
Vol. 94, No. 2 DUKE MATHEMATICAL JOURNAL (C) 1998

HERMITE AND SPECIAL HERMITE EXPANSIONS
REVISITED

S. THANGAVELU

1. Introduction. On a compact Riemannian manifold M consider a first-
order pseudodifferential operator p(X, D) that is positive and selfadjoint. Let
j 0, 1,2,..., be the sequence of its eigenvalues and ej(x) the corresponding
eigenfunctions. The family {e} then forms an orthonormal basis for L2(M). Let
Ejf be the projection of f onto the jth eigenspace so that we have

f Ejf (1.1)

where the series converges in the L2-norm. For functions f in LP(M), where p is
other than 2, the above series may not converge to f in the LP-norm, and one is
led to consider the Bochner-Riesz means Sf.
The Bochner-Riesz means are defined by the equation

and we want to know if Sf converges to f in the LP-norm as 2 oe. Let
.8(p) max{nll/p- 1/21 -1/2,0} be the critical index, where n is the dimen-
sion of the manifold. Then a necessary condition for the convergence of Sf to f
in the LP-norm is that > 6(p). In [6] Sogge proved that this condition is also
sufficient as long as 1 < p < 2(n + 1)/(n + 3) or p > 2(n + 1)/(n- 1). This result
includes previously known results for the multiple Fourier series (M- Tn, the
n-torus) and spherical harmonic expansions (M Sn, the (n .+ 1)-sphere).

Let us leave the premises of compact manifolds and proceed to noncompact
situations. The simplest example is the case of the standard Laplacian -A on
IR", and in this case the operator does not have point spectrum. The spectral de-
composition is given by the Fourier transform, and one is led to consider the
Bochner-Riesz means

Sf(x) (2n)-n/2 Jii<e, R2 ]
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wheref is the Fourier transform of f given by

f() (2zO-n/2 J e-iX’f(x) dx.

As before, one has the conjecture that SaR are uniformly bounded on LP(IRn) if
and only if g > g(p). Again this has been proved only in the case when
l<p<2(n/l)/(n/3) or p>2(n+l)/(n-1). However, when n=2, the
conjecture has been proved for all p; this is the celebrated theorem of Carleson
and Sj61in.

In this paper we are mainly concerned with the Hermite operator H
-A / Ixl2 on IR and the special Hermite operator

1 --(Z-- -a /a Izl2 -i
j=l

on tEn. For the operator H the eigenfunctions are the normalized Hermite func-
tions (x), a INn, with eigenvalues (21a + n) where lal al + a2 +--. + an.
Thus one has the Hermite expansion

where the sum is extended over all multi-indices a INn. In the case of the
operator L, the eigenfunctions are given by the special Hermite functions #, a,
fl INn, and one has

L(=/) (21,81 + n)/.

Notice that the eigenvalues depend only on ,8, which means that the eigenspaces
are infinite-dimensional. The special Hermite expansion then takes the form

f(z) f ff)rii, (1.5)

where both a, fl INn. The Bochner-Riesz means for the expansions (1.4) and
(1.5) were studied in [10].

First consider the case of the Hermite operator H. The Bochner-Riesz means
are defined by

2k+ )SaRf 1
n a

Pkf,
+

(1.6)



HERMITE AND SPECIAL HERMITE EXPANSIONS 259

where Pkf are the projections

Vkf E (f’)"

In the 1-dimensional case it is known that S are uniformly bounded on LP(IR)
if and only if > (2/3)((1/p)- (1/2))- (1/6). Thus the Hermite series of an
Ll(lR)-function converges in the norm if and only if > 1/6. This comes as a
surprise, because in the higher-dimensional case the situation is different. When
n > 2, the conjecture is S are uniformly bounded on LP(IRn) if and only if
> 8(p), where g(p) is the same critical index defined in the case of the standard

Laplacian on IRn.
As the 1-dimensional case has been settled, let us concentrate on the higher-

dimensional case. In [10] we proved that the conjecture is true when p 1 Sf
converges to f in LI(IRn) if and only if > (n- 1)/2. We also proved that the
conjecture is true if we consider only radial functions. Thus the condition
> g(p) is necessary. In 1994, Karadzhov [3] proved the conjecture in the range

1 < p < 2n/(n + 2). It still remains open to see if the conjecture is true in the
range 2n/(n + 2) < p < 2(n + 1)/(n + 3). Our investigations indicate that the
conjecture may be false in the above range. Though we are not able to prove
this, we have strong reasons to believe that it may be the case. First of all, unlike
the case of the standard Laplacian, the Bochner-Riesz means in our case are not
translation invariant. The kernels can be expressed as oscillatory integrals whose
asymptotic behavior is not well understood. As we have shown in [9], there is
a critical region in which these integrals behave like Airy functions. Instead of
considering global estimates, in this paper we prove the following local estimate.

