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In & multipagrameter estimation problem, for first-order eflicient estimators,
second-order Pitman admissibility, and Pitman doseness properties are studied.
Bearing in mind the dominant role of Stein-rule estimators in multiparameter
estimation theory, such second-order properties are also studied for shrinkage
maximum likelithood estimators.

1. INTRODUCTION

The classical maximum fikelihood extimators (MLE) are generally best
asymptotically normal (BAN) and are known to be asympiotically firve-
order gfficient (FOE) in the light of conventional guadratic rivk functions as
well as the generalized Pitman closeness eriterion (GPCC). In this charac-
terization, an asympiotic representation for BAN estimators in terms of an
average of independent summands plus a remainder term converging to
zero at a faster rate plays the basic role; we may refer to Keating, Mason,
and Sen [ 7, Chap. 6] for some systematic exposition of this feature, mostly,
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dealing with the single parameter situation. This FOE-isomorphism of
quadratic risk and GPCC remains in tact in the general multiparameter
case as well (viz., Sen [13]).

The past three decades have witnessed a phenomenal growth of research
literature on higher order asymptotic ¢fficiency of FOE estimators. In this
context, quadratic and other conventional loss finctions and conceniration
probabilities have been used extensively. The recent monograph of Ghosh
[4] provides an up to date account of the developmenis in this broad and
active area of research wherein the multiparameter estimation problems
have also been treated adequately.

Recently, Rao [9] has revived interest in comparing estimates through
PCC, which shows that the marginal distribution of estimators or their
risk functions in their usual sense do not capture all that is relevant in
comparing them. The present authors [ 3] studied the second-order Pitman
admissibility and second-order Pitman closenesy of BAN (FOE) estimators
in the single parameter case. There remains a natural need to comprehend
the general multiparameter case with respect to both of these second-order
efficiency criteria, and the current study is primarily geared towards this
basic objective,

In the multiparameter case, the classical MLE may not be generally
admissible (relative to a chosen quadratic risk), and some alternative ver-
sions, known as the Seein-rule (SR) or shrinkage estimators, dominate the
MLE, often, in a finite sample setup, and more generally, in a well-defined
asymptotic setup. Stein [15] initiated this line of research for the simple
multinormal mean vector estimation problem when the covariance matrix
is specified. During the past 40 years, the dominance of Stein-rule versions
over the classical MLE and other conventional estimators in the multi-
parameter case has been studied extensively, covering some finite sample
results for suitable exponential families of distributiony and extending the
findings to suitable asymptotic setups for a much wider class; we may refer
to Sen [11] for some relevant first-order asympiotics for SRMLEs,
Dominance of the SR-estimators in the light of the GPCC has been studied
in a finite sample setup by Sen, Kubokawa, and Saleh [14], where the
asymptotic case has also been treated briefly. However, all these studies
relate to the (asymptotic) dominance with respect to suitable FOE criteria.
From an asympiotic perspective (as relevant to FOE/BAN estimators),
there is a basic feature of multiparameter estimation problems with special
emphasis on Stein-rule estimators which merits a critical appraisal The
SR-gsumators are generally adapted to a chosen pivot (say, (,). For every
0+, a MLE fi, and its plausible Stein-rule versions are asymptotically
PC-equivalent in the sense that they share the FOE property in the
conventional asymptotic setups; the asymptotic PC-dominance of SRMLE
over the classical MLE studied by Sen, Kubokawa, and Saleh [ 14] pertains
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only toa Pitman-neighborhood of the pivot @, beyond which the dominance
becomes asymptotically imperceptible. Therefore, it is of natural interest to
compare a MLE and its SR versions in the light of second-order efficiency
properties. This is one of the basic objectives of the current study.

A general second-order PC result in the multiparameter case is presented
in Section 2. In this context, special attention is paid to the multivariate
location model. This provides a natural motivation for SR estimators
which are then treated in Section 3, covering location, scale as well as
location-seale models. An extension of the main theorem (in Section 2),
having some interest on its owrn, is presented in the concluding section.

