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SUMMARY

A sequential version of Cramér-Rao inequality was obtained by Wolfowitz (1947). Bhattacharyya inequality ( 1946, 1947)
can be seen as a refinement of Cramér-Rao inequality. We discuss at length its sequential version as obtained by Seth ( 1949).
We also discuss results of Seth and others, notably Ghosh (1987, on the impossibility of attainment of equality in sequential
Cramér-Rao mequality, where attainment will mean here and thereafier attainment for all values of the underlying parameter ¢
except where it is stated otherwise. We also discuss briefly why sequential estimation remains important, notwithstanding the

above non-existence results.
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1. INTRODUCTION

Motivated by the importance of Cramér-Rao
inequality, researchers in the 194(0’s began asking if an
analogous fact holds in the context of sequential
estimation as well. Wolfowitz (1947) showed that there
is indeed a sequential version of Cramér-Rao inequality.
Professor G.R. Seth, in whose memory this paper is
being written, wrote his doctoral dissertation under the
supervision of Professor J. Wolfowitz at Columbia
University. His work revolved around a study of the
Bhattacharyya inequality (1946, 1947), which can be
seen as a refinement of Cramér-Rao inequality, in the
context of sequential estimation. Seth was also
interested in the attainment of Cramér-Rao inequality
in the sequential case. Part of the work done in his
dissertation was reported in a paper which appeared in
Annals of Mathematical Statistics in 1949 (Seth, 1949),
This paper deals with both the points mentioned above
as well as interesting related points like sharpness of
Bhattacharyya bounds, orthogonal polynomials and
characterization of certain exponential families through
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orthogonal families arising as Bhattacharyya's covariate
functions.

The organization of the paper is as follows. In
Section 2, we provide a brief review of Seth (1949) and
some related work. In Section 3, we provide a more
detailed review of work related to the sequential
Cramér-Rao inequality. In Section 4, we describe some
work on attainment of sequential Bhattacharyya bounds
and state a conjecture. The paper ends with some
concluding remarks which appear in Section 5.

2. WORK OF PROFESSOR GR. SETH: BASED
ON S5ETH (1949)

2.1 Wolfowitz (1947): Forerunner of Seth (1949)

The Cramér-Rao inequality, for samples of fixed
size, was discovered independently by Rao (1945) and
Cramér ( 1946a, 1946b), and several other distinguished
authors, e.g.. Fréchet (1943) and Darmois (1945),
whose papers were published later, and Fabian and
Hannan (1977), Pitman (1979} and Miiller-Funk et al.
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(1989), the last three giving much better suficient
conditions.

The Cramér-Rao inequality led researchers to the
following question: is there a similar result which is
relevant in the context of sequential estimation?
Wolfowitz (1947) showed that the answer to this
question is affirmative. His main result, proved for
independent and identically distributed (i.i.d.)
observations, is stated below in Theorem 1.

Theorem 1. (Sequential Cramér-Rao inequality in an
i.i.d. set-up: Wolfowitz (1947})

Let X, X,, ... be a sequence of i.i.d. random
variables with common probability density function
given by fb(.r} with respect to some ¢~finite measure
i, where g is either the Lebesgue measure A or the
counting measure, and also where & € &, an open
interval of . Let N be a stopping time with 7 (N =0)
=0and E N) << forall 0. Also let T, = 8(X] ...,
X, ) be an estimator of a parametric function &such that
EAT,)= 6 We make the following assumptions.

(1) The derivative Hfb(_r}-’aﬁ exists for all @and almost
all x [u]. We define dlog f,(x)/06 as zero whenever
Jdx) = 0; thus dlog f,(xyd6 is defined for all f e
O and almost all x [«]. We also assume that
Lblalcg JolX,¥096] = 0 and that E [dlog f (X )
6 > 0 forall B O,

)
(2) E, (Eillﬁlcg f;QI{XI.}Iﬁf?I] exists for all 9= 0.

