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We adopt boosting for classification and selection of high-dimensional binary
varialles for which classical methods based on normality and non singular sample
dispersion ave inapplicable. Beosting seems particularly well suited for binary
varialles. We present three methods of which twe combine boosting with the
relatively classical vaviable selection methods developed in Wilbur et al (2002) Our
primary interest is varable selection in classification with small miselassification
errpr being used as validation of proposed method for vaviable selection. Twe of
the new methods perform uniformly better than Wilbur et al. (2002) in one set of
simulated and three real life examples.
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Introduction

Wilbur et al. (2002) {(henceforth abbreviated as [W]) have explored the problem
of identifying treatment dependent microbial populations within a community
by comparative analysis of community DNA fingerprints. A community DNA
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fingerprint may be regarded as high-dimensional multivariate binary data, the value
of each variable indicating the presence or absence of a band (ie., the presence
or absence of a specific microbial population). The fingerprint is generated after
extracting DNA from the environment of interest and using polymerase chain
reaction (PCR) to amplify the target gene. Typically for community analysis, the
small subunit rRNA gene is targeted. Separation of the PCR products by gel
electrophoresis produces a genetic fingerprint of the populations comprising a
community {MNakatsu et al., 2000). See Fig. 1 of [W]. The aim was to identify a
subset of variables (i.e., bands) that may help explain the major source of variation
between communities of interest. In natural systems each variable contributes to
the community and the desire is to identify the minimal number of variables (ie.,
bands) within a treatment so that they can then be studied biologically in greater
detail. The main example of [W] concerned four populations associated with a single
crop species, namely corn. We re-examine that data set as well as two new data sets
involving soybean.

In [W], certain methods of selection of variable were proposed, and applied
to DNA fingerprint data. The methods were evaluated by examining how well
one could classify samples based on selected variables, the idea being that only
selection of important variables will lead to good classification. We continue the
study initiated in [W] by exploring new methods of variable selection, depending on
boosting, which appears to work more successfully than those of [W]. Boosting is
an algorithmic approach to classification which has been studied thoroughly both
by computer scientists and statisticians (Breiman, 2004; Freund and Schapire, 1997,
Friedman et al., 2000). We use a specific version of boosting, namely, Adaboost.

In the present article, some of the ideas of [W] are combined with boosting
and evaluated through simulated and real examples. Three methods of boosting
are proposed. In the first, a simple stopping rule is used to avoid overfitting and a
threshold value prunes out some of the variables appearing in the classifier. In the
second, a method from [W] is coupled with boosting at each iteration. The third
method is the first method preceded by a method from [W] (i.e., we first use methods
in [W] to select a set of variables and then apply the first method).

We evaluate the methods as in [W] by their misclassification probabilities, the
smaller the errors the better are the methods. The first method is quite successful
and works more successfully than those in [W] in the sense that misclassification
errors of the first method are much smaller than those in [W]. The second method
does not perform well compared with the other two methods in the sense that it
does not improve the misclassification error or reduce the number of variables. The
third method combines the strength of the method in [W] and boosting. It controls
the misclassification error with a relatively small number of variables.

We also evaluate the performance of the Bayes rule, which serves as an oracle
and provides an unattainable lower bound to the misclassification error of all
methods in classification problems. If a method has misclassification probability
close to that of the oracle, then no other method can perform much better. The
primary object of the article is to show through examples that boosting can be an
effective algorithm for variable selection in high-dimensional problems.

2. Notations and Variable Selection Methods in [W]

Let X denote a n x  matrix of binary indicators, the rows of which are the
n sample vectors x; = (x), ..., i = Loatei=1aams ka0 i
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and ¥;_, m; = n such that IJ = 1 if the kth microbial population is present in the
jth sample from the ith class (ie., ith treatment). Marginally, we model Xﬁ.ﬂ«
Bernoulli (p, ) and define
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where ¥; is the ith class mean vector and ¥ is the grand mean vector.