2. A GENERaL RESULT

Consider a sequence {JX,; i=1} of independent and identically dis-
tributed (i.id.) random variables or vectors (rv.) with a common density
Slx@), where @ =(0,, .. 0,)" is an unknown vector parameter belonging to
a paramefric space @ which #7 or some open subset thereof, and p is
a positive integer. We adopt the same regularity assumptions as in
Bhanacharya and Ghosh [2, p. 439] with s=3 (in their notation), and
f1: @) and gi :0) in their notation interpreted respectively as In /1 .; @) and
S 8) in our notation. Let # = ({.7,)) be the p =xp per observation Fisher
information matrix which is assumed to be positive delinite (p.d.) at each
Be® Let . '=([.#Y)), and for each 1 =i j u=p, let

Sipu=E DIn fX ;00D In (X, ;0D Inf(X ;0)}; (21)

S w=E D InfiX:00)(D,D Inf(X:8))}: (2.2)
Sye=E{ D, D,D, In f(X,: 0)}; (2.3)
SJ,rJr ek Sljr i SJ i f24 )

where D, stands for the partial differentiation operator with respect to @,
(l=i=p). Note that for each i, j w, %, ' §,, . S,.and 5, are
generally functions of & for notational simplicity, this dependence is,
however, suppressed. . .

Base on a sample X, ... X, of size n, let @ (=0,)=(f,,...4,)" be MLE
ol 8, defined in the sense of Theorem 3 of Bhattacharya and Ghosh [ 2];
again for notational simplicity, the subscript » is dropped. Along the lines
of Ghosh and Sinha [6] and Planzagl and Wefelmeyer [8]. who studied
in detail the second-order efficiency properties of adjusted MLEs under
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conventional quadratic and other convex risk functions, we consider here
a class ¥ of estimators of @ of the form

O +n 'did), (2.5)

where the components of d(#) are sufficiently smooth and have functional
forms free from » (see Theorem 2.1 below ). As seen later, consideration of
such estimators will enable us to improve upon @ in many models of inter-
est with regard to second-order Pitman closeness. The following theorem
plays a crucial role in this context.

Turorem 2.1, Let T} =0+n 'd*@®) and T,=0+n 'd@) be
estimators of 8, where d*(@)=(d}0), .. dJ(0))", d(0)=(d (D), ... d,(0)),
and for each @, d F(0) and d(0) are continuously differentiable over @, with
Sunctional formy free from n, such that theiv partial devivatives fulfil the local
Lipschitz conditions. Then for each B at which ¢(8) = (¢,(8), .. ¢,(0)) =
di0)—d*(0) 0.

A,00) =P {(T*—0) F(TF—0)<(T,—0) .#(T,—90)]

=3+(2an) "7 {0(0) .7 (0)] “{é{mm'.m[m}’
+(0) A i) | G(0) . Fd* () +1r|B(0)]

i i &
+ Z z Z qﬁl[“;'fﬂ[‘gu-u-’-— :ISJN:J

Jom] fum]l gpeml

; o s
i Y Y Y (0)6,(0)6.00)5,,—60) .7B(0) $(0)

Jem] Jem]l gpem]

12

b (2.6)

+aln

where B(O) is a p x p matrix with (i, j )th element D (0), for i,j=1,..p.
FProof. Observe that for each @ with ¢(8) £, we may write equivalently

A (0)=P(V,>0), (2.7)

where

V,={¢(0) #¢(0) ~[¢(@) .F{n"AT*—0)} +L1n 20y .7 ¢(0)].
(2.8)

Let R=(R,, .. R,)'=n"~#(8—0). Note that for each i (=1, ... p).
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* *
RJ=H|J+H s Z E 'fnr'Hllg.l'Hljr
J=1 sl

b—

P T P s
+i1Y ¥ ¥ ¥ s,s000H H, | +oln~1?), (2.9)
=1 gtm] 5=l fe=]

where

-
H,=n"17% Dnf(X,0) i=1, ... (2.10)

i =1

»
Hy=n""" Y (D,Dnf(X;0)+.%) ij=1l..p. (211)

