp (_ Azt Z (Jr')l[ﬂmﬂ}IJ (P12 )™ + pa(r +r2)* }')

J=l
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where gy (ky, k2) = —(1/{12k) + 1/{12k2)) — logik) £2)/2 + log(2m ). Now, we choose X so
large that k) /& = 1. Then the last term in the exponential can be wrillen as

d
d ; ; :
Ay Z (J) (aky (A (12— + patn + 2"
i=l1

= kidmga(p12r)* ' + patny + ¥

o
! . . .
+ama ) (:-)'[ﬂha’l}’ (p12r)* + patnn + 1))

j=2

< kdmaa(p(2r ) + pair + )Y

o
+ harglky /)7 ) (;’) (@ (pr@r)"™ + patr + ")

=0
=kdmgo(p12r) 1 + p2in + Y+ Cuig /i,

where €1 = mg[pifa + ) + pata + (1 +m)) ]

Now setting e = logieny pro®!) —dmga(p1(2n ¥ 4+ pairy + )Y and e2 = logleny
(ri —r2)") and giky , k2. 2) = gi(k . k2) — Ci k5 /A, the lemma follows.

Next we consider the case when W{ll) comprises only big balls or only small balls. We
prove the result in the case when W () comprises only small balls, the other case being similar.
Lemma 2. Let either (i) k be fived or (ii) k — oo but k /). — Oas L — oc. Then we have as
A= oo,

Fs(E"(0, k) = exp(—Amglilp + r2)! — (d — Dklog(A/ k) + O(K)).

Proaf. The proof in the case when W{0) consists of only small balls follows a similar line
to that of Lemma 1. A possible structure of the cluster Will) is that the centres of all small
balls are packed tightly in a small sphere of radius a2 (k/L) where @z = paimg(2m )@~ 1H~!
and there is a spherical region containing no points of ¥ and an annular region containing no
points of Z. Thus, we have

Fs(E'(0, k) = 25Nz (o2 (k/M)U) =k, Ny (((r) +r2) + (aak/A)DU) =0,
Nz ((2r2 +a2(k /AU \ (aalk /AN = )
(A g paiaz(k /)]
k!

= exp(—hmyp2(lazk/h) + 22))
x exp(—hg pillazk /) + (ry + r2)).
Calculations using Stirling’s formula, similar to those vsed in the previous lemma, yield the

result.

4. Upper bounds

In this section we obtain the upper bounds of the probability of the events we have defined.
As discussed in the introduction, the occurrence of E(k) , k2) creates two regions, one of which



U3R e SGEA A, SARKAR

contains no points of ¥ (the centres of big balls) and the other contains no points of Z (the
centres of small balls). To get an upper bound of g{ E(k; , £2)), we have 1o obtain estimates
of the volumes of these two regions. To this end, we divide the event E(k;, k2) into several
smaller events depending on the size of the clusters and estimate the volumes, and thereby the
probability, for each of these events separately.

The first two lemmas (Lemmas 3 and 4) deal with the big clusters where we show that the
volumes of the regions described above are ‘extremely large’ (see Figure 2) and therefore the
probability is negligible. In Lemma 5, we consider the case when the centres of the big balls
are clustered ina small ball of ‘optimal” size {see Figure 1)—this is the case which contributes
significantly to i £k, k2)). Lemmas 6 and 7 take care of the moderate size clusters, and in
Lemma 8 we consider the case when the cluster consists only of small balls.

In the next lemma, we consider the case when at least one point of ¥ in W{l)) is at a distance
1 or more from the origin. To study this event, we define

dy () = masx{d{0, w): vy e Wilh Y}

Lemma 3. Ler (i) ky, k2 be both fived or (ii) k) be fived, kz — oo but bz (. — Qor {iii) ka2 be
Jixed and ky — oo but kb fh — Qoriv) both ky, kz — oo butky /). — Qandka /). — Ofas
A — o¢). Then, for all large ), we have

PRl Eky . ka), dy (0) = r) < exp(—Amglifp +r ) — dmapi(n /2% /2 + c3ky +eaka),

where 3 and ¢4 are positive constants not depending on ky and k.

