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Abstract: Every Evans-Hudson flow on the algebra of all bounded operators on a
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1 Introduction

Let Ho be a complex separable Hilbert space. An one-dimensional Evans-Hudson
(EH) flow (with bounded structure maps) on B(Hy) is a family of J = {J;} of unital
*-homomorphisms mapping B(Ho) into B(Ho @ T'(L?(IR4))), satisfying the quantum

stochastic stochastic differential equation [Hu]

dJy(X) = Jy(LX —o(X)L)dAT + J,(o(X) — X)dA
+J((XL* — L*o(X))dA+ J,(L(X))dt, (1.1)
Jo(X) = X@l,

where L € B(Hy), 0 is a x-endomorphism of B(Hg),
L(X)=i[H, X]- %(L*LX _2L*0(X)L+ XLL), H=H* ¢ B(Ho),

and AT, A, A are creation, conservation, and annihilation processes [Pa] on symmetric
Fock space T'(L?(IR4)). The EH flow J is to be thought of as a dilation of quantum

dynamical semigroup T" with generator L, as
(a, Ty(X)b) = (ae(0), J,(X)be(0)), a,be Hy

for all X € B(Ho),t > 0. Here ¢(0) is the vacuum in I'(L?(/R;)) and ae(0) means
a®e(0).

In this article we assume that ¢ is a normal endomorphism. Then a fine ob-
servation of Bradshaw [Br] allows us to obtain an Fy-semigroup, that is, a strongly
continuous semigroup of unital normal x-endomorphisms of B(Ho®@ T'(L?(IR,))), nat-
urally associated with the flow J. Due to works of Arveson [Ar], Powers [Pr], and
others now we have a fairly well-developed classification theory for Fg-semigroups. So
perhaps it is worth-while to attempt a classification of Evans-Hudson flows through
their Fy-semigroups. This was a suggestion of L. Accardi and here this program has
been carried out completely for one-dimensional EH flows.

Arveson’s approach is to associate a continuous tensor product system of Hilbert

spaces with every Eyp-semigroup. Here product system means a pair (£,U) where



E=A{&,t > 0},U ={Us¢ : s,t >0} is a family of separable Hilbert spaces along
with unitary isomorphisms U, ; : £ @ & — Es44, having the associative property:

U51752+53 (151 ® U52753) = U51 +52,53 (U51752 ® 153)7

for sq1,59,53 > 0, as maps from &, @ &, @ &, to &, 45,45, Strictly speaking there
are some additional measurability conditions [Ar]. We do not stress them here as they
are automatically satisfied in our context.

There is a product system naturally associated with the Fock space I'(L?(IRy, K)),
for arbitrary separable Hilbert space K. This is known as exponential product system
with base space K. In Section 2 we explain this concept and then with the help of an
additional Hilbert space Ko construct a new product system which at the first look
appears to be quite different from exponential product systems. But a closer analysis
shows that we have just another representation of exponential product system with
base Kg @ K.

In the final section we determine product systems of all one-dimensional EH flows
(that is, of their associated Fy-semigroups). It turns out that they are all exponential
product systems. They have a base space of dimension higher than one if and only
if the flow is not implemented by a Hudson-Parthasarathy type unitary cocycle. The
results of Section 2 are quite handy in this analysis. It is to be mentioned that if Hg
is infinite dimensional then generator of every uniformly continuous, unital, normal
quantum dynamical semigroup can be written as above, with suitable choice of L, H,
and o [HS]. So one-dimensional quantum stochastic calculus is good enough to dilate
all these semigroups. However as this paper shows intrinsically the EH flow may make

use of a higher dimensional exponential product system.

2 A new representation of exponential product systems

First we explain the notion of exponential product systems in a way suitable for
our further constructions. Let K be a complex separable Hilbert space. Then the

symmetric Fock space R; = I'(L*([0,1)), is given by
Ri = Gasoh®" hy = L([0,1)).



