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SUMMARY

A simple expasition is given of Edgeworth and saddle-point approximations for some
univariate, multivarizte and conditional distribuotions. The application of these
approximations to some problems of conditionz] statistical inference within the
exponential familvy is illusirated. Examples conpected with the time-dependent
Poisson process, the von Mises distribotion and with bicassay are among those
studied in a little detail. Some general results are derived abont condilional
likelihoods and aboui the disteibution of the maximoum Likelihood ratio test statistic,
An appendix discusses regularity conditions.
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1. TNTRODPUCTION

Tmrs paper has two objects. One is to give a simple statement of metheds for obtaining
asympiotic expanalons for the depsities of sumas of independent vector random variables.
The expansions are of the Fdgeworth and saddle-peoint types and relale to conditional as well
as to unconditiona] distributions. The second object is to apply the methods to study
conditional densities arising in inference within the exponential family.

Section 2 discusses univariate results and 1s intended largely, although aot entirely, as an
introduction to Sections 3 and 4 dealing with bivariate and multivariate distributions, For
conditional distributions the most important expansions are what we call the single and the
double saddle-point expansions; these are discussed in Sections 3.3 and 4.3, Section 3 develops
some illustrative exampiles and Section 6 gives two rather more general applications concerning
conditionai likelihoods and maximom likelihood ratio test statistics.

The discussion in the main part of the paper is deliberately informal without attention to
regularily conditions. The appendix gives the required conditions both for continuous random
variables, with which the paper iz primarily concerned, and for the probability functions of
discrete random variables. For a general account of asympilotic expansions connected with
sums of independent random variabies, see Bhattacharva and Rao (1976). We make po
aftempt to consider here problems, such as those arising in time serics theory, which involve
functions other than sums of independent random variables.

2, UNIVARIATE RESULTS
2.1, Direct Fdgeworth Expansion

Let U5, ... U, be independent and identically distributed random variables with density
A(*), moment generating function A& = Ee*Y) and comulant geperating function
K(£) = log M(£). The moment generating function is assumed to converge in a strip in the
complex £-plane with the origin in its interior; of course, the more common definition of A£(+)
is recovered by changing the sign of £, Denote the cumulants of U7 by {«, and the standardized
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cumulants by p=s/xj(f=3,...). Let Ry= U+ . +U,, X, = (R,—n e n), where o
is a scaling constant possibly, but not necessarily, the standard deviation yx; of U

The most immediate asymptotic cxpansion for the depsity of X, is by an Edgeworth series,
derived formally by expanding the cumulant generating function K x (&) of X, and thereby
the moment generating function My (£), in powers of 1/y/n and inverting. This gives what we
shall call the direet Edgeworth expansion for the density of X,

Fx ()= g(x; wefa® Il + 5 - Hylaxiyie) +o0 'ﬂ‘ - Hiexie) +o5 Hs(ﬂerfz}] +O0{n ),
{2.1)

where g(+; 6% is the normal density of zero mean and variance o and where H{-) is the
Hermite palynomial of depree I defined by

(@Y g(x: 1) = {1} Hxd gl 1) 2.2)

In {2.1) the term in an corrects for skewness whereas the term in 1/7 15 an even function of
Xx and essentlially corrects for kurtosis.

2.2, indirect Edgeworth Expansion

An important feature of (2.1 is that the terms in odd powers of 1/\/n depend on Hermite
polynomials of odd degree, all of which vanish at x = 0. Thus if we wish to approximate to
SFx (@), the density at the mean, an expansion in powers of 1/n, rather than in powers of 1/y/x,
15 obtained. A different aspect of the same thing is that {2.1) may give raitbker bad, and indeed
negative, valoes in the tails.

Inditect Edgeworth expansion (Daniels, 1954) hinges on the idea of an Edgeworth expansion
originating not from the density f(-) but rather from a switable member of the exponential
family or conjugate family (Khinchin, 1949)

Flu: Xy = e~ A M, 2.3}
which can be writtén also in the more familiar form
s A) = exp{—ud—afu}— (A} {2.4)

Tt has mement and comulant generating functions
M(£; = M(E+AYM(A), K(£,A) = K(E+)—K(X) = B(E+ ) —BA). (2.5)

Comsider the approach of Section 2.1 applied to the distribution f{i; A). We then define
X = (Ry —nrggdf@fr), where wyy = E(U; Ay). Of course we recover the previous situation
exactly by putting A, = 0. Suppose that we are interested in the density fx (x; Ay) of X7, for
some fixed x. Then for any A we have from (2.4), on comparing fx (x; A) with f (x; A and
using (2.5), that

Fr (x5 Ag) = exp{nK () — nK(Ag) +r{A— A} fx (x; A), (2.6

whete x = {r—nr)/(@yr). Equation (2.6} iz central to the discussion. An alternative less
direct derivation 13 iz the relevant moment generating functions, using the *displacement
ruie” for the inversion of Laplace transforms.

Thus an approximation for fx {x; A} can be obtained viz an Edgeworth expansion of
Fx (x3 A)in (2.6} for any choice of A such that as #—co the value of x deviates from the mean
uf}'x {*; A by a bounded multiple of the standard deviation ; the direct Edgeworth expansion
of Section 2.1 corresponds to the choice A = A,

An important special choice of A for a particular x and 7 is A = A,(x) defined equivalently
by requiring that

E(X,; Ny =x, B(U; R = axty(m -+ (2.7)
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or that A is the formal maximum likelihood estimate for A based on the observation x, From
either property we have the equivalent forms that

ax+ Jm K A+ xyph = 0,1 40K (R = 0. (2.8)

The essential point is that x is at the mean of the distribution of X, under A& Then, on taking
zero argument in (2.1} and denoting cumulants and standardized cumulants under A by
{#&} and {5}, we have from (2.6) that

nK(A)—nKi (M (A=
£ ey A SRR = (E:;j;;;:wamu b sz +mn_,}}; 2.9

here meyp) = 3py—5pd and we have used the facts that F,(0) = 3, H(0} =—15. As noted in
Section 2.1 it will often be natural to take &® = wyy, = varil’; A

The leading term of (2.9} 15 central to the paper and it is therefore worth giving some
alternative forms. Thus from (2.8} the leading term of {2.9) is

exp {nK (N —nE(A) —nE (M (A— )}
TRy @ ; (210}

also, re-expressing the result as a density for B, we have that

expirE(R) — nK(A) + (A — A
{ 2arniey )

for values of ¥ corresponding to bounded x.

The expansion using A is the best indirect Edgeworth expansion in giving the best order of
error. An alternative name is saddle-point approximation: the result was derived in the
piopoeering paper of Daniels (1954) by applying the saddle-point technique of asymptotic
analysis to the mversion of the Laplace transform My (+). Equation (2.8) is easily seen to
arise n defining the saddle point.

A valuable modification of the leading term of (2.11) is obtained by muitiplication by a
constant chosen so that the total imtegral of the resulting function is one; we call this the
renormalized saddle-point approximation. It typically has ervor O{n—%).

Fulri W)= W1 1 ogrt @.11)

2.3, A Simple Example
About the simplest example is to take

fly=ev @30), K(&=—log(l+8. @2.12)

The eaact density of R, is, of course, of the gamma form, namely p*1e~*/{n— 1)1, The direct
Edgeworth expangion gives a normal approximation for (R,—#)/Jr, supplemented by
correction terms, From (2.8), A = nfr—1, so that K(}) = log(rir), &, = r¥® and the leading
term (2.11) with Ay = 0 is thus

=1 T
TamTes @)

which differs from the exact density only by the use of an approximaiion to (r— 1! given
by Stirling’s formula. Thus by renormalizing the saddle-point approximation {2.13), the
exect density is recovered, a remarkable fact noted by Daniels (1954),

Had the results been expressed in terms of X, = (R,—n)Jn the corresponding linear
transform of (2.13) would have been obtained, If we include the second term of {2.9), we have
Bg = 2, py = 6 for the exponential density and the correction factor {s 1 —{12#)~1, the second
term in the asymptotic expansion associated with Stirling’s formula.
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Finally, the exponential family (2.4) for the problem is (14 Aye=v0+Y, an exponential
density of mean (1 +2)~%, In this particular situation, the results for general A; corresponds
merely to a scale fransformation of the results for A, = 0.

For a detailed numerical study, see Pagurova {1965).

2.4, Discussion

As is common {n studies of asymptotic expansions, the results can be put in a number of
different forms; for example, the saddle-point approximations can be further expanded using
the fact that A— X, is typically O(1/Jn). Such further expansions are not likely to be useful
unless K(-) 18 complicated, but if they are made it is important to keep appropriate accuracy.
Thus if in (2.92.11) &, were replaced by x, the error committed would typically be G(1/n).
A normal approximation can be developed from (2.9) by expanding (2.8} to mive approxi-
mately, with a* = &,, P ~ x{ (), KD~ — 3R, R ~ 13, when the leading term becomes
the standard normal density; essentially the direct Edgeworth expansion is recovered by
taking further terms. Tn general in (2.11), and subsequent similar expressions, A may be
replaced by an approximation } provided that A—J} = Ofa); in statistical terminology ths
maximum likelihood value is to be replaced by an asymptotically efficient value,

The proportional accuracy of (2.13) [s constant for all x in the example and by (2.9
constancy to order 1fe will apply in general, because # (5 can be replaced by m(p). Thus
numerical renormalization of the leading term of the saddle-point approzimation will typically
produce an error that is G(n—?). Sometimes, as in the exemple, an exact answor is produced
by renormalization. A sufficient but not necessary condition for this is that the standardized
cumulants should be independent of A A necessary and sufficient condition is that the leading
term (2.10) is correct except possibly for a constant factor, even for 2= 1. Afier use of the
relation between variances and the curnulant genereting function, the condition becomes

o — BT (ENB" (O} +B(E)— £B'(£) —lop f7(E) = const; (2.14}
we have not found a simpler form.

The leading term is exact even to the normalizing constant in only two cases, the normal
distribution and the inverse normal (or Gaussian) distribution.

WNote that while a given number of terms of the saddle-point approximation are usually
more precise than the same number of terms of the direct Edgeworth expansion, the latter
has the advantage in the continuous case of being easily integrated to give an expansion for the
comulative distribution function and also does not require the cumulant generating function
K(-) to be available in explicit form. In the diserete case, the integral of an asymptotic
expandion for the probability function, taken with the usual continuity correction, provides
an asymptotic expansion for the distribution function only to order 1fn; to order 1fr an

additional term is required, arising essentially from the discontinuous character of the distri-
bution function.

2.5, Low aof Large Deviations
The above expansions have been developed in the context of a fized x for which A= ﬁﬂ{x]
differs from Ay by O{1/yn). The argurnent is, however, valid for any sequence {x,} such that
{Aa(x. 0 is bounded. In particular, we may take A, =0, &* = w;, x, = J{#) (F— & ){fxq, 50
that when X, =x,, R,=U+..+U,=wnf Then A ,x,) =A(F), say, satisfies by (2.8)
F+K'(A) =0, The leading term of (2.11) now gives that

£y (F)~ [exp KR+ R} (2mnig ), 2.15)

one version of a law of large deviations. For a more thorough study from this point of view,
see Richter (1957), and for a general account Ibragimov and Linnik (1971, Chapter 6).
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3. Bivariate Resurts
3.1, Prelimingry Remarks
We now develop bivariate and then multivariate versions of the results of Section 2 both
for joint densities and for conditional densities. There are advantages in proceeding rin the
study of uncorrelated random variables, deriving the general case by linear transformation.
5o far as is feasible, a notation is used that lends itself to easy generalization.

12, Direct Edgeworth Expansion
Eet (T7, ¥, ..., (I, ) be independenmt and identically distributed vectors with density
S(-, ), cumulant generating function K(£, %), cumulants x,,, and standardized cumulants py,..
Write R, = U +...+ U, 5, =V, +...+F, and introduce

X, = (Ry—mmgdf(ayfm)s Yo = (Su—nee)/(B ).

For a direct Edgeworth expansion {Mardia, 1970), we expand the moment penerating
function exactly as in the univariate case. It is convenient to use a notation in which a formal
product HT g = ff, p, + Hy py of 21 vectors iz expanded by the binomial theorem before
the powers of p; and p, are replaced by appropriate individual siandardized cumulants and the
powers of H, and Hy by Hermite polynomials. For example,

(T pY¥(x, ) = pao Hef X+ 3pg; H(x) HL(3)+ 3psn Hh{(X) HH¥) + pos I ),

{(H® p¥12(x, 3} = pdy F(x)+...+ ply 0.