Proaf. Since the cluster has only (k) + &2} Poisson points ( besides the orgin), the Poisson
point in Will) which is farthest from the orgin is al most at a distance 2(k) + &2 ) from the
origin. S0 we have

Ik +ha)
FplEky, k), dyily = ) = Z Pl Eky, k), jro = dy () = (j + 1 ).
i=l

Now we estimate the summands in the above inequality. Suppose that jr = dy(l) =
{j+ 1. Then there is at least one Poisson point in W{ll) N ¥ which lies outside the sphere
{ jri ). Let vipgy be the Poisson point in Wl M ¥ which is farthest from the origin and hence
Jr = d{vmax. 0) = (j 4+ 1. Now, if we centre a ball of radius 2r at the point vy, the
part of the ball which lies outside the sphere ((j + 1) )07 contains no points of the process
Y. A lower bound of the volume of the region of the ball of radius 2r) which lies outside
{{j =+ 1y ) can easily be obtained by observing that a ball of radius () /2) will always be
contained inside such a region (see region B in Figure 2). To make this formal, we use a
conditioning argument.

Let ©, be the positions of all Poisson points of ¥ and Z inside ({j + 1) )7 and the origin,
{0}. Define, form, n =0,

Am = {Ny{(2n W) = m}
By = {Nz(ln + n)U)=n}.

Since the event E{k, k2 ) occurs and the origin is the centre of a big ball, the ball (2r )7 may

contain, besides the origin, at most k) Poisson points of ¥ and hence, the event Ufu‘=ﬂz4,,, st
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occur. Similardy, n=t]B” also oceurs. Let 0, v, ..., vi;, be the Poisson points in C, 1 W)
which are also the centres of big balls. Thus we have

FrliElki. ka), jr <dy() = (j+ D)
=E[Pe(Elk . k2), jrn <=dy(® = G+ Dir | CJI

S I )
< E[?B{Nyuuf;l{_w} +2nUNNG+ D) =0|CH Y Y la, 13,_.]
m=0n=(
ki k2

< 3> Ze(An)F a(Ba) exp(—Ama pi(ri/2))

m={1p=ll
= cxp{—mzm + r )y expl—ima prin /2)%)

n!

Z Z Uumrm{j‘rl K" Gatg pan +12)Y)"

=il p={)

Choose constants Cz, C: = 1 such that
@2r)? < (n/29Ca/4 and  pan +r2) < pu(n /27 Ca/4.

Then, we have

Z Z (g pr 2™ (g patry + r2))"

m! n!

m={1 =)

Z Z (g pr(r f2Y7 C2 /4™ (g il /200 Cs f4)

] ]
s =) p=A) i e

<G'CY i i Hm;mixﬁr’mr” (orapi(r/2) 4)"

! n!
=) =)

oy ey é
= ;' €3 explhmy prir /2) /2).

Now, combining together, we have

L NI - B il = o ; g el i

Fe{Elk, k2), dy () = n) = exp{—Adagllp +r )" — dmgpi{n/2)° /2

+h logCr 4k log G320k + k2 ))
< exp(—Amglip +r)" — dmapi(n /2 2+ cski +caka).,

where c3 =logCr + 2and ¢y =log C1 + 2.

Lemma 3 shows that none of the centres of the big balls can be too far from the origin. Now
we look al the case when at least one point of W {ll) which is the centre of a small ball is very
far from the origin. For this, we define

dz (0) ;= max{d(0, ;) - z; e Wiy Z ).



Q4D e SGEA A, SARKAR

Lemmad. Let (i) ky, k2 be both fived or (i) ky be fived, ka — o but kz (b — Qor (iii) k2 be
Jixed and ky — oo but ky fh — Qoriv) both by, ka — oo butky /) — Qandka /). — Ofas
A — o¢). Then for alf large )., we have

FriEiky k2, dy i) <, dz () =)
= exp(—AimglFilp +r)¥ — Amgpa(ra /20 2+ esky + ceka)

where cs and cg are positive constants not depending on k) and k.