Mormality fails for binary variables. Moreover, Fisher's linear discriminant
function can be rather inefficient if = n or larger than »n. Because of its near
singularity (or singularity), §;;' is a poor estimate of the inverse of the population
covariance matrix. Reducing the dimension (ie., o) via variable selection, is one
way to address this. We consider two different variable selection methods that are
suggested in [W)]. Define

§8y[l.m] = ZE( )iy — &) (n
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One method of [W] is to consider variables individually based on the statistic
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A variable X* is selected if D°(k) exceeds empirical threshhold C%. The threshholds
C* are computed such that relative to a reference distribution generated by a
permutation scheme which assumes there is no difference between classes (1) the
probability of incorrectly selecting at least one variable s  and (2) any particular
variable has the same probability of being selected (incorrectly). That is to say,

D(k) =

(3

P( CJ (D*(k) > €l}) =

k=1

and
P(D(1) = C3) = P(D*(1) > C) =+ -- = P(D*(d) > C).

In a second method of [W], based on Fisher's linear discriminant functions
(LDF), let W be the d % « matrix with (i, j) element,

8 Sn[i~ J']
Wli, | = ————. 4)
A T T {

W is considered as an estimate of 5! §;. The coefficienct vectors for the discriminant
functions f, h=1,..., g =< min{t —1,d) are given by the eigenvectors of W,
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normalized so that F'S,, F = I.. In this procedure, a variable X* is selected if f;, #
(Chapzs Ch 1-app) for at least one h=1,..., g. As in the first method of [W], the
threshholds are computed such that relative to a reference distribution generated
by a permutation scheme which assumes there is no difference between classes the
probability of incorrectly selecting at least one variable is » and any particular
variable has the same probabhility of being selected.

In [W], variable selection methods are evaluated via a classification rule. The

posterior probability of the treatment group g given X;; = x;; is

Lia1 PUX;; = x,li) PGi)

Pli=g I‘KJJ = _ru.]l
and x;; is classified into g if
P(!- - g‘ E ‘Ku = 'rj'j::l = mfx P(!- - g I‘KJJ == 'rfj::l'

As P(X;; = x;|i = g). [W] consider a conditionally independent Bernoulli model
and a conditionally independent logistic regression. Conditional independent
Bernoulli model can be specified as

.I:*
PX;=x;li=g)= n P (1= p)— (5

where K is an index set for the selected variables, with parameters p, estimated by
x, . Conditionally independent logistic regression is specified by

logit(Pli=g| X, =x;)) =24+ b3 :M_fjfj + €, ()
keX
where g =1, ..., t.i=1,....t,and j=1,...,n. Maximum likelthood estimates

for  are computed using iteratively weighted least squares. Cross-validation and test
error (e, estimate of misclassification probability calculated from an independent
sample) are used to evaluate the subsets of variables selected.

3. Boosting

Friedman et al. (2000) argued that Adaboost is equivalent to finding a base classifier
that minimizes the empirical risk with revised weights at each iteration. These base
classifiers are combined to form classifier. Denote by 7, a base classifier at the
mth iteration. Let X = (X', ..., X*) be the 4 dimensional random vector consisting
of random variables. We create 2d base classifiers, £(I{(X* = 1) - X' =0)) =
£(2X* — 1) for 1 =k = d. The d dimensional vector with binary co-ordinate leads
to 2d base classifiers.

If a co-ordniate, X* is continuous valued rather than binary, it is usually
converted into a base classifier, a tree with two nodes, namely £(/(X* = /) — (X" <
£)), where ¢ is usually an observed point. Hence the total number of base classifiers
may be quite large for continuous variables.

With the base classifiers, £2(2X* — 1) for | = k = d, we now define the Adaboost
algorithm in Freund and Schapire (1997) and Friedman et al. (2000). Suppose we



Selection of Binary Variables 859

have n samples {(x;, y;)};_, where y; € {—1, 1} which represents two classes and x;

is d-dimensional vector.
l. Start with weights w; =1, j=1,....,n
2. Repeat form= 1,2, ..., M:

(a) Select a base classifier 7,,(X) e {—1, 1} minimizing 37, wf(y; # T, (x;))
from the training data with weights w,.

b) Compute ¢, = M and ¢, = log((1 —e,)/¢e,
o

(c) Set w; < w;exple, Iy 4r xplj=12...., n and renormalize so that
2 w; =1 where I(-) is an indicator function.

3. The final classifier after M iterations is sign[ ¥¥_ ¢, 7,.(X)]

Clearly, misclassified units are given higher weights so as to choose base classifier
that reclassify most of them correctly. If ¢, is close to 1/2, then w; in (¢) will not
change much. There is some debate as to whether boosting would overfit if it is
continued up to this stage. See this connection in Freund and Schapire (2004) who
hold a different view. Our stopping procedure, explained below, leads to stopping
much earlier.