Then in the special case &y = 9, i.e. with uncorrelated U and ¥, and with @ = JJry, & = frgq,
we have that
Jr w300 =glx; egly; 1)

1 1 1
er [l +mﬂiT AP (x. ») 5 (HT p}"“(x,y}+ﬁ{(ﬂT gy (x,yj] + ),

(3.2)

If a general sealing is used the arguments x and y become ax)ywy, and byf\xye. If Uand ¥,

instead of being uncorrelated, have comrelation coefficiant gy = p then (3.2} applies to the
random variables

] G.1)

X ¥ = {Ym_FXnJJfﬁ'I[l_Pg}

Write gy for the [/, m) standardized cumulant of X, and ¥ and p" for the corresponding
generating vector in (3.I). On applying (3.2) to {X,. ¥7) and then transforming back to
(X, Y,), we have for the general version of (3.2) that

glx; Dgly'; 1)
Fx, 7 (%) = W

[ 1 O 095,45 B Y95, (BT 90850

+0( ). (3.3)

The leading term is a bivariate normal density in (x, ¥} of zero mean and will be written
Elx, ¥; B}, where £ is the covariance matrix of (X, ¥,)7.

The correction terms in {3.3) are expressed in terms of standard Hermite polynomials with
arguments the orthonormal variables and coefficients the comulants of these variables. This is
probably the simplest form for appreciating the structure of the formula. 1t is clear, however,
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that because of the lincarity of the transformation from (x, ) to (x,y", the result could be
expressed in terms of the vector g of cumulants of the original variables (x, y) and some new
polynomials. Thus, for example,

(HT p'¥¥ (x, 5"} = (3T p¥l(x, )
= pop Hegl, ¥; A)+3pey Hy(x, 5 B+ Ipga o, 15 A) -+ pop Hioalx. 15 A,

where A is conveniently taken to be the inverse covariance matrix of (X, ¥), With this and
similar notation (3.3) and subseguent formulae can be rewritten with 37T p replacing HT p'
and (x, ) replacing (x,"). Tt turns out that the generalized Hermite polynomials required are
exactly those mtroduced by Chambers (1967} by appropriate partial differentation in the
general case of exp(— 42T Az). We shall not explore this connection further here; Barndorfi-
Mielsen and Pedersen {1979} give explicit formulac for the polynomials up to degree 5.

If we consider the density at (0,() many terms disappear and in fact

— 1 M Y{Pr} —if
frar 00 =51 ‘1 +E2EE) ), 3.4
where D = det(Z) and
mxi(p7) = Ipjo+ Opha+ 305 — 5rsd —9pd —9pi3— Spos— 6p% 1o — 6P0s Pur- (3.5)
An expansion for the conditional density of ¥, given X,, = x follows on dividing (3.3) by
the correspouding expansion (2.1) for fx (x). There results

feaz ] }—M(H L (™ &1k, 1) — pop Ha )b e ((HT V81 (3, ) oo F06))
Y“!X,.{P L _(I_Pa]g- E_\If?! P +F )~ Paptig Vi P » ¥ P

2 T 6V 53— phy F 1 5 oo B (i P — (L))

+9(rh. {3.0)
When x = 0, we have that
F {p|0) = g{y: 1— 1 —1—{—3 ny HO+ ph H(y’]}+m—_—Y'N(P’;H + Ot 3.7
Yold, 10) = z{¥; ) +6\|ru Poy 1y Fog 47 (™ (nt), .

where
my_x(p's 1) = —6ppe (1) + pga By )+ Sp3f 1) — 3p13 Hy ()
+ Eop3 Ho¥") + 6pp £1a Hl ) — 2p3y o HH()
If further ¥ = 0, there results

Fegx 010) = g 147380 0ren), 68

where
iy x(p7) = 6phs +3phy — 3045+ 3013 + 2p5 P12+ 2003 pm) — S0

3.3, Indirect Edgeworth Expansion
As in the one-dimensional case, we introduce the exponential family
Jow; 8) = flo; A dh)
= e f{u, ) M (A, 1)
= exp{ =" w—a{w)—£(O0}, (3.9)
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where wT = (z,2), 87 = (A, ) are observation and parameter vectors, The cumulant generating
function is K{%, %) = log M(£,%).

The “maximum likelihood” point 8 for given T = (r,5) is defined most directly via the
analogue of (2.8), namely

t+#grad X(8) =0, (3.10)

where grad K(§) is the column vector of partial derivatives of K(8), evaluated at 8 = &
Equation (3.10) can, if required, be expressed in terms of the standardized variables (x, ¥).
The two-dimensional extension of {2.6) is that with 8 = 8,

X:m. = (Rn_' ""f;wml'r{a \'rn}l YM = (Sm_nmﬂ]“]ﬂf{b \'In}i
Fx v (%05 B)) = exp{nK(8) —nK(0,) +tT(0 -8} fx ¢ (>, ¥; ). (3.11}
Hence, on taking 8 = 8 and applying (3.4), we have that

exp{nK(8) —nK(8,) +1T(§—0,)
2a{ Bi(a® H)p

where 0 = D(B) is the determinant of second derivatives of K{(-, -}, evaluated at 8 = B, La,
the generalized variance at § = B, and the standardized cumulants required to calculate
#ixp(-) are those of & and of V¥ orthogonalized with respect 1o & at 8 = 8. If the leading
term of (3.12) is renormalized numerically then, as in Section 2.4, an error that is O(1/n%)
results.

To obtain an expansion for fy,z(v|x; 8,), we have to take approximations for
fxmy?{x, ¥; %) and fx (x; 8y). There are thus a pumber of possibilities depending on the
combinations of approximations used, 1 8, = (A, 4%)", the cumulant penerating function of
U is K+ &) — KAy ). B thus Follows from (2.6) and (3,11} that

Fxtx; 0y) = expinR(X, dg) —nRK (g ) +0(A" — Q)i x5 Aol (3.13)
Fx v (573 8g) = exp (nK (A", ) —n &g, the) + €78 — B}y v (5,05 A7), (3.14)

where 8 = (1", 4, so that approximations for f3 | ¢ (¥| x; 8;) can be derived via Edgeworth
expansions of the final factors. Wote that the ratio of (3.14) to (3.13) does not depend on A,
io line with considerations of sufficiency.

Other than direct Edgeworth expansion, as in Section 3.2, there are two main possibilities.
One is to apply separate saddle-point approximations to {3.13) and {3.14), thus taking X' = &,
in (3.13) and (A", )" = B in (3.14), where Ay 18 the “maximm likelihood™ value for A when
= b, This chowce gives

exp {ﬂx(ﬁ,'ﬁ] e ﬂfﬁm}, )4 r[ﬁ s ﬁ[u!] 4 s{ﬁ — i}
{2 D (Fegguey 3

Fx, 7.5 p; 0= {1 +sz:::: ) + G(n-*}] : (3.12)

fr,,lx,,(J’|x; 8, =

1+ 2 @omabad s ors), @y

where Ry is caloulated at (Mo tby) and s, (Fy) is determined from (2.9). To the order
indicated it iz enough to calculate the correction terms in (3.15) at 6 = §,. We call (3.15) the
double saddle-point approximation. It can be re-expressed simply in terms of fg 5 (5]#; 8g)
Approximations of this kind were considered by Daniels (1938).

A second possibility 1s to take A" = A" = A, o = by, when the exponential texms in (3.13)and
(3.14) cancel, and we are lead to take a direct Edgeworth expangion for the conditional density
under (A, 4} for any A such that {r, 5), and hence (x, ), correspond to bounded standardized
deviations from (A, 4f). The particular choice A = Ay ensures that afier restandardization
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the conditioning variable is zero, so that (3.7} is applicable, We call this the single saddle-point
approximation or the mixed Edgeworth saddle-point approximation.

The leading term from (3.7) is such that, given R, = r, § is normal with mean nE(V; &), 1)
and varignce

r{var(V; A, ho)—covi(T, V; A, dofvar (T Ay, o). (3.16)

The correction terms are given from (3.7} with the p'’s being standardized cumulants of IF
and F', evaluated at (%, #) and with ' the standardized orthogonalized deviate

{s—nE(V; R ol imRaoiai(1 — Bl ), (3.17)
where Py = p(Aa. e} = corr (U, ¥ Xigy, ).

To compute the correction terms we have, as noted above, the possibilities of direct use of
(3.M in terms of orthonormal variables, and of re-expressing (3.7) in terms of the cumulants
of the original variables and the peneralized polynomials, specified by the operator 3.

In statistical applications we shall very often want the cumulative probability corre-
sponding to (3.16), the leading term being (), where (+) is the standard normal integral.
The correction terms, obtained by integrating the single saddle-point expansion, have the

general form
{hay) O WA — () 40/ )iy (3.13)

where k() is a polynomial of degres j and §{y) = g{y; 1) is the standard normal density.
Pedersen (1979 has given an algorithm for the computation of this, once the relevant ocigi-
nating moments are known. He gives also further details about single saddle-point approxi-
mations,

34, Twe Simple Examples

First suppose that ¥,...,¥, are independently normally distributed with mean p and
variance o and let U; = ¥4, Then R, =L ¥}, 5, = TF; and direct calculation shows that
for fixed (g, s%

1 -1

Toam(o1r) = cxp (opfo) r sy 2yt “coshfx ) pfo) (1 —x0ptele) .
v (3.1%)
The denominator of {3.19) is a normalizing constant. The result could be expressed in terms
of the standardized variables

Xy ={R,—n(pt+aDfan), Y, = (S,—nu)fibyn),
where a apecial choice is 2 = o = {208+ 231, b = o,
If we apply the direct Edgeworth expansion we recover a normal approximation to the

conditional distribution, with correction terms; for the latter we calculate the joint standardized
cumulants of the orthoponalized variables

(V= pd—o®ay, (V—p)fe—p(i*—pt—cioy,
where p = corr (¥, ¥9). As will be usual when the exact density can be written in reasonably
explicit form, the expansion can be obtained directly, here by expanding the numernitor about
its maximum.
To apply the double saddle-point approximation (3.,15) it is simplest to take § =10 as

corresponding to the standard mormal distribution, when the exponential family (3.9) is
pormal with mean p and vatiance of, where

A=tori-g, d=—pih
M) = exp /(1 + 26} (1426
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The “maximum likelihood” values (ﬁ,v,fr] are derived via the usual maximum lkelihood
estimates of mean and variance; the quantity A, derived when ¢ = i, is a function of r alone
and not of 5. 1t follows on substituting into (3.15) that the leading term is

Fe(ry o) exp (— thy ) (r — i3, (3.20)

where k,(r, s, i3 a complicated but elementary Function, Thus, except for the normalizing
constant, the exact conditional density iz recovered,
As a second example, consider the special inverse Gaussian deasity

whytexp (2--u—1fu) (3.21)
which generates the exponential family
{1+ exp {21 + I+ u-Fexp{—(1+ Nu—1(+ )}, (3.22)

with » = 1{z. The rather clumsy parameterization is, of course, to fit in with the peneral
formulation. If U4, ..., U, are independent and identically diatributed with the above density
and R, = XU, &, =E(1jIJ), we can, for example, use {3.12) to approximate to the joint
density fz s (r.8; 8

The cumulant generating function of (3.21) is

E(f,w) = —3log (1 +m—26(1+ £) (1 +m)fF +2.
The formal “maximum likelihood™ equations are, with F=r/r, § = 5/n,

@A =21+, {PAE-1AF1=201+%,
and the determinant of the matrix of second derivatives of K{, *) is H(1+ & {1 +4) L
It follows after some calculation that
S, (1,85 8g) = (am)~1 20080 gin(] 4 f Pimexp (2n(1 + o) (1 + Ag))
xFRexp{—n{l + A F—nll + )5 H(F—F LD
wexpf—m{l +3 (F—F1, (3.23)
which again is exact except for the normalizing constant (Tweedie, [957).

4, Murnvariate BESULTS

4.1, Preliveinery Remarfes and Notation
The discussion of Section 3 has been put in a form for fairly easy peneralization. Let
W=(Wwn _ WeENT be a d-dimensional random variable with density f(»}, cumulants
s, . and standardized cumulants p; ;. Write the associated exponential family

Flwyexp(—w" B)/M(6) (4.1)
with cumulant geperating function K{E} = log M(E).