Tl
Therefore, the approximate cumulanis of R under 8 are given by

£ P
N“'[RJ’=H ' E E 'fJ”[SJr..ﬁr'l‘;S’Jm’%‘ﬂ[ﬂ I.:L

IR T

Kl Ry R) =5+ o(n~""), (2.12)
Kad R R BR)=n""28, +o(n™'?), iLju=1,..p
The fourth and higher order cumulants of R under @ are o(n~ 7). Since,
FIn"T¥ —0)} =R +n"'2gd*(0) + o(n~'?); (2.13)
o(0)=¢(0)+n "BO).F 'R+on '?),  (2.14)

it follows from (28) and (2.12) that for each @ with ¢(0)=0, the
approximate cumulants of V, under @ are given by

kb Va=n'"{0) .7 i) ' { 1600) .7 ¢(0) - d(0) .7 d*0)

ol a P‘
+u[BO)]+ Y ¥ ¥ 46,000 M8, 418, | +oln 1),

Jom ] Jom] ape=]
NEII[VJI’=1+”[H I::L [215:‘
" l

P
K3V, =n""71$(0) .7 ¢(0)} -‘ﬂz Y O¥ 6(0)¢,(0)¢,00) 8,

Jem] fem]l apem]

+6h(0) .7 B(0) ¢[H:J +o(n 17,
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The fourth and higher order cumulants of ¥, under @ are of order o{n'?).
The prool can now be completed by using (2.7) and an Edgeworth expan-
sion for the distribution of V¥, under @. |

The stochastic expansions used in the above prool are over a set with P
probability 1 —e{n '?). Note that in Theorem 2.1, .# =.#(8) has been
used as a Riemannian metric in the fashion of Amari [1] and Sen [10],
among others. Since we have essentially used a quadratic norm { reducible
to the conventional Euclidean distance by suitable linear transformation ),
this sophistication could have been avoided by an appeal to simpler
Euclidean distances. However, the transformation leading to such a
Euclidean norm may generally depend on the unknown 8, except in the
particular case of some location-scale models. As such, we prefer to
proceed in the manner outlined belore. Along the line of Ghosh, Sen, and
Mukerjee [3] we present here the notion of second-order Pitman closeness
in a multiparameter setting, which will be helpful in exploiting the implica-
tions of this theorem. and we intend to discuss them as well.

With estimators T, and T} of 8, let

2, (0)= P {T*—0) (T —0)<(T,—0) #(T,—0)} —1; e
2,20 0) = n' e, (0).
Then, T} will be superior to T, with regard to second-order Pitman close-
ness if
fa) lim

iby lim, ., =, (8) exists and lim
2,00} does not exist linitely,

a,.10) =0, for cach @ for which a finite limit exisis,
a,,(8) =0, for each 8 for which

L e &

] B e
lim, .
the inequality being strict for some @ [ € @) either in (a) or (b).

With reference to a class, %, of estimators of @, T, (%) will be called
second-order Pitman-inadmisyible in % if there exists some other estimator
TY ( e%). such that T, and T} are not one-to-one functionally related to
each other, and T} is superior to T, with regard to the second-order
Pitman closeness definition given above. Otherwise, T, will be called
second-order Pliman admissible in %,

In the light of the above definitions and Theorem 2.1, we consider the
following important class of multiiparameter estimation problems,

Location Models.  Here fix;8) is assumed to be of the form
F0)=*x" =0, . x" =0, (2:17)

where x=(x'", . x""")'e @’ 0=(0,,..0,) e®@ R, and the functional
form of the density /™ is free from 8 and is assumed to be gven. Then, it
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can be seen that . = ((.7,)) and S, . 8, ... 5, (1 €4, j.u < p) are all free

from @. Hence, under lhe setup of Theorem 2.1, we have

. . Il
0).FH(0) 3 ¥ Y 4(8) FM(S, y+154)

fem] fom]l ape]
L " i
_% Z Z Z {&J[ﬂ?lﬁr[ﬂilﬁ”iﬂ’ Smr
Jem] fom] areml]
J il 2

=3 ¥ ¥ Auhi(0)4,(0)6,00)