Since a base classifier is T, (X) = £(2X' — 1), the linear combination of base

classifiers can be re-expressed as a linear combination of original variables. In other
words, a linear classifier, f{X), is

f{X} = E L'JIIT,"(X} — z ':I;(EXI b 1::' {?}

m=] FEf gy

where B, is the set of selected variables until M iteration. We rearrange the classifier
with respect to 2X'— 1 since the same variables may appear again during the
whole M iterations. Here ¢} is the coefficient of 2X, — | after rearranging. For the
notational convenience, we use ¢, as a coefficient of 2X' — 1 instead of ¢}.

Various authors have pointed out that boosting may overfit. See Breiman
(2004), Jiang (2004), Lugosi and Vayatis (2004), and Zhang (2004). In other words,
boosting tends to attain too small a risk for the training set or in cross-validation
by selecting more than the optimal number of variables. But as refree pointed out,
some authors such as Bartlett et al. (1998) and Freund and Schapire (2004) have
different aspect that boosting does not overfit data. But in our case, we observe
overfitting problem, so we consider regularization of boosting. There are several
regularization methods for avoiding this. These include: (1) early stopping, and (2)
employing a norm constraint. Norm constraint puts a restriction on the {, norm
¥ le,]. Norm constraint regularization is more flexible in finding a classifier, but
numerically more intensive than early stopping. In Rosset et al. (2004), it is also
argued that [, regularization can be done directly, and naturally, by early stopping
of boosting. In this present work, we will consider early stopping as a regularization
of boosting. Our stopping rule is explained below.

If there are enough data, a subset of data may be separated into a test set for
stopping rule. Otherwise, cross-validation error is used. We employ the stopping
rule which minimizes cross-validation error rate in this article. We first iterate
a large number of times, say, M, and then for each M = M,, we estimate the
misclassification error by cross-validation. If the estimated misclassification error is
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minimized at M, = M,, then M, is our stopping time. The variables selected by
boosting stopped at M, ;, are kept as the final result, the remaining iterations are
ignored. As cross-validation, K-fold cross-validation is common which means that
data set is divided into K subsets. Then K — | subsets are used to estimate error of
the remaining set and this is repeated for all K subsets. We use K = 10 and K = n,
each of which is called ten-fold and leave-one-out cross-validation respectively, vide
Hastie et al. (2001). Ten-fold cross-validation is used in the simulated example and
leave-one-out cross-validation is used in three real data sets in Sec. 5. For the corn
data of [W], the algorithm stopped after about fifty iterations however, the soybean
data required several hundred iterations.

4. Variable Selection Methods with Boosting

Simulations in the next section show that even after boosting is stopped early, it
may have many variables (ie., a high-dimensional model is chosen). But many of
the variables have small coefficients, so they do not greatly affect classification.

In our first modification, we exclude the variables with small coefficients with
only a small increase in misclassification error. More precisely, we exclude the
variables with the coefficients smaller than a threshold parameter, ¢. Finding an
appropriate threshold value is important to maintain balance between the number of
variables and performance of the classifier. We try this for several different threshold
values and select one for which cross-validation error is minimized. We extend this
idea of thresholding to the problem of multiclass classification. If there are ¢ classes,
then we need r classifiers, each of which is a classifier for one class against the other
classes. In other words, a classifier for ith class is computed when y; = 1 for ith class
and y; = —1 for the other classes in boosting algorithm. After M iterations, we have
ith classifier, f;(X) = ¥ ;cn, 22X — 1), fori=1,..., t where ¢;; is the coefficient of
2X' — 1 of the ith classifier and B,, is the set of the selected variables by ¢ classifiers.
If the coefficients of 2X" — | for 1 =i = ¢ are similar, then 2X' — | does not greatly
affect the classification. With this idea, if the range of ¢; for 1 =i =< ¢ is small,
which means the coefficients are similar, then 2X' — | can be neglected. Define R, =
Max, ..., oy — min,_;., c;;, the range of the coefficients of 2X'— 1 for 1 =i =1t

Method 1

1. Apply boosting to original data. Determine stopping time by cross-validation.

{a) In these classifiers, remove the /th variable if R, = .
(b) Apply boosting again with only the selected variables.