(3) For any integral j, there exists a non-negative
t-measurable function ?:r{.rr ""‘}'} such that

(a) |O(xpmnx i fjf‘}rl:[lfﬁ“j % T{r }
for all & € © and almost all (x, ..., "}'} £
IN=j} [l

®) [, T n x) dutx,) . dpx)
is finite.

(4) Let
¥
1§ [, &xpo oz [1/x) distey) . dpat).

i=1

We postulate the uniform convergence of the

series
idr‘j(ﬁ‘}
~ df
J=1
dr (6"
for all = 0. (The existence of ;f} isimplied
by (3))
Then
Var (T,) = : (1)
ar (T,) =
Al E,(N)E,(|dlog pﬂtﬁfl}fﬁﬂlz}

Remark 1. It can be see that the inequality in (1)
formally looks the same as its fixed-sample size
counterpart, except that one has to replace the sample
size 7 by the expectation of the associated stopping
time N.

Remark 2. Suppose X, X,, ... are i.i.d. random
variables having common d:str: bution P, 8 €, where
0 c & is open, with pdf/pmf with respect to a o-finite
measure 4 given by

Jolx) = exp(6x — y(0)), 60O (2)

Also, let T, = &(X,, ..., X,) be an unbiased

estimator of a parametr!c f‘unctmn # 6) that is

differentiable with respect to & Then (1) has the
following form:

(0

vV rnyz ———
TN 2 E v ©)

(3)
In particular, if X’s are M(6, 1), then y(6) = 6":’"

so that the right- hand side of (3) becomes []1"{9}

E(N). Also, if X’s are Bin{& 1), then the right-hand

side of (3} beccmes {7 () S{I — OVEHN).

Remark 3. Ghosh et al. (1997, p. 96) contains a version
of sequential Crameér-Rao inequality where (1) the X's
are neither independent nor have identical distributions,
(2) the statistic T, = &(X, ---~Xﬁ,} is an estimator of a
parametric tunmcn #6) which is possibly biased, and
(3) the conditions which allow differentiation under the
summation and the integral signs are not separately
stated. This result is stated below.

Theorem 2. (Sequential Cramér-Rao inequality: vide
Ghosh et al. (1997), p. 96)
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Let X|,.X;, ... be a sequence of random variables
with joint pl‘ﬂbﬂbl!il}" density function of (X}, ..., X}
being given by fgx,, ..., x;) with respect to some
cfinite measure ' f‘creweryjé I. Let NV be a stopping
time with P(N =0) =0 and PYN <o) = 1 for all
e Also !et Ty=aX,, ... X } be an estimator of a
parametric f‘unctmn Ho) such that EJT,)= 1O+ b(O).
It is assumed that }(&), b(6), and log ffx,, . ‘}} (for
every j = 1) are all differentiable with respect to & and
E |9 log f x|, _~.t';.}-’39]2 = 0 for every j = 1. Further,
assume that differentiation under the summation and the
integral signs are valid in E1)=1 and EJT,)= 16
+ b(&). Then

[7'(6)+ b(©)]
E,([0log fy(X ... X))/ 06]))

Remark 4. Ghosh er al. (1997, p. 97) contains a
statement of Theorem 2 in the special case when the
X's are Lid.

Var [T,) =

22 Seth (1949)

Bhattacharyya (1946, 1947) extended the Cramér-
Rao inequality, providing a lower bound to the variance
of an unbiased estimator based not only on the first
derivative of the likelihood function but higher
derivatives as well. This result is known as the
Bhattacharyva ineguality.

The results mentioned in the preceding paragraph
were discovered at around the same time. It was
therefore natural that a sequential analogue of the
Bhattacharyva inequality will also be sought by
researchers. In a major achievement. Professor GR.
Seth obtained a sequential version of the Bhattacharyya
inequality in his doctoral dissertation written under the
supervision of Professor J. Wolfowitz at Columbia
University. Seth’s inequality (Seth, 1949) is stated
below.