Jum] el gl

—ZI EI ZI b (0) ,(0) ,(0), (2.18)
s i o
where
«'mr—f”Z Z 8w+ 1800 — £ 80 (2.19)
P ] ]
and
Lo Ml TR L Bl F ), TEELETE  (220)

are constants, free from @. Having these simplifications at hand, we con-
sider first the special case:

Agpe=10 Yiju=1,..p (2.21)

Mote that if the location model exhibits sufficient symmetry so as o ensure
S juw=8u=8,=0Viju=1,..p, then (221) follows from (219) and
(2.20); we refer to the multivariate normal and multivariate Cauchy loca-
tion models for some easy verification of these symmetry conditions. In this

setup, we denote the MLE of @ by 6 and take
T,=8; Tr=0{1—n '(1+0.28) 'h}, (2.22)
where i { #£0) is a constant {free from n). Then applying Theorem 2.1 with

—d*(0)=¢(0)={1+0.70) ' 10,

(2.23)
B(o)={1+0"76} '"h{l —2{1+070} '04.7}

where 1, is the px p identity matrix, and using (2.18) and {2.21), we arrive
at the following result for 8 0.
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Pyl (T*—0) #(T?—8)<(T,— 0y .#(T,—0)
=1+ (2@ 8) " sgn(h)[(p— 11— (h2)(1+6.70) ' 0.7 0]
+oln~ 7). (2.24)
Also, for =0, by (2.22),
P T FT*<T, IT,} =P [h*—2m(1 + &7 8)] ¥.70 <0}, (225)
50 that

lim P,{T¥FT* <T,FT,} = {1+san(h)} 2. (2.26)

[ i

For p>2, by (2.24) and (2.26), T* will be superior to T, =@ with regard
to second-order Pitman closeness if and only if

O<h=2p-1) {2.27)

It is easy to see that with & as in (227), T will dominate T, not only at
8 =10 but also for every 8 ® = #". Thus with location models satsfying
(2.21) and for p=2, it is possible to improve upon the MLE under the
criterion of second-order Pitman closeness.

Continuing with the setup given by (221} and for p= 2, it may be of
interest to compare various choices of /i wihtin the range given by (2.27).
This, in turn, calls for a study of second-order Pitman admissibility with
reference to the class, %, of estimators T given by (2.22) wherein £ is
chosen to be free from n, satisfying (2.27). To that effect, consider two
estimators

T,=0{l—n"h(1+070)""), j=12 (2.28)

where fi,( # ), are constants, [ree from n, satisfying (2.27). Analogously to
(2.24) and {2.26), it can be seen that for 6 #£0,

PUT, . —0) . #(T,,.—0) < (T, —0) .#(T,, —0)}
=3+ (27n@.#0) "7 sgnih, —hy)
x[p—1)—3(h +h){1 +0.#0) "' 0.90] +o(n"7),(2.29)
and at =10,

lim P T, IT,,<T, ST, } =[1+sgnlh,—h)]/2.  (2.30)

al
LE
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From (229} and (230), one can check easily that an estimator

TH=0{1—n "h{1 +8.#8} ' (%) is second-order Pitman admissible in

the class %, if
p—lshsp-—1), p=l (2.31)

On the other hand, if 0 <h < p—1, then T} can be shown to be dominated
by another estimator T** =8{1—n "h*(1+ 8.#9) '} ( €%,) whenever h°,
free from m, is so chosen that i< " < 2p—2—h, and, hence, TY is second-
order Pitman inadmissible in %, .