2. Repeat (a) and (b) for different threshold values ¢ and choose ¢ minimizing cross-
validation error.

In (b), after variables are selected, we construct a classifier again with the selected
variables. This is for determining the best model in the subspace induced by the
selected variables. Method 1 takes care of this by boosting with a single variable at
a time.

As refree pointed out, some pruning methods were already suggested, for
example, by Margineantu and Dietterich (1997). They also suggesied early
stopping, but not exactly the same as ours. Our stopping rule consists of double
regularizations: early stopping and hardthresholding in (b). Since we focus on the
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variable selection, we remove the variables with small coefficients even if they
are included after early stopping. So we adopt hardihresholding to remove more
variables in step (b). After the variables are selected, we apply adaboost again to
only the selected variables. Briefly speaking, we considered more steps to select
a smaller subset of variables and achieve more accurate model with the selected
variables than the old stopping rules.

The second wvariable selection methods is a combination of boosting and
variable selection methods in [W)]. Let 88, and 88, in (1) and (2) be redefined with
revised weights as

rom

SSullm] = 3 ¥ wia, — F)(xm — &) (8)

i=] j=1

857, m] = E w, (x — X E—x") 9)

i=]

where w;, = ZJ e

In each iteration of boosting, the empirical distribution of samples changes.
Based on these facts, we define the variable selection combining variable selection in
[W] and revised empirical distributions obtained at each iteration. It was expected
that the changed empirical distribution will reduce misclassification due to the
increased weight for misclassified units. This did not occur, most likely because
Method 2 selects a full classifier rather than a weak base classifier at each iteration.

Method 2

1. Start with weights w; = 1 where i=1,...,tand j=1,..., n
2. Repeat the following: m =1, .., M

{a) Select variables hased on weighted samples.

(b) Construct classification rule, f, . based on selected wvariables such that
f.lu(xj =3rgm3x'lf-1f-.rP(ilx::l'

(c) Update weights of samples by boosting. w;; < w;;exp(e, I(f,(x;;) # i)

E Lr—I -'r'll-fml-:rr:"ﬁ‘.:'_

where ¢, Iog —= and e,, S

(d) Update :-I'-I" and w using {E} and {9}
3. Select f,

am

which minimizes cross-validation error.

When m = |, variable selection in (a) is the same as the methods in [W]. From
m = 2, the empirical distribution changes, causing the variable selection in (a) to
work differently. In (b), P(i | x;;) can be (5) or (6).

Method 3

1. Select variables.
2. Use Method 1 with the selected variables in 1.

In the second step of Method 3, variables are reselected from the variables selected
in the first step. With Method 3, we select a small subset of variables compared
to Method 1 and Method 2 since we select variables twice in the first and the
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second step. Boosting with preselected variables is also discussed in Dudoit et al.
(2002). Genes (i.e., variables) are selected on the basis of their between-group to
within-group sums of squares (BW ratio) which is the same as D? in (3). However,
Dudoit et al. (2002) chose the genes corresponding to the 50 highest values of
D?, whereas in [W] this is based on a permutation test taking into account the
dependencies. Method 3 also tries to reduce the number of variables by thresholding
as Method 1. Method 3 starts with a much smaller subset of variables than that in
Method 1, so its performance depends on the quality of the preselected variables.

5. Examples

In this section, we present examples to see how the three methods work in
simulations and in the analysis of DNA fingerprints from plant rhizosphere
microbial communities. They are compared with the original boosting and the
methods in [W]. Also, as a lower bound the Bayes classifier is considered in the
simulated examples.

5.1. Muftivariate Binary Data with Exchangeable Correlation Matrix

In this section, we generate correlated multivariate binary data and compute optimal
Bayes error via multivariate normal distribution with an exchangeable correlation
matrix, namely,

X, =(1—-p)+pl

Here J is a d »x  matrix of 1's and [ is a d x d identity matrix. We relate binary
variables J{ﬁ. and the normal variables ]r’j; through Xf} =T ]’:ﬁ- = {1}, Suppose we want
the marginal probability of X} = | to be p;;. This is ensured by taking the mean of
Fitobe®@'(p) k=12,..., d.

