Modifying the Schwarz Bayesian Information Criterion to Locate Multiple
Interacting Quantitative Trait Loci

Malgorzata Bogdan,*' Jayanta K. Ghosh'* and R. W. Doerge'*'

*nstitute of Mathemalbics, Wroelaze Universily of Technology, SO T Wroelazr, Poldand, * ndian Satisticad fnstitute, Calewtta 70335, Trdia,
"heperiment of Statistics, Purdue Usidversity, West Lajayetie, Indiana 47907 and *.f]'f]fmn‘m#m of Agronemy, Purdue University,
West Lafayette, fndiana 47907

ABSTRACT

The problem of locating multiple interacting quantitative wrait loci (L) can be addressed as a multiple
regression problem, with marker genotypes being the regressor variables. An important and difficult part
in fitting such a regression model is the estimation of the QTL number and respective interactions. Among
the many model selection criteria that can be used o esimate the number of regressor variables, none
are used o estimate the number of inte ractions. Our simulations demonswrate that e pistatic terms appearing
in a model withour the related main elfects cause the standard model selection criteria o have a strong
tendency to overestimate the number of interactions, and so the QUL number. With this as our motivation
we investigate the behavior of the Schwarz Bayesian information criterion (B1C) by explaining the phenome-
non of the overestimation and proposing a novel modification of BIC that allows the detection of main
effects and pairwise interactions in a backeross population. Resulis of an extensive simulation study
demonsirate that our modified version of BIC performs very well in practice. Our methodology can be
extended o general populations and higher-order interactions,

OPULAR methods for mapping quantitative trait

locl (¥TL) include interval mapping (LANDER and
BorsTEIN 1939), composite interval mapping (£ZENG
1993, 1994) and multiple QTL mapping (MOQM; [ANSEN
1993; JanseN and STam 1994 ). These statistical methods
do not allow the location of (JTL in situations when
there are no main effects for the respective (JTL, but
there are (epistatic) interactions with other (JTL
igenes) that influence the quantitagve trait. Epistatic
(TLare known to play important roles in many disease
studies, such as cancer (FiNEMAN & al. 1996, 1993),
and it s abo suspected that they play a key role in the
evolutionary process (WoLF e al. 200H)).

A direct solution to detecting epistatic (JTL is to
search forseveral QTL simultaneously and fit an appro-
priate multiple regression model with interactions.
However, the udlity of such an approach, which is re-
ferred to as a multidimensional version of interval map-
ping, called multiple interval mapping ( MIM: Kao a al.
19949, s himited by two mterconnected ssues. The first
is the requirement of deciding how many terms (main
eftects and epistasis) should be included in the model.
The second issue s the computatonal complexity of
the search over the space of possible multidimensional
models. To avoid these problems JANNINKE and JaNsEN
(2001) and Boer # al. (2002) proposed one-dimen-
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sional genome searches as a means of mapping epistatc
OTL. In particular they proposed an interesting exten-
sionof MOM by addressing a crucial problem pertaining
to the choice of marker cofactors. By including all avail
able markers in a regression equation and using a Bayes-
ian approach to penalize large values of the correspond-
ing regression coefficients many of the previously
mentioned ssues are eliminated. The disadvantage of
this method is that, when detecting epistatic QXTL, it
requires the choice of “the effective dimension” (ie.,
number of JTL) for epistatic interactions, which has
strong influence on the power of detection.

An alternative way to approach the problem of map-
ping epistatic (JTL relies on developing new methods
tor reducing the numerical complexity of MIM. In re
cent work CArLBorG &f al (2000), NAKAMICHI of al.
(2001), and Brosman and SrEen (2002) use random
search methods to accelerate the search over the class
of possible multidimensional models. The results from
their approach hold great potential for further progress
in solving the problem of the computatonal complexity
of MIM.

Regardless of which method we use to search the
genome for TL we need to solve the problem of estr
mating (JTL number, which in turn directly affects the
dimensionality of the model space. The standard way of
deciding how many main and interacting ((JTL) effects
should appear in the model relies on using many statisti
cal tests (see Kao 4 all 1999). A disadvantage of this
approach is that it allows the comparison of only nested
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maodels. It is also unclear how to adjust the significance
thresholds for each consecutive test.

Model selection criteria have been used as an alterna-
tive approach for the problem of model selection in
OTL mapping. Two easy-to-compute model selection
criteria that are often employed in statistics are the
Akaike information criterion (AIC; AKAIKE 1974) or the
Schwarz Bayesian information criterion (BIC; ScHwWARZ
1978). These criteria belong to the family of the so-
called penalized maximum likelihood methods and are based
on the recommendation of choosing the model for
which the likelihood of the data minus the penalty for
the model dimension obtains the maximal value. These
criteria were used by Jansen (1993) and Jansen and
STam (1994) to choose marker covarnates for MOM and
by PiErHO and GavcH (2001), NARAMICHT a al. (2001),
Barr (2001) . BroMaN and SPEED (2002), and SIEGMUND
(2003) o directly estimate (JTL number. For a review
and discussion of model selection methods as applied
to (JTL mapping see BAILDING & al (2(002) or SILANFAA
and CoranDper (2002).