Let W,,....W, be iodependent and identically distributed with the above density,
T, = W,+...+ W, = (T, .., TN and denote the standardized sum by Z,, with components

(T 0B Yy f .os (T — B (g i), 42)

where a natural choice is ¢; = Jvar (W) (j=1,...,d).

Note that in the bivariate case W = (U, V)T, T,, = (R, S,)T, Z, = (X, T)T, B = (A, )7,
L=(f&m7T and ¢, =4, o, =H. When we consider gemeral conditional distributions it is
convenient to write W = (U, V)7, etc., where now U and V are respectively ;% 1 and dy = 1,
with dy+dy=d.
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It is again convenient to work with uncorrelated components and we write W' = C(0,) W,
2, =C(8)Z,,, where C(8,) 15 a lower triangular matriz such that the components of W' are
uncorrelated and of unit variance when 8 = &, Note that with the convention that in (4.2)
£; = ... =¢gg=1, we can use the same tmusfurmatmn to produce an orthonormal Z;. The
reason for congidering a lower triangular transformation is to ensure that when W is
partitioned the first & components of W’ depend only on the first &, components of W. If
Z(8,) is the covariance matrix of W when & = &, assumed non-singular, then

Z48,) = CT(6,)C(8,). {4.3)

We write p; (@) for the standardized cumulants of W',
Finally, we write g,{w; E) for the density of the d-dimensional multivariate normal disted-
bution of zero mean and covariance matrix Z.

4.2, Direct Fdeeworth Expansion
For the direci Edgeworth expansion applied to orthonormal compenents {3.2} eeneralizes
immediately, with obvicus extensions of notation. We again consider expansions at § =0,
without loss of generality. We apply (3.2) to Z/, and then transform back to obtain, instead
of (3.3),

fol® = 240z 2}[l+—r:ﬂ'f PN 5 (B Y oo ((HT 0 :-]+c-{n4}

(4.4)

To find f,,,m[ylx], we divide (4.4) by a corresponding d-dimensional expansion for
Sx (x). The ratio of the leading terms gives another multivariate normal density, because of
a well-known property of conditional densities in the multivariate normal distribution. In
fact, partitioning X into components in the usual notation, we have that

Fee 319 = 800~ B B % B (145 (07§ @)~ (T ()
g (T RV ) ~ (7 B (= [T 9P )

— [T g ()] g (HT g () (H () — (H* p’ywz'n)

+ 0T, {4.5)

where Zg,y = By —Zy Zil B, and where the notation (HT piy¥(x) refers to expressions
of the type (3.1} calculated from the &-dimensional variable x°.

As noted in Section 3.2, {4.5) can be rewritten in terma of unorthogonalized variables by
replacing HT p' and H” p} by 2¢T p and 27T g, and replacing z' and x' by z and x, where 3#
and 37, speeify peneralized polynomials determined by the inverse covariance matricos
A =Z1and &) =Z7}. Thus to caleulate correction terms there are two possibilities. One is
to vse the original variables and their cumulants together with the generalized polynomials.
The second possibility is first to find the orthonormal variables for the particular problem,
then to caleulate the necessary cumulants and finally to use formulae involving standard
Hermite polynomials, For theoretical discussions, we have used the second approach,
although for the examples of Section 5 involving two variables and the formulae of Section 3
the first approach has been wsed,
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Again (4.5) specializes first when x = 0 and further when z = 0 so that, in the latter case,

1
Feex010) = gz | 1+7255 00, @6

where Dy, = det(Z,,) and sty <(p") is easily written down from (4.5) in & form immediately
generalizing (3.8).

4.3, Mdirect Edgeworth Expansion
We can now use the results of Section 4.2 to obtain immediate generalization of the
bivariate approximations of Section 3.3. The “maximum likelihood™ value is again given by
{3.10} and for the joint density, we have that
exp (nK(8)—nK(8y)+t"(B— 00} [ my(
F2 (5 O = ] TS 1+
(2meE{ DB (el ... a2} 24
For the double saddle-point approximation to fy ¢ {F]x; 8;) we combine (4.7) with an
approximation of the same ferm for fg (x; 9;), thereby giving

(7]x; 8,) = exp (K (B — n& (B gp)+ TR — i) + 5T — W)}
YAIEAY | X2 Yy Cm= L D(B) Doy B} (g, 01 -e C2)

BY . o2
-+ Ol }}, 4.7)

i ll + mZ[ﬁ'] hz-ﬁx{ﬁjiﬂ}} + D{ﬂ_ﬂ]}, {4.8}

where 8, = (A, W) is the “maximum likelihood” value for & when s = W, and Dy, (&)
is the generalizad variance of X, at 0 = 8y;.

For the single saddle-point or mixed Edgeworth saddle-point approximation we take a
direct Edgeworth expansion at &, The standardized conditioning variable is zero at that
point and the leading term for S, is multivariate normal with mean rE(V; Ay, s) and
covariance matrix #Zg,(8;,). The correction terms are caleulated from (4.5) with x* = ¢
and 8 = §,;,. They are thus directly calculated from the neecssary cumulants and special
polynomials. Alternatively the transfonmation t¢ orthonormal variables can be carmied ot
algebraically, the cumulants of the new variables [ound and the required approximation then
evaluated from standard Hermite polynomials; see Scction 4.2,

A preassigned number of terms of (4.8) will typically be more accurate than the same
number of terms of the single saddle-point approximation but the latter has the advantages,
noted in Section 2.4, of not requiring the cumulant generating function in explicit form and
of being more easily integrated.

8. S0ME SPECIAL CASES OF STATISTICAL TNTEREST
5.1. Prelimingry Remarks

We now discuss in outline & pumber of particular problems of statistical inference within
the exponential family to which the results of Sections 3 and 4 can be applied. In the first
three examples, a test of the adequacy of an exponential family model is obtained by adding
one or more extra parameters to the medel and testing whether the data are consistent with
zero values for these. Unfortunately in none of these examples is the cumulant gencrating
fonction of the extended model available in useful forn so that the double saddle-point
approximation for the required conditional distribution is not available.

In discussing the examples we have used a notation appropriate to the special cases and this
is in inessential conflict with the notation of Sections 3 and 4.

Pedersen (1979) gives some further examples of the use of the single saddle-point approxi-
mation,
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5.2, Time-dependent Polsson Process

For a time-dependent Poisson process whose rate function is e+ a test of the log-
linearity of the rate is obtainable by employing the wider model with rate

exp (a+ Bt +a%) {5.1)

and assessing the hypothesis i = 0. Suppose that in the fixed interval {B, T) 4 total of # events
has occurred at the time points 0<g < ... <t <7, Then, under the extended model (5.1), the
observed data follow an exponential family model with (7,2 £, £ #2) as the canonical statistic
and {x, 7,4} as the canonical parameter. To perform the conditional test of o = 0 given # and
ity it is simplest first to condition on =, thereby reducing the problem to two dimenzions and
rendering formulae (3.16} and (2.17) applicable with r = Z¢; and v = Z 4.

As a numerical example we consider the record of major freezes of Lake Constance
discussed by Steinijans (1976) and reproduced in Table 1, Taking the vear of the first recorded
major freeze, i.e. 875, as the origin of the Hme axis (thus making a standard date modification)
and choosing 1974 —875 = 109% as the tisne unit we are left with # = 37 events and we have

TaBrE 1
Years of major freezes in Lake Constance, AD. 575-4.D. 1974

875, 898

928

1074, 1076

1108

1217, 1227, 1277

1323, 1325, 1374, 1379, 1383

1409, 1431, 1435, 1460, 1465, 1470, 1479, 1497
1512, 1552, 1560, 1564, 1565, 1571, 1573
1684, 1695

1763, 1776, 1788, 1756

1330, 1880

1963

rfn = 05394 and sfn = 03443, The table supgests that the rate function has a peak in the mid-
fifteenth century which would correspond to a negative value of o in (5,1), and the approxi-
mations to the P-value for the hypothesis = 0 miven by the single saddle-point expansion
are 0-008594 (normal approximation), (WO08370 (one correction term) and O-00B180 {rwo
correction terms). That is, the first number is the approximate normal test probability from
(3.16) whereas the other two numbers bhave been calculated from {3.17). The test of f= 0
performed by Steinijans, which showed an enormous significance, must be in error, pre-
sumably because of the use of a bivariate normal approximation in an inappropriate range.

3.3, Circuler Normal Distribution
As another jostance of the derfvation of a test by expansion of the exponential family,
consider the testing of consistency with the circular normal distribution written in canonical
form with density for the random angle A proportional to

exp{A, cos a-+ Aysin a} = exp {x cos (a— @)}, {3.2)

say, One natural expangion i fo augment {(3.2) by terms in cos 2g and sin2g, i.e. to consider
the density proportional to

exp (A cosa+ Aysina -+ cos 2a+ by sin 2a). (5.3)
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Unfertunately the normalizing constant and hence the cumulant generating fuonetion cannot
be written in useful explicit form.

To examine the hypothesis ¥y = 3 = 0 on the basis of # independent observations, we con-
sider the conditional distribution of § = (Zeos 24, Zsin 24 piven R = (Zcos A, Dsind) = r.
This requires the discussion of Section 4 with &) =dy =2 The leading term of the single
saddle-point approximation is that § is bivariate normal, This was stated on the basis of a
rather ill-specified argnment by Cox (1975); Profossor K, 'V, Mardia has pointed out some
errors in the detailed formulae,

It is simplest to begin by calculating the covariance matrix of (cos 4,cos24, sin 4, 5in2.4)
from (5.2} with ¢ = 0. On introducing the Bessel functions

() = il,—,_[ cosmx e ¢° 2 dx, 54

we have that the sine terms are uncorrelated with the cosine terms and that conditional
variances from the least squares regression of cos 24 on cos 4 and of sin24 oo sind are
respectively
sy BERL=20 (hht i —2h 1)
el 22 R+ L4217

(5.5)
(h—I)h—B)—(h—1)°
(L= L)
where the Bessel functions have arguments .
Now the maximum likelihood estimates of (A, A,), or equivalently (x, ) in (5.2) satisfy
rlEsin(a—$ =0, #'Xcos{a;—~d)= Iy,

where the Bessel functioms new have arpoment &, It follows that the leading term m the
approximation to the required conditional distribution #s such that

Tcos A, —d)—nfjf, and T sin2(d4,—F) (5.6)

are independently normally distributed with variances mf (%) and s (k). A chi-squared
statistic with two degrees of freedowm can thus be formed.

() =

5.4, Dispersion Test for Ganwma Distribution

As g further examiple we mention briefly the construction of a dispersion test for
conformity with the gamma family, both shape and scale being unknown, If U7 depotes a
typical observation, we consider W = (I, log U7, /%), The gamma family is the exponential
family penerated by (L7, log &) and it follows that 4 smmilar test most powerful against one-
sided alternatives in the exponential family associated with W is provided from # independent
and identically distributed observations by constdering the conditional distribution of Z U
given (2L, Tlogl)= (Zu, Xlogw,). Note that the extended exponential family is defined
only for non-negative values of the agsociated parameter, This in particular precludes the
use of the double saddle-point approximation,

Thua in the notation of Section 4, we identify the wector U with (I, log U7} and ¥V with
€% and apply the sinple saddle-point approximation. It is convenient to write the gamma

family in the form
(i) (Bufp )t e rTE),
the “maximum likelihood™ equations being,
fi = Tugn, YE)—logh = log{( ... u, MK uynl},
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where $(f) = diog I(B)d3. The mean of (¥, log U, U%) is (, loglp/B)+(5), u2+p2p) and
the covariance matrix is :

[ piB g 2N A+ et
V<1 g (204 1)
l . © o 2uMB 1A+ 3R

Thus the required conditional variance ia

L pripe 51 = E4 ‘2{3+ l}ﬁ-m1= w2 a%(A),

Eay.
Finally the result given by the singie saddle-point approximation is that

3 Ul +348) _ B (U, — R 1)
*.'I(”}GU“.U. Joﬁﬂm’ jgj ULHIW'H

(5.7

has conditionally apd wnconditionally a standard normal distribution. The second form of
the statistic shows most clearly 1ts basis of 8 comparison of observed and predicied squared
cociiicients of variation.