Theorem 3. (Sequential Bhattacharyya inequality: Seth
(1949))

Let X|,.X;, ... be a sequence of random variables
with joint pmbab:!lt_v density function of (X}, ..., X.r'}
being given by ffx,, ..., x) with respect to some c~finite
measure & for every j = |, where g is either the
Lebesgue measure on B or the counting measure, and
also where & € O, an open interval of E. Let N be a
stopping time with PJN=0) =0 and PN < =) = |

for all #e0. Also, let 7, = &(X|, ..., X, ) be an unbiased
estimator of a parametric function ¥(&) that is
differentiable &k times with respect to €. Let &

(dHOYdO), ..., (d* 1 6YVdE")) . We make the fciic“ing

assumptions.

(1) Foreveryj= |, the derivatives Hifb(_rr _~_'¢'.}.-’Hv|5".~
i =1, ..k exist for all &€ 0 and almost all
¢ - .‘{'j}E IN=j1 [¢'] We define

I d fglx, ,....,xj} i
fﬁ(-rls ms-rj} aﬁ';
whenever fx,, .., _rr.} = 0; thus
dfox,nx)
1 (7]
o) = :

fﬂ {_Y, ~-~s-rJ;} {}HJ

is defined for all € © and almost all (x,, ..., _rr.}
e (N=7} [#] '

(2) For any integral j, there exists non-negative

1¥-measurable functions ' {r _'rlr.}~ i=1, ..,

k, such that '
FFox,nx)

C I Wl LA [

g 26" £ A

for all & € © and almost all (x, ..., "'j} =

(N=j} [#)
.. k. are finite.

{b} J:"f:j T.‘_Jr'{'r]-n ...‘{}} d[ﬂ"r‘ i=

(3) Let 1(6) := [N= 8(X)y s XN fX s 1o X) det!.

We postulate the uniform convergence of the
series

o

d’
DE LT

for all & € ©. {The existence of

implied by (3))
(4) For every j = 1., there exists functions
S{x,, ‘}} for i = 1, ..., k, such that when & (x,
X }and I, {r X } are replaced by unity and
S{T - r} respectwei},f conditions (2) and (3}
stiii hcid gccd

fj{E‘} is



140 |

LK. Ghosh et af. / Journal of the Indian Society of Agricultural Statistics 64(2) 2010 137-144

(5) The covariance matrix of (@,(N), ..., qﬁrk{,-"u'}}.rex:ists
and is non-singular for almost all #=0. We denote
this matrix by A = ((4_)).

Then
- T =l

Var(T)z oA a (4)
Remark 5. Suppose X.’s are as in Remark 2 (vide (2))
and Nis a stopping time with P ,(N'=0) =0 and EH(N4}
< o= for all & e ©. Suppose k = 2 in Theorem 3. Let
¥ &) be twice differentiable. Defining, for j = 1, S.r' =
E;‘f=|X~ it is easy to see that ¢ (N) = S, — Ny/'(0),

Oy(N) =[S, — Ny (O)]F — Ny'(6). Note that u ==
EfX,) = W'(6), 0 = Vary(X)) = y"(), u; =
E X, — 1) = y°)(6). Let us also note that £ ¢, (N))
=EJ@,(N))= 0 for every 8€ 0 (cf. (2.3.9) and (2.3.10)
of Seth ( 1949)). Finding the lower bound in (3) requires
computing now the entries of the matrix A = ((4_)).
Notice now that A = EJ@ (N)@(N)], s, 1= 1, 2.
Proceeding as in Example 1 in §4.1 of Seth (1949), we
see that 4, = W/(OE N), 4,5, = ELNy")(6) +
2EIN(S, — N)), and Ay, = E (S, - Nw/(0}"] -
2P (OE NSy - NY(OF ] + { W (O ESN).

In addition to the result stated above, Seth (1949)
also derives several other important results. We mention
some of them below.

e He obtained a condition under which the
(sequential) Bhattacharyya lower bound obtained
by him was sharper than the (sequential) Crameér-
Rao lower bound obtained by Wolfowitz ( 1947).
More generally, he obtained a condition under
which the (sequential) Bhattacharyya lower
bound, based on a set of derivatives of the
likelihood function upto and including a fixed
order will improve if the derivative of the next
order is considered.

o Attainment of the lower bound in sequential
Cramér-Rao inequality and fixed-sample size
Bhattacharyya inequality received considerable
attention in Seth (1949).

