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Abstract.
The circular normal distribution, CN(u, k), plays a role for angular data comparable to that of a normal
distribution for linear data. We establish that for the curved and for the regular exponential family
situations arising when « is known, and unknown respectively, the MLE [i of the mean direction 4 is the
best equivariant estimator. These results are generalised for the MLE /i of the mean direction vector ¢ =

(@1, , pp)' in the simultaneous estimation problem with independent CN (y;, k), 4 = 1, - - -, p, populations.
We further observe that /4 is admissible both when & is known or unknown. Thus unlike the normal theory,

Stein effect does not hold for the circular normal case. This result is generalised for the simultaneous
estimation problem with directional data in g-dimensional hyperspheres following independent Langevin
distributions, L(#;,k),i = 1,---,p.
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1 Introduction and Summary :

Directional data arise in several situations, notably astrophysics, atmospheric sciences, geology, meteo-
rology, oceanography etc. The von Mises or circular normal distribution, CN(u, ) with mean direction
parameter 4,0 < g < 2w, and concentration parameter x,x > 0, plays the role in circular data paral-
lel to that of the normal distribution in linear data. A natural extension of the CN distribution to the
distribution on a ¢-dimensional hypersphere leads to the Fisher-von Mises or the Langevin distribution
L(u, k). For £=3, i.e. for spherical data, this distribution was studied by Fisher and is often termed as the
Fisher distribution. For further discussions see Mardia (1972). Here we study the exact properties of best
equivariance and admissibility of the maximum likelihood estimator (MLE) of the mean directions and the
mean direction vectors in simultaneous estimation with several independent circular normal and Langevin
distributions, all having the same concentration parameter.

Conventional linear results if and when applied for the analyses of angular data are to be viewed
with caution and often lead to paradoxes. However, we observe that for x known, CN(u, k) reduces to
a member of a (1,2) curved exponential family (Amari, 1985). Then, exploiting the associated results of
Kariya (1989), we establish that the MLE for p is the Best Equivariant Estimator (BEE) under a natural
(angular) loss. This result is extended (Result 1) to the case when s is unknown. These results are finally
generalised to establish (Theorem 1) the Best Equivariant nature of the MLE X of 4 = (u1,---, )" in

simultaneous estimation with several independent CN (u;, k),% = 1, ..., p populations for both x known and
unknown cases. Next, we consider the property of exact admissibility. We note, either directly from Bagchi
and Guttman (1988), Zhong (1992) or as a special case of the results in Watson (1986), that as in the
normal case, the MLE for y in CN(u, k) for a single population is admissible. This follows, for example,
from the Bayes character of the MLE for an uniform prior. Admissibility of the simultaneous MLE /i for

B = (p1,---,pp) in p independent CN(u;, ), = 1,---,p, x known or unknown, then becomes a natural

question. It is known that as Kk — oo, k(0 — p) £, N(0,1) for 8 ~ CN(u,k). So, e.g., by Brown’s
results one would then expect the simultaneous MLE to be inadmissible for p > 3, at least for large k.
However, we show that the MLE is in fact admissible for all p, all x and all sample sizes. This is a marked
departure from the usual normal theory: i.e., we establish here that unlike in the normal theory, the Stein
effect does not hold here. This result (Corollary 2.1) follows from the general theorem (Theorem 2) where
we establish the admissibility of the MLE of the mean direction vectors in simultaneous estimation with p
independent Langevin distributions, L(lNi‘, K)yi=1,---,p.

For the sake of completeness it may be worthwhile to make a few observations for the case when & is the
parameter of interest. Note that for y known, say u = 0, CN(0, k) is a member of the one parameter regular
exponential family (REF) with k as its canonical parameter. Then taking the convex support of the uniform
measure on the perimeter of the unit circle as compact (say k < K < o0) yields the canonical statistic,
cos @, as an admissible estimator for k. But this is not at all a sensible estimator of x, since 0 < k < 0) -
also see, e.g., the caution in Exercise 4.17.4, p.p. 136-137 of Brown (1986). Also ¢ = (0,---,0,1,0,---,0)’

in L(#, k) results in a one-dimensional REF with  as its canonical parameter and hence the preceding