Thus we define p; = (p;y. Pias - - s pa)oand DNp) = (D (pg), D pa), .
dYp Nlori=1,..., tand j=1,..., n; where ®{-) is inverse of standard normal
distribution function. Let X;; = (J{L., XJ.-;. ..... Xj.]l and Xﬁ = .f{lrjﬁ. =Mforl=k<d
where

Y, = (¥l ... ¥ ~N@®(p), I ). (10)

Then J{ﬁ., b= d, are Bernoulli (p;) and correlated. In this simulation, we set
t=4, n=n=n;=n;,=25 and d = 250.

Let P(X;;|i = g) be the conditional probability of the vector X;; given it came
from the gth class. For example, for X;; = (1,0, ..., 1),

P(X;|i=g) =P{J{J.‘J.= 1,xi.={},___,xj;.=1[i=g;|
= MY S A X 2 0 ¥i=0]i=g

i
which requires the computation of a d-dimensional multivariate integral. We
followed the algorithm in Genz (1992). Since our o is much larger than the values
studied by Genz (1992), we recalculate the integral in a few cases in two other ways.
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In hoth of them, we used the algorithm in Thm (1939) to reduce the problem to a
one dimensional integral,

L = d—0(py) + oz Y —P(p,) + P2\ T 1o
= | ——— ¥ |- ——~ 2 dz
vzn'[;xﬂ ( .,‘.-"ll—p ) [ ( '.,,-"Ill_]"’1 )] "

and then either used numerical integration or Laplace approximation (See
Barndorff-Nielson and Cox, 1989). Computations by the two methods agree well
Based on this computation, we estimate Bayes error from the following simulation
and three computations gave fairly consistent values of Bayes error. We assume
prior probabhilities are uniform (i.e, P{i) = } forl =i =¢).

Monte Carlo simulation jor Baves error
1. Repeat the following for g =1, .., ¢t

(a) Given class g, generate N samples, x,;, where 1 = j = N by generating y,;
from (10).
(b) For each x,;, compute conditional probability, p(x, [ ) fori=1, ... ¢

(c) If g #argmax,_._ plx,;|i). then x; is misclassified.

2. Misclassification error is approximated by the proportion of misclassified
samples:

: : g the number of misclassified samples
Misclassification error =

the total number of samples

For a large N, we expect the above misclassification error is close to Bayes error.
Optimal Bayes error depends on the combination of treatment probabilities
pri=1,..., 4 and p. We studied the cases p= 0.0, 0.3, 0.6, 0.9 and two different

Table 1
Comparison of boosting with the methods in [W] for low Bayes errors. LDF is
variable selection using W in (4) and ¥ is in (3). We use 2 = 0.05 and 10,000
permutations in 7 and LDF. Each number represents the mean misclassification
errors or numbers of selected variables for 100 test sets, and (-) represents standard
deviation of them. . B. represents Independent Bernoulli rule in (3)

I 0 0.3 (.6 0.9

Misclassification error
Boosting 00126 (0.0148) 00143 (0.0145) 00262 (0.0213) 00516 (0.0224)
LB (LDF) 00684 (0.0d486) 0.0678 (0.0438) 00624 (0.0524) 00681 (0.0660)
LB. (D%) 01518 (0.0668) 01614 (007107 01493 (0.0794)  0.1262 (0.0944)

Bayes error 0.0000 0.00035 0.0081 0.0340
MNumber of selected variables

Boosting 15.17 (2.38) 17.81 (3.32) 16.76 (2.82) 14.19 (2.82)

LDF 24.39 (2.90) 16.42 (2.40) 17.50 (2.96) 20,85 (4.92)

I 73.85 (3.00) 4.92 (3.97) 73.53 (4.37) 74.73 (9.51)
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combinations of probability vectors {p,,l =i =4}. If the probability vectors
in {p;.1 =i=<4} are close to each other, then classification becomes difficult,
indicating Bayes errors are large. From simulation, Bayes errors of one combination
{pi» 1 =i =4} are from 0-0.034 for different p's. But another combination of
{p; | =i =4} produces large Bayes errors which vary from 0.035-0.24,

We generate 100 training data sets for each p and consider ten-fold cross-
validation. Based on ten-fold cross-validation, we compare the results of boosting
with those in Wilbur (2002). We use them on a test set, which is possible for a
simulated example.

