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SUMMARY

We derive the differential equation that a prior must satisfy if the posterior probability
of a one-sided credibility interval [or a parametric function and its frequentist probability
agree up to Ofn '). This equation turns oul Lo be idenlical with Stein’s equation for a
shightly dillerent problem, for which also our method provides a rgorous justification.
Our method 1s dilferent in details from Stein’s but similar in spiril (0 Dawid (1991) and
Bickel & (ihogh (1990). Some examples are provided.

Somte key words: Conlidence set; Credible set; Noninformative prior; Postetior distribution: Probability-nuatch-
ing equation; Probabilitv-nalching prior.

l. INTRODUCTION

suppose Xy, ..., X, are independently and identically distributed with density f{z; £,
where ¢ = (th,....0,)7 is a p-dimensional parameter vector. Consider a prior density =(¢)
for ## which has the following property of matching frequentist and posterior probability
for a real-valued twice continuously differentiable parametric function #{#):

o o ol g
P, LM}} LU ZW o [w' nit(8) — o0
. : N,,

for all z In (1), 6 is the posterior mode or maximum likclihood estimator of # and b is
the asymptotic posterior variance of ,/n{t{f) — 1)} up to Q.{n"%), Py(.) is the jomt prob-
ability measure of X =(X,,...,X,)" under f, and P,(.|X) is the posterior probabilily
measure of & under =. Such a prior may be sought in an attempt 10 reconcile a frequentist
and Bayesian approach { Peers, 1963), or to find or in some sense validate a noninformative
prior {Berger & Bernarde, 198%; Ghosh & Mukerjee, 1991, 19924, b; Nicolaou, 1993;
Tibshirani, 1989), or to construct [requentist confidence sets (Stein, 1985), Another related
paper is by DiCiccio & Martin (1993) where similar higher order frequentist conlidence
limits are obtained by using Bayesian asymptotic calculations,
One of our objects in this paper is to show that (1) holds il and only if
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iy =y (0). ..., (00T is given by

S
LA (TR OATIT:

satisfying #T{@){0mi0) =1 for all {. In (2) and throughout this paper all the summations
as well as the ranges of the subscripts &, # and y extend over 1 to p, unless otherwise
explicitly mentioned. Note that, in (3), J '{f) is the inverse of 7{f), the information matrix
of # per unit observation.

Equaltion {2) is similar Lo equation {5-8) of Stein (1983) in the context of a somewhat
different matching equation and we will refer (o this as Stein’s equalion, and all priors
satisfying (2) as probability-matching priors. It may be mentioned that, Lo achieve (1),
{3) is the only choice for 5. If the goal, following Stein (1983), is to get a multiparameter
set of the form

nid) (3)

S8y = 109" S0 — By < 2.}

for @ rather than a confidence interval for a real-valued #{) then other choice for o are
possible. Stein (1985, p. 510 made a choice of 4{A) in a particular example involving the
squared dislance of the normal mean vector from the origin. In this example, his chosen
# 1 samc as ours. An intuitively attractive chodcs, at least [or the construction of conlidence
sets for {, is given by Tibshirani (1989, p. 605) though there is no guarantee that (1) will
hold for this cheice. Our equation {3} is in general different from Tibshirani's equation,
hut they agree when (/] =, and {/, is orthogonal to (', .. ., &) in the sense of Cox &
Reid (1987}, the case mainly considered by Tibshirami.

We also justify Stein’s {1983) equation {5.8) in the context of his original probahility
malching problem. Qur method of prool is more explicilly rigorous Lhan Stein's; see, e.g.,
Tibshirani {1989]. Tt is somewhat different in details from Stein’s but similar in spirt (o
that of Dawid (1991) and Bickel & Ghosh (1990}). Section 2 of the present paper contains
the derivation of Stein’s equation, the necessary assumptions and the related discussion.
Section 3 contains a [ew dlusiralive examples.

2. THE EQUATION FOR PROBABILITY-MATCIIING PRIORS
Leal

lih=n""! i log f{X; 0, h=4,.;'"n{£»'—fj}, = 1D, D)} =5,
i=1

o, = (D, D3 D104 =,

C={—da,), G=C"1, where D, = #/60,.