Next, we consider location models for which (2.21) may not hold, ie,

Ay 70 forsome Ljui=1L1 ..p) (2.32)

Although it is difficult to find natural examples of such location models, for
the sake of completeness, we briefly discuss this case as well. With T, =8
and T*=0—n—'E, where E=(£,, ... £,)' €14 s €, are constants | free from
n), and £ =0, it is easily seen from Theorem 2.1 and (2.18) that for every
e amr

Py{ (T —0)" (T} —8)<(T,—8)' .(T,—0)} -}
i 8

g :
= [EJIH! S [E--'rfi--'lI A Z E z “;‘J.ﬂr‘zjéjéjr_ 'I_"[‘;:'rf'i..-i-

Jem] fem] areml]

+ o=, (2.33)

Hence, TF is superior to T, with regard to second-order Pitman closeness
if £ is so chosen that

P ol ol
5 Y Y Llb Uy (2.34)

fm] ] =]

Under (2.32), it can be shown that such a choice of £ is always possible.
For example, if 4,, #0 then & =(.#,74,;,. ') satisfies (2.34). Estimators
corresponding to different choices ol £ satisfying (2.34) can be compared,
under the criterion of second-order Pitman closeness, in a straightforward
manner using Theorem 2.1,

3. STEN-RULE ESTIMATORS

To motivate our general results, we look back into the location models
satisfying (2.21) and note that T}, as given by (2.22), is quite similar in

form to a conventional Stein-Rule estimator which in an asympiotic setup
has captured a much wider domain of estimation problems including the



MULTIPARAMETER PITMAN CLOSENESS 61

location models as special cases; for such asymptotics, we may refer to Sen
[ 117, where the details for SRMLE are given in a broader setup. For allied
second-order efficiency properties in a conventional risk formulation we
may refer to Ghosh [4]. As such, for such models oo, one may as well be
interested in examining the behavior of SR-estimators vis-g-vis the MLE
T, =0. Hence, we consider an estimator of the form

T,=8{1—n Y078 'h), (3.1)

which is well defined, provided P,{8 =0} v8e®. Here also, the constant
ks assumed to be free from . In this formulation, (3.1) resembles the
usual Stein-rule estimators, albeit the latter may be of more general form
than in (3.1). Although the pair (T, T,) does not exactly satisfy the condi-
tions of Theorem 2.1, virtually repeating the same line of attack, it can be
shown that for 80, the prool and conclusion of Theorem 2.1 remain valid
with this pair. Towards this formulation, we denote the median of a central
chi square distribution with p degrees of freedom (DF) by i . Then, it will
be proved in the Appendix that

p—l<y,<2p—1) Vp=zl (3.2)

With the help of this inequality, analogously to (2.27), it can be shown that
T, is superior to T, =0 with regard to the second-order Pitman closeness
if and only if

O<h=2{p-1). (3.3)

Also, denoting by %, the class of estimators T, given by (3.1} with h, free
from m, satisfying (3.3), it can be shown, analogously to (231}, that T,
[ €%,) s second-order Pitman admissible if and only if

p—1<h<sy,. (34)

Therefore, the first-order Pitman closeness properties of SRMLEs studied
earlier by a host of researchers can be extended to the second-order
case by imposing additional regularity conditions, as needed to justify
(3.1 )-(33).

Let us next consider the multiparameter scale models. Here f{x;0) is of
the form

A0y = (0 0,) " 20, . x"a ) (3.5)
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where x' = (x'"", . x'"), @' =(0,. ... @), the @, are all positive, ie., 8>0,
and the ﬁinctiunal form of the densnl:, J* is assumed to be known and free
from the unknown parameter vector 8. Then

fﬂ= m:ﬂ;’ : iy S= fjjrﬂ;q’*r, L= L ap P
1 j W [r:']| |'j| r?ui i N TL] 1 fie [r:']| |'j| fj]r} I i -ﬁr: [3'6:I

Sp=10,0,0,) ' Gipes =inaa0,)" Gipes iLhu=1,..p

R ]

J_I'Jl'
where g4, ", g, Gows Gioges G- And g, are constants free from B, and
Q_ [['[LJ“ I% pd

Let T, b= N/ — I‘]'P:l' be the MLE of @, and as a rival estimator, we
consider

11::"]'_” I[‘:|rj|7---7§hpr}rf7 (3.7)

where the ¢, are constants free from n, and §=(¢). ... ,) # 0. We apply
Theorem 2.1 to the pair (T}, T,) with

$(0)=—d*0)=(S,0,....2,0,)" B(@)=diag(&,...&,)  (38)

o

and use [ 3.6) to obtain, for each @ [ =0).