THEOREM 1. Let B be a fixed compact subset of IR. Let 2(n + 1)/(n- 1) <
p < c and > g(p). Then the uniform estimates

ISf(x)ledx Cn Ira, If(x)lPdx

hold where CB depends only on B.

COROLLARY 1. Let B, g and p < c be as above. Thenfor any f LP(]Rn)

ISf(x) f(x)lVdx O.

It is likely that the method used in [6] can be applied to prove the uniform
boundedness of the operators )BSzn. But Theorem 1 is stronger than this result.
Moreover, the proof of Theorem 1 is elementary, and we do not need the
sophisticated theory of Fourier integral operators.
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We remark that Theorem 1 remains true even when n 1. We believe that
this behavior of the Riesz means is mainly due to the noncompactness of the
underlying manifold. The case of the standard Laplacian seems to be special
as in that case one can make use of dilation and translation invariance. In fact,
alipealing to a transplantation theorem of Kenig-Stanton-Tomas [4] we can
prove the Bochner-Riesz conjecture for the standard Laplacian from the above
local estimates. To be precise, let B be any compact subset of IRn containing zero
as a point of density, and set xnf(x)=,n(x)f(x). Then their transplantation
theorem says that the uniform boundedness of the operators znSaRzn on LP(IRn)
implies the uniform boundedness of the Bochner-Riesz means (with same
associated to the standard Laplacian. Thus we get a new proof of the Bochner-
Riesz conjecture for A.
Thus we are convinced that it is not only reasonable but also natural to study

local estimates for the Bochner-Riesz means associated to Hermite and special
Hermite expansions. To strengthen our point of view, let us compare the be-
havior of the eigenvalues and eigenfunctions in the compact and noncompact
situations. In the compact case each eigenspace is finite-dimensional, but in the
noncompact case this need not be true. As we have already mentioned, in the
case of the special Hermite operator each eigenspace is infinite-dimensional. In
the case of the Hermite operator each eigenspace is finite-dimensional, but still
the behavior of the eigenvalues is different. Let N(2) stand for the number of
eigenvalues 2j < 2. In the case of a compact Riemannian manifold, when P is a
second-order elliptic differential operator, the Weyl formula says that (see Sogge
[6])

+ (1.7)

On the other hand, in the case of the Hermite operator, the dimension of the
eigenspace corresponding to the eigenvalue (2k + n) is (k + n-
and consequently

N(2)= (k+n-1)t=o(2n) (18)
(2k+n)2 k!(n- 1)!

The Weyl formula for N(2) is proved by observing that N(2) is the trace of the
partial-sum operator. That is, if

and if S(x, y) is the kernel of this operator, then

x)
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In the case of the Hermite operator,

(2k+n) <2
(1.9)

where Ok(X y) are the kernels of the projections Pk given by

(1.10)

If we integrate S(x, x) over IRn, we only get

I Sx(x,x)dx= 1= O(2n).
(2k+n) < ;t

On the other hand, if B is any compact subset of IR", then using the estimate

sup Ik(X, x)l < ck(n/2)-1

x IR
(1.11)

which was proved in [10] (see Lemma 3.2.2), we get

&(x,x)dx=
B

E Lk(X, X) dx < Cl],n/2.
(2k+n)<2

Thus, when restricted to compact subsets, the Hermite functions seem to behave
like the eigenfunctions in the compact case.
The main ingredient in the study of the Bochner-Riesz means is the so-called

restriction theorems for the spectral projection operators. In the case of compact
manifolds, let Z be the projections defined by

x s= e s.

It has been established in [6] that

1 p < 2(n + 1) (1.12)
n+3

In the case of the Hermite expansions, the relevant restriction theorem takes the
form

IIPkfll2 < (1.13)
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This estimate already fails in the 1-dimensional case. When n 1, Pkf
(f, hk)hk, where hk are the 1-dimensional Hermite functions, and hence

[IPkfll2- [(f,h)[ [Ifllllihkl[oo.

As [[hk][oo--O(k-1/12) we see that the above restriction theorem cannot hold
when n 1, p 1.
On the other hand, it has been proved in [10] that when n > 2, one has the

estimate

IIPkfll2 ck(-2>/411fll.
Further, when f is radial, the estimates (1.13) hold in the range 1 < p <
2n/(n + 1). In [3] Karadzhov proved the estimates (1.13) in the range 1 < p <
2n/(n + 2), thus proving the Bochner-Riesz conjecture in the same range of
p. It is natural to expect that the estimates are valid in the range 1 < p <
2(n + 1)/(n + 3) but, unfortunately, it is still open if it is true or not.

If we are only interested in proving Theorem 1, the local version of the
Bochner-Riesz conjecture, then we don’t need the full force of the estimates
(1.13). What we need is the following local version of the estimates (1.13). In the
next section we establish the following result.

THEOREM 2. Let B be any compact subset of IRn, and let 1 < p <
2(n + 1)/(n + 3). Thenfor any f LP(IRn), we have

IlPkzfll2 Ck(1/2)’(P)-l/4llfllp,
where CB depends only on B.