PrerHO and GavcH (2(M}1) investgated many model
selection criteria via simulatdon. In their smdy different
criteria were used to choose pairs of markers flanking
(ITL. Their results suggest that out of the considered
criteria BIC has the best properties and can be recom-
mended for the estimation of the number of (¥TL with
main cffects. BrosMan and SPEED (2002), however, rec-
ommend a modification of BIC to select markers
strongly associated with the trait. Contrary w PIEPHO
and GavcH (2(H1) they use BIC to choose single mark-
ers instead of pairs. Broman and Seeep (2002) observe
that in this simation the original BIC has a tendency to
overestimate the QTL number. To solve the problem
of the (m-_'rﬁtring they propose a modification of BIC,
with a larger penalty for model dimension. Simulations
reported in BroMan and SPEeD (2002) show that their
modified version of BIC performs very well and detects
the correct model more often than composite interval
mapping does (ZENG 1993, 1994).

While both of the methods put forth h}r PrerHo and
GavcH (2001) and BroMaN and SPEED (2002) can be
used to estimate the number of (JTL with main effects,
they do not genenalize directly to the situation where
interaction terms appear in the model. Our extensive
simulations (BoGcpaw and Doerce 2003) showed that
the phenomenon of overfitting becomes even more sig-
nificant when we allow interaction terms to appear in
the model without the related main effects.

In the present work we concentrate on BIC, which,
according to the (JTL simulation study of PIEFHO and
GavcH (2001) and our independent simulatons, per-
torms better than other popularly used model selection
criteria. In particular, we recall the Bayesian roots of
BIC and explain the reasons why this critenon, when
used to select single markers, has a tendency to overesu-

mate the model dimension. To address this issue we
tollow the approach suggested by Barw (2001) and pro-
pose an easy modificaton of BIC that relies on taking
into account the realistic prnor distribution on the set
of compared modek. In companson o Barn (2001) we
extend the method to cover models with interactions
and calibrate the prior to gain the control over the type
I error of our procedure. An extensive simulation stady
verifies that our proposed criterion deals very well with
the problem of overfitting the model and allows the
detection of main effects and pairwise interactions in a
backcross populaton. While our proposal is based on
QTL mapping in a backcross population, our methodol-
ogy can be extended to general populations and to
higher-order interactions.

METHODS

Consider a backeross population where g; denotes
the genotype of the ith indwidual at the jth QTL: g, =
—¥% if the ith individual is homozygous at the gh QTL
and g, = ¥ if it is heterozygous. We assume that the
n;:lar.iﬂ.nxhip between the trait value ¥, and QQTL geno-
types is given by a normal regression model,

S viqiqe t+ € (1)

Yi=p+ Xyt

=1 1= i=n
where m is the JTL number and g ~ N0, &) is the
environmental noise. The second summation in our
model comresponds to pairwise epistatic interactions.
The formulation of the model allows some of the coeth-
cients [§ and vy to be zero to accommodate cases when
there are (JTL that are not involed in epistatic effects.
It also addresses the scenario when (YTL might not have
their own main effects, yet influence the quantitative
trait by interacting with other genes, (ie, episiasis).
Later we use fto denote the number of (JTL with main
effects and gto denote the number of nonzero epistatc
terms.

We rely on MIM (Kao e al 19949) to simultaneously
locate multiple (¥TL. This method requires fiting the
model (1) for a dense grid of possible (JT'L positons.
For each of the possible genomic locations the geno-
types of the putative (JTL are inferred using the geno-
types of tlanking markers and the EM algorithm
(DEMPSTER & al. 1977) is employed to estimate parame-
ters of the model (1). The locations for which the fitted
model yields the largest likelihood are subsequently
chosen.

A first step in the reduction of the complexity of MIM
sometimes relies on idenafying interesting genomic re-
gions on the basis of an inigal, relatively coarse search.
In the Bayesian setting this approach was suggested h}r
SN and CHURCHILL (2001), who used an initial scan
based on a 10-cM pseudo-marker grid. However, for the
simation where an accurate genetic map exists a natural
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approach is to base the inital search on the net of
marker positions and then use more refined methods
(g, MIM) tosearch in the neighborhood of the chosen
markers. Barr (2001), BroMaN and SPeEen (2002), Y1
et al. (2005a), and Xu (2003) successtully search over
markers to locate muldple QTL and are justfied in
doing s0 on the basis of the fact that flanking markers
absorb all the informaton associated with the (JTL
(WHITTAKER & al 1996).

If we reduce MIM to a search over markers, then the
problem of the (JTL location reduces to the problem
of choosing the best model of the form

Vo=p+ 2BX, + T v.X.X, t &, (2)

el (ol
where X denotes the genotype of the ith individual at
the jth marker; [ is a certain subset of the set N = [1,

., M) where N is the number of available markers;
and [’ 5 a certain subset of N X N. For a backcross
population the random variables X, X, correspond to
the epistatic terms that are not correlated to any of the
main effects. In particular, X, X, 15 not correlated to
either X, or X, even if the wth and vth markers are
statistically dependent via linkage. Thus, the epistatic
effects are statistically not confounded with any of the
main effects, and in most cases they will be detected
only it the epistatic interacions are present.

One difficulty in fiting model (2) is the esimation
of the number of main effects and interaction terms to
be included in the model. There 1s a vast statistical
literature on the choice of the number of terms in a
linear model (see MiLLER 199H) or MoQUARRIE and Tsal
1998) and there are many model selection criteria that
can be used for this purpose. As mentoned earlier Bro-
MAN and SPEED (2002) and PiErHO and GaucH (2001)
recommend using the Schwarz BIC (ScHwaRrz 1974) to
estimate the number of (JTL with main effects. In a
general smnstucal context BIC recommends choosing
the model that maximizes the expression

8= log L(¥Y|B) — éh log n, (5

where 8 is the vector of model parameters, L{ ¥lay is
the likelihood of the data, kis the number of parameters
idimension of 8), and nis the sample size. BIC belongs
to the wide class of the so-called penalized maximum-
likelihood methods and the second term in this crite-
rion, Y%k log =, is called the penaly for the complexity
of the model. An important advantage of BIC is that
torawide range of statistical problems, and in particular
for multiple regression, it is consistent (ie., when the
sample size grows to infinity, the probability of choosing
the right model converges to 1). In the context of linear
regression, maximizing 5 is equivalent to minimizing

/RSS'
BIC = n k:g{T] + klog n, (4)

where R55 is the residual sum of squares from regres-
sion.