comments for the CN case thus hold here too. In general, the /-dimensional L(u, ) is a member of the
¢-dimensional REF and hence standard results for estimation,e.g., existence and uniqueness of MLE (Jupp
and Mardia, 1979) etc., hold with respect to its canonical parameters. However for studying the MLE of
its usual parameters p and k, it is necessary to consider its not so convenient (Brown, p.p. 76-78) mean
value parametrisation. Further difficulties for such study may also be encountered — see e.g., p.150 and
also Exercise 6 21.3, p.p. 204-205 of Brown. Thus the admissibility for and any possible improvement on
the MLE in simultaneous estimation of p concentration parameters ; of L(¥ ,s;),i =1,---,p seem to be
~1

interesting problems for future research.



2 Best Equivariant Property of the Simultaneous MLE ,}:t in Several
Independent CN(u;, k)

Let 61,05, ...,0, be independent with §; ~ CN(u;,K), x known.
Then the p.d.f. of § = (61,0s,...,0,)" is given by :

(2.1) £(8 1 ) = RrIo()] 7 exp{s - cos(0 — )} 0< 0.4 <

ZH

Let 0(1) 0(2) ..,0( ") be a random sample from f(0 | K, K).
Then the joint density of 0( ) 0(2), o, 0™ s given by

~

f(g(l)’Q(Q)’___’g(") |;NL,K;) = [271,(k)] "pexp{mZZcos HJ — i)}

j=1li=1

P
= [2n,(k)] " exp{nk Y _(cosu;Ci + sin p1;S;)},

i=1
_ 1 .
where CZ':EZCOSOZ(]), ZsmO(J) 1<i<p.
The MLE of # is given by i, the solution to :
(2.2) cos;t—% sin,u-—L 1<i<p
. [y = 3 i = 3 >1 > P
(GF + 5712 (CF + 5712
2.1 Case 1: k¥ known.
We consider the problem of estimating p= (p1, 42, - - - p1p)" with a natural loss in the circular context. Let

C; = cosb;, and S; = sinf;. Then, consider the group G acting on Z = H{yz, I Y < Yi |l=1} given by
i=1 "~
g= {gAi X, 2> A X, | A;:2x2 orthogonal; 1=1,2,... ,p}

cosT; —sinT;
= X, > A X, A= ! ! 2m);1 <4 .
{97 Vi — Ay Yiy i ( sin 7; oS T; ) ) € [Oa 7T), =1 <p}
Let us first consider the case when p = 1, i.e. a single CN population. Suppose that 61,05, --,0, are

a random sample from CN(u, x).
Then, f(01,02,---,0,) = [27I(k)] " exp{nkC cos p + nkS sinu}
n

where C = %Zcos&,’, S =
Clearly, (C, S) is sufficient for p. Let, 71 = cos u and 7z = sin p. Then, from Mardia (1972), the joint

distribution of (C, S) is given by

(2:3) 9(C,8) = [2nI (k)] 'n® exp{nk(Cmi+S8m2) }¢u (n*(C*+5%)), (C,5) € {y|y € IR*,0 <] y ||< 1}.



Then the distribution of (C,S) belongs to the curved exponential family with © = {§ € © : 9 =

Y(u),n € T} where © = IR?, T =0, 2] and ¢ : T — © defined by (i) = (cos u, sinp) is clearly a
bimeasurable bijection onto 4 (y) = © C ©.
Consider the group G acting on Z = {y € IR?,0 <|| ¥ ||< 1} given by

G={ga: X - AX|A:nxn orthogonal with | A |= 1}

cosT —sinT

:{gT:)N(_)A‘Z(’A: sinT COS T

), 0<r71<2n}

Then, G is a topological group and the group action on Z is measurable (being continuous). Further,
the joint distribution of (y1,y2) = ¢-(C, S) is given by

fy1,92) = K(x,n)exp[ns{y(n cosT —nysinT)
+y2(n1 sin T + 1z cos 7) Hen (0 (yF + 43)),

with K(-) being a constant. )
So, gP(©) = P(O) with gPy = Py.g~! Vg € G i.e. P(O) is invariant under G. Further,

Gr = gr (i-e., ga = ga) so that G = G. Also, G acts homeomorphically on Z by < g ) = gr (