Po{(TF—0) #(T}—0) <(T,—0) #(T,—0)}

o J" =
= :.l-i- [zﬁf” 2 [%rQE_., e Z Z Z ﬂmr‘:ﬁ:ﬁ:u_ %[F}rQ‘%F

Jem ]l fum] apeml

1/2 L [34; ]

+oln
where
Bu=Bu+Buy+Buy+Bu+But+Bulle.  iLiu=1..p  (3.10)
with
Bi=gyll =8u+1) —5Gu.  Liu=1..p, (3.11)

where 4, is the usual Kronecker delta, and

Foor
L=3% Y ¢"qu.wt G u=1,..p. (3.12)

We] pm]
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By (39), T} will be superior to '[',,=ﬁ with regards to the second-order

H

Pitman closeness criterion if and only if £ is such that

P ' P
Y ¥ ¥ Bubilil. B QL) (3.13)

o]l jem]l apeml

It may be noted that such a choice of £ is possible whenever
B0 for some ij,u=1,..,p; (3.14)

and this condition holds in many models of interest. Example 1 cited below
is an illustration. Under (3.14), estimators corresponding to different
choices of £ satisfying (3.13) can then be compared in a straightforward
way using Theorem 2.1.

Exampre 1. Let fix:8) be given by a product of p gamma densities
with known shape parameters r, (=0) and unknown scale parameters (7,
[ =0), i=1,.,p Then we have the lollowing simplifications:

I i 1 —dp
qu_fn (Jrl_rj k] qm_'d'fj'

gi.0.4= _ql-u=q_'m=2rn f.=]-1. o .
(3.15)
gy=q'=10 Wigji=1,..p

G =i 0= = Fygu="0 unless i, j, v are all equal.

Hence, by (3.10) through {3.12), we obtain that

o P
— it i=1ap

By=Bu=PBu=73r. Vidj=l..pm (3.16)
Byp=0 whenever i, j, 1 are all distinct,
Therefore (3.14) holds, and it may be seen that {3.13) is satisfied if in
particular, £ =( — i, L ).

Remark.  Motivated by Dasgupta [3]. one may also wish to compare,
in a scale model, T, =8 with

T —d—n I[ﬁrjlepg, (3.17)

g1

where £ #£0, and the coordinate elements £, are constants, [ree from n. By
i(3.6) and Theorem 2.1, afier some simplifications, it can be shown that for
cach @ (=),
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P T, —0).#(T,—0)<(T,—0).#(T,—0

e I
=[2:I'|‘.'H:I I':\‘Z Z[fjlfj}r! Ié:":PJqUJ

Jem] o]

i2

I P .
X\‘ Z Z Z [rjjﬂjrjjr’ I ]"mré:‘:ﬁ:u
Jom] fom] ape=]

o

I e r p I ] y
_[12'\‘ ]_I rle ﬁz Z [lr’illrjlj:I I‘::qu{Ij’ J'i"”[” I'_L

Ju=1 ] ]

(3.18)

where Vg = =gyl — £ (i, jou=1, .., p) with ], given by (3.12). Hence if T,
is superior to T, with regard to second-order Pitman closeness, then we
must have Y8 =0

- fad o

E z z [f},f)jﬂ”? I,‘r’;;:r‘i:‘f;éu

o] fum]l apel]

* ol 2
:1<,F[ J:* Z 2 0.8)7 " Edqy) (3.19)

| ] feml]