Rationale for modifying BIC: Broman and SPEED
(20002} report that the original BIC, when used to select
single markers with significant main effects, has a ten-
dency to overestimate (JTL number. On the basis of
work not shown here (Bocpan and DoErce 2005) we
have found that the tendency w overestimate (YT'L nume
ber becomes more significant when the portion (or
entirety) of the genome under investigation increases.
To understand this further we compare the rates at
which the number of different models increases as the
number of available markers increases. Our mtuonale
is based on the obseraton that the number of possible
maodels of the parricl_llar form (2), involving & distinct
markers, s equal I:":"], where N, B the total number
of available markers. Thus, when & is much smaller than
N, the number of models involving & markers increases
with N, approximately like Nt The difference in the
numbers of possible “small” and “large” models in-
creases quickly with N, and for large N, the probability
of choosing models with many components, just by ran-
dom chance, is relatively high. Furthermore, for a large
number of interacton terms, Bocpan and DOERGE
(2003) show that the onginal BIC has a tendency to
choose models with epistatic terms even when in reality
there is no epistasis.

The phenomenon of overestimation itself suggests
the way the standard model selection critena should
be modified to make them useful for (JTL mapping.
Namely, the high rate at which the number of multidr
mensional models increases, when the number of availk
able markers increases, suggests that the penalty for the
model dimension should increase with this number.
This condition is satisfied, for example, h}r criteria pro-
posed by Bromaw and SPEED (2(02) and SIEGMUND
(20003} . Second, the fact that there are many more inter-
action terms than the main effects suggests that the
penalty for including an interaction should be larger
than the penalty for including a main effect. Following
these two suggestions we modify BIC by supplementing
it with a realistic prior distribution on the set of possible
models. Taking advantage of the fact that BIC is the
approximaton to the Bayesian rule for the choice of
the “best” model we denote by 8= (. B - - -2 Baae
Yis -+ -« Yo 7)) the vector of parameters of the ith inear
model, M, given by Equaton 2. Here pi:) and g(i)
denote the number of main effects and interaction
terms involved n M. We assign a certain prior distribu-
tion for #;, and denote the density of this distribution
by fi8,). Moreover, let us denote the prior probability
of the ith model by w(i). Given that L{ ¥|a, M) denotes
the likelihood of the data given the vector of parameters
a, let f;[:Y]M,) denote the likelihood of the data given
the model M,
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pOYIM) = |L(Y]8, M) f(B)M)db,. (5)

The posterior probability of the ith model, given the
data, 15

PIM|Y = M (65)
Zlm(pyiM)”
where [is the number of possible models.

The Bayesian rmle recommends choosing the model
tor which the posterior probability ALM|Y) is the largest
(see ScHwarz 1978). Since the denominator in Equa
tion G is the same for all considered models, Bayes™ rule
recommends choosing the model forwhich (i) o Y| M)
is the largest. The BIC criterion neglects the prior proba-
bilities (i) of different models and approximates log
PIYIM) by log L(Y|i, M) — Y%(p(i) + q(i) + 2)log n,
where [:!, i5 the maximume-likelihood estimator of 8, and
pli) + gii) + 2 is the number of esumated parameters
[ie, pli) + gii) for main and epistadc effects, and 2
for p and o]. Neglecting (i) corresponds to assigning
the same prior probability to all considered models.
While in many applications this approach is Wf_'lljuxri-
fied, in the context of (JTL mapping it lends itself to
assigning unrealistically high prior probabilities to the
events where many regressors are involved [f'.g., when
200} markers are available, the number of different mod-
els involving 1{H} main effects |&|M?| = 005 ®x 10™ and
the prior probability of the event [hd[ LN} regressors
are involved is =10 times Idrgf_r than the prior pmha-
bility of the event that there is just one n:gn.-‘.s&nr]. Mon-
vated o improve on this we suggest supplementing BI1C
with a more realistic prior distribution, m, on the class
of possible models, and choosing the model for which

Sii) = log w(i) + log L{Y[h, M)
= :%I{p(ﬂ + qii) + 2)log n (7

obtains 4 maximum.
In the context of multiple regression
log L(¥]B, M) = — glﬂg RSS, + C(n),

where ((n) is the constant dependent only on #n, and
maximizing (7) is equivalent to minimizing the quantity

(i) = nlog BS54+ (pl) + qii))log n — 2 log w(i).

Prior distribution m: Assume N, markers are available,
and theretore N, potential regressors and A = (N, (N, —
1)) /2 potential interaction terms. The number of all
maodels of the form (2) that can be constructed using
subsets of N, markers is equal to ol To assign prior
probabilities to these models we follow the standard
solution proposed in GEORGE and McCuLLocH (1993).
Namely, we assign the probability a to the event that
the ith main effect appears in the model and probability

vito the event that the jth interaction term appearsin the
model. Our prior distibution assumes that particular
terms enter the model independently of others and for
a particular model M, involving #{i) main effects and
gli) interacions we obtain

(M) = a1 — a)¥apli (1 — )Ny,

This choice of prnior implies that the prior distnbutions
on the number of main effects and epistatic terms are
binomial with parameters N, and a, and N, and v, re-
spectvely.