Q)
N—

. ~ _ _ ~ _1- _1- COS
Defining §; = 4! g; 1, we have, gr(u) =4 'g; 9(u) =1 1%( . ”)

sin p
_ 1 cosft cosT — sinp sinT
cosy sinT 4+ sinpg cosT
Defining G acting on Y by G = {§,(8) = (0 +7) mod 27,0 < 7 < 2}, we have G is a homeomorphic image
of G (and hence of G) and the subfamily P(©) = {Py, |n € T} is G—invariant.
Tt is clear that the orbit of G is © so that the action of G on © is transitive. It follows easily then that
the action of g on T is transitive.

Lemma 2.1 R = u(C, §) = (C? + §%)'/2 is a maximal invariant statistic under G.
Proof. We first show that u(C, 5) is G-invariant.

(9-(C,

(,

=(u + 7)mod 2.

u(g-(C,8)) =1[(9-(C,9)) ))]1/2

=[(C,8)'A'A )] =[(C,9)(C, 9"/

=u(C, S).
Next, suppose that u(Cy, S1) = u(Cy, S2). Then R? = C?+ S? = C2%+ 52 = R3.
IfR1 :RQZO, then élzégzgl SQ—OSO that go C S CQ,SQ
So, now suppose that R = Ry > 0. Let F; = E g ] 1=1,2.

Then Py, P, are orthogonal matrices with determinant 1 and
C S S C
Pl < S’i > = (’U,(Cl,sl)) = (’U,(CQ,SQ)) = P < Sz )

So, ( C1 ) — PP, < Ca ) PP, = -1 l C1C2 + 551 €15 — 5,10y ]

Sl SQ R Ry 5102 — 0152 0102 + SQSl
— 0502‘1‘5251 _ C1S2+S1Cz
Get 7 such that cosT = SRR, sinT = —HpEpsisl



So

Lemma 2.2. Assumptions 2.1 and 2.2 of Kariya (1989) hold in our above set-up with the CN (u, k), &
known, model.

Proof : Note that A(r) =|| n || is a maximal invariant parameter under G. So © in (2.3) may be expressed
as © = {# € © | \(9) = 1}. Further, the map g, — g, = g, is measurable. So, Assumption (2.1) of Kariya
is satisfied.

The MLE of p is given by fi(C, S), where fi(C, S) is the solution to

Then g, ( gl ) = ( C: ), so that 4(C, S) = R is a maximal invariant under G.
1

S
1.8 1C.8)T

It may be noted that excluding the set {{0} x [~1,1]} U{[~1,1] x {0}} of measure zero on Z, ji(C, S)
defines a bijection from Z onto [0, 27).

Define, h(C,S) = == l ¢ =5 ] . Then,

(2.4) CoS j =

nesHr s c
= & Ccost— Ssint —Ccost — Csint ~ &
— 1 - Y ~ Z —
hig-(C,9)) = 1C,9) [ Csint+ Scost  CcosT— SsinT ] 9:(h(C’, 8))-
Define, 7(C,S) = (h(C,S),u(C,S)). Then 7 is a continuous map defined from Z onto G x U where
U = [0,1] is a measurable space. Let 7(C1,S1) = 7(Co, S2). Then,
c, -8 Cy -8 ~ & - =
1 1 1 _ 1 2 D2 —
¢, l 3 O ] = 59 l 5, O ] and || (C1,51) [|=[ (C2,52) || -
Then C; = Cy and S; = S5, so that 7 is injective.
Next, we show that 7 is onto. Let a € G X U.

. +v1 — 22 . —
Then write a = ( $\/13:_—362 $ o ] ,u) . So, m(uz, Fuv1l — z?) = a so that 7 is surjective.