A brief simuiation study by Mr I3, Pregibon suggests that the test based on (3.7) is conserva-
tive and that ithe limiting disiribution i3 approached rather slowly. We shall not discuss the
test further bere and i particular shali oot give correction terms. A practical drawback to
the test in some contexts is Tts sensitivity to recording errors in the very small values.

5.5, Binomigl-Logistic Bisassay Model

We now discnss a diserete example and illustrate the use of the double saddle-point
approximation {3.13).

In a bicassay with binomial response wvariates and logistic response probability
141 +exp{A+dad)t, where o denotes the dose level, inference on the slope parameter o is
appropriately performed conditionally on the total number of individuals responding. To
lake the simplest yet practically relevant case, suppose that only the three dose levels d = —1,
O and 1 are emploved and that there are the same number of individuals # at each level. If
i, denotes the number of individuals responding Lo dose & thea the probability of the obser-
vation (@, &, &) I8

Lin i -ttt
H(ad){l+em[ A=dd )i e ;

=1

where r = a_, 3 a@;+a, and 5 = @, —a_,. Tabie 2 illustrates the acenracy of the double saddle-
point approximation (3.14). It gives the exact values of the conditional probability pi(s; & |r)
of 5 given r together with the corresponding values of the leading term of (3.15), for n= 186,
th=1, r=24 and 32, and 520, Note that the saddle-point approximation is undefined for
fr,s) = (24,16} and (32, 16} in which cases (r,#) lies on the boundary of the convex support
of its distribution, whence the maximum likelihood estimates of A and ¢ do not exist. The
refative error of the double saddle-point approximation is between 2 and 7 per cent, except
for & = 15, but could be considerably reduced by renormalizing the approximate conditional
distribution 10 have total mass 1.
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TABLE 2

Logistie—binonsiad bioassay model, Exact vatue and double saddle-point approximeation
of the conditiong: probabitity p(s;  r), in the case n= 16, $=1,

psilir
r=2M re= 32
Sadele-point Sacdille-poin
5 Exurcs approximaition Eyact APPrOXEmarian
(] 0002742 0-002797 (4355 004535
1 0-007025 0-007146 011588 0011544
2 001 5973 1162899 0025504 0026382
3 0032158 032870 030189 0051342
4 037411 058645 (34967 0DEE9u2
5 Q-0%025] (w268 012454 12765
] (-12452 ;12745 013687 o161
7 (- 140 0-15363 (- 1n208 17232
& 0-15623 (16040 H15106 13565
o 0-139353 0-143358 -11171 11537
10 0-10537 0-10873 66127 068461
11 DOyl 0-068435 (030086 0031221
12 0-033525 0034415 Q5373 0010271
13 0013263 0013525 002009 0002203
14 0-B03852 0004103 0000243 01262
15 0-H00735 0-OlMs 14 O-000012 ORH001 3
16 O-DONFD - Q=000 —

6, SOME Mowre THEORETICAL AFPLICATIONS
6.1, Prefintinary Rewark
In the previous section we discussed in detail some very particular applications of the
general results of Sections 2-4. Now we apply the results to two general problems of statistical
theory, one the caleulation of conditional likelibood functions and conditional maxinmem
likelihood estimates, and the other the calcutation of improved approximations to the nuil
hiypothesis distribution of mazimum likelihood raho test statistics.

0.2. dApproximarions te Conditional Likelthood Functions

The Edgeworth and saddie-point approximations yield approximations to conditional
likelihood functions in the obwvious way, Here we illustrate this for the leading term of the
double saddle-point approximation {3,15), assuming that the basic statistical model is the
bivariate exponential family (3.9) and that an approximation to the conditional likelihood
function of ¢ given R, =r is sought, We suppose for simplicity that ¢ and A are one-
dimensional although the results can be generalized by using (4.8} rather thao (3.135).

The required approximation from the leading term of (3,15), obtained by taking the
contributions that depend upon s, is for the conditional log-likelihood

Mo 5| r)y=e 3 10g gy — RE (A, i) — PR — 5t {6.1)

where A, denotes the maximum likelihood estimate of A under the hypothesis that the sacond
parameter has the value if and where Ky 18 icgp evaluated at (o).

From (6.1) an approximate conditional likelihood equation for the determination of %,
the conditional maximum likelihood estimate of b given r, may be obtained by differentiation,

We employ the relations
ey =1, ton(ERo/O)+ 1 =0,
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where here and below the «"s are to be evaloated at (ﬁ_,;., ). Then the approximate conditional
likelihood equation may be written as

iy = S8— Ky rgy= fegg o )k {6.2)

which has the form of the tnconditionsl likelihood equation sy = 5 with a correction term,
Note that the correction term is €, (1), whereas the other terms are @,,(n), so that conditional
and unconditional maximum Tikelihood estimates differ by O,{1{n); this difference is typically
small compared with the formal large-sample standard error, which {5 Oy(1/y).

To iljustrate formula {6.1) we congider the 2x 2 table

X3 Xz | M
with cell probabilities m;, and we take

£=(x,X §=x

and

Mote that the x,; here are not values of the standardized variable X of Section 2.
The approximate conditional likelihood is then

$log {rryy raplmyg +7ag) + e Ton(mryy +rpuf} — -‘:1.108:—::—-75.1]052‘3—311 Y+nlogmy  (6.3)

where =, i8 to be evaluated at (A,.). The requited value of =, is obtained by solving the
set of eguations
.E'P = ﬂ-ﬂ 'l'l'm

Ty Ty

"y =X, ANy =Xq,

The third equation may be written as

& = {ory —wpH{my — 7y}
myll—m —7,+my)
and hence computation of the conditional likelihood approximation essentially requires
nothing more than the sofution of a second depree equation.
For a numerical illustration swe take the data on twins of criminals discwssed by Fisher
(1935, 1962) and reproduced in Table 3,

TABLE 3
Convietions of like-sex twins of eriminaly

Canvicted  Net comvcred Tota

Dizygorie 2 15 17
Moncezvgotic i 3 13

Total 12 13 30
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™ |

=1
-2

-3

Frs. 1. The condifional log-likelihood function for Fisher’s twins and crimimality data. The
double gaddle-point approximation to this function coincides with the curve to within the drawing
ACCUracy.

Fig. 1 shows the (exact) conditional log-likelihood function for «, the logarithm of the
crogg-product ratio, given the marginals of the table, The approximation to this function
given by (6.3) coincides with the curve in the figure to within the drawing accuracy. The
conditional maximum likelihood estimate is 3-06 compared with the unconditional maximum
estimate of log(150/6) = 3-22.

6.3. Nufl Distribution of Maxinum Likelihood Ratio Test Statistls

The saddle-point approximations of Sections 2,2, 3.3 and 4.3 lead to a direct proof of a
property of the null hypothesis distribution of the maximum likelihood ratio test statistic,
Wilks's statistic.

Consider first a one-parameter problem with observations U, ..., U, independently and
identically distributed with the exponential family density (2.3), with A unknown, Let the
null hypothesis be A = A, Then P, the maximum likelihood ratio test statistic, has value p
given in the notation of Section 2.2 by

p=—2(A~ ) —2n{KD)— K}, (6.9)
where R, = U, +...+U,, and } satisfies
r+ak'(X) =0 {6.5)
The saddle-point approximation for fg (r; A) is, by (2.11) and (2.9),
e it €
otri W = e {142 06r09), 6.6

for a constant ¢, depending on A, Now by (6.4) and (8.5) dp/dr = —2{A— X)), =o that, on
transforming from R, to By,

/8 1 €
Jep: do) = Z{M}}z{(ﬁ_w Fo (H'E"" a{n-ﬁ}},

where the sum is over those & leading to a given p; at least localfy there are two such values,
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Elimination of r between (6.4} and (6.5), and Taylor expansions of the resulting equation and
of K*(X), lead to

(A=A K = (;‘)'[1 pey et ) om—n},

where £y, £2, 6y depend on KA, KA, KAD. Therefore,

2
fooi 2= G L+ XA o), (6.7

For (6.7) to integrate to one, we have ¢, = —¢. It is casily shown that (6,7) implies that
P.j{1—¢fn) has » chi-squared distribution with one degree of freedom, to order i/nt; for this
te happen it is necessary and sufficient that the correction factor in {6.7) is linear in p.

Now consider the two-parameter problem using the notation and results of Section 3.3,
With null hypothesis (A, ) = (A, ). and observed vector W = (W, ..., W,)T, we have that
the observed value of the test statistic is

op S A

=]
B8 W A
N N ) g JRH A
O e Aot glOTs i)
= pﬂ}_{.P‘L“ﬂ’

say. The previous one-parameter discussion applies directly to the rundom variable P2 and,
slightly less directly, using the conditional density of R, = Ui +...+ U, given S, = ¥, +... +F,,
to P2, To order 1/n}, P11 —c®/n) and PR — 19 y) are independently distributed as
chi-squared with one degree of freedom, because the second fhctor has the stated distribution
for a given velue of the first factor. 1t follows that to the same order

P, = (PB4 PN —cfn),

with ¢ = }e'®' 4 c0), is distributed as chi-squared with two degrees of freedom, all under the
null hypothesis; note that to sufficient accuracy both ¢ and ¢™* are functions only of 4,

The general d-parameter result follows in the same way, applying either to the simple nul!
hypothesis @ = @, or to the null hypothesis §r = s, with A unknown, In the latter case the
test statistic is preferabiy calculated from the appropriate conditional likelihood,

The idea of “improving™ the asymptotic chi-squared distribution of the statistic P, is due
to Bartlett (1937), who divided P, by a factor designed to produce the same expectation as
chi-squared. Bartlett {1954) gave the appropriate factor for a number of standard multivariate
tests. Lawiey (1956), by an extremely lengthy caloulation of cumulants, appeared to prove the
remarkable result that the adjustment fo order 1/n of the expected value produces a corre-
sponding adjustment for all order cumulants of P,. However, the recent results of Hayakawa
{1976, 1977) show that in general the correction iz of a more complicated form, although
Lawley"s simpler form is applicable te simple hypotheses and to hypotheses about canenical
parameters in exponential family problems. Hayakawa proceeds by direct asymptotic
expansion of the derivatives of the likelihood function and the arguments are complicated.
The results of the presant paper amount to a concise derivation of Theorem 1, Remark 2 of
Hayakawa (1977

Unfortunately the arguments here apply only to hypotheses about canonical parameters
of exponentizl family distributions. We have not investigated the possibility of generalizing
the results by local exponential family approximations,



19791 BARNDORFE-MIELSEN AND COX - Edgewarth and 5.P. Approximations 297

ACKNOWLEDGEMENT

It is a pleastre 1o acknowledge the helpful discussions and the assistance with the numerical
calculations which have been afforded us by M. Weis Benizon, M. Frydenberg and B. V.
Pedersen,

REFERENCES
Bannporrr-MmrseN, O. and Peoersen, B WV, (1979), The bivariate hermite polynomials up to order six,
Kearmed, J. Sreativt., t0 appear,

BarTLETT, M. 5. {1937y Propertics of sufficiency and statistieal tests. Proe. Koy, Sec. A, 160, 265-252,

—1#93;}. A notc on the rultiplyving factors for varows y¢ approsimations. J. R Szt Sece. B, 18,

Erarracnarys, R. N, and Rao, B. R, (1976). Nerma! Approximation and Asympiotic Expansions. Now
York: Wiley.

Cuismpoens, J. M. (1967). On methods of asymptotic approximation for muoltivarate discibutions.
Biametrika, 54, 367-384,

Cox, D B (1%75). Contribution to the discussion of Mardia, K. V.: Statistics of directional duta, J. &,
Starivt. Soc. B, 37, 380-381.

Dawirra, H. B, (1954}, Saddlepoint approximations in siatisies, Aaw, Marh, Sratfer., 25, 631-650.

—— (1958). Conrribution to discussion of Cox, D. B.: The regression analysis of binary sequences, J, &,
Statist, Soc. B, 20, 2362358,

FeLice, W. (1966). A fmreoduction to Prabability Theary and Irs Applications, Vol II, New York: Wiley.

Frsner, B. A, (1235). The lowie of inductive inferonce, f. & Sratisd. Soc. A, 98, 39-54,

—— (1962}, Confidenees limits for a cross-product ratio. Awst. J. Stangd,, &, 41,

Goop, L J. (1957). Saddlepoint methods for the multinomia] disttibution,  dap. Marh. Stovist, 28, 861-881.