From Table 1, in the case of the low Bayes errors (ie., Bayes errors from
0-0.034), it is clear that boosting has a much lower misclassification error than the
methods in [W] as indicated by the fact that misclassification errors of boosting
are much closer to Bayes error than those of the methods in [W]. The number of
variables selected by boosting is smaller than that by [, but similar to that of LDF
for each p. Considering misclassification errors and the number of selected variable,
boosting performs better than D° and LDF for the case of low Bayes error. Since
boosting performs well both with respect to control of misclassification error and the
number of selected variables, we did not try out any of the three suggested methods.

Table 2 shows the misclassification errors and the number of selected
variables for the high Bayes error case (i.e., Bayes errors from 0.035-0.24). The
misclassification errors of boosting are smallest among all methods, but the largest
number of variables are selected. Method | remowes half the variables of boosting

Table 2
Comparison boosting with the methods in [W] when high Bayes errors. LDF is
variable selection using W in (4) and D is in (3). In £* and LDF, we use « = 0.03
for selection of significant variables and 10,000 permutations for reference
distribution. Each number represents the mean number of misclassification errors
or mean numbers of selected variables for 100 test sets, and (-) represents standard
deviation of them. . B. represents Independent Bernoulli rule in (3)

Il 0 0.3 0.6 0.9
Misclassification error
L.B. (LDF) 03020 (01271 0.6263 (0.1448) 06683 (0.1415)  0.6300 (0.18635)
LB. (D% 02580 (0.0563) 02727 (0.0574) 03607 (0.0463) 044635 (0.0395)
Boosting 01363 (0.0362) 01413 (0.0381) 02469 (0.0423) 03563 (0.0234)
Method 1 01712 (00421 0179 (0.0454) 02837 (0.0478) 03682 (0.0273)
Method 2 (D% 02597 (0.0565) 0.2735 (0.0603) 03607 (0.0463) 04463 (0.03935)
Method 3 (D9 024353 (0.0582)  0.2436 (0.0588) 02963 (0.0619) 03926 (0.0495)
Method 3 (LDF) 04419 {0.0904) 06056 (0.0979)  0.6586 (0.0913) 06977 (0.0716)
Bayes error 0.035 0.051 0.096 0.242
Mumber of selected variables
LDF 8.58 (3.2%) 228 (1.9%) 1.55(1.72) 255 (4.3D)
Dt 31.59 (3.39) 31.85 (6.30) 3334 (940 36,14 (14.06)
Boosting 62.97 (9.71) 61.35 (8.40) 33.00 { 9.66) 40.64 (8.23)
Method 1 3300 (7350 31.35 (6.80) 2700 (7.01) 22.13 (5.88)
Method 2 (D% 31.16 (3.49) 31.36 (6.47) 33.34 (9.41) 36,14 (14.06)
Method 3 (D9 28.96 (6.62) 2967 (1.71) 31.93 (10.91) 34.71 (15.13)
Method 3 (LDF) 8.42 {3.30) 215(1.71) 1.44 (1.59) 1.79 (2.85)
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with only small increase of misclassification errors. Compared with 1F, Method 1
selects a similar number of variables, but achieves a lower misclassification error
than that of D°. However, Method 2 (D?) and Method 3 (D?) do not greatly change
the misclassification error and the number of variables of D°. The misclassification
error based on LDF is very large since LDF selects too small a number of variables,
Method 3 (LDF) also does not achieve satisfactory misclassification error for the
SAMe reasorn.

8.2, Three Real Data Sets

Data 1, 2, and 3 are generated from the type of DNA fingerprints which have the
same type, (i.e., binary data), but the plant rhizpsphere from which samples were
collected differs from one another. Data set | in [W] represents corn rhizosphere
communities, whereas data sets 2 and 3 are soybean-associated communities. The
details of the study from which data set | were generated are discussed in greater
detail in [W]. Briefly, the objective of the study is to determine if rhizosphere
microbial communities differ in plants grown under four different agronomic
treatments; combinations of tilling (or not) and rotation of crops (or not). If
differences are found, then the objective is to identify members of the community
{variables in these data sets) that best explain these differences. The study of
significant members of the microbial community under these different treatments
may provide insight into the link between agronomic management practice and the
plant-associated microbial community. The objective of the study for data sets 2
and 3 are the same with the exception of the crop plants (soybean instead of corn)
which are being used. Table 3 indicates that for data from [W], Method | correctly
classifies most samples (86) based on leave-one-out cross-validation. Figure | shows