This is the main result of this paper. It may appear as if the techniques devel-
oped in [6] for the case of compact Riemannian manifolds can be adapted to
prove Theorem 2 by considering functions supported in a fixed compact set.
Unfortunately, this is not the case. The proof of the restriction theorems depends
heavily on the orthogonality of the eigenfunctions, and once we restrict the
Hermite functions to a fixed compact set, their orthogonality is spoiled. We use
the generating function identity satisfied by the Hermite functions to prove
Theorem 2.
We remark that this theorem is true even when n 1. As we have already

noted,

IlPk;gfll2 IBf(X)hk(X dx

and the asymptotic estimates of hk, which can be found in Szego [8], show that

sup Ihk(x)[ < CBk-1/4,
xB
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and this proves the above theorem for n 1, p 1. Theorem 2 is proved in
Section 2. Once the restriction theorem is proved, Theorem 1 can be established.
In fact, in order to prove the theorem it is enough to show that SR,ZB are
uniformly bounded on LP’(IRn), and this follows from the fact that SR and 2B
are selfadjoint. Using some pointwise estimates for the kernel of SR and the
boundedness properties of Pk,Zn one can establish the uniform boundedness of
SRZ,n. For details we refer to [10].
Having said so much about Hermite expansions, we now turn our atten,tion to

the case of special Hermite expansions. Introduced and studied in [10], they can
be put in the compact form

f (2a:) -n ’f x tpk (1.14)
k=O

where 9k are the Laguerre functions

(Dk(Z) L-l ( [zl2) e (1/4)1z12

and f x 9k stands for the twisted convolution

f x a(Z) J. f(z- w)a(w)e(i/2)Zz’rVdw.

As f x k is the projection of f onto the kth eigenspace spanned by {=# ,, I1 k}, the Bochner-Riesz means take the form

nl f x (&, (1.15)Sf=(Ez)-n 1
2k+
R +

and the natural conjecture is that the SR are uniformly bounded on LP(n) if
and only if > (p) 2n((l/p) (1/2)) (1/2).

This conjecture has been settled completely in the case of radial functions
(see [10]). We also proved in [10] that the conjecture is true for
1 < p < 2n/(n + 1). The main ingredient in the proof of the conjecture is again a
restriction theorem, namely, the estimates

IIf Ok112 (1.16)

Recently we have shown that (1.16) is valid in a slightly bigger range
1 < p < 2(3n + 1)/(3n + 4), and consequently the Bochner-Riesz means are uni-
formly bounded on LP(ffn) for > 8(p) whenever 1 < p < 2(3n + 1)/(3n + 4)
[51.
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As in the case of Hermite expansions, our efforts to extend the above range up
to 2(2n + 1)/(2n + 3) have yielded no fruit, and we have to be content with the
following local restriction theorem.

THEOREM 3. Let B c tEn be any compact subset,
2(2n + 1)/(2n + 3). Thenfor all f e LP(tEn),

and let l < p <

II;cf kll2 CBkn((UP)-(1/2))-(U2)Ilfllp,

where CB depends only on B.

Once we have the above restriction theorem it is routine to prove the follow-
ing theorem and its corollary.

THEOREM 4. Let B be as above, 2(2n + 1)/(2n- 1) < p < 0% and let t > t(p).
Thenfor all f LP(ffn)

[SRf(z)lPdz < C I" If(z)lPdz"

COROLLARY 2. Let B and be as above. Then

lim I ISRf(z) f(z)lPdz 0
R--oo B

for all f e LP(n) provided 2(2n + 1)/(2n- 1) < p < .
The Bochner-Riesz means for the special Hermite expansions is a twisted con-

volution operator whose kernel can be explicitly calculated. This is good news,
and we can expect something better in the case of special Hermite expan-
sions. We have already mentioned that the Bochner-Riesz conjecture was
proved in the range 1 < p <. 2(3n + 1)/(3n + 4). It would be interesting to see if
the same is true in the Hermite case, that is, if the conjecture is true for
2n/(n + 2) < p < 2(3n + 2)/(3n + 8). We see in the next section that this follows
if we can get good estimates of certain oscillatory integrals. Unfortunately, the
estimates we get are good enough only for a smaller range of p.

There is other evidence to strengthen our belief that special Hermite expan-
sions behave better than the Hermite expansions. We can use the Carleson-
SjSlin theorem for the Bochner-Riesz means on IR2 of the standard Laplacian to
deduce the following local version for the special Hermite expansions on rE.

THEOREM 5. Let n 1, 1 p < 4/3 and B be any compact subset of rE. Then
the operators ZBSR.B are uniformly bounded on LP(C) if and only if t > (p)
2((i/p)- (1/2))- (1/2).
The results concerning special Hermite expansions are proved in Section 3.
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2. Hermite expansions. We now proceed to prove the local restriction theo-
rem for the Hermite projection Operators Pk. Let B be a compact subset of IRn,
and let f LP(IRn). As Pk are projections,

IIPkZafl122 (PkZnf PkZnf)

Ilt" Pk(Zlf)(x)zlf(x) dx.