For simplicity we consider o and vasa = 1/L v =
1/ 4, where { and « are certain nataral numbers, and
restate the prior distribution as

log m(M) = C(N,, N, L u) — p(i)log(l — 1)

— gl loglu — 1),

where C(N,, N, L ) B a constant dependent on N,
M., L and w Incorporating this prior distribution into
the BIC [modified Schwarz BIC (mBIC)] allows the
tollowing rule: choose the maodel that minimizes

mBIC(i) = n log RSS, + (p(i) + gli))log n + 2p(i)

*log(l — 1) + 2gldloglu — 1). (#)

The expected values of the prior distribution for the
number of main effects are equal to N,/ land N./u for
the number of interaction terms. Therefore, since the
choice of [ and « should reflect our prior knowledge
on the (JTL number, the values of [and u should be
relatdvely small when we expect many QFTL and large
when we expect only few. Extensive simulations were
performed for the purpose of investigating the standard
vilues of {and « when we have no prior knowledge on
the (JTL number. We let [ and u take on values in such
a way that for the sample sizes n = 2(M) the probability
of type I error (detecting at least one (JTL when there
are none) does not exceed 5%, We observed that when
markers are densely spaced (distance between markers
is not =2 cM) we can obtain our aim by keeping the
expected values of the number of main effects and inter-
acton terms at a constant level close to 2. In particular,
and as i1s seen next, in our simuladons we used values
= N, /22and u = N,/2.2. In the APPENDIX we present
results of some theoretical calculations that support our
empirical choice of [ and u. These calculations yield
approximate bounds on the type I error of our proce-
dure and demonstrate that the proposed choice of [
and u solves the problem of muliple compansons and
allows control of the type | error. In comparison to
the original BIC the penalty in our proposed /modified
crterion involves additional terms 28 log( (N, /2.2) — 1)
and 2q(#) log((N. /2.2) — 1). Asimilar addioonal penaley
appears in the criterion proposed by SIEGMUND (2(003),
who approaches the problem of (JTL mappmng differ-
ently by treating it as a change-point problem. These
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TABLE 1
Simulation models

993

Model b Main effects [chromosome, position {(cM), B] g o s
1 L] — L] 1 L]
9 1 (1, 5,1} 0 1 02
4 L] — 1 1 0,195
1 9 (1,24, 1.5), (1, 56, 1.25) 0 1 0.59
5 9 (1, 24, 1.5), (1, 66, —1.25) 0 1 .51
i 9 (1,20, 1.5), {1, 50, 1.25) 0 1 0.59
i 9 (1,20, 1.5}, (1, 50, —1,95) i 1 0.4
8 9 (1, 20, 1.5), {1, 60, 1.25) 0 1 00,58
9 1 (1, 5,1} 1 1 0.5%
10 ] —_ 4 1 .55
11 5 (1,71, 1.5), (2, 49,1.25), {3, 27, 1), (4, 8, 0.75). (5, 81, 0.5) 0 1 00,58
12 i (1,20, 0.76), (1, 60, 0.76), (2, 20, 0.76), (2, 60, —0.76) i 1 0.5
(%, 40, 0.76), (4, 20, 0.76), (5, 0. 0.76)
1% 12 (e, 55, 06) fore=1,...,12 0 1 0.4%
14 12 (e, 55 0.5) fore=1,...,12 0 0.5 0.71
15 12 (e, 55, 0.5 fore=1,...,12 0 0.0 01.89
16 9 (1,71, 1.5), {2, 49, 1) 5 1 0.6%
17 5 (1,24, 1), (1,96, 1), {2, 5, 1), (5. 5, 0.75), (4, 5, 0.5) 9 1 01,58

The number of UL with main effects B; is denoted by #, and g is the number of epistatic terms with effects
4 a8 defined in model (1), The environmental noise is denoted g ~ N{0, o*). Broad sense heritability is &,

and the epistatic effects are as described in Table 2.

additional terms make our criterion similar to the risk
inflaton criterion (RIC) proposed by FosTER and
GeorGE (19%4) in which the penalty for including &
orthogonal regressors is equal to 2k log §, where s the
total number of available regressors. Note, however, that
when n tends to infinity these additional terms are over-
shadowed by the BIC penalty (f(#) + g(i)) log nand,
conrary to RIC, our criterion has the asymptotic proper-
ties of the BIC {ir, consistency).

SIMULATIONS

We employ computer simulations to evaluate the ap-
plicahilit}r(:l'mlr proposed modification to the BIC cnte-
rion. Marker and (JTL genotypes are simulated for a
backcross populaton using 12 chromosomes of the
length 100} cM for sample sizes n = 200 and n = HHL
The number of (JTL with main effects ranges between
{ and 12, and the number of epistatic terms between {)
and 5 (Tables 1 and 2). Models 4, b, and 11-14 (Table
1) are included to allow for a direct companson to the
results of Bromaw and Seeep (2002), as indicated by
model 12, and to the results of PrerHO and GavucH
(2001; models 4, 5,11, 13, and 14). Since we are inter-
ested in how our proposed criterion adjusts to the num-
ber of available markem, we search for QTL over 1, 5,
and 12 chromosomes and use marker spacings of 5,
1), and 20 cM. The number of availlable markers and
interaction terms, as well as the corresponding values
of { and u ftor each of these experiments, is specified
in Table 3. The forward selection procedure (see, eg.,

Mitier 1990) is used to search the space of possible
multidimensional models. At each consecutive step we
test all terms (main and interaction) not yet in the
model and choose the one whose presence in the model
vields the lowest value of the modified BIC cnterion
(Equation 8; mBIC). To save computational ame the
procedure is stopped after 3 steps and the resulting
31 models are evaluated on the basis of minimizing the
mBIC (Equation 8). The number of steps is restncted
to 3 since the largest model we use in the simulations
has only 12 terms. Actually, we observe that for all the
cases that we considered, the mBIC cnterion was mine
mized by models with <<2() terms and that increasing
the number of steps above 20 had no influence on the
results. However, in real data studies, when one does
not want to bound the (JTL number, we suggest using
a larger number of steps.