Proaf. The proof of this lemma follows a similar line to that of Lemma 3.

FglEfk . k2), dy(0) = 1y, dz(0) = 1 |
ky+ka
< Y ZalEth, k), dy®) < ri.n + jra < dz(©0) < r+ (j+ D).
j=i

Now, we follow a similar method as in Lemma 3 to estimate the summands in the inequality.
Suppose rp + jra = dz () = rp + (j + 1)z and let 7y, be the Poisson point farthest from
the origin in W{ll) which is also the centre of a small ball. Clearly r| + jrz < d{zpa. ) =
L+ Lire . Now aregion lying outside (r) +(j + 1) )0 of volume at Ims[.rr,,r{rgl.-’E}l"r will
contain no Poisson points which are the centres of small balls and hence, by a conditioning
argument as in the previous lemma, we oblain

SplEk, k). dy(® = r+ jrz < dzI0) =+ (j + D]
kr k2
= 3 ) Fa(An) BBy exp(—dmgpa(r (2))
=i =il

- mm—mlﬁm +r1) Y exp(—hma pairs /20

Z Z [lfmpu[j‘n WP [hmapa(n + ) |‘r

n!

m=0n=(
Now choosing cs and g suitably the lemma follows.

Now we want 1o estimate the probability that all the centres of big balls comprising the
cluster W{ll) are compressed in the optimal sphere about the origin (see Figure 1). Let
o = primg(2r)¥ =Y~ and h(n) = —log(27) — (logn)/2 where n = 1. We note here
that if i 15 fixed then fifn) = 1) and if n — o¢ then fin) = oln).

Lemma 5. Let (i) ky, k2 be both fived or (ii) k) be fived, kz — oo but kz (. — Qor (iii) k2 be
Sixed and k) — oo but ky fh — Qoriv) both ky, ka — oo butky /). — Oand ka2 /). — Ofas
A — oc). Then for alf large ). and for some constants o7 and cg, we have

Tl Elk, k2), dy(l) = aky /A, dzil) =)

= exp(—AmgElp + 1) — (d — Dk log(h/ k)
+ bz logidpa/ka) + ek + cgha + hiky ).
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Pwaf. We have
PRIEky, k2), dy(0) = ok fh,dz(0) =r)
= PNy (lak /AU ) = ky, Ny (Q2r))U Y {aky /30U =10,
Nz(nU) =k, Nz((ry + r)U '\ n ') = 0)

4. (g pr ek /A

= exp(—hay pi (ks /3)") - exp(—hmy parth)
12

y un.ﬁr{’}“
x exp(—Amapa((n +r2)? —ri))

< exp(—hrglilp +r1)! — (d — Dy log(d/ky)
+ ka2 loglhpa/ka) 4 o7k + caka + hiky ),

exp(—img pr{(2r)* — (ki A7)

where c7 = loglemrypra?) and cx = Ii.)g{f.-'r,,rrf}l + 1.

MNext we look at the clusters which are of moderate size. For a fixed constant g = 1, we
define,
W, (¥) = pra—1(n )y — boglepimau® y¥).
MNote here that W, (y) — o0 as y — o

Lemma 6. Let (i) &y, k2 be both fived or (i) k) be fived, kz — oc but kz /b — Qor (iii) kz be
Jixed and k) — oo but kb fh — Qor{iv) bath ky, kz — oo butky /). — Qand ka2 /). — Ofas
A — o¢). Then for alf large ., we have