Applying H61der’s inequality we get

IIPkZnfl122 < IIPkZBfllL(n)llfllp.

Theorem 2 follows, once we show that

IIPkZfllr() Ckn((/P)-(/2))-lllfll,() (2.1)

for 1 < p < 2(n + 1)/(n + 3). To prove this we imbed Pk in an analytic family
of operators and then use Stein’s analytic interpolation theorem.

Recall that the projection operators Pk are integral operators with kernel
Ok(x,y) given by (1.10). From Mehler’s formula for the Hermite functions it
follows that Ok(X, y) verify the generating function identity

rkOk(x, y) z-n/2(1 r2)-n/2e-(1/2)((l+rE)/(1-rE))(IxlE+lYlE)+(2r/1-rE)x’Y
k=0

(2.2)

(see Lemma 1.1.36 in [10]), which is valid for all r with Irl < 1. The fight-hand
side of (2.2) can be written as the product

(1 r)-n/2e-(1/4)((1+r)/(1-r))lx-r12 (1 + r)-n/2e-(U4)(O-r)/(+r))lx+yl2

Now, the Laguerre functions of type e > -1 are given by the generating function

rkL t2 e-(1/4)t2 (1 r)-a-le-(1/4)((l+r)/(1-r))t2.
k=0

(2.3)

In view of (2.3), we can write (2.2) as

rkOk(x, Y) z-n/2 rJL}n/2)-1
k=0 j=0

(2.4)
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Ok(X, Y) n-hi2 ’(_I)SL}nl2)-1 Ix + yl2 e-(ll4)lx+yl
j=0

t(n/2)-l ( lX y[2) -(1/4)lx-ylX "k- e

We now define for each the functions (I) by means of the generating function

rO(x, y) n-/9(1 r2)-+(n/2)-Ie-(1/2)((l+r2)/(1-ru))(Ixlu+lyla)+(2r/(1-ru))x’y.
k=O

(2.6)

Then it is clear that

O(x, y) n-n/2 -(-1)JL;. -(n/2) Ix + y[a e-(1/4)lx+yl2

j=o

1, e-(n/2) ( lX y[2) -(1/4)[x-y[X k-j e (2.7)

and that O-l(x, y) Ok(x, y). As the Laguerre polynomials L are defined even
for e complex, Re e > -1 we can define Ok(X, y) for all e with Re e > (n/2) 1.

Regarding the kernels e
k, we prove the following pointwise estimates.

PROPOSITION 1 (i) supr.R. [O/2(X, Y)[ C.
tl ((n-1)/2)+iz(ii) suPxB [’’k "’ Y)[ < CBeal*lk-1/2 for any compact B c IRn z IR.

(iii) m"+i(x,y) ,k im,- n+i k is -E -0_A y),"’2k z.,j=0j .2k_2j(x, y), and 02k+i (x, y)
where Aj are the binomial coefficients defined by A=F(j+fl+I)/
F(j + 1)F(# + ).
Assuming the proposition for a moment we show how we get the Lp- Lp’

estimates for the projections. We consider the analytic family of operators

G,f(x) JR f(y)O(n-1)/2)+((n+l)/2)(x, y) dy, (2.8)

for 0 < Re < 1. One can check that this is an admissible analytic family of
operators (in the sense of Stein). When 1 + i:, part (iii) of the proposition
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gives

k

2k s

_
A(+)/P-f

k

2k+lS A((+I)/)P+-f
]=0

Using asymptotic properties of the F function and the orthogonality of the pro-
jections one can show that

l+iz’l
"k ,12 < Ceallllfll2, (2.9)

where a > 0. When iz and f L (IRn),

GikZZnf(x) In (n-D/2)+((n+W2)i (x, y)f(y) dy, (2.10)

and the estimate (ii) of the proposition shows that

(2.11)

Now we interpolate (2.9) and (2.11) using the analytic interpolation theorem of
Stein. The result is

(2.12)

where (n- 1)/(n + 1) and p (1 (/2))-1. For this choice of , Gznf
Pk.Znf and p 2(n + 1)/(n + 3) and we have

(2.13)

Note that when p 2(n / 1)/(n + 3), n((1/p) (1/2)) 1 -1/(n + 1), and
therefore

(2.14)

is valid for p 2(n + 1)/(n+ 3). We already know that (2.14) is valid when
p 1 also. Now the Riesz-Thorin interpolation shows that (2.14) is valid for
1 < p < 2(n + 1)/(n + 3), proving Theorem 2.
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We now proceed to prove the proposition. As parts (i) and (iii) are easy we
consider them first. From (2.7) we have

t/2(X, y) =0(-1)JL2 x + yl2 e-(1/4)lx+yl

x L_(lx- yl2)e-(’/4)I-yI. (2.15)

If we take x, y ]R2, then with n 2 the kernel o-l(x, y) of Pk on L2(IR2) is
given by

2(x, y) n-1 -(-1 j)Lj x + y120Lk-j IX yl2 e-(1/4)lx+yl2e-(1/4llx-yl
j=0

(2.16)

The estimate (1.11) with n 2 shows that IO(x, y)[ < C for all x and y in IR2,
and now a comparison of (2.15) and (2.16) shows that estimate (i) of the proposi-
tion is true.