® He studied two examples in each of which the
sequential Bhattacharyya lower bound is
greater than the sequential Cramér-Rao lower
bound given by Wolfowitz (1947). These

examples demonstrate both unattainability of
sequential Cramér-Rao lower bound and
desirability of finding a higher lower bound
than the one given by Wolfowitz (1947).

= With a view to understanding when the
Wolfowitz lower bound (1947) will be
attained, he considered an i.i.d. set-up, a
stopping time N having finite expectation
E JN), admitting first two derivatives for all
& with the first derivative of £ N) being
either zero for all & or never zero. Finally, in
presence of an efficient estimate (Cramér
1946b), he showed that the Wolfowitz lower
bound (1947) for variance of unbiased
estimates will be attained only with a fixed-
sample size procedure. This generalizes a
similar result obtained earlier by Blackwell
and Girshick (1947).

®* He obtained necessary and sufficient
conditions for the attainment of the
Bhattacharyya lower bound in the fixed-
sample size case.

= Finally, while studying equality in the
inequality obtained by him, Seth (1949)
showed that successive derivatives of
likelihood functions, divided by the
corresponding likelihood, constitute classes of
orthogonal polynomials with respect to weight
functions given by (1) normal probability
density function (pdf) with unknown mean,
(2) normal pdf with unknown variance, (3)
binomial probability mass function (pmf) with
unknown probability of success, and (4)
Poisson pmf with unknown mean. It is indeed
both remarkable and surprising that such
orthogonal polynomials were obtained from
purely statistical consideration like obtaining
lower bound to unbiased estimators.

Remark 6. Characterization of distributions based on
Bhattacharyya bounds have been addressed in the
literature. Shanbhag (1972) showed that for the 3 x 3
Bhattacharyya matrix of a distribution having an
exponential-type density function to be diagonal, it is
necessary and sufficient that it be one of the following:
normal, poisson, gamma, binomial, and negative
binomial. He seems to have missed one of Morris’s
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(1982) families. Shanbhag (1972) also showed that for
these distributions an s % s Bhattacharyya matrix is
well-defined for all 5 and is diagonal. It may be noted
that the Bhattacharyya bounds are easy to write down
in the diagonal case.

Remark 7. Ghosh and Sathe (1987) proved that for all
unbiasedly estimable functions and all multiparameter
exponential families, Bhattacharyya bounds converge
to the variance of the minimum variance unbiased
estimate as the order of the Bhattacharyya matrix goes
to infinity. They also point out that for the exponential
families characterized by Shanbag (1972), the variance
Var (X) is a quadratic function of the mean E JX)
(where X is what Morris ( 1982) calls the natural random
variable for exponential families). Morris (1982) has
characterized six exponential families for which Varh{)i’}
is a quadratic function of Var (X). His six families are
the following well-known examples: normal, poisson,
gamma, binomial, and negative binomial, and one new
one. Morris (1982) gives many reasons as to why these
families are of special interest within the class of
exponential families.

3. ATTAINMENT OF SEQUENTIAL CRAMER-
RAO LOWER BOUND

Research on attainment of Cramér-Rao lower
bound (for all & has interested many researchers.
Wijsman (1973) obtained the first technically complete
proof of a result giving necessary and sufficient
conditions which will ensure attainment of this bound.
This result is stated below.

Theorem 4. (Attainment of the Cramér-Rao lower
bound: Wijsman (1973))

Suppose the sample space is an arbitrary measure
space (%, .A, 4), with g ofinite. The parameter space
is the measure space (9, 5, ) with © a Borel subset of
the real line, B the Borel subsets of © and v Lebesgue
measure. There is given a random variable X with
values in y and distribution P, given by P 4) =

J‘Apﬂ(_r} dgt(x), 8 O. For convenience differentiation

with respect to &will be denoted by 2. Any integration
with respect to & will always be understood to be over
the whole of y. Let m be a real-valued function on ©,
not identically constant; let #(.X) be an unbiased
estimator of m{#&). We shall make the following
regularity conditions.