Writing @ as above, define 771 : G x U — Z as: 7 (a) = (uz, Fuv/1 — 22).
Then it follows, imitating the steps for the proof of the injectivity of 7, that 7! is well-defined.
We next show that 7 is continuous.
Let the metric d on Z be the usual one, ie., for 2,y € Z, d(z,y) = [(z1 — y1)? + (z2 — 12)*]"/? =|
z—Y| .
Viewing G as a subset of IR* we define the metric in the natural way on G x U by p, where
p(((

= — 2 _ 2 _\211/2
N1’Nbl)’u1)’(32’,\{)2)’u2)) - {“ g)l 32 || + || '\[le ,\{)2 || —|—(fu,1 UZ) }

= {2 a — a |2 +(u1 — u9)?}/?, since (a, b)€EG = b= 0 -1 a
~l 2 ~1T g ~ 1 0|~

Fix € > 0. For (Cy,S1) € Z, by the continuity of L -, L ~ and (C? + §2)'/2,35 > 0 with
V(@) V(8)
_ _ N I RN R o
(C1— 02)2 + (51— 52)2 <4, (% — %) <% (1%—11 — }%—i) <3 and (Ry — R2)2 <5 So,
/

©0|Q

p(m(C1, 51),7(Co, 52)) < (2 x 4+ 2) " = e for d((C1,51), (G2, 52)) < .

Hence, 7 : Z — G x U is a continuous function. It follows that 7! is also continuous.

So, there exists a bijective, bimeasureable map from Z onto G x U such that if 7(z) = (h(z),u(z)), then
7(gz) = (gh(z),u(z)), where z = (C, S) € Z and U is a measurable space.



Hence, Assumption (2.2) of Kariya is satisfied. O
Now, let the loss function be given by

L(a,p) =1 — cos(a — p), 0<a,u<2m.

Then, from Theorem 2.1 of Kariya it follows that a best equivariant estimator, when it exists is,

A(h(C,8),u(C,8)) = h(C, S)ii1 (e, u(C, 8)) = A(C, 5) + i (u(C, 5))

where [i(C, S) is as defined in (2.4) and p} minimises the conditional expectation,

(2.5) Bu[1 — cos(i + p (u(C, 8)) — ) | u(C, §)] = Eo[1 — cos(@i + 1) | u(C, 9],

by the transitivity of G.
To minimise the above w.r.t. p; observe that uj satisfies the equation,

Bolsin( + ) | u(C, §)] =

Thus, sin p} Eg[cos i | u(C ,S*)] = 0, since from Mardia (1972), /i | (C?+5%)'/2 ~ CN(0, s(C? + §%)1/?),
and for § ~ CN(0, k), E(sin0) =
So, sin ui A(k(C? + §%)1/2) = 0, ylelding pui =0 or 7.

Now, Fo[cos(fi + ) | u(C, S)] < 0, while Fy[cos i | u(C,S)] > 0, so that (2.5) is minimised for u% = 0.

Consequently, the MLE i in (2.4) is the best equivariant estimator.

Further, G being compact, the MLE /i is minimax in the class D of all estimators, (Ferguson, 1967).
Further, it is also admissible in the class D of all estimators for u.

2.2 Case 2: Kk unknown

It may be noted that the distribution of (C,S) belongs to a regular exponential family (REF) with © =
{(u,k), € [0,27),x > 0}. Then, as before, consider the group G acting on Z = {y € IR?,0 <|| ¥ ||< 1}

given by
G = {94:X —> AX|A:nxn orthogonal with | A |= 1}

cosT —sinT
sinT  COST

:{QTZX—>AX,A=< ),0§T<27r}.

Proceeding as before, we obtain the joint distribution of (y1,y2) = ¢,-(C, S) as

fly1,y2) = const. (k,n)exp[nr{yi(n cosT —nesinT) + yo(n1 sinT + 72 cos 1)} dy, (n2 (y% + y%))

So, gP(0) = P(O) with gP) = Py.g~'Vg € G i.e. P(O) is invariant under G. Also, the induced group
action on the parameter space © is given by g,(u, k) = ((# +7) mod 2, k). This shows that the induced
group of transformations G acting on the parameter space is not transitive. The same arguments as before
provide us with u(C, S) = (62 —|—§2)1/ 2 as the maximal invariant statistic. Also, it can be shown, following
the arguments similar to the ones for the case x known, that the MLE of u, there also given by i(C, S)
(in eqn. (2.4)), is equivariant under the group G. To find the best equivariant estimator under the natural
loss, we are to find u1, as a measurable function of the maximal invariant, u(C, S) such that the risk,
E, .1 — cos(fi + p1(u(C,S)) — p) | u(C,S)] is minimized uniformly for all (u,x) € ©. To minimize the
above risk w.r.t. p;, observe that u] satisfies the equation