We remark in passing that instead of using (ii) and (iii), if we use (i) and (iii) in
the analytic interpolation, we get the estimate

IIPkfll < cklP-/EIIfllp (2.17)

for 1 < p < 2n/(n + 2). This gives another proof of Karadzhov’s theorem.
In order to prove (iii) we observe that

’ "’k -n/2( 1 r2) -(nl2)-i-le-(ll2)((l+rE)l(1-rE))(Ixl2+lyl2)+(2rl(1-r2))x’y"
k=0

As the binomial coefficients A verify

rZkA* (1 r2)
k=O

we get the identity

-k’n+iz(X,r ’k Y) It-hi2 rJ(i)?-l(x, y) A*r2e (2.18)
k=0 1=0 t=0

Equating the coefficients of rk on both sides of (2.18) we prove (iii) of the
proposition.
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Finally we turn our attention to the proof of (ii). To this end we express
1 (n-1)/2)+i
"k an oscillatory integral.

LEMMA 1. Let z be real and ct ((n- 1)/2) + iz. Then

(I)(X, y) ce(n/2) sin2t)-(1/E)-ie-Ete(Ek+l)itei(t’x’Y)dt,
d-n/2

where c is a constant and

1
(t, x, y) -x. y cosec 2t + (Ixl 2 + lYl2) cot 2t.

Proof. In the generating function for (x, y), we replace r by re-2it getting

rke-2kit((X, y) lt-n/2(1 r2e-4it)-+(n/2)-leB(r’t’x’y)

k=0

where

B(r, t, x, y) -- 1 r2e-4it (Ix12 + ly12) +
2re-2it

1 r2e-4it

From the above identity we get

0t (n/2)-I
tin/2rk(I)k (X, y) 7t- (1 rEe-4it) -+(n/2)-Ie2kiteB(r’t’x’y) dt.
d-n

Letting r 1 and noting that B(r, t, x, y) (t, x, y), we obtain the lemma.
Taking the limit under the integral sign can be justified. For details we refer to
Proposition 5.2.1 of [10].

We use the above representation in establishing estimate (ii) of the proposi-
tion. For the sake of simplicity we assume z 0, the general case being com-
pletely similar. Setting R (2k + 1) we consider the integral

n/2

J0
J-n/2

sin 2t)-l/2eiRtei(t’x’Y)dt.

Replacing x and y by R1/2x and R1/2y, respectively, and writing k(t,x,y)=
t + (t, x, y), we look at

J sin 2t) -1/2eiR(t’x’y) dt. (2.19)
d-n
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We show that for [x[2d [y[2< 1/2, we have the estimate [J[ < CR-1/2, from
which part (ii) of the proposition follows immediately.
We write J as a sum of two integrals

J-r/4 /4<ltl<n/2
(sin 2t) -1/2eiR/(t) dt.

In the second integral we can make a change of variable to bring it to the form

n/4

(sin 2t)-l/2eiR#(t’x’-Y)dt.
-r/4

Therefore, we only need to estimate the integral

t/4

I (sin 2t)-U2eiRO(t’x’y)dt.
J0

(2.20)

We estimate this integral usin the method of stationary phase.
Let us write a2= Ix[2+ ]y[", b x.y, and 2 cos2t. Then a simple calcu-

lation shows that -’(t) sin2 2t a2 262 + 22 1 and "(t) sin3 2t
4(a22- b22- b). The stationary points are given by 2 b_ m, where m2=
1- a2+ b2. If we assume a2< 1/2, then in the interval 0 < < n/4 there is
exactly one stationary point given by cos 2tl b + m, and at the stationary point

k"(tl) 4m cosec 2tl >/2 cosec 2tl (2.21)

as we are assuming a2 < 1/2.
Now the method of stationary phase says that the main term in the asymp-

totic expansion of the oscillatory integral I is

()1/2R-1/2("(tI))-I/2 (sin 2tl

which is bounded by a constant times R-1/2 in view of (2.21). This heuristic
argument can be made rigorous. We use the method of stationary phase in the
following form known as the Van der Corput lemma. (A proof can be found in
[10].)

LEMMA 2. Suppose J is real valued and smooth on [a,b]. Assume that
I@(k)(t)l > 1, and when k 1, ’(t) is monotonic. Then

< CR-Vk(l(b)l + IS l’(t)ldt}.
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In order to apply this lemma we need to get lower bounds for the first and
second derivatives of (t). The following lemmas give the required bounds.
These lemmas were proved in [10] (see Lemmas 5.3.2 and 5.3.3).