Following GGhosh & Mukerjee (1992b) we assume (Johnson, 1970) that ! has a prior
density m(f) which is positive and twice continuously differentiable for all f. The prior
x(#) will be oblained by solving the probability-matching equation (2) for t{8). If ={d) is
not proper we have to assume that there 18 a fixed positive inleger ny such that for all
Xy, ..., X, the posterior density of ¢ 15 proper. For a prior =(#), let P.{.}) denote the joint
probability meazure of # and X. All formal expansions for the posterior, as used here, arc
valid for sample points in a set § which may be defined along the lines of Johnsoen (1970)
or Bickel & Ghosh (1990, § 2) with m = 1. The Py-probability of §is 1 + O(n "} uniformly
on cotnpact sets of & The matrix C is positive delinile over 8. We also make the Edgeworth
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assnmptions following Bickel & Ghosh (1990, p. 1078). It may be noted that in addition
to the Edgeworth assumptions we need the regularity conditions of Bickel & Ghash {1990)
or Ghosh, Sinha & Joshi (19%2) to justify the limiting Bayesian arguments for frequentist
calculations used later. The last two papers contain more details on these. For calculalions
up to Qin~ ') as needed here, the detailed rigerous justification of the limiting Bayesian
argument is not as cumbrous as for ofn™ 1) but it is still somewhat lengthy, though straight-
forward, and hence omitted. It should be mentioned that all the assumptions made about
fix; £ will be satistied for exponential family with # a sufficiently smooth function of the
natural parameter.
For real-valued twice differentiable [unction f{#), w¢ denote the gradient vector of § by
Vel B ={Dy (). .., D, f(()" and the Hessian matrix of f by HA) = (D 100, 4.1 o
Then [rom (2.2) of Ghosh & Mukergee (1991), the expansion of the posterior density of
h 15 gven by
Ta—1
x(h| X1 =(21) "2 G| exp (w- A G; h)
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We will now derive from (4) a formal expansion of the posterior characteristic function
of U = ./n{t(#)— t{0)} up Lo O,{n~") by expanding ('} —1{t} around ¢ and retaining the
first two terms. After considerable algebraic simplification we ohtain

1
E{pr{tqDHX}—cxp{{qj }{1+TT|(H,T]+OM 1]} (5}

where
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{9
b=YHDIGY0), t=(z1,....7,) = GVi(§), g=1"H,B)x,
£y H}J = Z; Zﬂ Z? aaﬂf{rmg.ﬁ‘}' + Talar T f}'g-zﬁ}= Ei{é} = Zm Eﬂ ZT Gy TaTp Ty

Let ¢i{ue|0, &) denote a normal density with mean O and variance b, Using repeated
integration by paris and the normal characienstic function we obtain

{6)

[} (=8

[ 1 L
ElexplaU)|X)= | explign {1+ A d)} $iul0. B) du+O,(n ™), (7)
«,-

where m (—diduldiu|0, b) 13 the result obtained by operating m,(—d/du} on dlu|d, b
Following Bhattacharya & Ghosh {1978 Lemma), we gel from (7) that, [or fixed z, the
posterior probability on the right-hand side of {1) 1s given by

1 1 d ) | B
PL h|X] Diz) + 3 J_w 1, ( :b Efi;x Ple)de + Gun™1), (&)
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where @z} and ¢(z) arc respectively the standard normal distribution function and density
function.
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Let plimg denote the probabality limit under €. Then deline

eos | 72— | 1 2 —1) i
ad&ﬂ—mﬁ{m®+ ; ﬁm%~sﬂ@4 zb[ 7 +w%m$ﬁ}
VIHGV.(H) 2 _ : 5
a3, m, z)= ;-{:[é}_:fh_{ Z g0, 2. G0 zj=pilinik{ﬂ,z (k=1,2),

AT V.0 2
T kz Gt 2).

V20, 7, 2) = p lim d(0, 7. 2) =
H
Then using the above notation and standard resulls on Hermile polvnomials, we have,
under 6= G,

1 4
PoAU < 2/b|X) = 0(z) — — ¢80, m 2) + On ™)

N

[
=00} - — P2IAF (g, t, 2) + Oylr 1) (9)

2
The lasl equalily lollows since i — o= 0,(n™%) implies
d$(6, m, 2) — AF Uy, m, 2) = Op(n~H).

Now to find the expansion of the frequentist probability P (T7 < z./b) under ¢ = {l, we
proceed following Ghosh & Mukerjee (1991). See also Ghosh (1994, Ch. §) for a detailed
argument. Since the difference between the posterior mode and the maximum likelihood
estimator of f is O (n %), for the following calculations we assume that # is the maxi-
mum likelihood estimator. Note that Fp (U'=<z./b) is oblained by inlegraling
Dz} — n~*P(DAX(Y, 7, 2) with respect to a prior #(() which vanishes at the boundary of
a rectangle containing f;, and satisfies the assumptions of Bickel & Ghosh (19%0} or
Ghosh, Sinha & Joshi {1982} and then allowing this prior to converge weakly to the
measure degenerate at ,. To illustrate the hmiting process we denote this pror by ma{f),
where § iy lhe length ol each side of the reclangle. Now by inlegrating by parts Lthe first
mtegral on the nghi-hand side of (10}