—— (1961). The multivariaie suddlepoint method and chi-squared for the muoliinomial distdbotion.
Ann. Math, Srative., 3L, 515-548,

Havarawa, T. (197). Asymptotic expansion of the disiribution of the likelihood ratic erterion for
homogencity of parameters Ih Fesays im Probabifiey and Statistics (5. lkeda et of., eds), pp. 265285,
Tokyo: Bhinko Tsusho.

—— {1977} The likefihood ratio criterden and the asymptotic expansion of its distribution. Awxs. st
Sratist. Morh,, 28, 350-378,

Ioracmioy, I A, and Livear, Y, W, (1971}, fedependent and Stoffomery Sequences of Random Fariahles.
Groningen : Waltere-Moordhof,

KHiucHin, A, [ (1949, AMgrhemaricgl Fommdattons of Storistical Mechonicy. Wew York: Dover.

LawLEy, ID. M, (1956). A generat method for approximating to the distribution of likelihood ratio criteria.
Biometrika, 43, 295-303,

Marnta, K, V. (1870). Fawmilies of Bivarfgte Digtriboyions. London: Griffin

Basunowa, V. L (1965), On the evalvation of quantiles of the [-distribution. Theoey Peob. Appl, 10,
677680,

Peoersen, B, V. (1979). Approximating conditional distributions by the mixed Edgeworth-zaddiepoing
cxpansion. {To appear.)

RIcHTER, W. (1%57). 1.ocal limit thoorems for large deviations., Theoey Prob. dppl, 2. 206-219.

SToiNUaxns, W, W, (1976). A stochastic pofnt-process model for the oecwrrenee of major freczes in Lake
Conatance, Appl. Stefive., 25, 58-61.

Twewnr, M, C, K, {1957y, Stadstical properties of faverse Gavszsian distributions. 1. dre. Math, Stodist.,
28, 362377,

APPENDIX
Regudarity Conditions

We pive here a set of regularity conditions which ensure the validity of the Rdgeworth and
saddle-point expansions discussed in the main part of the paper. The precise versions of the
theorems given below are taken, essentially, from unpublished lecture notes by P. Martin-Laf,
but a detailed discussion of the core of the results can be found in the book of Bhattacharya
and Rac (1976), see also Good (1957, 19610,

As in Section 4, let W denote a 4dimensional random wvariable and let T, be the sum of
n independent variates W, ..., W_ each with the same distribution as W. We assume an
exponential family model for W

Jwlww; 8) = exp{— 0T w—odw) — AW}, (A.1)
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where now f,(w; 8) denotes the density of the distribution of W with respect Lo some
dominating measure p which will typically but not necessarily be either Lebesgue measure on
R or counting measurs on Z¢, where £ denotes the set of integers, The exponential repre-
sentation (A.1) 15 assumed to be minimal; in other words the order of the exponential family
is d, and the domain of variation @ of the purameter 9 i3 supposed to be the full canonical
parameter domain, Let S denote the support of the distribution of W, and let int & denote
the intetior of @, The random vector T, follows an exponential model of the form

fe(t; 0) = exp{— 0T t—ex, () —nf(8)} (A2)

for some funclion «,(f),
Henceforth we assume that one of the following two repularity conditions is satisfied:

[#] (discrete case) the support S is contained in Z¢ but not in any sublattice of Z9;

Is] (contimuous case) for each Geint® there exists a positive integer n, such that T,
possesses a bounded density with respect to Lebesgue measure for every sy,

These conditions are, separately, equivalent to the two more technical conditions given below,
which are more useful for the proofs of the validity of the expansions. We denote by {1}
the characteristic function of W, The new conditions are

Y | L{7) %1 for we(—mm]%;

[e] for each @ =int® there exists a positive nomber » such that [ Z,(7) [ is integrable with
respect to 1.

An example where (4.1) is neither of discrete nor continuous type but where condition [#]
is satisfied, for ny = 2, iz provided by the normal distribution. Let ¥ be normally distributed
and set W = (I, 7%, Here the support of the distribution of W 15 & parabola in R? while, of
course, Z, has & bounded density for n=2.

In accordance with conditions [4] and [e], we take f {t; §) in (A.2) to be the point
probability function in the discrete case and the density function with respect to Lebesgue
measure in the continuous case, whenever the density exists.

For each Bcint®™ the variate W with distribution {A.1) bas moments of all orders.
Denoting the variance matrix of W by E = Z(9) and the /th cumulant of W by x = «{8),
I=(l, ..., 1), and setting

£ = nHt— nE(W; )}
we have the following result.

Theorem (direct Fdgeworth expansion). Suppose that either of the conditions [d] or [¢]
is fulfilled. Then for any r =01, 2,...

frlt: ) =g,iz; B) :1 +;L,r' 0z; B}n'-f"ﬂ] + Qfp—ir i (A3)
=1

uniformly in t, and in 9 on every compact subset of int @, Here gy(z; B} is the density of the
d-dimensional normal distribution with mean 0 and variance matrix %, and Q,(x; 8) is a
polynomial in z = (z;, ..., 7;) whose coefficients depend on 8 through the cumulants «(8). In
particular, (,(0; 0) = 0 for f odd,

The precise delinition of the polynomials Q; will emerge in the following sketch of the
proct of the theorem.

Let p = E(W; 0) and let
T = (nEy#(T,,—np).
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The characteristic function of T is
Efexp(itTT); 0} = exp(— it gV E7) [ fn 32 1)

which may be rewritten as

Elexp (77 T); 0} = exp {— T4 uéﬁi-'!l_@;l].l ,qu—ililﬂ]

= exp{—17T 7) Il+ f:Pj['r; &) n—m},
Juul

where Pji7; 8), 2 polynomial in T whose coefficients depend on 8 through the cumulants
xA 0}, 1s determined by coefficient identification for the power series in #~%. The approximation
given by (A.3) iz obtained by summing only up to r in the last expression above and then
making a Fourier inversion, Thus @; is determined by

+q}

0,(z; B)HEz) = (2m)—on f N .J.j:exp{ITTE—i ) P7; 0) (7 d,

where ¢ denotes the probability density Function of the k-dimensional standardized normal
distribution. More explicit expreasion for () and @, are available from Section 4.2. In view
of this definition of the polynomials ¢J; it is obvious that the difference between the left-hand
side and the main term on the right-hand side of (A.2) is expressible as a Fourier integral and
the main step in showing that the difference is E{p—trHM%), uniformly, consists in splitting
the domain of integration in two, namely according to whether |T|<eqn or not, where ¢
i% a suitably chosen constant. The technique is an elaboration of Feller’s (1966) method
for verifying the Edgeworth expansion.

Now, setting 8 equal mxg: in the expansion {A.3) we obtain, using E{T,: #)=t and
0,(0; §) = 0, for j odd:

Corolfary (saddle-point expansion). Suppose either of the conditions [d] or [c] is fulfilled.
Then, for any m =90,1,2, ...

i exp {nﬁ(ﬁ}_”ﬁ(q}"' tT(ﬁ_ BD]} [ L . = —lam4L }
Srt: 9 Q) D(B)E l""ElQm-{us B+ 0(n n {A.4)
uniformly in ¢, provided 8(t) belongs to a given, but arbitrary, compact subset of int®,

In formula {A.4), () denotes the determinant of Z(#).

It appears from Section 7 of Daniels (1954) that in the continuous case the saddle-point
approximation will in many cases hold uniformly over the entire domain of values of ¢, and
not just under & compactness restriction as in the Corollaty, and that the error will, in fact,
often tend to zero towards the boundary of that domain,

Finally, precise conditions for the validity of the direct Edgeworth and double and single
saddle-point approximations to conditional probability functions, as defined in Sections
3.2, 13, 4.2 and 4.4, are easily established from the Theorem and Corollary above,

DHsciisstoN OF THE PAPER BY PROFESSORS BARNDORFF-IIELIEN AND CoOX

Profeszor H. E. Daniers (Statistical Laboratory, Cambridge): This excellent paper is welcome
s another example of the growth of interest in so-called “small sample asymptotics™. A typical
feature of these approximations to the probability density of cstimators ia that not only do they
work well for remmurkably small sample sizes, but often the relative error is bounded over the whole
range of the parameter, I am sure that today's paper will geocrate many new developments and
applications.

Let me start with a quibble. The authors work with the Laplace transform, which iz nataral in
the context of the exponential family. However, I wish they had not called it the moment gegerating
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function. There is only a trivial diffcrence and I know the usage is current in some quarters, but it
makes comnparison with other literature Unnecessatily awkward. We have been through all this
betore with the transfor function.

That zaid, let me turn to other matters. The theoretical development of the paper is based on
the Edgeworth expansion applied to the “conjugats™ family of densities. {The use of the word by
Ehinchin predates its use by the Bayesians for guite a different purpose.) My own preference is to
apply the complex variable method of steepest descents to the inverse transform to get the saddle-
point approximation. There are advantages in both approaches, though in the cnd onc's choice is
a matter of personal taste.

It is imteresting to [pok at the historical backeround. In his 1949 book, Statistical Mechanfcs,
Khinchin developed essentially the approach used in the present paper as a substitute for the method
of steapest descent nsed by Darwin and Fowler. He pays them a generous tribute for having given
the [irst rigorous derivation of the necessary asymptotic computations. But, he says, they develop
“a specinl and very abstract analytical apparatus™ instead of using “the known [imit theorem of the
theory of probability” (the central limit thcorem applied to conjugate distributions), His own
prescntation s aimed at “many of those readers who are frightencd by the complicated formalistics
of the Darwin-Fowler method™, This reads rather oddly to & traditional British applied mathe-
matician like myself who tends to be frightened by the complicated formalistics of probability
theorists, On the other hand, in the 19508 Linnik, perbaps because of his backgronnd of analytic
oumbet theory, and his stodent Richter seized on the method of steepest descent as the most
natural way of developing local limit theorems of just the kind being discussed, so the distinction
cannot be a national one,

While T agree that the conjugate density approach pives more probabilistic insight, I find the
saddle-point method a more practical tool, in the sense that it can be applied without too much
detailed thought to a wider range of problems, After all, that is why we use mathematics-—it does
our work for us. For example, suppose one wants the p.d.f, gir,) of the length v, = |Ef x| = #F
of the sum of # iid. vectors, In two dimensions the analogue for » = | x | of the Foutier transform
and its overss is the Hankel trapsform

¥ = j:g(r} Hrpydr, g(r)= rLdy{p}Ju(!‘P) pdp

The requirad density iz the inverse transform of y*(p). There is a saddle-point of the integrand
within G2 of —iR where & is the real root of G{EYGIR) = F and Glp) = v{p). The path of
integration can then be sitably deformed to pass through it. I canmot see how the conjugate
density approach can be readily applied here,

Ont of the remarkable features of the renormalized saddle-point approximation is that in some
cases it yields the exact formula for the density—an extreme case of getting more than we deserve
out of this sort of approximation. Therc is a statement in Sectign 2,4 of the paper that the normal
and the inverse normal are the only exact examples, without renormalization, in the univariate case,
Mo proof is given and I wonder if the authors have one. I have managed to produce a proofl that
the only univariate densities where the approximation, renormalized or not, is exact are the three
koown omes—the gamma, the normal and the inverse normal. The multivariate situation is more
difficult; it is known that there are exact cases but | have not so far managed o characterize
them,

I am sure that the single-saddie point approximation will turn out to be a valuable now device,
Althouph less clegant and less accurate than the double saddle-peoint approximation it can be
applied to a wider variety of problems. But [ wonder whether in the example of Section 5.3 the
authors may have given up too easily, The density (5.2) can be pot from the special bivariate normal
density {2w)- cxp —#{x— A +{r— A} by conditioning on r = (x*+3%. The augmented
density (5.3) is similarly obtained from a general bivarinte normal density with a suitable repara-
meterization, It might therefore be possibls to use the double saddle-point approximation on the
hivariate normal density with an extra conditioning on .3

There are many insights in this stinulating paper which others will no doubt ¢omment on.
I proposc that wo accord Professors Barndorff-Mislsen and Cox & hearty vote of thanks,

¥ Dr Kont's comment makes me Iess optimistic abowt it.
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Professor J. Durniy (Londen School of Beonomics); I congratulate the anthors on an
important and stimulating paper. They have given an interesting new Imnterpretation of the saddle
point approximation, they have developed new mecthods for obtaining approxzimations to conditionat
distributions and they have applied their results to a range of problems of considerable interest,

In my remarks I will indicate how the authors’ approach can be extended to a wider class of
gufficient estimators including time-serics applications. The paper’s starting point is Professor
Dandels” saddle point approximation. Dandels” idea was to approximate the density of a statistic x
by inverting the moment generating functicn, but instead of integrating along the imagnary axis
a5 in conventional Fourier inversion he chose the contowr of infcgration to pass throuph the
saddle point, This gives a series expansion in powers of 7! instead of #¥ as in the Edgeworth
series. My first polnt is that one can obtaln & comparable gain relative to Edgewoerth by taking the
contour through the observed point x, thus eliminating the need to find the saddle-point.