L,MMA 3. Assumin9 that a2 < 1/2, the lower bound I"(t)l > cosecEtl is valid
under any of the following two conditions:

(i) (1/2)lx- Yl < t < tl / (1/20)sinEtx, b < 0;
(ii) tl (1/20) sin 2tl < t < tl / (1/20) sin 2tl, b/> 0.

LEMMA 4. Assume again aE < 1/2. The lower bound [’(t)l > 1/20 is valid
under any of thefollowing two conditions:

(i) > tl + (1/20)sinEtl, b > 0 or b < O;
(ii) t < tl (1/20) sin 2tl, b > 0.

We now proceed to estimate the integral I using these two lemmas. Let
fl (1/2)Ix Yl and consider first the case fl > R-1. We write 1 11 + 12, where

11 (sin 2t)-(1/2) eiR/(t) dt.
J0

We first estimate I1; to do this we claim

1
ix_ yl2,-’(t) sin2 2t >/

Ib"(t) sin3 2tl < 8Ix yl2
(2.22)

for 0 < t < ill2. These estimates can be easily proved. For example, in [10,
p. 118] we have shown that

I("(t) sin3 2t[ < 41’(t)l sinE 2t

and -’ sin2 2t 4b sin2 + Ix yl 2, which gives the estimate

Ia’(t)l sinE t < sinE ill2 + Ix yl2 < 2Ix yl2

as 2b < a2 < 1/2 and < [3/2. As "(t) "(t), we finally get

1"(t)sin3 2tl < 8Ix yl2.

Similarly, one can show that -d/(t)sin2 2t > (1/2)Ix- yl2.
Once we have the estimates (2.22), 11 can be easily estimated. We write

--i ffl/2 (sinEt)3/2
I1 -- J0 !’(t) sinE 2t
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Using the estimates (2.22) and integrating by parts, we get

IIl < CR-1Ix y]2 1/2 dt < CR-Ix y1-1/2.
dO

As Ix- yl > 2R-1 we get the right estimate, namely, Ill < CR-1/2.
In the estimation of I2 we consider two cases. First assume that b < 0. The

critical point tl is given by sin22tl a2- 2bcos2t, and as b < 0 we have
(1/2)Ix- yl2 < a2 sin2 2tl < a2 2b Ix- yl2. Thus sin2t x Yl. We
split the integral I2 into two parts I2 I3 + 14, where

ftl+(1/20)sin2tlI3
d#/2

(sin 2t)-1/2eiRa(t) dr.

Using the estimates of Lemma 3, this integral is bounded by

1131 < CR-V2(sin2tl)I/2{(sin2tl)-/2 + Ix- y1-1/2),

which is bounded by CR-1/2. Similarly, the second integral is bounded by
CR-1/2.
Next assume that b > 0 (still we are assuming that fl > R-1/2). Let to be the

point at which "(t)= 0. As b > 0 we observe that sinE2t1 > Ix-yl2. We
split the integral into four parts corresponding to the intervals ill2 < t <
tl (1/20) sin2tl, t (1/20) sin2t < < t / (1/20) sin2tl, t / (1/20) sin2tl <
t < to, and to < t < n/4. As above using the lower bounds given in Lemmas 3
and 4 we get the estimate 1121 < CR-1/2.
Thus we have estimated I when fl > R-1. So, assume now fl < R-1 and again

consider two cases. When b < 0, without loss of generality let us assume

fl < R-1 < tl A- (1/20)sin 2tl and write

j [t+(1/20)sin2tI= +

As fl < R-, a mere integration gives the required estimate for the first integral.
For the second and third integrals, we use the lower bounds given in the lemmas.
Noting that sin 2tl Ix- yl we get the estimate III < CR-/2.
When b > 0 and fl < R-, we assume, without loss of generality that

fl < R- < tl- (1/20)sin2tl. Note that in this case sin2 2tl > Ix-y[. We
split the integral into four parts, corresponding to 0 < t < R-1 R-1 <
t < tl (1/20)sin2tl, t (1/20)sin2t < < t + (1/20)sin2t, and tl+
(1/20) sin2tl < t < zr/4. In each case we get the estimate CR-/2.
Thus we have got the estimate IJI < CR-1/2, which in turn completes the

proof of Proposition 1.
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We conclude this section with the following remark. For a2 >/1/2 there are
two stationary points of @(t) that approach each other as a2 1. So, the be-
havior of the oscillatory integral is more complicated when 1/2 < a2 < 1, and
we do not get good estimates in that region.