RESULTS

The resulis of searching over 1, 5, and 12 1M
chromosomes, respectively, with markers spaced every
10 M are shown in Tables 4-6, while Table 7 reports
the results for varying marker distances. The number
of correctly identified terms (corr. id. ), averaged across
1{H} simulations, and the average number of false posi
tives (extr. ) are reported. The fake posiaves that occur
are divided into categones depending on their linkage
to true QTL. Following PierHo and GavcH (2(H1) we
classify the main effect to be correct if it comresponds
to a marker lying within 15 cM of the true JTL. If
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TABLE 2
Dietails of epistatic elfects employed in simulation {Table 1)

Model q Epistatic effects (QTLL: QTL2: )

5 1 (1,5: 1, 90; 2)

2] 1 (2,5:8,5:9

10 5 (1, 71: 2, 49: %), (3, 27: 4, 8: 2.5), (5, 91: 6, 95: 2)

16 5 (8, 27: 4, B;2.5), (5, 51; 6, 35: 2), (7, 5: 8, 5; 1.5), {9, 5: 10, 5;: 1), {11, 5: 12, 5; 0.75)
17 2 (5,5:6,5 2),(7.5:85:1)

QTLi (i = 1. 2) denotes the position of the ith QTL (chromosome and QTL location). The number of
epistatic terms and their effects are denoted by g and v, respectively, and are as described in model (1),

two markers from the neighborhood of one QQTL are
chosen, one of these markers is arbitranly classified as

extraneous. Epistatic terms are classified as correct if

both markers involved lie within 15 cM of the true (JTL.
For the no-QJTL model (1) the percentage of replicates
for which the model with no QTL was chosen s re-
ported. While the 15-cM margin is somewhat arbitrary
it accommodates our situatgon well and illustrates the
performance of our criterion. Recall that our main goal
is the estimation of (JTL number and not the precise
location of (¥TL. It we use a narrower range (e, <15
cM), then some of the properly idenofied terms will be
classified as extraneous due to the relatvely large error
of localization of weak (QTL that is inherent to all (JTL
mapping procedures.

Our modification to BIC performs very well (Tables
4-7) in practice, adjusts appropnately to the number
of available markers under consideration, and rarely
overestimates. Furthermore, in all of the examples we
considered the probability of incorrectly detecting at
least one (¥TL, when there are none, does not exceed
(L06 and the average number of extraneous (¥TL, which
are not linked to true (FTL, rarely exceeds (.10}, We also
observe that the average number of extraneous epistatc
terms never exceeded (L.05. This confirms our expecta
tions that in the backcross population epistatic effects
are usually detected only when they really exist. Since
we set the expected values of the prior distribution for
the number of main eftects and interaction terms to be
equal to 2.2, our criterion more easily identifies models
with a small number of terms. The propertes of our

proposed criterion quickly improve with increasing sam-
ple size. Theretore, the accuracy of detecting small mod-
el increases (see models 1, 6, and 7 in Table 4) as
does the ability to correctly identify models with larger
numbers of (JTL (see models 12, 13, 16, and 17 in Table
4). We are aware that the chance of correctly identifying
OTL depends on its heritability. In other words, when
the vanance of the error is equal to 1.0} and the sample
size 15 1 = 2(M), our criterion usually detects main effects
with coefficients B = (176 (the heritability of the single
QTL with such a B is (113} and interaction terms with
¥ = 2 (broad sense herntability of (L20 with just one
such epistatic term in the model) even when they appear
in larger models. When the sample size is increased to
n = B} our criterion usually detects main effects with
B = 050 (individual # = (0.06) and interaction terms
withy = 1.5 (individual & ~ (1.12). The proposed crite-
rnon (mBIC) works particularly well if (JTL are located
close to markers (compare models 4 and 6, and 5 and
7. in Tables 4=6 and models 4 and 8 in Table 7). When
(TL are located in the middle of an interval defined by
two markers it is sometimes the case that both flan king
markers are chosen, which partially explains the rela-
tively large number of false positives for models 4 and
15. An additional reason for the sometimes larger num-
ber of extraneons linked QTL is a stabstical error of
localization of weak (JTL. In some cases the correct
model was appropriately identified, but the chosen
markers were slightly farther apart from the true (JTL
than ourset limit of 15 cM. On the basis of this reasoning
some of the fale positives cormespond o correctly iden -

TABLE 3

Penalty coellicients [ and o used in the modified BIC {mBIC)

No. of Marker No= MANa — 1)
chromosomes spacing (cM) M 5 9 ] i
1 10 11 hh 5 25
5 10 hh 1,485 25 675
12 10 152 B4 Bl 3,950
12 i 252 41,626 115 14,875
12 20 72 2556 44 1. 162

N, denotes the number of markers and A, denotes the number of available interactions,
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TABLE 4
Resulis from 100 simulations that each search over 12 100eM chromosomes with markers spaced
every 10 M
Main terms Epistatic terms
Exr, Extr, Extr. both  Extr. one  Extr both

Maodel " # Corrid. linked unlinked g Corr. id. lin ked lin ked unlinked

1 200 ] 0.95 —_ 005 L] —_ o o 02

1 SO0 L] [IK:]2] — .01 il — —— —— (.00

2 200 1 1.0 0. 0.02 L] 000 (.00 L] 002

3 200 0 —— (.00 01 1 0495 [IX1]! .00 [IXI}!

