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SUMMARY
Under contiguous zlternatives the adjusted likelihood ratio (ALR} test {s seen to have the
same powecr propertics as the conditional likelihood ratio test up to the third ordar of
comparison. In particular, an optimmwn property of the ALR test in terms of second-order
local maximinity follows. It is also seen that the ALR statistic admits a Bartlett-typc
adjustment.
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1, INTRODUCTION

The problem of adjusting the usual profile likelihood in an effective manner to handle
nuisance parameters has received considerable attention in recent vears: see section 2
of McCullagh and Tibshirani (1990) for a review. Cox and Reid (1987) pioneered the
idea of conditional likelihood and discussed many interesting features of it, Another
significant contribution to this area has recently been made by MeCullagh and
Tibshirani (1990) who introduced the notion of adjusted likelihood, derived
interesting results on it and raised several open issues. In particular, they posed
problems relating to

{a) a comparison between adjusted and conditional likelihood possibly via
asymptotic considerations and

{b) the existence of a Bartlett-type adjustment for the adjusted likelihood ratio
{ALR) statistic.

The present work atterpts to settle some of these problems. It has also been noted
that the desirable properties of the ALR test continue to hold even when one adjusts
only the mean but not the variance of the scare function,

2, POWER PROPERTIES

Let {X;}, i = 1, be a sequence of independent and identically distributed random
variabies with commeon density f{x; &, #r) where 8 is the parameter of interest and 77 is
the nuisance parameter, both one dimensional. The parameter space is an open subset
of R?, Interest lies in testing Hy: # = 8; against 6 £ ;. Let n be the sample size and m}
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be the maximum iike]ihncid estimator (MLE) of m given # =8;,. Write D, = 3/36, D,
= 8/8mandfori, j,i",j'=0,1,2,. . .define K; = K;(@, m) = Eﬂm{D}D"lﬂgf{X f,
mit, Aw = —Kylf, m), Ay = —anw, my),

Ky = Kypp(8,m) = By . {DIDilog £(X; 6, m) D{ D{ log (X §, m)},

Hy@, m) = n~¥ 3 {D{Dilog f(X,; 6, m) — Ky(@®, m)},
=1

H Hg{ﬂu: m:ﬂ: K{r = K [’Hﬂl! ms]r #J T K{rf_r (Eﬂr ”IHL ﬂi = "'KZ';‘.I? aﬁ‘;". e _Kﬂgl Lﬂ'
=~ K{r{ﬂﬂl m] Lu il :_r u{ﬂﬂ! "), thyy = _Lm- iy = —Luz

Koorpi@om), Ly, o . etc. are defined similarly. Amﬂng the &;, K; ;- etc. only
those which are used in what follows are assumed to exist; it is also assumed that they
are smooth functions of § and r7. Since 6 and s are one dimensinnai, following Cox
and Reid (1987}, we assume global parametric orthogonality, i.e. Kipu(@, m) =0,
identically in 8, 7. Then under standard regularity conditions the per observation
information matrix at {#, ) is diag(A g, Ag) which is assumed to be positive definite
for each {8, n).

Following section 3 of McCullagh and Tibshirani (1990), the ALR statistic for H:
& =48, is defined as A,, = 2{1,,(F)—1,.(8,)}, where

]
1 (8) = ( Oyd, 0@ = (UG -u®}w@®, U® =D, L©),
u(t) = E; - UB), wi(b) = [— By 4, { D} 1,(0)} + D, p{)] /var, 4, {UB},] 2.1

A0) = UG, iy}, U8, m) = i log f(X,; 8, m),
i=1

771 is the MLE of m given # and 4§ satisfies /,(f) = sup,{/,.(#}}. We consider con-
tiguous alternatives of the form 8, = 8, + »n~ 74, Since under parametric orthog-
onality u{8) = — £,(8, i) + o(n™"%), wi(t) = 1 — n7" £00, M) + 0(n™'"), where

£t m) = %AQE'KE;
(8, m) = [AmAmJ_l{Kzz"'%Klz_m"‘Km.n+3K11.11+2Km_ﬂ1_t1—%AtﬁlKuKm.uz}

(see McCuilagh and Tibshirani (1990)), calculations similar to those in Mukerjee and
Chandra {1991) show that § = § + ;n~Yafak) 'Kfs + o(n~"), and