Table 3
Number of correctly classified samples by three methods and
methods for data in [W). LB. (Independent Bernoulli) and
Logistic represent classification rules using (3) and (6],

respectively
Rule Mumber of variables  Correct samples
L.B. (Full) 54 72
Logistic (Full) 54 52
L.B. (LDF) 3 68
Logistic (LDF) 3 65
LB (DF) 19 79
Logistic (D7) 19 72
Boosting 37 84
Method 1 26 86
Method 2 (D7) 23 83
Method 2 (LDF) 3 68
Method 3 (D7) 16 81
Method 3 (LDF) 3 66

Total 59
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Figure 1. Graphs of cross-validation errors (i.e., misclassification error estimated by cross-
validation) and the number of selected varables for data in [W]. Upper two graphs
represent Method 1, lower two graphs represent Method 3 with £°. Graphs on the left-hand
side represent cross-validation error against thresholding parameter, ¢, those on the rght
represent the number of variables against ¢

how cross-validation error and the number of selected variables change as a function
of the threshold parameter for Methods 1 and 3.

Application of the methods to the new data sets, 2 and 3, demonstrated similar
trends. The data represent samples collected in two different years, where data set
2 is from 1999 and data set 3 from 2000. In total there were 336 samples, which
were divided into a training set and test set, 252 (4 x 63) and 84 (4 x 21) samples,
respectively.

In application to these data, the LDF method does not select any variable, so
Methods 2 and 3 with LDF are not considered. The ¥ method selects only a small
number of variables. Due to the small size of these subsets, employing Method 3
is not affected by thresholding, it is better than Method 2 but inferior to Method
1. Figure 2 shows how Method | works with a threshold parameter. The number
of variables initially selected by boosting alone decreases quickly as the threshold
parameter increases, but the test and cross-validation error rates do not change
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Figure 2. Number of selected variables, misclassification errors (Le., misclassification errors
for test sample), and cross-validation errors of Method 1 for data from each year. (Upper
left) Represents the number of selected varables against threshold ¢ for data from the 1999
season. (Upper right) Represents the misclassification emror and cross-validation error of
Method 1 for data from the 1999 season. The two lower graphs represent data from the
2000 season.

substantially for 0 < ¢ = 1. Thus, a large number of variables can be excluded by
Method 1 with little change in the misclassification error rate.

The results using the data sets 2 and 3 had higher cross-validation errors than
data set 1. These differences likely arise from the original data sources. Other
measurements made from the two crops indicated there was less treatment effect on
growth parameters for soybean relative to corn. Thus the statistical analysis reflects
the biological trends that were noted.

6. Discussion

We have investigated boosting and its three methods along with the methods in
[W] for classification and selection of binary variables in high dimensional real, and
simulated examples. Boosting generally achieves low misclassification error in all
our cases, but it tends to use many variables. To reduce the number of variables,
Method 1 is effective for variable selection with small change of misclassification
error. Method 2 does not greatly improve the results of methods in [W] This
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Table 4
Summary of [F, boosting and three methods for data from 1999 and 2000 seasons
C.V. Misclassification error MNumber of variables
1999 yr
Logistic (D7) 0.4920 0.5476 12
LB. (D¥) 0.4405 0.7619 12
Boosting 02619 0.3095 62
Method 1 0.2500 (1.3452 29
Method 2 (DF) 0.4206 0.7142 11
Method 3 (D7) 0.4405 (1.5595 12
2000 yr
Logistic (D7) (.4682 0.4404 13
LB. (I¥) 0.4444 0.6786 13
Boosting 03016 03810 61
Method 1 0.2500 03810 36
Method 2 (DF) 0.4642 0.7142 11
Method 3 (DF) 0.4008 0.5000 13

means that change of empirical distribution alone may not improve non-boosting
type methods such as [W]. The performance of Method 3 depends greatly on the
preselected variables.

The thresholding method can be extended to selection of continuous variables.

As in [W], we have tried to validate selection of variables by examining the
performance of a classifier using these variables. While our method of thresholding
coupled with validation reduced the numbers of variables substantially, the selected
subsets were probably still too large from the standpoint of identifying a few of
the variables in the real life examples as scientifically important. We believe further
progress in this direction would require better understanding of functions and effects
of different microbial communities.
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