Take the typical case in which x is standardized so that E(x) = 0, F{x) = 1 and the remaining
cumulants satisfy &, = O{n=7HY), r = 3,4, .... I Mz} is the moment gcncrating function and
K(z) = log Af{z) Is the cumulant generating function then the saddle-point x, iz the solution of
the equation

x= K = x.u+% xuxﬁ+%x‘xﬂ+ el

Thus x—x, = WY and the difference between the observed value x and the saddle point is small
relative to the diflerence between x, and zero. Taking & contour through x and intcgrating, we
obtain the approximate density of x in the form

#(x) = &= M(x) Edg [« (x)], n

where Edg [#x)] is the Edgeworth series with &, teplaced by the #th dedvative g dx) of E{z) evaluated
at z = x instead of at z = 1, i.e

Kl x) = Kpt Koy X+ dxps X2+

for ¢ = 2,3, ..., and with mean x — &, (x) = kxz x4 iry 3%+ ... Like the saddle point approximation,
the first term of (1) has an error of order oL If comulants of orders up to r = 5 are available one
could replace e M(x) in (1) by
1 1 1
CEp (_i x“—!-ﬁ Ky x4+ ...+H K.I'],

truncate the series Bdg [+ {x)] at v =  and integrate numerically but 1 do not know how this would
porform relatively to the usual Edpeworth approximation.

To extend the BarndorfF-MNielsen and Cox approach, suppose that p 15 an observation matrix
with density f{y, 8) where 8 is an m-dimensional parameter and that t is a sufficient estimator of 8.
We therefore bave

Ay, 0) = 2{t, ®) A(y) @

by thc factorization theorem whers (¢ 8) is the unkoown density of . Suppose that we wish to
approximate this at parameter point 8, From (2) we have

.Iﬂ:j‘rr aI:IJI - g(t! ﬁﬂ] -lri&) (3']
g0 on dividing {3 by (2) wc obtain
_ fiy.8)
50 = 72 2(6,0), @

which s a generalization of Bamdorl-Mielsen and Cox’s formula (2.6).

Suppose that E(t) = e and that Bis the solution of the cquation t = u:l[ﬁ), where t here denotes
the observed sample point. Putting @ = 8 in (4) and replacing git, &) by an Edgeworth series
£(t, 8) we obtain

£y, 00

£0680) = p 8, ), (5)
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which s a generalization of Barndorfi and Nielsen's (2.9). However, for the reasons T gave sarlier
in the discussion it is oftcn casier and just as effective to replace 8 in (4) by ¢ rather than 8 (of course
they will often be the same) giving the slightly different form
Jtr, Bo)
2t.00 =522 5,0, ©
where §(t, £} is the Edgeworth sevies for gt, 8), Effectively, thiz pives a scries in powers of »-%,
The first term of (6} gives
_ [+ Ay, 8) _

£t,00 = [52] " D@ 4 2o 11+ 06 ™
where DX} ja the limit of # times the variance matrix of t. This approximation has the advantage
that unlike the saddle point approximation one does not need an explicit knowledge of the moment
generating function of t 1o construact it, Like the saddle point approximation oot can usuzlly
reduce the ervor to order 2= by renormelization. OF course, I appreciate that there is a close
relation between sufficicncy and the exponential family, but my own preference is to dea!l with tha
problem in terms of sufficiency, even in the independent case, Of course, when the observations are
dependent, the relation between sufficiency and cxponcotiality breaks down.

Example 1
Suppose that ¥, ..., ¥, 8re independent N{g, 0% Take 8 = [p, %] and t = {F, 57" where 7, 42
are the sample mean and variance. Substituting io {7) gives for the joint density of 7 and 52,

J(ﬁ#) “p{_%{}—,_.mz] Jncxp; fgi{'f 1} [st tn—ul { (t—1) s° ])s l Ht OS],

The first-term approximation is therefore exact for this case apart from the subsmutmn of Stirling’s
approwimation for I'[d{r— 1)1

Example 2
Here yy ...y Vs are generated by the circular antoregression

o= patE =L aaH Fa=Pa

where £, ..., 2, are imdependent M(0, ¢® and suppose that we want an approximation for the
density of the lag-] coefficient » = X 3, »/Z 3. On applying (7) to the joint density of Xy ¥y
and Z )2 and integrating out & ¥} we obtain after renormalization for the density of r,

R w1 n+1 L e o Eegld p
st = 2B, A (ot 5oy 114061
which is Leipnik™s {1947} approximation, In fact the first term is ¢xact apart from a term which is
exponcntially small. The same approximation was obtained by Danigls (1556) by the saddle point
method. Further details are given i Durbin {1980},

It is alzo rather interesting that this technique may be used to derive an approximate density for
the sstimate of the coefficient of the circular first-order moving average. The rather surprising
reanlt is that exactly the seme approximation is obtained as for the autoregression; in othet worda,
to order #-% the estimate of the first-order moving average cocflicient is distributed with the same
density as the corresponding autorcgressive coefficient.

T have not tried to extend this to conditional distributions in the way that is done in the paper,
but I imagine fhere might be some possibilitics there.

One final comment is about the theorem that has been quoted by the authors in the Appendix.
Az far as [ am aware, this iz the first example of a validation of the Edgeworth expansion for a
purametric family of densities, All the classical theorems are for a specilic density. For the appli-
cations in this paper, however, bocause the statistic is being substituted for the parameter, expansions
are needed which are valid for families of densities, I want to ask the authors, first, is Martin-Lif s
theorem specific to the exponential familics of the kind that they consider in the paper? Secondly,
is a proof of the theorem going to be published? I think it is important that there should be g proof
of this theorem available in the literature.

It is clear from my comments that I have found this an extremcly stimulating paper. I have
grcat pleasure in seconding the vote of thanks,

The vote of thanks was carried by acclamation.
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Dr H, W, Peers (Leeds University): The indirect Edpeworth expansions discussed by the
authors give us & valuable way of side-stepping the G lerms cccurring m theorstical investi-
gations involving higher order corrective terms. For instance, we are often infevested in the
distribition of quantities like

te = (f— 8y~ Lide 8]

where # Is the m.le. of #, L is the log-likelihood function and — &9 L1382 is the observed Fisher
information. £ is an asymptotcally pivotal N{Q, 17 guantity bt the qnestion arises as to how far
the pivetal matore persists if a more refined approximation to its distribution is made. Such
approximations then involve terms which are O(r=1) and higher.

An aleroative way of gaining remission from Y terms 5 by initial parameterization.
Taking ¢ = $(f) to be a monctene function of & we have that

ty = (f— gy~ B LIP (i)

iz ako asymoptotically N(0, 1) and we can sometimes remove the O(p) terms by appropriate
choice of ¢. Whichever procedure we adopt we atill have the O{xrT) terms to contend with, and it
woafd be nice to have 3 way of dealing with these in an alpebraically more efficiont manner,

Returning to {i) it Is casy to sec that to £41), # can be written as a standardized sum X7, (based
on AL/88) to which the indirect Edgeworth expansion of Section 2 can be applied, Going to highor
order terms, however, involves increasingly complex non-linear functions of derivatives of L for
which there s no obvious cumulant generating function §. We wounld then, presumably, be
compelled to use a truncated series approximation to £. 'Would this mean that an indirect approach
would then necessarily be vitiated by cxpansion of gquantities to say O{w!) (thereby reproducing
essemtially the direct expansion) or do ihe authors have a way of circumventing this obstacle n
non-exponential family problems?

On a point ol minor detail, it is of tercst to note that the correction term ar (6.2) involves a
particular comwlant function which also occurs as an mvariant in the study of curved exponential
families,

Profeszor ¥, V. Emincey (Somerset); The inforential methods developed in this paper for the
exponential family (4.1} depend on the fact that the distribution of T4, given T, ., Tid-U,
involves only the single parameter &, and can therefore be used to make inferences about @ frre-
gpective of the values of the musance parameters 8, ..., #-;. A major application of the saddle-
point method is in obtaining these distributions. The coherent approach is different because the
likelihood does not factor and the discarded distribution of T, ... TV typically involves &,
It 1= thus more complicated ; but, on the other hand, it is simpler because no distribotion theory is
involved, Nevertheless, saddle-point methods have their place in the coherent approach, They
are not restricted to the exponential family and the following exposition is fairly general.

Eet L(f be the loparithm of the Hkelihood for # given a random sample of size », and s O(m);
let of @ be the logarithm of the prior densily for & Then we are interested in the ratio of integrals
of the form

[ut8) exp (L001+ o6 B [exp L(O) + ptO} a6

heing the posterior expectation of w(f). Sinee L iz Xn), the inlegrals may be expanded in power
series in s, the individuat terms of which are complicated. However, on calculating the ratio,
many of the terms vamsh and the terms of order 1 and n-? arc rather straightforward. 1 content
mvselt with quoting fhe results for 1l = 4; where we have the posierior mean to compare with
the authors’ result, Asymptoticatly

Eifg)—l;= :2 Pi Tyt 5;?.*-{-;5:& Fp Tppk O,

where a subscript /, say, denotes differentiation with respect to 8, oy are the elements of the matrix
inverse to that with elements — £, and all expressions are evaluated at the maximum likelihood
valne ¢, Two points of interest here are thal the fourth derivatives of L do not appear, and that p
ia absent from the second correciion terma, There has not been time to compare results obtained
this way with the guthors’, but such a comparison might shed light on why the fwo approaches,
whilst apparently so different, often yield closcly similar answers,
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Professor K. ¥, Marpia (Univeorsity of Leeds): Flrst of all, let oe foin the others in congratu-
lating the authors on a stimulating paper. Indeed we have already been inspired by the working
of Sections 5.3 relating to the test of circular normadity. Various Bessel {unctions in (5.5) make it
complicated to use, In fact, by approximating the von Mises distribution by the wrapped normal
distribution wo have the approximation

LDy =R

whete & is the mean resultant Iength, If the approximation Is used v (%) and 14,070, the approxi-
mation should work well for small x and large ». However, this simplification does not extend 1o
the: von Mises—-Fishar case. Indeed this difficulty exists in general. Consider the family

exp {2(8) -+ by(x}+ b (x) 8, + bT(x) B4},
where

8T = (8T, 61), bT(x} = {bf(x), bf(x)], B:pxl, :gxl,
Let Hbe B, = 0. The teat-statistic i

G, = (bdx)— )T E; M bo(1) - 1),

where fk and £, , are obtained under #, This is asymptotically ¥, IfE,, is replaccd by ita sample
counterpart 8., we obtain an asyvmprotically egquivalent atatislic

G, = (by(x}— £)T S53{b(x}— 1)

which has the advantage of being much easier to calculate since &, is usually more complicated
than S, Besides, the derivation of £, is usnally tedious, In particular, my expreasion for G,
for testing the von Mises-Fisher distribution iz found to be much more complicated than &,
(which iz not surprising in view of (5.5)). The same remark applies to G, and & in testing dependence
for the following exponential model

exp {al0)--by(x, ¥)-+ b?‘{x} 6,4 bﬁﬂ B, 4 h;[‘(x) 8; b{¥},

where we teat 9, = 0 against 8, 0. Various simulation studies of these models show that there is
no significant difference in size between G, and &, presumably because the discussion of Section 2.4
applies. However, is there any reason to believe that there would be a difference in power by using
&, rathet than &, 7 1 should add that the approach of Section 5.3 is larreaching, Indeed, it has
already provided s measure of correlation robust against “scale™ on the circlefsphere/Stietel
manifold, etc. It has also provided various results for a distributiona! modet in calastrophe theory,