TB(E(k1, k2). dz(0) = ry, yki /A < dy(0) = pyky[/3)
< exp(—AmyZip +r)" — (d — 1)k log(r/ k)
— kW (y)ka logldpa/ ka) + cokz + hiky)).
where oy is a constant and ik, ) is as defined earlier
Proaf. We define
(7, = {all points of ¥ inside the ball {pevky /001U {0},
H, = {al points of Z inside the ball r {7};
and
A = {Ny((pyk fAU) = ki }
B = {Nz(nU) = kz}.
The r-fattening of the set E is defined by
E" ={u € #Y : thereexists v € E such thatu € v + rU}.
Now we have
FelEk k2), vk /L < dy(0) < pvky JX, dz (D) = ry)
=HTFg(Elkr, k2), vl /A < dy(0) = pyky fA,dz(0) = n | (G, H))]
< Alalp BNy (G UHDT2 N (uyky /WU) =0,
Nz (GUH2U HY A\ nU) = 0] (G,, H))]
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FIGURE 3: A realisation of the event £(3, 8) when the cluster size is moderate and the regions A, B, C
and H along with the hyperplanes S and T are considered in Lemma 6.

Since 0 € G,, we have (G T2 U H \ n ) = (G T2\ i U) = £ 2\ r U)
= mlin + m)¥ — r{'r}, where £{-) denotes the Lebesgue measure on =9 Also we have
UG U HD T vk fAU) = £G7 N\ (k) fAU) = GG ) — g (pyky (2)4. Now to
estimate E{Gf” ), we choose the pair of points (@), w2) in (7, which has the maximum distance
among all pairs of pointsin &, and hence d{(a), w2) = vk /h. Let S and T be the hyperplanes
drawn at the points ) and @y respectively such that both of them are perpendicular to the line
joining e and ez, Thus all the points of G, will lie in the region H (see Figure 3) which lies in
between the hyperplanes § and T. Hence there will be two half-spheres A and B (see Figure 3)
of radius 2 centred at the points @) and s respectively which are disjoint from H. For the
part of Gfr ! which intersects H, we consider any pointw in G, , other than @) and o, and look
at the region H M iw + 2r U7). A lower bound of the volume of this region can be obtained by
noticing that a -dimensional cglindm- of height at least vy /A and (d — 1)-dimensional cross
sectional area at least gy} will always be included in it (see region C in Figure 3). Thus

UG = w2 + w1 yky /.. Thus, we have, for all large A,
SR(E( k), v A < dy(D) = pyk fh,dz(0) = 1)

hag part 2
< exp(—hzgparl) % exp(—Amap1 (yk /M)
X 14 k]_
o Brap ki /1)) exp(—ima pa((ry + o) — rily)

k!
% exp(—Aay pr(((2r ) — (uyky /A7) — may(r =k /)
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= exp(—Amglifp +r)¥ — (d — 1)k log(h/ k1)
+ kalogihpa/k2) — kW u(v) + ook + hik ),

where cg = Iug{f.ﬂ',,rr‘l'r}l + 1.

We use this lemma repeatedly 1o obtain the upper bound of the probability when the cluster
is of moderate size. The important thing to note in the above estimate is that the function fiik; )
is independent of & and v.

Lemma 7. Let (i) &y, k2 be both fived or (ii) k) be fived, kz — oo but kz (b — O or {iii) k2 be
Sixed and ky — oo but kb fh — Qo {iv) both by, ka — oo butky /). — Qandka /). — Ofas
A — ool Then there exists A = 0 and constant cy so that for alf large )., we have
e(Ek, k2), Bl /A = dy(0) = 1y, dz(0) = 1)
< exp(—hmalilp +r1)? — (d — ki log(h/ k1)
+ k2 log(hpa/ k2 ) + ek 4 cokz 4+ hiky ),

where co and hik)) are ay defined earlier.