=R +o{n "), {2.2a)

over a set with B, -probability l+ﬂ{n“] uniformly over compact subsets of 4,
where § is the MLE of &, and

th = [‘I;EI}_UEHEI ¥ H_MZQIE i H_I'th {22]}}

1 1 1
Qio = 3 (@) HLHE + (@) KBHY + 5 @)™ Moy 'K, (2.20)

i
Oz = g @) HHHA + 5 {am) VIR HIHS + —taml SEHYHY
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]
[i_{aw}_ﬂz{-ﬁdn‘kj{aﬂ!} IKZ*II} + —-{ﬂ'fﬂl WZK;{’:?.] H*a

+ 3 @) ey HRHE + 5 @) a) K HEH

; 1 1 1
+ () a) ! [ZK?:H% x [E ()KL KS — EKfz — Ko

1 1 1
— 5 &t Kfa) — K + 5 @3)" 'K (EK?E +Kj"5.m) ]Hih} - {(2.2d)

By eguations (2.2), the ALR fest belongs to the broad family considered in
Mukerjee {1992) and, up to o{n 1'%, the expansion for W, is identical with that for
the ‘square-root’ version of the conditional likelihood ratio (CLR) statistic given
there. Hence, by the results in Mukerjee (1992), when compared at the same size up to
o(r~™"), the ALR and CLR tests will have, under contiguous alternatives, identical
power functions up to o(n~ ") and identical average power functions up to o{z™!)
where averaging is done over values of # equidistant from #,. Consequently, the ALR
test, like the CLR test, will be optimal in terms of second-order local maximinity
within the large class of tests considered in Mukerjee (1992). Also, for fixed m, the
power function of the ALR test, [ike that of the CLR test, will be identical, up to
o(n~ YY), with the power function of the LR test with known nuisance parameter.
Following Mukerjee (1992), we can work out conditions under which the ALR test is
superior to the uwsual LR test with regard to third-order average power and satisfy
ourselves that such conditions are satisfied in many exarnpies of interest.

It is interesting to investigate the consequences of adjusting only the mean but not
the variance of the score function. Then an ALR statistic can be defined as before with
the change that the factor w{) will not eccur in U{6) (see equations (2.1)). Its square-
root version will be as given by equation (2.2b) with the expression for ¢, unchanged.
Hence, following Mukerjee (1992), an ALR test, arising from such a simple
adjustment of the profile likelihood, will continue to enjoy the desirable properties
discussed above—see Ferguson ef gf. (1991). Thus, if interest liss in power properties
as considered here, then the variance adjustment of McCullagh and Tibshirani (19%0)
is not essential:

1. BARTLETT-TYPE ADJUSTMENT

Starting from equations (2.2a)-(2.2d) we can make a further expansion about
{8, m) and proceed along the lines of Mukerjee and Chandra {1591} to show that the
ALR statistic, like the CLR statistic, admits a Bartlett-type adjustment and that the
Bartlett adjustiment factor is given by 1 +n~' B {mg), where

7 11 7 = 1
B.(m=ax’ (SﬁLm ot 4me+ & Laume"‘lE )-{ﬂ;&nﬂﬂz] lLM(ELM +Lzu_m)

s 1
+ an’ (E Lan+Lagsn+Lypsa+ Lm_m.m) — (@nad) 'Ly (Lm m-l-ELm) RERY

Comparing with Mukerjee and Chandra (1991), the Bartlett adjustment factors for
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the ALR and CLR statistics are identical if and only if {0, Ky, }a_g, + 3@ ' Los Ly = 0.
Following Mukerjee (1992}, even after a Bartlett-tvpe adjustment a test based on the
ALR statistic will enjoy the desirable properties discussed above. We can also check
that if only the mean but not the variance of the score function is adjusted then the
resulting version of the ALR statistic will admit a Bartlett-type adjustment. A
consideration of the exponential regression model with the regression slope as the
parameter of interest reveals that the Bartlett adjustment factor for this simpler
version {and also for the original version) of the ALR statistic is not necessarily
identical with that for the CLE statistic.

Proceeding as in Ghosh and Mukerjee (1992) and under the assumptions stated in
their section 2, it can be seen that except for sample points with probability of the
order O(r2~2) the ALR statistic has a posterior distribution, with reference to a prior
density «({ ) which is positive and thrice continuously differentiable, such that a
posterior Bartlett adjustment exists. Furthermore, by equation (3.1), posterior
probability regions based on 2 posterior Bartlett adjusted ALR siatistic will have
frequentist validity up to e(r ") if and only if «( ) satisfies

D1{A2_|:IID1 i, m) _AZTJEKIH.MT{*?: m}} + Dz{AznAm}_!Kn wif,m) =0, 3.2}

which is precisely the same as the corresponding condition, derived in Ghosh and
Mukerjee {1992}, for the CLR statistic. We refer to Ghosh and Mukerjee (1992) for a
discussion on the availability of splutions to equation (3.2).
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