Eu,n[Sin(ﬁ + /JT - N) | U(é, g)] =



Thus, sinu}E,, .[sin(i — p) | u(C,S)] = 0, since from Mardia (1972), [ | (62 + 32)1/2 ~ C'N(u,ka(a2 +
32)1/2), and for 8 ~ CN(p, k), E(sin(6 — p)) = 0. Hence, sinp’{A(k@(€2 —1—32)1/2) =0, yielding pu} = 0 or .
Now, E,, [cos(fi — p+ ) | u(C, S)] < 0, while E, .[cos(fi — p) | w(C,S)] > 0, so that the risk is uniformly
minimized for x4} = 0. This leads us to conclude that the MLE is the Best Equivariant Estimator of the
mean direction, under the given natural loss, even when the concentration parameter is unknown.

Result 1 The MLE i in (2.4) for p in CN(p, k) population, £ known or unknown, is the Best Equiv-
ariant, Admissible and Minimax estimator in the class of all estimators for u.

Let us now consider the simultaneous estimation problem. Following the same arguments as for the case
p = 1 above, the induced action on the parameter space is given by g # = {(;+7;) mod 2w, 1 =1,2,...,p}.

Further, the action is transitive with the parameter space as the orbit. It is easy to see that the MLE for
I is given by [ and is an equivariant estimator for /. Imitating the steps in Section 2, we get the constant

vector to be a maximal invariant statistic. Then, the only equivariant estimators for 4 = (p1, 2, ..., tp)
are of the form §(9) = ((f1 + c1) mod 2, (62 + c3) mod 2, ..., (6, + c,) mod 27)". To find the best

equivariant estimator under the natural loss function,

P
=Db— Z COS(,U'Z
=1

we look for the equivariant estimator having minimum risk. To minimize the risk, we are to find the values
of ¢1,¢,...,cp such that the risk,

Z cos(pi — (f; +¢;) mod 27)] = E[p— Z cos(u; — f; — ¢;)] is minimized. This gives us, following

=1
steps 31m11ar to those used above for p = 1, that the minimum risk is achieved when ¢; =0; 4 =1,2,...,p.

Thus, combining cases 1 and 2 as in result 1 above, we get,
Theorem 1. The MLE /i of # in the simultaneous estimation problem with p independent CN (u;, k), =
1,---,p,x known or unknown, is the Best Equivariant Estimator.

Remarks 2.1 Generalization of theorem 1 above to several independent L(u;, <) populations seems to be
non-trivial. For example, even with a single Langevin population and even with k¥ known, the approach
of Kariya seems to fail when one tries to find the BEE of the mean direction vector. We are able to claim
only that provided a BEE exists, the MLE, being both admissible and equivariant, is the BEE. However,
it has not been possible to confirm or deny the existence of the BEE.

3 Admissibility of the MLE in Several Independent L(u;,«).

3.1 Case 1: Kk known.

Let O, 0@ ... 0™ be a random sample of size n from p independent populations of {-dimensional
Langevin (or von-Mises-Fisher) distributions L(#,x),7 = 1,...,p. Then, the random variables are matrix-
~i

valued and are from,

1O M,k) =a; 7 exp{mzu ) i T sint 76,0,



0<0ij,u,~j<7r, i=12...,,—2;1=1,2,...,p,
0 < Oip—1), pige—1y < 2m, i=1,2,...,p, and u( ) is such that
u1(z) = cosxy

j—1
uj(a:):cosmj e sinzp, 2<j<L-1

—
ug(): H sin T, O<z<mi=12,....0—2; 0<uzp_1 <2m.

Then, as before, the hkehhood function of M, given the observations is

LM|eW e® .  eM) =g, [exp{nﬁZu Yu(p)} H1 il HISIIIE 79(() N
~o~g =1 k=17

where

Z:\

1 n
:EZ ), i=1,2,...,p

The MLE of M is given by M, the solution to the system of equations

~i

(3.1)

u'(1)a(9) =0and |u(fi) =1, 1<i<p.
8;@- ~o~e Y g ~ o~

Let M have the prior density
(M) = KH Hsm ,ul(] ), 0<piy <m1<j<£—2,0<pp) <2m1<i<p,

i=1j=2

where the constant K is such that

(3.2) / T(M)dpsr ... dpipe_1y = 1.