Poof. We fix g = 1 and choose # large so that ¥, {u/B) = jforevery j = 1. By the
definition of W, (-) this is possible. For M = min{j : Su/k /L = r}owe have

FrlE(ky, k2), fly fh < dy(0) = r, dz(0) = 1)

M—1
=Y W p(Etk k), dz(0) <, Bl o < dy @) < ' B fa)
j=0
M-I
= Y exp(—imgllp + n)* — (d — 1k log(h/ ki)
j=0
— ki W (B! + ka2 log(hpa/ k2 ) + cokz + hiki))
< Y exp(=rmglilp +r1)* — (d — ki log(h./ ki)

j=0
— ke j + k2 loglhpa/ ka2 ) + cgkz + Rk ))

< exp(—imgEp +r)* — (d — 1)k log(r/ k)
+ k2 logldps/ k2) + coky +cokz + hilky ),

where ¢ 15 & suitably chosen constant.

Finally we look at the case when the origin is the centre of a small ball and W{0) comprises
only small balls. Caleulations similar to that of the previous lemmas yield the next result whose
proof we omit.

Lemma 8. Let (i) k be fived or (i) k — oo but k /). — Qas ). — oo Then, for some constants
o1 and ¢z and for all farge ), we have
(i) *S(E"(0, k), dz(0) = r) < exp(—dmglifp +r2)¥ — Apa(ra/2) /2 + enk),
(i) s(E'(0, k), dz(0) <a k/r) < exp(—AmgE(p+r ) —(d— Dk log(h/ k)+c12k-+h (k).
(iii) For @, (v) = pama—1(r2)? 'y — loglepamap y9),
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we have, for (= 1 and v = Uand for all large ).,
Trs(E'(0, k), vk/% < dz(0) < ypk/A)
= exp(—AmsE(p + ) — (d — Dk log(h/ k) + kD, (v) + hik).
(1v) There exists § = 0 such that for all large ). we have
Pl EN0 K, BkSA = dz () =)
= exp(—hmrg Ap +r2)* — (d — Dklog(h/k) + crak + h(k)),

whew £13 is a constant not depending on k.

5. Proof of Theorems
The proofs of Theorems 14 are similar, so we prove only Theorem 1.
Proaf of Theovem [, For the first part, we note, for k) and &7 fixed,
Pel£lkL, k2))
= "glE(ky, k2). dy (1) = 1)
+ P(E(k) k2), dy () =y, dz(0) = 1)
+2plElk, k2), dz(0) = r, dy (0) = aky /)
+ ZB(E(ky, k2), dz(0) = r, ok /A < dz(0) = 1)
+ Pp(Eky k). dz(0) < r ki /L < dy(0) < Bk f0).
MNow, using Lemmas 3-7 and Lemma 5 with v =« and g = /o for the last term in the above
equality, we obtain
DR(E(k . k2)) < exp(—AmaBElp + ) + (k2 — ku(d — D) log & + O(1)).
This along with (10) proves the result.
To show the second part, we see that, for any 0 < a{d) = (n — ),
Fald(W@) =ai(d) | Etki, k2)) = Faldz(0) = a1(2) | E(ky, k2)). (11}
If dz(ly = rp, all points of the process Z are inside the sphere ri U, As we have discussed
earier, we may place these points uniformly inside the sphere (r; — r2) without changing the
region formed by the union of all balls (big and small). This is because any point inside this
sphere will be totally contained inside the ball placed at the origin. Thus we have
ai(r) )‘”2

ry—r2

(12}

Faldz(0) = ad) | Elky k2), dz() =r ) = 1 — (

If we take a; (i) such that lap (i) — oo but ap(h) — 0 as L — oo (one such choice is
ap(h) = A~V we obtain from (12) and (11) as A, — o,

Pe(d(WI0) = a(d) | Ethy, k2)) — L. (13)

Mow, we note that

kyp+ k41 Kk + k2 + 1
Ot bl i NG R, SN
Amad (W0 A gar (o
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on the set {d{W{0)) = a(L)}. So, by our choice of the a) (1), we have
Tpldld) = O] E(ky, k2)) — 1 (14)

as . — oo, proving the theorem.

Finally we are left with the proof of Theorem 5. The proofs of the first and the second
parts follow a similar line to Theorem 1. To show the third part we need an upper bound of
Zg(Eky, k2 )) for &y = 1. For this we use Equation (7).