4 200 2 1.97 0.5 002 0 —_ .00 .00 [IXIE!

] 200 2 1.98 .06 0.0 0 —_ 00 .01 008

i 200 2 200 0,10 002 L] — .00 .00 [IXIE!

6 BN 2 200 0.2 002 0 — .00 .00 .01

7 200 2 2.00 0.07 01 0 — .00 .00 [IXIR]

7 SO0 2 200 0.1 0.1 0 —_— .00 .00 002

9 200 1 1.00 .00 008 1 0.92 005 .00 [IXI}!
10 200 ] —_ .01 .01 4 2 RG 005 0,05 001
11 200 ] 408 0.18 .00 1] — .00 .02 .00
12 200 7 502 0.23 0.02 L] —_ .01 .04 .01
12 SO0 7 6.949 013 001 0 —_— .00 .05 .00
13 200 12 259 0.3 [ L] —_ 02 o o
13 BN 12 9.68 0.47 — 0 —_ 002 — —
14 200 12 953 0.75 — L] — .02 —— ——
15 200 12 11.9 0,63 — 0 — .04 P P
16 200 2 1.95 008 01 h 208 0.12 o o
16 SO0 2 200 0.0 0.2 ] 346 0.07 o e
17 200 ] 367 0.18 L] 2 080 .04 .00 001
17 BN ] 4 .80 0.18 L] 2 1.82 005 .00 .00

fris the rue number of main effects, g is the rue number of epistatic wrms, «# is the sample size, Corr. id.
denotes the average number of corvectly ide ntified terms, Exir. linked denotes the average number of extrane ous
terms that are linked o ue QTL, and Exir. unlinked denotes the average number of extraneous terms that

are not linked o e QTL.

fied, but incorrectly localized QTL. Comparing results
of our simulations with the results reported in PrerHO
and GavcH (2001) and BroMan and SPEED (2002) we
observe, for models with only main effects, that our
modification of BIC (mBIC) performs similarly to the
criteria proposed in these earier articles. More impaor-
tantly, however, our crterion allows the detection of
epistatic terms whereas the critena of PIEPHO and
GavcH (2001) and Bromaw and Sreep (2002) do not.

DISCUSSION

The method proposed in this article can be viewed
as a simplification of standard Bayesian methods used
for QTL mapping. In a series of articles SATAGOPAN
and YanpELL (1996), SaTacoran e al. (1996), HEATH
(1997), Uniart and HoescHELE ( 1997), SiLanpid and
Arjpas (1998), StepHens and Fisca (1998), and Y1 and
KU (2(04)) use the full Bayesian approach and Markov
chain Monte Carlo simulations to estimate posterior
distributions of (JTL locations and other parameters in
the regression model. Y1 & al. (2003a), Xu (2003), and
KiLpPigar! and Stanpeii (2003) reduce the number of

parameters generated by Markov chain Monte Carlo
(MCMC) by restricting the search to marker positons.
Y1 oand Xu (2002) and Y1 # al. (2003b) extend the stan-
dard Bayesian MUCMUO approach to search for epistanc
(¥TL. The common feature shared by the works of these
authors is that they require multiple generations from
the conditional distributions of all parameters in the
regression model and are very computatdonally demand-
ing. Moreover, as noted by BaLL (2001}, “a major chal-
lenge remains to obtain a apidly converging sampler
for the full Bayesian model.” SeN and CHURCHILL (2001)
avoided using MCMC by employing an independent
sample Monte Carlo approach to generate mulaple ver-
sions of pseudo-marker genorypes on the dense grid of
genomic locations. They computed weights for each
pseudo-marker realization by integrating out parame-
ters of the related regression models and then used
them to approximate the posterior distribution of the
OTL locations. Our method, similar to the methods of
Barn (2001) and BromMan and SFEED (202, 15 a further
simplification of Bayesian methodology and seems to
be particularly useful when one needs to search over a
large space of possible models with interactions.
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TABLE 5

Besults from 100 simulations that each search over one
100-eM chromosome with markers spaced every 10 ¢cM

Main effects Epistatic terms

Model m # Corrid.  Exw. g  Corroid Exir
1 200 0 .96 00% 0 —_ 005
1 0 0.94 (.04 1] _ .02
2 200 1 .99 004 O —_ 0.02
4 2000 —_ .02 1 0.99 002
q Wo 2 2.00 059 0 —_ 009
] 200 2 200 026 0 —_ 0.05
i i 111 200 013 0 —_ 0.02
G Ko 2 2.00 007 0 _ .02
i 200 02 200 009 0 —_ 0.01
7 MO 2 2.00 005 0 —_ 0.02

fris the rue number of main effects, g is the true number
of epistaic terms, n is the sample size, Corr. id. denotes the
average number of correctly identified terms, and Fxur. de-
notes the average number of extraneous terms.