For wy,ug, -+, u, € hy the n-fold symmetric tensor product
1
w VgV, = ﬁ;uam Vitlg(2) " Uo(n)

where ¢ runs over all permutations, is an element of h?n. Let S; : hy — hsyy be the
right shift
fla—t) t<z

2.1
0 0<e <t 2.1)

Sif(z) = {
Then Uy : Rs @ Ry = Roqt defined by
Ust((urVug -+ Vi) @(v1Vog - Vo)) = ug Vg - - -V V(Ss01) V(Ssv2) -+ -V (Svy,)

extends to an associative family of unitaries. (Here u; € hyyy as hs C hgyy in the nat-
ural way.) The resultant product system R = {Ry;t > 0} is called as the exponential
product system with base space K. The dimension of the base space is a complete

invariant for exponential product systems [Ar]. Observe that we actually obtain

hSL = ST W@ @ nd. (2.2)

m4n=p

Let Ko be another Hilbert space. We build a product a system § = {S;;t > 0}
which depends upon both K and Ky. In fact the construction is pretty simple. Take

St = Buso(KS" @ h®")
for t > 0. Define a map V¢ : S; © S¢ = Ss44, by
Vsi{ar @ az - @ ap @ up Vg Vi, @{b @by @b, @v1 Vg --Vuy})

=a1@az @Ay @by @bg @b, @ (ur Vug Vg VISsv1 VSsug---V Ss0,).

Using (2.2) it is not difficult to verify that V;; extends to a unitary operator and the
pair (S,V) is indeed a product system.

Theorem 2.1: The product system (&8, V) is isomorphic to the exponential product
system with base space Ko @ K.



As a preparation to prove this result we introduce some notation and prove two
simple lemmas. For any two subsets I, F of IR, we write I/ < F to mean z < y for
all 2 € E,and y € F. Fix t > 0, and take R; = T'((L%([0,¢),Ko ® K)). Let D; C R,
be the set

Dy = {e(0)}U{arzixg, V aztaxy, =V @n@nXg, s B1 < B < By B C0,1),
ari=a;Qx; E Kg@K,n> 1}

Lemma 2.2: The set D; is total in 7ét.

Proof: Clearly it is enough to approximate vectors of the form ¢y Vg3 ---V g,, where
all g; € L%([0,t),Ko® K) are simple. Hence it is enough to approximate vectors of
the form

=V VL, WikTikX g, E1<Ey<---<E,
where a2, = air @ 2 € Ko @ K,r; > 1, with 3, r; = n. Fix M > 1, and partition
each F; in to M parts as

M
Ei:UFij? Fi < Fyy < -+ < Fipgp,y
J=1

with p(F;;) = 7(E;). (1 = Lebesgue measure.) Then
€=V Vis, Q_aininxy, ).
J=1

Expand the right hand side using multilinearity of symmetric tensor product to have

M™ terms. With out loss of generality we can assume

sup [lag|| <1, supu(F;) <1,

Ty

Then norm of every term in the expansion is bounded by (ﬁ)” The terms with

subscripts of x all distinct are in D;. Elementary combinatorics shows that there are



precisely [T7_,(M(M —1)---(M — r; + 1)) terms of this kind. We estimate sum of
the norms of the rest by

P 1 p 1 r—1
MY =1lMM -1 (M-r;+1)—=(1-]]101-—)---(1 -~
(0= T = 1)+ =i 1) = (= [T = (= 7))
which clearly converges to zero as M — oc. [ |

Lemma 2.3: On D; X Dy

(@1x1Xp, V a222Xg, VvV @nnXg, s 01Y1Xe V 0202Xp, -V bl X )

0 if n#m
\/% [Tizi nlag, by) (i, yoyp(E:; N E)  if no=m.

Proof: As an n-particle is orthogonal to any m-particle with m # n one part is easy.