3. Special Hermite expansions. In this section we prove Theorems 4 and 5.
For technical convenience we would consider the Cesaro means os rather than
the Riesz means SR The behavior of the Cesaro means that are defined by

1 N

o’f (2a:) -n A--aZA kf x
k=O

(3.1)

is completely analogous to that of the Riesz means, and so it is enough to prove
Theorems 4 and 5 when SR is replaced by tr. The convenience of using os in
place of SR arises from the fact that the kernel of trs is explicitly known. In fact,
we have truly (2zr)-nf x s, where

1 N

AN_kk(a).
k=O

(3.2)

As the Laguerre polynomials L(t) satisfy the identity

N

Alv_kLk(t (t), (3.3
k=0

and as k(Z) Lc-l((1/2)lzl2)e-(1/4)lzla, we have

1 L%+n( )e-(1/4)s(z) A- Iz12 Izl= (3.4)

One can then use asymptotic properties of the Laguerre polynomials in the
study of Cesaro means.
We first take up the proof of Theorem 4. As in the case of Hermite expansions,

it is enough to prove Theorem 3. Once we establish the local restriction theorem
we can proceed as in [10] to prove Theorem 4. In order to prove Theorem 3, it
is enough to establish the estimates

Ilf okll,’(/ Ck2"((1/P-(/211-11lfll.,(, (3.5)

for 1 < p < 2(2n -+- 1)/(2n + 3),f LP(B). To this end we imbed f ---,f x (/9k into
an analytic family of operators and then apply Stein’s interpolation theorem.
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To define the analytic family, consider

O(z) F(k + 1)F(e + 1)( ) _(1/4)lzl (3.6)r(k + + 1)
g, Izl 2 e

and observe that we can define @ even for complex values of , provided
Re > -1. We then set

1/2))Gf =f x !/t-(1/2)+(n+(

and for this family we establish the following proposition.

PRO’OSITIOr 2. We have
(i) Cn(1 Iz) 1/2

(ii) [, k IIL2(B) < CB(1 + [zl)nk-nllfllL2(B),
where B is a compact subset of ffn and IR.

Assume the proposition for a moment. When a (2n 1)/(2n + 1), Gf
reduces to

f x 0-l(z) r(k + 1)r(n)
r(k + n) f x k(Z).

Hence interpolating between (i) and (ii) we get (3.5) when p 2(2n + 1)/(2n / 3).
As (3.5) is known to be valid for p 1, an application of Riesz-Thorin proves
that (3.5) is valid for 1 < p < 2(2n + 1)/(2n + 3).

Estimate (ii) of the proposition follows from the better estimate

II 1+i: I.t. nk-nGk YlI2 < C(1+ l) Ilfl12

proved in [10] (see Proposition 2.6.2). In order to prove (i) we only need to get
the estimate

ib-(1/2)+i (1/2)sup IWk (z)l < Cn(1 + Izl) (3.7)
zB

where B is a compact subset of IIn.
Now the Laguerre functions can be expressed in terms of the Bessel functions.

Indeed, we have the formula

1 l -ttk+/2j(2x/)dte-Xx/2L(x) r(k + 1)
e
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for > -1 (see Theorem 5.4 in Szego [8]). So we can write

2"r(= + 1) e-tt+Je(il e(l/4)lzl’dt.O,(z) r(k + = + 1) (/lzl
(3.8)

From this expression it is clear that (3.7) follows once we show that the estimate

holds for the Bessel function. The Bessel functions satisfy the relation

J=-I (z) + J=+l (z) 2=z-lJ=(z),

and therefore we are done if we show that I&(z)l c()lzl for all Ree > 1/2.
But in this case we can use the integral representation

(z/2)= 11 (1 t2)=-l/2eitz dr,&(z) r(= + (1/2))r(1/2)
_

which is valid for Re= > -1/2. From this it is clear that I&(z)l < c(=)[z=[ for
Re > -1/2.

This concludes the proof of the proposition, which implies the local restriction
theorem from which Theorem 4 follows in a routine fashion.

We now proceed to the proof of Theorem 5. Without loss of generality we
assume that B is the unit ball Izl < 1, and we prove the theorem for the Cesaro
means. As we have already noted, the operators o are twisted convolution
operators with kernel s given by (3.4). In view of (3.8) we see that when n 1

26+1 e_ttv+a+l Ja+l(lzl) (1/4)lZlZdt.s(z) AalVF(N + 1) (lzl)a/
e (3.9)

Since we want to prove the uniform boundedness of.zBaal.n, we choose a cutoff
function o e C (Itl < 3) such that (o(t) 1 for Itl < 2, and we write

SaN(Z) SaN(Z)q(lz[) --t- SaN(Z)(1 o(Izl)).