*
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and since, for any continuous function alf/),

lim J.aw:lm{ﬁ]dﬁ = a{fly},
L0
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Using arguments similar Lo those of Bickel & Ghosh { 1990), we derive from the preceding
discussion that

: 1 iy
Poo(U <z )= ®(z) — — p(z) 4 — T =% |
w(U & 2./0) = D(z) N MZ}{ Zﬁ'ﬂ;: 8

2
a i’aiﬂmz}} +0@m™Y). (1)
=d,

We now determine the matching prior & by equating the coefficients of n % on the right-
hand sides of (9) and (11) for all #,, that is by solving the dillerential equation

1 My
=0} B VIR = 8.
that iz
&
Y. 2 ina{O)mi)} = 0. (12)

Remark 1. Using a cov, to denote asymptotic covariance under ¢, note that

4 COVy {. fm{i,!} \,Hf} b

TelB) = \."[EI Cﬂ"lfr.l{\- nt( U}? W ﬂj}] f

up to ({n~*), where @ is the maximum likelihood estimator of .

Remark 2. We will now derive the probhability-matching cquation for Stein’s approxi-
mate (| — &) confidence set, his (5.3), given in our notation by S,(f) = {i?:r}'f{ﬁmﬁjhgz“};
where #{#) is an arbitrary differentiable vector satisfying »" (@) /()(#) = 1, and z, is the
100z upper percenlile of the standard normal distribution,

To find the posterior and the [requentist probabilities of the sel é‘ul[é]l, we first express
the expansion in {4) by using I{6) in place of G~ Since G™' —1 {#)=0,{n"%) under 8,
we can rewrite the right-hand side of (4) after some simplilication as

T T 4
alk| X)) ={2m)" *’zll’{ﬂ]l'* Bxp h IfUJh w414 l Paih) + ; .-?“i?} + ﬂﬂ{rr"} ,
2 G W nrll)
(13)

where Py(h) is a third degree polynomial in i not mvolving the prior m. Now we use a
lingar transformation W= BrI *m}lh where T*({)) is the symmetric posilive delinite square
root of f{#) and B' =(b,. .. b )is a p x p orthogonal matrix with b, = gty Note
thai

- . . S “ . L .
W, = b1 = g (B, ATV 0) =W 4TIV + 3 WLBTT IV (),

a=2

By this transformation and integrating out W5, ..., W, we get from (13 ) that the expansion
of the posterior density of 1#) is given by

O )

_ Wi
1wy | X) = (27) *exp( 2){ +—Q*{“ 9 +"”Tf{9?
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where (a(wy, ]| iz a third degree polynomial in wy depending on { but not on the prior
. Consequently, the posterior coverage probability of S,(8) is given by

1 -
Pn{m = ZrFX] =l—e— "l-"! 'f“'{zs}d:[ﬁa T, Z:} + Dp[n_l}

N
1
=k—e— ﬁtﬁ{zc‘l&?‘{ﬂo,m )+ Opln ™), (14)
where
A Hrté}?“{g} r?-l-{ﬁlﬂ}vﬂiﬂﬁ}
# — .: - F 7 =0 T —
d {ﬂ T ‘c} ({4, z sd ) 'ﬁ.! {UD! . Zg) E-sfﬂﬂ! z{:] + 2{fhy) *

zlf

&b z)=—¢7z,) f 0s0w, D)gtwi) dwi,  LilBo, 2.} =p lim 5,9 2,).
The expression given by the last approximation of (14} is valid under ¢ = ,. Now as in
(10} and (11), it follows from (14) that the frequentist coverage probability of 5,.(¢) under
8, is given by

Puu{PHzJ:l—s—ﬂ" {c (O, 2,) — ﬁ”ﬂ(m“ }+ﬂ{n‘1j. (15)
"\.-

Equating the coefficients of #~% on the right-hand sides of {14) and {15), we can match
Py(W, <z,) and P (W, <z,|X) for all B up to O (r~ ") if 7 satisfies

ZE {5 (8)m()} =

which is Stein’s [1983) eguation {3.8).

Remark 3. Wote that, from (14), the Bayesian coverage probability of Sn{ﬁ] under an
arbitrary prior 7, is given by

$(z.) 0 P

P {0eSi=1-c— 7 J{;m, 2R0)+ T OO} s

which is not equal to 1—= up to Ofn 'Y as suggested in (5.5) of Stein (1985). How-
ever a simple modification of § (H] will have the desired accuracy. Deline SE{H' ) by

A & A 1 -
St m)= {U T (TR — :fﬁ dth R z) = z,} .
MNote that S;{ﬁ, 7} depends on 1. Sinee the cxpansions given in {14) and (15) are locally
uniform, it follows that
P ifeSBmXi=1—e4+0,nY

and consequently the frequentist coverage probability of S;{f', 7) is equal to 1—e, up
to Oa ')