Thecase of p=1 has been treated in [ 5], sowe letp = 2. Then multiplying both
sidesof (3.19) by {17, [f),,-'lﬁi',i} V7 and keeping @, ( = 0) fixed while allowing
02, . B, — o0, We get that 0= 1{g,,&7)% Since Q is p.d., this yields &, =0,
Similarly, £,= ... =£,=0, ie, £=0, whu,h is a contradiction. Hence, for
p =2, no choice of ;F—'Il can ensure the superiority of T, to T, =0 under the
criterion of aﬁcﬂnd-order Pitman closeness. This may be mntr&slﬁd with the
findings in Dasgupta [ 3] who worked with quadratic type loss,

Finally, we consider the focation-seale models in a univariate setup where
p=28=(0,,0,), 0,3, 0,=0, and the density fix: 0) is of the form

fle0)=0,"f*(x—0,)/0,), xe®, (3.20)
where the form of /* is free from 8 Then we have
G=07%, SI=0  Vij=1%
S-J T ﬂ! ]'[L-_J'-Jrﬁ 'SJ g |':.i|., iy jjr [321 )
Sp=10, '-‘qu”,, N =105 'rml Wi, fu=1,2,
where the s G Gijous Gijus Gius and gy, are constants free from @ and
Q=1({g,)) is pd. We apply Theorem 2.1 to the pair: (T}, T,), where T, =8
is the MLE and

T*=0—n""0.6  E=(&, &) #0, (3.22)
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the constants £, £, being free from n. Then analogously to (3.13), it can
be shown that TF is superior to T, with regard to second-order Pitman
closeness i and only il £ is such that

Y ¥ ¥ Fubll.> HEQE), (3.23)

i A R T |
where

Fise =1 Vit Vi + Vagg + Vit + Vi + Vs } 165 Pau = 3l— ;"q?y”, (3.24)
and /, is defined as in (3.12) with p=2. A choice of £ satisfying {3.23) is
possible whenever Fine? 0, for some i, f, u( =1, 2 }—a condition which holds
in many models arising in practice. For example, under the univariate nor-
mal or Cauchy location-scale models, it can be shown that 75, # 0, so that
(3.23) holds, in particular, if £, equals 7.../q3, and £, is sufficiently close
to 0. Extensions to multivariate location-scale models can be treated in a
similar but admittedly more complex manner.

4, An Extension oF THEOREM 2.1

For our study of second-order Pitman closeness, instead of using the per
observation Fisher information matrix #(8) (=.#) as a Riemannian
metric, we may as well use a p x p matrix .#(8) ( =_#) which is pd. for
each 8=@®. Then, under the setup of Theorem 21 and with the same
notational system, one can show that for each 8 with ¢(8) <0,

PA(T*—0) .#(T*—0)<(T,—0) .4(T,—0)}
=14+ (2zn) "2 {(0) FH(0)] 7| L1d0) FH(0)] [0(0) . HH(0))]
+0) . FH(0) | d(0) .Ad¥0) + el LaBO))

poopoB
+ 3 2 a0 IS, 4+ (12) 8,0}

Jum] foem] ape=]
L . =
—i L X X 4.005,00)5,(0)5,,—0) .4B0O)H0)
Jom] fem]l apeml]
+o(n 12, (4.1)

where §(0) =(¢,(0). ... §,(0)) =.7 . 4¢(0).
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As before, under the formulated criterion of second-order Pitman close-
ness and for a given .#. this generalized version of Theorem 2.1 can be
useful in comparing estimators as well as in fnding estimators superior 1o
the MLE @, which is, generally, only first-order efficient with reference to
specific models. Thus, under a symmetric location model (eg., the mulii-
variate normal or Cauchy location models), where .# is free {rom the
location parameter 8 and

@=5, . 8)=5

wl8)=0 Vifu=1,..p (4.2)

JJ'Jr 1 jw

if & is taken as the pxp identity matrix f, then proceeding as in the
derivation of (2.24) and (2.26), it can be shown from the above generalized
version that T*=0—n 'h{1 +@.7.0) ' .#0 will be superior to T, =0
with regard to second-order Pitman clﬂsenﬂs provided p = 2 and the con-
stant A, free from n, satisfies: 0 < h=2(p— 1), Of course, with reference to
the first order Pitman closeness, this dominance holds even for a bigger
class of SR estimators; we may refer to Sen [13] for some details.