When z, w B, Iz- w < 2, so the second kernel vanishes identically. Hence

XnaalvXBf(z) (2zg)-nxB(z)(xnf) x (Salv(O)(z).
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So we have to prove the uniform boundedness of the operator

Tf(z) I s(z- w)(lz- wl)f(w)e(i/2)Imz’cv dw

on the prescribed LP-spaces.
Let us define the kernels kt(z) by

k,(z)
(#lzl)/

q(lzl)e (1/4)1zl2 (3.10)

for > O. In view of (3.9) we have

2+1 e-ttN-Ttf(z) dr,TNf(z) AF(N + 1)

where Ttf(z)=f x kt(z). By Minkowski’s integral inequality, the uniform
boundedness of Tn follows from the uniform boundedness of the operators T.
To study the operators T we use the result of Carleson-Sj61in, together with

the following result of Cowling [2].

THEOREM 6. Let k be a distribution with compact support on n, and suppose
that 1 < p < . Then the twisted convolution operator f f x k is bounded on
LP(ffn) if and only if the convolution operator f f k is bounded on LV(ffn).

In view of this theorem of Cowling, we only need to show that the f f kt
are uniformly bounded on LP(). But these are closely related to the Bochner-
Riesz means associated to the standard Laplacian on IR2. In fact, the Bochner-
Riesz means are given by

Sf(z) 2 J J+l (tlz- w[)
(tlz- w[)/1

f(w)dw.

In [1], Carleson-SjSlin proved that these are uniformly bounded on Lp() pro-
vided fi > 2((l/p) (1/2)) 1/2 and 1 < p < 4/3. h close examination of their
proof shows that the same is true of the truncated operators f-f, kt. This
concludes the proof of Theorem 5.

4. Concluding remarks. We would like to conclude this paper with the fol-
lowing questions that merit further investigation. In what follows let S, Sn, and
St stand for the Bochner-Riesz means for the Hermite, special Hermite, and
Fourier expansions, respectively.
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The transplantation theorem of Kenig-Stanton-Tomas [4] says that if B is the
unit ball, then the uniform boundedness of znSRT.n or ;tnS)n on Lp implies the
same for St. One wonders if the converse is true. In the case of special Hermite
expansions this means that the truncated operators

Ttf(z) 2n I 4+ (tlwl)
f(z w)dw

Iwl <l (tlwl)
(4.1)

are uniformly bounded whenever the nontruncated operators are uniformly
bounded. In the previous section we just saw that this is indeed the case when
n 1. It would be interesting to see if the same is true when n > 2. But in the
case of Hermite expansions we do not even have a clue how to go about this.
Our second question is the following. Suppose that the uniform boundedness

of St and ,nSRxn are equivalent. Then what happens to the Bochner-Riesz con-
jecture for SR? Is it true, or do we have to be content with the local version? We
already know that this is the case when n 1. So we wonder if there is adc such
that the full conjecture fails for 0 < d < dc.

Finally, it is reasonable to consider mixed-norm versions of the Bochner-Riesz
conjecture. This has been done successfully in the case of So and similar ques-t

tions for SR and Sv are interesting problems worth investigating. We hope to
settle some of these problems in the future.
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Note added in proof The global version of Theorem 3 was recently proved by
K. Stempack and J. Zienkiewicz in "Twisted convolution and Riesz means" (to
appear in J. Analyse Math.).

REFERENCES

[1] L. CARLS0N AND P. SJ6L1N, Oscillatory inteorals and a multiplier problem for the disk, Studia
Math. 44 (1972), 287-299.

[2] M. COWLrNG, "A remark on twisted convolution" in Proceedings of the Seminar on Har-
monic Analysis (Pisa, 1980), Rend. Circ. Mat. Palermo (2) 1981, 203-209.

[3] G. KAIOZHOV, Riesz summability of multiple Hermite series in I_3’ spaces, C. R. Acad. Bulgare
Sei. 47 (1994), 5-8.

[4] C.E. KEraG, R. J. STANTON, AND P. A. TObiAS, Divergence ofeigenfunction expansions, J. Funct.
Anal. 46 (1982), 28-44.

[5] P.K. RATNAKUMAR, R. RAWAT, AND S. THANGAVELU, A restriction theorem for the Heisenberg
motion group, Studia Math. 126 (1997), 1-12.

[6] C. SOC,GV., Fourier Integrals in Classical Analysis, Cambridge Tracts in Math. 105, Cambridge
Univ. Press, Cambridge, 1993.

[7] E.M. STIN AND G. WEISS, Introduction to Fourier Analysis on Euclidean Spaces, Princeton
Math. Set. 32, Princeton Univ. Press, Princeton, 1981.



278 s. THANGAVELU

[8] G. SZEC,O, Orthooonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23, Amer. Math. Soc.,
Providence, 1975.

[9] S. THANGAVLU, Summability of Hermite expansions, 11, Trans. Amer. Math. Soc. 314 (1989),
143-170.

[10] ,Lectures on Hermite and Laguerre Expansions, Math. Notes 42, Princeton Univ. Press,
Princeton, 1993.

STATISTICS AND MATHEMATICS DIVISION, INDIAN STATISTICAL INSTITUTE,.8TH MILE MYSORE ROAD,
BANGALORE 560059, INDIA; veluma@isibang.ernet.in