Remark 4. From {9) il [ollows thal the credible set Ag[é}:{-— o, :(é} +\.-"{b,.-"n}z,:] for
t{(1) has posterior coverage probability 1 — ¢ accurate only up to 0,(n~*). However, mod-
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ifying AKI[I'J;';'_I a4z in Remark 3 to

A8, m) =( — o, 10+ /thin) {Zx + 4 {-H‘.;R.* :E]} -‘:

!
A1

one has the posterior coverage probability of .fi,’;ffi', n) and hence the Bayes and the fre-
quentist coverage probability equal to 1 — & up to O(r '),

Remark 5. We notice that the matching equation [12] to match up to Qin~ 1} the pos-
terior and the frequentist distribution functions of /r{1(() — rfﬂ} /b for a prior = does
nl depend on the Hessian matrix H,(#) of (4. I-'rom this one |'.|1d.‘i. cﬂrrectlv guess that
it is possible 10 approximale up to Oy n ') the distribution function \/n{e(@) — (@)} / /P
al some z by the distrbulion function al some 2 of only the [irst lerm of Ta;,riur 5 expammn

f x.-"'n{tfﬂ] -t((1)} /b, Lhat is by that of ‘F}"{ﬂ}h,.-"wa"b = U7, say. Since U 18 only a linear
function of k, as in Remark 2 we get Irom (4} directly by linear transformation of variables
without all the involved algebra

. ¢ $TV(0) .
PiU =z|X)= mba;-—T{f nil), 2y + e }+op|:n 1. (16

where s =1/ .-"b amd, m[e’-} z) is d funclion of f und z, and does not depend on . In fact it
can bhe seen thmugh indirect or mmphcatcd a.];,chram argumenis that m{U z)=¢ l{LL z),
Since the last expansion is locally uniform in z, we have

i-'\- é.:
P, {Lﬁ-—ﬁ :—L

i

X} =${z}—?d*{ﬁ’ wt, 2+ O~ ')

=P U=z /bl X)+0,n '

Finallv, one would get the same matching equation {12) by matching the posterior and
the frequentist distribution functions of U up to O,(n™").

We conclude this secltion by relernng Lo the more accurale probabilily-matching resulls
of Mukerjee & Dey (1993). They have determined a prior by malching the postetior and
the frequentist distribution [unctions of scalar ¢; up to o,(n~') when there is a single
nuisance parameter fl, orthogonal to ().

3 ExamprLES
Example 1. Let X,={X,;, X,;)" (i=1,....n) be independently and identically distrib-
uted as Ny p, ), where p={p,, p;)" and
i ( o1 ;m'lzﬁz)_
Ad1ds 2
Here 8 ={u,, iz, 7, 62, piT. We suppose the parametric function of interest is () =
fasfoy = fla). say, the regression coefficient of X, on X,,;. The inverse of the information
malrix [{#) is given by {7(#) = block diagenal (X, 1), where

367 Lptey oy i@ p(l —p7)
b= %Pgﬁﬂz "1:‘5% é@p(l Pz} .

dop(l —p?) Feapll—p7  (1—p*F
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The probability-matching equation simplifies to
&

tfa

; { .
(1= p* oy pmld)} + T H1—p?P2a(0)} =0,

which has a solution given by #(0) = o7 107 1{1 — p*)7%2 This prier has been proposcd
by Geisser {1963) for inference for p and is shown to avoid the marginalisation paradoz.
Since ¢, and m, have symmetric roles in m{f) above, this is also the probability-matching
prior for po, fao, = fi; o (say), the regression coefficient of X, on X,,.

Example 2. Let Xy, ..., X, be independently and identically distributed as N, {u, o21,),
where 8=1{p,,..., #,, 6/7. Suppose the parameter of interest is 1(f) = u"p/r% The infor-
mation matrix is F{@) = o~ *diag(1,..., 1, 2p). The probability-matching equation is given
by

2. of] (8 d p pm(f)
2 Lf (2p(u"pio?) + (1" o™ J Tt |:2PG J2p(u o) + (nTio? P} ]
which has a solulion given by
(@)=~ Ty 4 2pa) i (T~ I
It can be checked that this prior will result in a proper posterior, and for p = 1 this reduces
to the reference prior for u/fs, proposed by Bernardo {1979).

Example 3. Let X,,..., X, be independently and identically distributed as log-normal
with parameter 9 = {p, 6)'. Suppose the parameter of interest is t{#) = exp (u+ i), the
meatt of X,. The information matrix is I{f!}=¢~? diag (1, 2). The probability-matching
cquation is given by

T L I i
2 |35 T o 3dt + 309 e =0
which has a general solution given by
nlp, o) =6 {1+ 1"} flote™ ")

for any nonnegative function f.
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