The modified BIC that is presented here is closer
than the onginal BIC to the concept of Bayesian think-
ing since it introduces the prior distribution on the
number of main effects and epistatic terms. We concen-
trate mainly on the situation when there are no specific
expectations on the number of (JTL and calibrate the
prior so as to gain control over the wype 1 error of our
procedure. However, we strongly suggest that in the
case when some prior information s available it should
be included and the penalty should be adjusted accord-
ingly. To estimate the type I error in that case one could
use computer simulations or the permutation method
of CHURCHILL and DoOERGE ({ 1994),

M. Bogdan, |. K. Ghosh and B W. Doerge

In principle, the modified version of BIC suggested
in this article could be used to approximate posterior
probabilities of different modeb according to the for-
mula

exp(—mBIC({) /2)
—1€xp(—mBIC(j)/2)’

AM|Y) = (9)

where [is the number of possible models (see also BaLL
2001} . While we are very much aware of the importance
of this formulation, which could allow one to estimate
the uncertainty related to the choice of the best model
and to use Bayesian averaging to estimate main and
epistatic effects, we point out that due to the huge num-
ber of possible models with interactions it is practicall}r
impossible to compute its denominator. To reduce the
number of terms in the Equaton 9 one could apply
Occam’s window algonthm proposed by RAFTERY el al
(19973, which relies on discarding models that receive
little support from the dam. However, the correspond-
ing search procedure proposed in Mabpicaw and Rar-
TERY (194) seems to be inadequate in our setting due
to the large number of nonnested models. In practice
one may reduce the number of models considered by
performing a separate search for each pair of chromo-
somes, which in tum is usually good enough to detect
pairwise interactions. But even in this case, the number
of possible models with interactions will usually be too
large to apply Equation 9.

To solve the problem of muluplicity of models and
to identify the best one, we applied forward selecton
procedure, which is simple and quick. Qur simulations,
as well as results reported in Broman and SPEED (2(02),
show that forward selection performs very well in this
setting. We are, however, aware that there are some

TAELE &
Resulis from 100 simulations that each search over five 100cM chromosomes with markers spaced
every 10 eM
Main ellects Epistatic terms
Exir. Extr. Extr. both Extr. one Extr. both
Model — p  Corr. id lin kel unlinked g Corr. id. linked lin kel unlinked
1 0 0.96 - .02 0 o - — 002
2 1 0.99 0.02 .00 0 - 0.00 0.00 .02
4 0 — 0.00 0.01 1 0.96 .01 0.0 0.00
4 2 197 0.57 0.0% 0 e 0.00 0.00 0.01
B 2 197 0.08 0.02 0 - .00 0.00 001
£ 2 2.00 0.14 0.02 {0 o 0.00 0.00 0.01
7 2 2.00 0.07 0.02 1 —— LREY] 0.00 001
9 1 0.949 0.0% 0.01 1 093 .04 0.0 0.00
11 o 427 0.25 .00 0 — 0.04 — —
12 7 h.hb 0.27 — 0 - 0.0% — —

Sample size n = 200, #is the vrue number of main effects, gis the rue number of epistatic terms, Corr, id.
denotes the average number of correctly identified terms, Exir. linked denotes the average numbe r of extran eous
terms that are linked o true QTL, and Extr. unlinked denotes the average number of extraneous terms that

are not linked o e QTL
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TABLE 7

Resulis of the search over 12 100eM chromosomes based on 100 simulations and the sample size n = 200

Main effects

Epistatic terms

i Exir, Extr, Extr. both  Extr. one  Extr. both

Model (cM) # Corr id. linked unlinked g Corr. id. lin kel linked unlinked
1 ] L] .98 —_ 001 L] — — — 001
1 20 L] 0,95 — 003 i —_ — —— 002
2 ] 1 0.949 .00 0 L] —_ .00 .00 .01
& 20 1 1.00 002 002 i} —_ .00 .00 008
4 ] 2 200 .11 LIXI}! L] —_ .00 .01 003
4 20 2 1.87 .54 003 L] — .00 005 001
B 20 2 2,00 0,08 .04 L] —_ (.00 0.07 002
10 ] L] — 0. 003 3 2,94 008 L] .01
10 20 L] — 0. X1} 3 221 0.10 002 002
12 ] 7 4.66 0149 [IX1)] i} —_ .00 .00 .00
12 20 7 523 043 [IXIE L] —_ .01 008 0.04

i}is the marker spacing. pis the rue number of main effects, ¢ is the rue number of epistatic terms, Corr,
id. denotes the average number of corvectly identified terms, Extr. linked denotes the average number of
extraneous erms that are linked o orue QTL, and Extr. unlinked denotes the average number ol extraneous

terms that are not linked o e QTL.

particular cases (and a real analysis is always a particular
case) when the forward selection procedure does not
detect the best model. Thus, although statistically we
do not expect much improvement by replacing forward
selection with a more refined search strategy, we sull
recognize the need for further research in this direcuon.

Although this article is concerned solely with de-
tecting main effects and pairwise interactions, theoreti-
cally the proposed method can be directly generalized
to idenuty higher-order interactions. To retain control
over the type | error of the corresponding procedure,
it is anncipated that higher-order interactions should
be penalized even more than pairwise epistatic terms.
However, the utility of this approach needs to be verified
by additional research, since there are two main difhi-
cultes related to any extensions of our work. First is
the numerical complexity of the search over a rapidly
increasing n umber of models with higher-order interac-
tions, which can most likely be addressed by developing
a suitable search strategy and increasing computer
power. The second issue is more difficult and of a more
theoretical nature. If we do not have prior expectations
on the number of main and epistatic effects the method
outhlined in this article can be used to control the overall
type | error. In this case, when we increase the potential
number of regressors by including higher-order interac-
tions, we must also increase the penaltes for main ef-
tects and pairwise interacions. Thus, an attempt to de-
tect higher-order interactions will result in decreasing
power of detection of simpler effects and can be offset
only h}r larger sample sizes. When some prior informa-
tion on the number of main effects and mteractons s
available the power will be less affected since the method
can be used in a subjective way via an approprate adjust-
ment of the penalties.