The iopnormal distribution is again coming into the limelight because of its predominance in
geoatatiatics. Thizs it a member of the exponential family but one cannot obtain the m.g.f. of the
distribution in & closed form, éven when the density is given by

fix) = E{20) oxiterp £ —(20%) -t log® xh

Can the device in {2.4) be extended to cover this case or here arc we stuck with (he direct BEdgeworth
expansion} For the abave distribution, perhaps the sufficient statistic X {log x,}® can be uscd in
tonight’s argurment of Professor Durbin,

Professor R. SiesoM (University of Bath): The authors point out (a) that the low-order
approzimations discuseed in their paper may be of lictle vaz in the tails of the distribution, and {b)
that the indirect Fdgewerth expansion is not convenicntly integrable to yicld tail probabilities.
It may therefore be of interest for me to add a foownote 1o their paper by reporting on the successful
use of high-order direct Edgeworth expansions for the caleulation ol tail probabilities. 1 have
carried out expansions of this kind as far as the term in (1/yN); this involves the use of monents
or cumnlanis up to order 32, and of Hermite polynomials up to arder 90, There is no guestion of
writing down explicit formulae for any but the first few terms of the Edgewoerth expansion—the
algebraic complexity i= too proat, and in any case the rounding etrors arising from numerical
substitution in such explicit expansions would guickly swamnp the calculations. The apprepriate
technigue @8 to use the computer as a device for symbolic manipulation on truncated power series,
with numerical substitutions being carried out at whatever stage is most effective in retaining
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accuracy. This approach, combined with the use of standard numerical analysis technigques for the
accurate evaluation of polynormais when such a substitution is carrred out, and the use of variablc-
precison arithmoetic as a check on the balance between rounding and truncation errers, makes it
possible (o obtain vsell! resuils even In cxireme cases, As an example, | consider the case of the
tenfoid convolution ot the uniform distribution. The exact distribution feoetion can be calculated
for comparisen in this case; | am indebted to Protessor 4. A, Campbell tor doing this calculation
for me exactly using his symbolic computation packape, The example has some indepcndent
interest because of the ooccaswonal {awbough wholly unoecessacy) use of such a convoluiion (o
simmuelate approaimatcly 2 normal random variable, To three significant figures, the loliowing
values are obtained.

B8 from mean

196 4-23 4:76
Mormal 250 B2 116 BE-3 %67 E-T
I=term Edgeworth 245 B-2 1-00 E-6 4-15 E-D
Exuct 245 B2 100 E-6 3449 E-9

At 1.96, the troncation error is Jost In the rounding error. At 4.23, it is about onc part m 105
At 4,76 it 15, as is visible in the above table, aboat one part in 20, Considering that the normal
approximation which is being “improved™ 1= inaccurate by factors of about 10 and 250 respectivciy
in these latter two cases, this perfornmance s quité cocouraging, although it must be pointed out
that the symmetry of the nniform distribution is a great help. However, other experiments confirm
that even o the non-symmetrical cage, high-order Edgeworth expansions of this kind are a useful
general-purpose too! for the eatculation ol tail probabiiities, being especially reliable in cases whers
the normal approximation is already of the right order of magnitude. The context in which my
meerest in thns probiem arose was that ol controlling a noclear reactor; 1 was asked to find,
numericaily, 10— tail peints for N-fold convolutions of wuncated exponcntial distributions, with
N o the range 20 to 1000, and the use of 30-term Edgeworth expansiona achieved this entirely
satistactorily.

Dr A. C. AtEmson {Imperial College, London): The problom of foding good approximations
to the distribution of test statistics is important and interesting in both statistical theory and
practice, There can be no doubt about the theoretical interest of the results in tonight’s paper,
Howewver, in the presentation and discussion the point was made that the results are intended to
provide practical ools, 1 wonder whether the meihods may not turn ewt to reguire toe high a
degree of mathematical expertize to beeome widely used.

Onc way of approximating distributions which reguires less expertise is to simuolate the system
and 10 build up the empirical distributions of the relevant statistics, The significance of the observed
value can then be estimated by ranking in the results of, for example, 999 simulations, Unfortu-
pately, simulation may become tore complicated when conditional distributions are reguired,
An example is the distribution of M cstimates where Professor Daniels™ still, alas, unpublished
results obtained by saddlc-point approximations agree closely with resuits from a carefnl simulation
as described in the Princeton Robustness Study (Andrews et al,, 19723,

My questions te the authors are concerned with exposition. If it is easier to simulate the
unconditional distribution, how much is lost by so doing? For example, in the analysis of Section
5.2 what is the guantitative effect of not conditioning on £ #,? Can the authors give any guidance
on the simulation of conditional disiributions? Can simulation be usefully combined in any way
with their approximations, perhaps as an alicrnative to numerical integration for renormalization 7
And, underlying all this, bow accurate do we need to be anyway?

D I. T. KenT (University of Leeds): I would like to dicect my remarks to Section 5.3 where
the exponent of the von Misgs density is angmented by the addition of second-order trigonometric
terms. This distribution is morc interesting in highet dimensions sspeciaily on 5y, the unit aphere
in R Hcre the full eighi-parameter density takes the form

Fx)xeap {aul x4+ é‘l BAys x:l“l, eS8, *)
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where ¥y, ¥a, Ts 4te orthonormal vectors, b ia a unit vector, a0, and we can suppose f=f= 0 = 0
This density is the product of a Fisher-type factor and a Bingham-type factor.
The distribution takes a slightly simpler form il

=8 ad p=v. (**)
Then the Bipgham factor represents a pirdle distribution and the pole of the Fisher factor liss
along the equator of the girdle. This density has ellipse-shaped probability contours about the
pole. ¥ the three-parameter FPisher distribution is considered te be the spherical analogue of the
istiropic bivariate normal, then thas ve-parameter distrabution is anglogous to the peneral bivariate
normeal.

The distribution {*) has boen introduced by several authors but deeper sindy has been hampered
by the lack of tractability of the normalization constant. OF course, one prefers to use the Fisher
distributicn if it is adequate, and the approach of Scction 5.3 can be used te provide straishtforward
tests for the adequacy of the Fisher distribution agamst either the full alternative {*) or the
alternative resiricted by (4%,

Mr A. J. Mayre (University College London); T would like to present a brief summary of
two sets of saddle-point formulac for distribution functions, as opposed to density functions or
probability masses, that I obtained several years ago. Both sets of formulae ave detived for the case
of an integer-vaived random variabie, using Good’s (1957) areuments as a starting point and
adopting his notation, but the rcaults for a continuows random variabte follow as a liriting case.

Let X, be the sum of ¢ independent inteper-valued random variables, each with p.ef. f{z2), and
et of Y, 1) be the probability that X, = N. Good (1957, p. 868) showed that, if o{¥, £)=0, the
equation

d ooy
tp d—PﬂPl = Nfig}
has a unigue aon-negative real root asd (Good, 1957, p. 86%9) that
AN, 1) = %p” | Lt exp GO exp (~ Nif) do.

He derived his saddle-point approximation for (N, ) from this formula, Tn my own work, 1
considered formulas for

aM, ) = Pr(X,gM = 3 M0

and
BN, ) = Pr(X,>N) = 3 (N, 1),
My first set of saddle-point formulae was derived from the equations

; L ] @
a(N,t)=2T?1F'_ﬂU;{£—:J${E?g;-]dE

and

[ " flpexp {i_ﬂ]}]* 78

- l—explif) 7’

which led to the same type of expansion as Good obtained for of &, £), by expanding the integrand
as

i
BN, £ = Tep¥

exp {— #twe, P X (power series In ),
where «; = (8/64)* Uog (Fpe*)) |ams.

My second set of formulae (Mayne, 1959) applied Good’s saddle-point approximation for
e(N, 1} directly, with f{z) replaced by some suitable function gz}, and ¢ set equal to one. For
caleutating (A, ¢, g(z) was defined as § FL204000) —z) and, for caleviating MW, £), ¢z} was defined
as {f(zFfz—1)
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BEoth sets of approximations are accurate io the tails, but the first diverges near the mean. The
se¢cond set converges at the mean, but is less satisfactory in its neighbourhood than in the tails.
MNumerical tests for the second type of approximation for the Poigson distribution, waing computer
programs and taking the first three terms, show that it is accurate to within about 1 per cent near
the mean and performs much better in the tails. The second set of saddle-point approximations
for the distribution thus seems likely to have more practical importance for the general case,

For the first set of approtimations, the results for the binomial distribution are identical with
those of Brockwell {1964), derived by a different method. For the limiting case of the Poisson
distribution, they have, aa far aa I know, oot previously been published explicitly, and are as follows.
If P, denotes a Poisson random variable with parameter m, then, for x<m,

Pr(P, = x) m = g En
Pr(Pu = 0 m—x At 3l (=)=

and, for x=m,

ﬁgﬁ: : 3 ™~ x_x ookl 21(— 19 el (2 — )52,

where
flmy =1, film) = x+2m, film) = 2+ 8Bxm+Eme,
and, in geperal,

Flm) = {x+ (2 —1) i} frn(pm) +nilx — ) dimfi-q{m}-

These approximations are very good in the tails, but diverge for ¥ = m and are poor for x near we.

Numerically, these results seem to be very largely complementary to the Cornish—Fisher
expansion, 3¢ that one technique can usually be applisd when the other gives unsatisfactory results.
I also found, more recently, that it is possible, in at least some cases, o derive aniform agproxi-
mations that are accurate for the whole range of the random wariable. I have obtained such
approximations for the Poisson distribution, and hurmerically tested them with successful resulls,
and also obtained some results for the binomial distribution, but these have not yet been published.
Termnme (1975} obtained some formulae that were in some reapects similar.

Professor B. M. BEATTACHARY A (University of Arizona): Professors Barndorf-Niclaen and Cox
have made wse of important ideas due to Cramér and Khinchin to pive a ncovel and elegant
derivation of an asympiotic expansion of the density of the lkelihood ratio statistic for the
sxponential family. Recently such an expansion has been obtained by T. Chanda and J. X. Ghosh
(to appear in Sankhyd) using a more dirsct method due to Ghosh and myself {1978). The last
derivation goes beyond the exponential case.

Dr P, J. Bicrel {University of California at Berkeley): Tt may be worth neting that the indirect
Edgworth expanzion is formally applicable to any statistic &7, with moment-generating function M,
such that, M) 2exp(—4% by writing fx,(x, A) = exp (—ud) fz (x)/M(X) whose moment-
generating function is M(f + A M.(X) selecting A so that E(x,; &) = x, etc. Thus this approach
could be applied to various statistics arising in non-parametric sontexts, such as those considersd
in Albers er af. {1978), Bicke! and Van Zwet (1978). A related approach via a different type of
exponential family to approximating the power of one-sample rank tests may be found in Chow
and Hodges (1975) and Chow {197a}.

Professor J, ¥, Grosa {Indian Statistical Institute): What interests me most is the resclt in
Section 6 on the distribution of the maxirourm likelibood ratio statlstic. Recently in related work
Tapas Chandra and myself have proved the validity of the Hayakawa's formal expansion for the
distribution function of P,. (The results for the oull distribution will appear in Saekhyad A, 1979;
the results under local alternatives are being written up.) Even in the apecial case of Section &,
where stronger results are available, we found it essential to work with the Edgeworth expansion
R’:ﬂ the {normalized} mre, #/de Theorem 2 or Theorem 3 of Bhattacharya and Ghosh (1578), in
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place of the (ditect) Edgeworth expansion for (Re, 8:). 1 wonder if there is any simple relation
between the indirect Edgeworth expansion for (R, 5,) and the Edpeworth expnasion fer the MLE,

The Appendix on validity is adequate if one seeks fo expand densities. But surely (A.3) is not
the right result to use if one also wishes to integrate the expansion over an unbounded region. In
the context of example 5.2 this is necessary if the alternative is one-sided. I anticipate similar
difficulties in respect of Section 6.3; here a complets proof will involve integrating out certain
variables over a region which does not seem to be boundead,

Professor F, Hamerr (ETH Zhrich, Switzerland): The authors are to be congratulated for their
interesting paper on how to apply some asymptotic approximations for the arithmetic mean to
multivariate and conditicnal distributions. 1 should only like to add a few notes and references oo
the comparison, accuracy and interpretation of various asymptotic expansions.