Proaf of Theorem 5. We have

I, (E' (0, k) | WD) = k+ 1)
- Tk, —o PER(E (K k — k) + p2 T _y PS(E (ki k — k)
a prs(EN0, k)
_—— k41 [ maxpeg < BlERL E— k) max << Fs(E' (ki bk — k)

- P2 [ FslE0, k) Fs{E0, k)) ]
(15)

Let g =Ep +r)? —E(p +r2)¥ = 0. For fixed k, we have

2 'Iiﬂn Fa(Eky, k — ki) < exp(—Amgli(p + r )" + c1a logh + c15),
zh=

where o4 and ¢35 are fixed positive constants not depending on A, Further, from (7) and above,
wi have

max Fs(E'(ki, k— ki) < exp(=Amalilp + ri) + ciglogh + c17)
=k =

where c15, 017 are positive constants not depending on A, Thus from the lower bound of
T EN0, k)) in Lemma 2, (15) and the above upper bounds, we have for some constants o g
and e19,

F o (E'(0, k) | #(W(D) = k + 1)

2
expl—Ain 4+ (max (g, 1) + o1 logh 4 ook 4 log(k + 1))

—+ 1 ash — o0

=1

proving (9.

When & — oo but £/% — 0, we have to do a little more work. We first choose M so that
{logx)/x = n/dif x = M. Now we choose Ay such that for all L = dpwe have dp /b= M
and Aps/k = M. From the upper bounds, whenever & = Ly, we have for some constant cag
{not depending on & and 1),

max Pe(E(ki. k —k)) = max exp(—Amglip +r) + ka2 log(hpa/k2) + c10k)
0=k =k D=ka=k

exp(—dmglilp +ri) + (p/ 4k +ck).

| A
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(writing 0 - oo = (). By using Equation {7) and the above inequality, we oblain
max ['s(E' (k. k— &
e s(E (k 1)

= max expl{—AimgFp + ¥+ ks logidps/ka )+ copk + logip / p2) + logk)
0=kr=k

< exp(—Ams=Ap +r1)? + (n/2)h +ca k),

where c3) 1s a suitable constant not depending on &, From the lower bound of g(£°(0, k)) in
Lemma 2 and the above upper bounds and (13), we conclude (9).

6. General radius and convex shapes

Our arguments in the preceding sections go through when instead of just *big” and ‘small’
balls we have balls of more than two different sizes. Thos the mesults remain valid when the
Boolean model is equipped with a radius random variable taking positive values vy, r, ., .
Here the smallest balls constitute the finite cluster and the presence of any ball other than
that of the smallest size in the finite cluster would result in rarefaction. Consider now a
Boolean model with radius random variable p taking values rp = rm = -+ = 1 = ---
with probabilities py, p2, ..., Pr-.. wherer, | O0asn — ocand p, = Oforalln = 1. In
this case, given that the origin has a ball of radius r,,, any finite cluster will consist of balls
whose radii are smaller than r, and are distributed uniformly inside the ball of radius r, at
the origin; therefore, a rarefaction phenomenon will be observed. This can be intuitively seen

by considering another rmndom variable o' taking values ry > r2 = -+ = 1y > ey with
probabilities pp, p2, ..., Paes Zfi.lr-i-l pi and considering that the ball at the origin has radius
i

When the mdius p of the underlying Boolean model has a distribution with support in
{0, R for some R = O with 2{p = €) = O forevery € = 0, we expect that there will always be
rarefaction because for any ball centred at the origin we could get balls of smaller size. This
can be seen intuitively by considering a radius random variable o taking values rp,ra, ... with
rp=r: =---=0andr, = 0asn — oo

Also, the arguments in the previous sections did not need the shapes 1o be spheres. Indeed,
the results should go through for any convex shape. However, the calculations of the volume
of the annular regions which we needed would be quite forbidding.
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