In this article we did not address the problem of
missing marker data. Currendy in the (QTL mapping
literature three methods exist, which are designed to
solve this problem by using genotypes of neighbonng
markers. They include HALEY and KnoTT (1992) Tegres-
sion, the E-M algorithm of JanseN and STam (1994), or
multiple imputations of missing genotypes proposed by
SeN and CHUrcHILL (2001) and Barr (2001). We be-
lieve that the applicaton of any of these methods will
leave the mBIC unaffected by a moderate proporton
of missing marker data. The missing data methods can
also be used to apply mBIC to search for (JTL within
intermarker intervals.

The method proposed in this article selects markers
strongly associated with the trait and does not explicitly
use the information from the distance between them.
Therefore, in principle the mBIC approach s notsensk
tive to map errors. However, the application of any of
the missing data methods will make our method sensk
tive to map emmors in the same way as standard interval
mapping. Our method can be also influenced by selec-
tive genotyping and genotyping errors, since selective
genotyping will change the correlaton structure in the
design matnx and might result in partial confounding
of epistatic and main effects. However, our approach is
able to select the proper markers out of many strongly
correlated neighbors; therefore we believe that it is also
robust to any partial confounding of main and epistatic
effects. The influence of genotyping errors will depend
on the marker information that is affected. In our mBIC
criterion, as well as in other standard model selection
criteria, the information on the data appears only in
RE55. Thus, we do not expect a significant difference
between our criterion and others with respect to the
sensitivity to genofyping errors.
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Locating (JTL, and more importantly their interac-
tions, remains an open problem in both the (JTL map-
ping and statistical communities. Current multple in-
terval mapping methods are plagued by two mamately
related issues. First is the problem of estimating the
number of (JTL and their interactions. And second is
the related issue of searching over the space of all possi-
ble multidimensional models that compnse the compu-
tationally complex space. Realizing that the second issue
is impacted by the approach of the first issue, we have
presented a model selection criterion that allows more
accurate assessment than the ornginal BIC criterion,
from which we started. Using simulations in a backcross
setting we demonstrate that the mBIC doeswell to locate
mulople interacting (JTL. Extensions of our method to
more general designs are possible and are currently
under investigation. Furthermore, the proposed crite-
rion can be used ousside the context of genedcs to
estimate the number of additve effects and interactions
in the general framework of multiple regression.
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APPENDIX: BOUND FOR THE TYPE | ERROR

Our procedure recommends choosing the model that
maximizes the criterion

S(i) = log L(W8) — %Eﬁ(ﬂ A YR

= pidlogll — 1) — g(dloglu — 1). (Al)

The number of all possible one-dimensional models
[models for which p(i) + g(i) = 1] is equal to N, +
N, where, as betore, N, 15 the number of availlable mark-
ersand N = (N, (N, — 1))/2 s the numh’.‘.rﬂl’pﬂmihle
interactions. Let §, denote the maximum of the crite-
rion (Al) over all such one-dimensional models and let
Hh= log L, Y|, &) be the value of the criterion for the
null model involving no markers (f + g = ). Let ) =
f + g be the number of terms in the model chosen by
our procedure. It holds that

PD=0=PS =8 +PD=1,5 = 8.
We bound the probability of the first, dominating term
of the nghthand side of the above equality, under the
null hypothesis of no QTL.
Consider a given one-dimensional model M, and a
corresponding value of our criterion

Sw, = log L(Y|B) — élﬁg n— (log(l— 1) or log(u — 1)).
The model M;will be preferred over the model with no
QTL it S'_-,,I = &, or equivalently

L(Y])

2 log—————
LY, &)

=logn+ 2(log(l — 1) or log{u — 1}).
(AZ)

Under the null hypothesis of no QTL 2 IngL(Y}f—!.),-"
Lo( Y], &) has asymptotically x* distribution with 1 d.f.
(SEmFLING 1980). Thus, F(S,, = &) is asymptotically

equialent to

9P(Z = log n + 2(log(l — 1) or log(u — 1))),

where Zis a N((}, 1) mndom variable.

Mote that L":, = h_. it Equatnon A2 holds for at least
one of the one<dimensional models. Therefore, by Bon-
ferroni inequality, for any & = {} and suthciendy large
n it holds

P(§ > &) = 2N P(Z> Vlog n + 2 log(I — 1))
I EJNLP{K = “n.lllcg n+ 2 loglu — 1‘1} + &
(A3)

For each x = () it holds that

1 ]
Hz}x'] E'=|f" 'r-_-k"__
V& X

Thus (A3) yields

N 2N,
(I = 1) V2wnilog n + 2 log(l— 1))
+ . 2% + &
(w— 1) anilog n + 2 loglu— 1))

P(§ = &)

For the proposed values [ = N, /22 and u= N./2.2 the
right-hand side of the above inequality is approximately
equal to

44 | 1 " 1
VomnWlog n + 2 log(I— 1)  Vloga + 2log(u— 1)/
(Ad)

Using the proposed values of [ and u allows one to
eliminate N, and N, from the bound numerator and
thus helps solve the multiple-comparnsons problem.
For the sample size n = 200} and N, and N used in
our expenments the bound given by (A4) mkes walues
from the interval between 0L.0574 (for N, = 252 and
N, = 31.626; 12 100«<«M chromosomes with markers
spaced every 5 cM) and 0.0801 (for N, = 1l and N =
55;one 1M chromosome with markers spaced every
1 M), which gives asatisfactory approximaton for the
empincal ype | error obtained from simulations.
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