The relationship between Edgewarth expansions, large deviations and the saddle-point method
has already been discussed in Hampel (1973), and in more detail in Field and Hampel (1573), using
a unifying new vatriant of the saddle-point methed. By the way, this variant yields naturally the
renormalized saddle-point approximation and also adds a new interpretation to the formalism of
gaddle-point methods, which furthermore suggests new methods of proof for the central limit
problem, reducing it essentially to one of smoething. While the interpretation of the saddle-point
approximation as & "recentred” Edpeworth approximation is also contained in the present paper
and already in the cited basic paper by Daniels (1954), it may be pointed out that the nom-
applicability of the saddle-point method for long-tailed distributions without moment generating
functions, which also causes a rather “narrow™ solution for the central limit problem, is connected
with the nen-robustness of the arithimetic mean and ceases to be a problem if the method is extendad
to robust M-estimators {cf. Hampel, 1973; Ficld and Hampel, 1978). Given gither short tails of the
distribution or robustness of the estimator (and 2 certain smoothness of both}, it appears empirically
to be both necessary and sufficient for a very good approaimation down 1o very small 2 (o use the
first tw terms of the zaddle-point expansion (formula {2.11)). By conirast, the full infinite sequenca
of the usual “large deviation" expansion (as in the cited works by Richter or Feller) only recovers
the first term without receniring and thus fails badly in two ways (cf. the example at the end of
Field and Hampel, 1978), There is nothing wrong with the formal asymptotics; the problem liss
in the way infinity is approached, If no recentring is to be (or can be) used, then the Edgeworth
approximation i3 quite good in some ceniral regicn, though the “Edgeworth expansion put back
into the exponent™ (Field and Hampel, 1978) appears to be still slightly better; both have {different)
problems in the tails,

Professor D V. HiNgLEY {University of Minnesota): The authors are to he congratulated on
rekindling the excitement of Danigls® pioneering papet. I wonder if they have seriously considersd
generalization to curved exponential family models, where problems of ancillarity and poodness
of fit can be discussed with relative ease. Suppose that the model is sguation (3.9), with special case
8T = {A(£), £} indexsd by the single parameter £, IF we write p(£) = E(¥; £), then (3.10) is
replaced by

(@828 {2 — ()} = 0.

In testing the goodness of fit of the reduced model, we are then concerned with the conditional
distribution of (R, 5.} given a locally determined linear combination of R, and 8,. As iz apparent
from Efron and Hinkley (1978), the likelihood poodness of fit measure is thelr asymptotic ancillary
{0 derived from the observed information I} see also Peers (1978). 1t would be nice to see the authors
derive asymptotic expansions for such problems, along the lines of their Section 6.3.

As far as I can tell, the results in Section 5 are obtainable by standard scove-statistic methods,
although the authors do izolats single deg~=ea of freadom. Recently I have been studying a bivariate
generalization of the circular normal maodel (5.2} with a single correlation parameter,

Fla; 0 = clexp{xcos (g, =)+ w cos (g — ¢t + b oos (o — a3 — oy + S}

where ¢ = I3{) LOR+2 B () L{f). This appeara to be as difficult as the anthors’ model (5.3}
In seme applications I find it more appropriate to consider a *“fixed-effects™ model for pairs of
angles, in which case part of the analysis will involve condidoning on single-degree-of-freedom
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estimates of the fixed effects. Have the authors gone beyond Section 6.2 and considersd the problem
of infnitely-many nuisance paramaters?

The results and ideas In this paper will surely prove useful, and will certaimly help to simpiify
dJerivations of asymptotic results.

Mr B. Jezgensen and Mr B, V., Penepsen (Aarhus University): In the present note we discuss
the approximate conditional Hkelibood introduesd in Section 6.2, One notes that (6. 1) s simply the
partially maximized log-likelihood plus 2 correction term § In sagyg. IF the full domain of variation
for the parametsr 8 = (A, ) is an opep proper subeet of #* then 4° K847 will tend to infinity as
 tends to a finite boundary valve, and one might suspect that the approximation will not in
pgeneral be az good as in the example consideted by the authors, where the parameters vary freely.
We illustrate this by two examples.

First we consider inference about the shape parametet of the gamma distribution. Taking the

density in the form
eap{—Ax+{f—1lnx—lm D)+ in &,
we find the exact conditional Jog-likelihood for o given r = Z x; to be
Kib: 317 = (=D s= (=D Ior—anln T 4+ 1o Timp), (1)
where 5§ = Elnx,.

Te obtain the approximation (6.1) to the conditional log-likelihood we need the estimate of A
for fixod 3 and the variance of x evaluated at {A, ) = (A, ¢). These are

ﬁqﬁ = mffr and wwp = riat
Inserting in (5.1) and reducing, the approximation is found (o ba

Kob; 5| ¥yl =—1) 9— (mp— 1) Iny—nIn T +{ — mp+ G — ) In mfr —~ 3 In #) 2

Ezcept for an additive constant this differs from (1) only by the use of Stirling's formula to apprexi-
mate In D{mfd. For i small the difference between (1) and {2) is thus of the order —{ In ), whereas
the difference between (1) and the partially maximized log-likelihood ie of the order —In¢, We
conclude that for ¢ small the double saddle-point approximation (2) gives a better approximation
to the true conditional likelibood than the partially maximized liketihood function, though in both
cases the error tends to infinity at the boundary,

As a second example we consider & non-regular exponential family, namely the generalized
inverse Gaussian distribution (see, for instance, Barndorff-Nielsen, 1977). The probability density
function is

O™ e £ 1pu
where x>0 and K is the modifed Bessel functicn of the third kind with index A

We consider inference about o for A= 1 fixed, In which ¢ase the domain of variation for the
parameters is {x, ¥ e [, «0) % {0, =), and the resulting family is exponential of order two.

To calculate the approximation to the conditional likelibood for ¢ given r = Z x7* we need to
estimate y for fixed . The likelihood equation becomes

nrdx)—r =10,
where Ty(x) denotes the mean of x~%, ie.
_ B ol fb
W) = e Ay
Using the relatinns

= | -
EEID"I'.;(X] 0 and I;m'r,y{x} =D
{obtalned from asymptotic relations for the Bessel functions) and the fact that 74(-) is monotone

it follows that the likelihood equation has a solution §,=0 H
¢

r
PR T
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In the opposite case the likelihood iz a decreasing function of y and hence §, = 0, Thus, for ¢ in
the interval

0<§E2A—1)rin &)

we have that Kgge 18 the variance of the reciprocal of a gamma variate, which is infinite for A=2.
Since the partially maximized likelihood is always finite, it follows that in the case 1= A=2 the
double saddle-point approximation {6.1} iz infinite io the Interval (3).

Professor I, A, SeecTT (University of Waterloo): This is an impreessive and complex paper that
will take somme time to examing and absorb, However, I have one gquery that comes immediately to
mind, This concerns Section 6.3. I would like to see an example of the calculation of ¢ in (6.5} in
a particular case such as & = 5, in a sample of size n = 4 from an exponential distribution
(/@ exp{—x/F. I would then be interesting to compare the application of Py/{1— c/m) in such a
case with other methods of improvernent cited by the authors. Modification to produce the same
expectation appears to require division by 1041 in the above example. If a0, this gives significance
levels of 0«07, 0-007 to & = 24-301, 1-9910, for which the exact levels are 0-01, It would be of
intereat also to compare these with g different sort of improvement, applicable to the case of 1 d.E,
in which an additive constant is applied to P, namely

P 1 {3) (BN + 14D 14Dy~ N 0, 1)

described by Sproit (1973, (11)), the plus or minus being used as §=#, 8>8. Applled to the above
pumerical example this is

YPat L fn~ N0, 1)

which gives significance levels (0-0095, 0-0097) to the above 1 per cent values of £ This correction
can be applied to the estimation of a single parameter, with or without nuisance parameters, but
does not seem more general,

Mr I, M. 5. Warte (Forestry Commnission): T would like to clear up a small point in connection
with the example of Section 5.2. The reason for the gross discrepancy between the result of Siginijans’
test and the saddle-point approximation is probably due to an erronecus formula in Lewis (1972,
1. 33). Lewis gives a standard ercor for the test statistic n—' Z #% as T)./(192x), whereas the correct
value is T9/{180w). Stelnifans appears to have used the incorrect value, Since he zcales his data
£0 that T = 10-99, his standard ercor is too small by a factor of about 10. 'With the correct standard
error the test gives a (one-sided) P-value of 0010, close to the values O-008—-009 given by the
saddle-point approsimation.

The Avutnoes replied briefly at the meeting and subsequently more fully in writing as follows,

We are moast grateful to all contributors for their congtructive and encouraging comments.

Professor Daniels has given an interesting review of the relevant history. We agres that there is
a rile both for complex variable metheds and for the method of conjugate distributions, although
the relative advantages of the latter seem more marked in the multivariate case, A proof of the
unigue property of the normal and inverse normal distributions in giving exact saddle-point
results without renormalization follows fiom the special case # = 1 to which any exact result must
apply. We hope that Professor Daniels will investigate further the anpular disfribution of Section
5.3; Dr Kent's elegant contribution brings up the difficulty, which we have found in many examples,
of the evaluation of the normalizing constant other than by series expansion.

Professor Durbin's results are most valuable and we look forward to publication of a full
aceount of hizs work., Of course, for independent observations from an exponential family diatri-
hution a sufficient statistic is & function of 2 sum of independent random variables and his results
are o re-sxpression of ours, His time series generalization is especially important. The possibility
of expanding the equation for the “maximum likelikood" point is discussed in Section 2.4 although
some care i3 nesded in retaining appropriate precision: this applies also to Professor Bickel's
interesting applications in non-parametric theory. Professor Hampel's contribution is important
both mathematically and for the connections with rabut estimation: his remarks are relevant to
Professor Mardia's question about the log normal distribution for which the moment generating
function is not analytic at the origin, We agree with Mr Mayne's Implicit point that often the
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distribution function rather than the density is required and reinforce the rather cryptic remark in
our paper that in the diserete case care iz needed in passing from the Iatter to the former. _

Cur work since the present paper has besn aimed at the matters which Dr Peers and Profeasor
Hinkley mention; a central difficulty, for example in generalizing the resulis of Section 4.3, is
concerned with notions of approximate ancillarity and the need for conditioning. Professor Sprott’s
result highlights the point that conlidence regions based on the maximum likelihood catio have
good “two-sided™ properties but may not be so pood when separate upper and lower confidence
lamsts aie needed. The higher-order asymptotic theory of the distribution of the maximum likelikood
ratio statistic has been rather a puzele for many wears and it is good to learn of Professor
Bhattacharya and Dr Ghosh's Important a8 wet unpublished work.

Mr Jargensen and Mr Pedersen’s remarks clarify considerably the behaviour of the approxi-
mations on the boundary of the natural parametsr space.

We apree with Professor Lindley that asymptotic theory can clarify the similaritizs and differences
between alternative approaches ; the work of Welch and Peers (1963} is particularly relevant here,

Professor Sibson™s remarks are an important reminder of the role of the computer. As we
memntion m our paper, Mr B. V. Pedersen has prepared an algorithun for implementing the main
results of our paper. Incidentally, the generalized Hermite polynomials of SBection 3.2 seem first
to have been studied by Appell and Kampé de Feriet (1926). We certainly agres that if one wers to
B0 to appreciably more complicated problems use of computerized algebra would be highly desirabla
if not essential; such methods have been used successfully alse in asympiotic expansions arising in
id mechanies. In general, although not perhaps in Professor Sibson’s example, the choice of
stopping point in the expansion will be critical; of course, asymptotic expansions may well be
divergent,

Dr Atkinson raises a pumbetr of central practical issuss. In most “tail area™ caleulatlons high
precision is quite unnecessary. On the other hand, in any application of asymptotic results the
question “how good is the approximation 7 should always be raised, even if a detailed answer is
often unnecessary. Oone main “practical™ réle of the theoretical discussion is to increase one’s fael
for when crdinary asymptotic theory is adequate; for critical specific applications simulation may
indeed be the simplest and therefore the best approach. Conditional simulation was discussed by
Trotter and Tukey (1954}, If standard asymoptotic theory is not an adequate approximation, it will
normally be important to distinguish between conditional and unconditional results. For examples,
see Efron and Hinkley (1978} and Cobb (1978).

We are very glad of Mr White’s comments sorting out the backeround to the example of
Section 5.2,
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