(a) © is an open interval (possibly infinite or semi-
infinite);

(b) pgdx) = 0 for every 8 € O, x € 7, pf) is
A-measurable for every €€ 0, and px) is a
continuously differentiable function of & for every

X Ex
(c) 0 < VarDlog p fX) < == for every 6 0;

(d}) Ipﬂ{_r} du(x) can be differentiated under the
integral sign with respect to &

(e) If{x} Px) dgi(x) is finite and can be differentiated
under the integral sign with respect to &
Then the inequality

[m'(6)°]

Var {1(X)) 2
log PHEX}]

d

is an equality for all &if and only if there exists K € .4
with (K) = 0 such that forx e y— K, 8 0,

Pylx) = c(B)h(x) exp(¢(O)(x))
in which (&) and A(x) are > 0, g is strictly monotonic,
and both ¢ and ¢ are continuously differentiable.

In other words, Wijsman (1973) proved that the
variance of an unbiased estimator of'a function of a real
parameter attains the Crameér-Rao lower bound if and
only if the family of distributions is a one-parameter
exponential family. Later Joshi (1976) also addressed
similar issues.

The question of attainment of the sequential
Cramér-Rao lower bound (for all & in the sequential
case was taken up and answered in the negative by Seth
(1949) for E4X). Ghosh (1987) contains a detailed
study of equality in sequential Cramér-Rao inequality.
Trybula (1968) and Linnik and Romanovsky (1972}
also addressed this issue. More explicitly, Ghosh (1987)
showed that when the observations follow a one-
parameter exponential family of distributions the bound
can be attained for one or all values of the parameter
under strictly sequential rules only in a very special
case, namely, for the Bernoulli distribution. In what
follows, we briefly discuss the work by Ghosh (1987),
including a less formal presentation of its main theorem
(Theorem 5 below) and some heuristic explanation as
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to why the result is expected. A good presentation of
the arguments of Ghosh ( 1987) appears in Section 4.3
of Ghosh et al. (1997).

Theorem 5. (Attainment of sequential Cramér-Rao
lower bound: Ghosh (1987))

Suppose X, X,, ... are as in Remark 2. Consider
a strictly sequential procedure with stopping time N and
a statistic T, = T,(X,, .., X,) with E(T,) = 1(6),
where M&) is a differentiable function. For this one-
parameter family, the inequality in (3) becomes an
equality if and only if X, has as its support a certain
set containing two points and the stopping time is either
a constant or one particular V.

We present now a partly heuristic argument
explaining why in presence of attainment of sequential
Cramér-Rao inequality, X; must be as in Theorem 5.
Sequential Cramér-Rao inequality is established by
employing Cauchy-Schwartz inequality on the
covariance of T, (X, ..., X,) and d log {4 X, ... X,/
d0= 8, — Ny/'(6). Let S, == X + .-+ + X . Thus, for
understanding the equality in sequential Cramér-Rao
inequality, if we tried to argue as for the fixed-sample
size case, we would consider estimates of the form

T, = N6 + BOXS, - Ny(&) V 6 (5)

Since right-hand side of (5) involves &, the left-

hand side cannot be a statistic (i.e., free of &) except
for the following two cases, namely,

(1) the fixed-sample size case when §, — Np16)
reduces to § —m {6 and hence we may take
T.‘lr' = I;u =4+ BS:JJ‘

(2) the sequential case when S, is a linear function
of N, say A + BN. Then T,, — (&) = B(6) (S, —
Ny(@) = BN +some function of 6= B (N -
E JN))as T, is unbiased. Hence, 7, = B,N. This
argument is formalized in Lemma 1 of Ghosh
(1987). He then shows that this violates the
assumption E N) < ¥ 6, if the X’s have
distribution belonging to an exponential family
other than the Bernoulli.