Then, the posterior distribution of M is given by,

P
w(M [ ©0,6%),..., 0 ) = IT a7 (n"l1a(6) D] |explmma’ (1) 8(6)) T sin' sy

~g N g

Then, given the observations and x, 4 ,# ,---, 44 are independent with the posterior distribution of
K as, P
~i
1) a2 (n) E( &
F(H|® 76 7"'a®na"<’)N£€ %nm“u( )H -y P
i T
Under the loss function,
P
(33) LM, A)=p=3 u'(Ku(a), A=(a,...,a)
i=1



the posterior Bayes risk for a decision rule A is given by

p
r(m, A) = Z oW .., eM; k), A=(§,...,06).

1 N Nz ~1 ~p

To minimize r (7, A) it is enough to minimize

P
E(p— Z“ |®(1) -, 0M: k) Z E”[u )|®(1),...,®(");n]

p
=p—>_u(s ) Ae(nss || a(6) [Ny (07—

=1 ”

Z§

To obtain the Bayes estimator, it is enough to obtain the rule minimizing the above. We thus have the
first order conditions

0
u'(6;)a(@) =0  and [ u(é) [=1.
35ij“‘ ~~i ~ o~

So the Bayes estimator is given by,

AP = ( 513, cees 0 B) where 6.B satisfies u(d;) = ||
~ ~p ~i ~

Thus AP® satisfies (3.1) and hence, the MLE of M is the unique Bayes estimator w.r.t. the prior (3.2).
So the MLE is admissible.

3.2 Case 2: k unknown.
As before, here also the MLE for M is given by M which satisfies the equations (3.1). Let
(3.4)

(M, K) x 1'[1 H23m ,uZ(J ) L(k = Ko), 0<py<m1<j<l—2,0<pyp g <2m1<i<p.
i=1j

Then, the posterior density of M and & is given by

p
w(M, | 00, 1<i < n)oc 11 TE sind iy exp{nit () (o) ag (s | 5(6) 1)-T(s = o),
2 j=2 ~o~g Y ~
0<py <m1<j<£l—20<pp1)<2ml<i<p.
Then, under the loss (3.3), the posterior Bayes risk is given by,

r(m, A) = i' 8)E{u(n |@ -,0MY]

i=1 ~
To minimize r(m, A), it is enough to minimize,

Effp—)_u'(8)E{u(p )|® @, -,9(”),ﬁo}]=p—Z:g'(gi)E[g(gi)IG(l),---,9(”),/~zo]-

=1



This is the same as minimizing the above for x known and equal to xg. Then, the Bayes estimator for
M w.r.t. the prior (3.4) is given by,

A©OW ... 0™) = M, the MLE .

Thus, we get
Theorem 2. For p > 1,k known or unknown, the MLE of M = (f,---, ¢#) in p independent, /-
~1 ~p

dimensional, £ > 2, Langevin populations, L(#,x),i = 1,---,p, is admissible.
~i

Corollary 2.1. For p > 1, s known or unknown, the MLE of £ = (p1,...,4p)" in p independent Circular
Normal populations, CN(u;, k),i = 1,...,p, is admissible.

Remarks 3. (i) The above corollary is a special case of Theorem 2 for £ = 2. This also follows directly
(SenGupta and Maitra, 1994) by taking an uniform prior on K.

(ii) In particular, for the case n = 1, we have @ is admissible for 4 where § is an observation from (2.1).

But, from Mardia we have,

VE(O — 1) i)N(O I) as k — oc.

bl
~ ~ ~

By Brown’s results or otherwise, one would then expect, intuitively, the MLE to be inadmissible, at
least for large x. However, our result holds for all , in particular for large x also; something that runs
counter to our intuition. The authors are thankful to Prof. S.R. Jammalamadaka (formerly, J.S. Rao) for
drawing their attention to this interesting point.
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