To see the other consider the inner-product

<al$1XE1 Q- ananEn ; bcr(l)ycr(l)XFc(l) @ ® bcr(n)ycr(n)XFc(n)>

= [T{ai: boo) @iy Yooy i Ei 0 Fypy)
=1

for some permutation o. Suppose there exist p, ¢ such that p < ¢ with o(p) > o(q).
Then if 2 € E,UF,(,), we have {z} < F, as well as I,;) < {z}, and hence E, U F,,
is empty. We conclude that the inner-product under consideration is zero unless o is

the identity permutation. [ |
Proof of Theorem 2.1: Define W; : Dy — S; by Wy(e(0)) = 1 @ €(0),
Wilarz1x,, V a222Xy, -V annXy, )
= (@ @az-@ap) @ (T1xg VT2Xg, "V TnXg, )

From the lemmas it follows that W; is isometric, and its domain, range are total in
Ry, Sy respectively. So Wy extends to a unitary isomorphism. Denote the extension

also by W;. We need to show that it respects the product system structure. Recall



the definition of right shift S, (2.1) and note that S;x, = x,,. for all F. Now for
MT1X g V Q282X g, -V T Xy, € Dsy biyixg VbayaXy, -V boynX,, € Dy

Wirt(Usilarzixg, VooV an@mXB,) @ (01y1Xe VoV baynx,, )
= Weplazixg, VooV an@nXg, V (0191X 1.V VbalnXp, ()
= a@ag QD ay @by @by by
B(@1Xg, VoV BmXg, VUL g VY YnX, )
= V(a1 @az- @ am @z1xy @ @ TpXy, )
Qb1 @bz by @YXy @@ YnXy, )
= Vs,t(Ws(aNﬁXEl VoV ammeEm) ® Wt(blylxpl VoV bnynxpn)).

Using the totality of Dy, D; the proof is complete. [ |

3 The main result

Let av be a strongly continuous (strong operator topology) semigroup of unital, normal
s-endomorphisms of B(H). We associate a product system £ = £@) with « as follows.

Fix a unit vector a € H. Take & = range (a¢(|a)(a|)). Define V1 : & @ & — Ese by

Vsi(as(la)(a])u @ ai(la){a])v) = asii(la)(al) as(lo){al)u (3.1)

for u,v € #H. Then it is not difficult to see that V;; is a unitary operator (normality
of ay used here). The pair (£, V, ;) becomes a product system and it is isomorphic to
the product system obtained by Arveson [Ar] through more algebraic methods. This
construction has been taken up from [Bh] with a minor modification so that (&, V)
becomes anti-isomorphic to the product system (P, U) obtained there. (Compare with
(4.14) of [Bh].)

Now let us recall the construction of Bradshaw [Br], the basic idea of which perhaps
traces back to [Ac], and [Me]. The Hilbert space H = Ho@I'(L*(IRy)) has the familiar
decomposition as H = 7-2,5] @ 7—2[,5, where

Hy=Ho @ D(L([0,1))), Hpy =T(LA([t,0))),
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for t > 0. Let J = {J;,¢ > 0} be an one-dimensional Evans-Hudson flow on B(#y).

Then the homomorphisms J; : Ag — B(H) are of the form
Ji(X) = J(X) @ I,

where J;(X) € B(?jlt]) and If; is the identity operator on 7—2[,5. Observe that L?([0, o))
is isomorphic to L2([t,00)) through the shift operator S;. This gives rise to a natural

unitary isomorphism between 7—2[0 and 7—2[,5, which maps exponential vector e(f) to

e(S¢f). Now define oy : B(H) — B(H) by

(X @ le(f)){e(g)]) = Ju(X) @ [e(Sef))e(Sig)l, X € B(Ho), f.g € L*(IRy).

Then it follows that oy extends to a normal x-endomorphism of B(#), and o = {a :
t > 0} is strongly continuous. We shall call the product system associated with « as
the product system of Evans-Hudson flow J.

At this moment it maybe observed that if J is minimal [BF] then « coincides
with the minimal dilation Fgp-semigroup associated with the the quantum dynamical
semigroup of J. This is clear from Theorem 4.5 of [Bh] once we note that a; maps
Jo(X) = Jo(X) @ e(0))(e(0)] to Jopi(X).