Remark 8. In passing, we mention that Ghosh (1987)
also characterized the rules for which equality in (1) is
attained. These are essentially negative binomial
sampling schemes. De-Groot (1959) called such
sequential sampling plans efficient. We also note from
a careful scrutiny of Theorem 1 of Ghosh (1987), that

under the assumption of sampling Bernoulli variables
and stopping time obtained by Ghosh (1987), the
estimator of ¥ &) = 6, has a negative binomial
distribution which is a one-parameter exponential
family. This explains why attainment of Cramér-Rao
lower bound is expected in this situation.

Remark 9. A particular version of the inequality,
obtained byWolfowitz (1947), was obtained in the same
year by Blackwell and Girshick (1947) who restricted
their attention to a situation where the underlying
parameter itself is to be estimated and the sum of
observations is a sufficient statistic. They also proved
that the corresponding inequality is attainable only with
a fixed sample size procedure. Also, Simons (1980)
gave elegant construction of unbiased sequential
estimators of the normal mean which attain smaller
variance than the corresponding Cramér-Rao bound for
asingle & Simons (1980) conjectures that such s will
have Lebesgue measure zero. Finally, let us also
mention that Stefanov ( 1985) studied efficient
sequential estimation, in the Cramér-Rao sense, in
stochastic processes whose corresponding sufficient
statistics are processes with stationary independent
increments. Ghosh's (1987) proof of Theorem 5, which
is the basic result on non-existence, rests on Stefanov’s
(1985) condition that for attainment of the lower bound
forall &, §, must be a linear function of N.

4. SEQUENTIAL CRAMER-RAO AND
BHATTACHARYYA LOWER BOUNDS:
COMPARISON AND A CONJECTURE ON
ATTAINMENT OF THE LATTER

The (sequential) Bhattacharyya bounds are greater
than or equal to the (sequential) Cramér-Rao bounds.
Some more details are given below.

(1) For the family of normal distributions with mean
& and with Wald’s stopping time corresponding to
testing H, : 6= 6, against /{, : 6= 6,, Seth (1949)
has considered the sequential Bhattacharyyva lower
bound with & = 2, where k is the maximum order
of partial derivative of the joint probability density
function with respect to the parameter, assumed
to exist (vide Theorem 3). He has proved that it,
i.e., the sequential Bhattacharyva lower bound, is
greater than the corresponding Crameér-Rao lower
bound. The algebraic steps proceed along the
following direction.
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Recall from Remark 5 that ¢,(N) = E.I‘.l"":l (X, -6

= 8, — N@and ¢,(N) = (S, — N6 — N. The fact
that sequential Bhattacharyya lower bound is
greater than the corresponding Cramér-Rao lower
bound is a consequence of the fact that
E J@, (N, (N)] is not identically zero in & This
last fact is implied by the fact that £4(N) is not
identically zero in &

(2) For the family of Bernoulli distributions with
mean p and with Wald’s stopping time
corresponding to testing £, : p = p, against 1| :
B he has proved that with & = 2, the
Bhattacharyya inequality for estimating {(p) = p
ceases to be an equality for every & The algebraic
steps are essentially same as those in the
preceding example.

In the light of our heuristic argument to explain
why the non-existence result of Ghosh (1987) is
expected to be true, it is clear that one should be able
to prove a similar general result on attainment of
Bhattacharyya bound in the sequential case for
exponential families.

5. CONCLUDING REMARKS

We have surveyed the contributions of Professor
Seth relating to sequential lower bounds and orthogonal
polynomials and previous or further work on these
topics by distinguished contributors. As far as
attainment of sequential lower bounds is concerned, the
results are theoretically interesting but negative from a
practical point if view. This often leads to a pessimism
about all sequential estimation, see, e.g. Ghosh ( 1987).
That such pessimism is unwarranted can be seen from
many fruitful applications of sequential estimation in
Ghosh et al. (1997), of which two- or three-stage
bounded length confidence intervals are the most
popular. They have been applied in survey sampling
(with a pilot sample as the first-stage sample) and
entomology. Point estimation can also benefit from
sequential methods when the estimated variance is a
function of observations, and one wishes to control its

value at a pre-assigned level by sampling sequentially.
See also the interesting remarks along similar lines in
Simons (1980).
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