Now we determine the product system of special Evans-Hudson flow J? which

satisfies the quantum stochastic differential equation
dJ7(X)=J7(0(X)— X)dA, Jo(X)=XaI

where ¢ is a unital, normal x-endomorphism of B(Hp). This EH flow is particularly
simple to deal with as the homomorphisms J; can be written down explicitly [Hu]. In

fact
(X)) =3 " (X))o a1,

n>0
where Q,(fn) is the projection onto the n-particle space in I'(L2([0,¢))). With notation
as in Section 2 (the special case, K 2 (') the range of Q,(fn) is B2 for hy = L%([0,1)).
Let 3 be the Fg-semigroup associated with J7. Now by the very definition of 3

we have

Bullee(N)de(@)) = > " (le)(d) @ Q1" @ [e(Sef)){e(Sig)l,

n>0



for c,d € Ho, f,g € L?(IR4). Fix a unit vector a € Hg, and take & as range of
(B¢(|ae(0))(ae(0)])). We try to visualize the product system formed by looking at

some convenient vectors. Consider
E=c@(urVug Vi) de(f),

n=d® (vyVuvg---Vu,) @e(g)

where ¢,d € Ho, u; € L2([0,5)), v; € L*([0,t)), f € L?([s,o0)), and g € L2([t,0)).
Then clearly

Bs(|ae(0))(ac(0)])€ o™ (la)(al) @ (w1 Vug -V up) @ e(0), (3.2)
Bs(Im){aec(0)))¢ = o™ (|d)(al) @ (u1 Vug -V up)
@(Ssv1 V Ssvg -+ -V Ssv,) @ €(S59).

Now e(Ss9) € (Hs1¢), and hence

Vit(Bs(lae(0))(ae(0) )€ @ Bi(lae(0)){ae(0)])n)
= Boti(|ae(0))(aec(0)])5s(]n)(ae(0)])§
o™t (la)(a])a™(|d){a])c® (w1 V ug -+ V Uy V Ssv1 V Sev -+ V Ssv,) @ e(0).
(3.3)

Finally observe that {o™,n > 0} is a discrete semigroup of endomorphisms of B(#)
and so there is an associated discrete product system. That is, on taking Ky = range
o(|a)(al), there exist unitary maps W, : [ range (0”(|a)(a]))] = K&, such that
Wy =1,

Wingn (0" (Ja)(al)o™ (|d){al)c) = Wi (o™ (la){alc)) @ W (o"(Ja)(ald)) (3.4)

for m,n > 1. Combining (3.2), (3.3) and (3.4) as vectors of the form &,  along with
e(0) form total sets it should be now clear that Z; defined by Z,e(0) = 1 @ e(0),

Zs(Bs(lae(0))(ae(0))e@ (u1Vug - - Vg @e(f) = Wi (0™ (Ja)(al)c) @uiVug -+ -V,



extends to a product system isomorphism between £ and § (of Section 2 with K 22 ().
Hence from Theorem 2.1 we can conclude that the product system of Evans-Hudson
flow J? is the exponential product system with base space Ko, where Ing)n forms the

discrete product system of o.

Theorem 3.1: The product system of every one-dimensional Evans-Hudson flow is

exponential.

Proof: Let J be an EH flow on B(H,) satisfying (1.1). Let o, 3 be product systems

of J, J? respectively. Now from [Hu] we have
Jo(X) = U@)J7 (X)U ()"

where {U(t),t > 0} is a strongly continuous family of unitaries satisfying the quantum

stochastic differential equation
1
dU(t) = U(t)(L(t)dAJr — L(t)"dA+ (i1H(t) - §L(t)*L(t))dt)

with U(0) = I, where L(t) = J7 (L), H(t) = J7(H). Clearly U(t) is of the form
Uty Iy, U(t) € 3(7-2,5]) (adaptedness). Hence «, § are related by the relation

a (W) =U®)B(W)U )", W e B(H).
In other words «, § are exterior equivalent and from Theorem 3.18 of [Ar] they have
isomorphic product systems. [ |
We conclude with a remark that perhaps some quantum stochastic differential
equations with higher (maybe even infinite) degrees of freedom can be rephrased
using the special representation of exponential product systems in Section 2. Then

just one dimensional quantum stochastic calculus could be sufficient to handle them.
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