APPENDIX: Bounps For THE CHI SQUARE MEDIAN

Our main interest centers around the inequalities in (3.2}, and we estab-
lish these bounds by invoking some simple properties of the chi square
density. First, by an appeal to the mean-median-mode | MMM J-inequality
for (noncentral) chi square distributions (viz., Sen [12] it follows in par-
ticular that

r,l.'ra,::ﬂ;(f,l=p forevery p=2. (5.1)
Let Guix)=P{<x}=[igsp)dy, x=0, where gl-) stands for the
density function of /‘,, 1hen by partial integration, we have
Golx)=Gppalx)+2g, 1 a(x) forevery pzl.xz0 (5.2)
Therefore,

G, alp+ 1) =[G, alp+ 1) =G, o p— 1]+ Glp—1)—2g,,:(p—1)
=G {p—1)+ g, alp—1

(|"""

x<|| [Hpr ZE-T:I."IEP rJ[F ll—l]dt?r
v 1 J
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Note that g, .- ), for p= 1, is strongly unimodal with mode equal to p, and
hence, writing x=p+u, ue{ —1, +1), we have

Eooalp+u)g, ol p—u)=exp 7( —u—;::ln[[p—uil.-'[p+ )
=expid, (u)}, say. (5.4)

Then A4,(0)=0, and for every ue(—1, +1), (ddu) A (u)=1u(p” —u’)
= 0. Therefore, 4,(u) is positive for every we(0), 1), and hence, for every
xe(p—Lp+l),

Epi ZEI ’."Igprl[.p_ 1) =&p -2[P+ [I—P”.I'Igpr Z[P_ 1) = 1'-' [55'
s0 that from (3.3) and {3.5), we have
G, {p+1)=>Gy(p—1) forevery pzl. (5.6)

On the other han-:i by virtue of the reproductive property of *{ar (in terms
of independent ] variables), we have by the central limit theorem,

lim G, .(p+1)=1 (5.7)

f -
Therefore, the monotonicity in (5.6) and the limit in (5.7} imply that
Gp[p—lllé_l for every pz= 1. (5.8)
Note that for p=1, G (p—1)=G,(0)=0, so that we have a strict
inequality in (3.8). Since for every p=2 p<2(p—1) and G,(.) is
absolutely continuous, we conclude from (5.8) and (5.1) that (3.2) holds,
This completes the proof of (3.2). In passing, we may note that il (i)
stands for the median of a noncentral chi square distribution with p DF

and noncentrality parameter £ =0, then by the subadditive property of
(4) (viz., Sen [12]). we have

b S, +4  Viz0p=l. (59)

Thus, the upper bound in (3.2) extends directly to the noncentral case.
However, it remains open o resolve whether

Wli)is 2p—1+4  Wiz0,p=1: (5.10)

the bounds given in Sen [12] may not suffice for the last inequality.



68 GHOSH, MUKERIEE, AND SEN

ACKNOWLEDGMENTS

The authors are grateful to Professor Anirban  Dasgupta, for suggesting using a
moneliniculy property Lo establish the first inequality in (3.2) and to both the reviewers [or
their uselul comments on the original drafl.

R EFEREN CES

L Awari, 5 (19851 Differential-Geometrical Methods in Statistics. Springer-Verlag, MNew

York.

BuatracHarya, R N, anp Guos, 1. K. (19781 On the validity of formal Edgeworth

expansions. Amn. Statist, 6 434451

L Dascuera, AL (19860 Simulaneous estimation in the multiparameter gamma distribution
under weighted quadratic loss. dmn. Stavise. 14 206-219.

4. Guosd, J. K. (1940 Higher Qrder Asvmpiotice. NSF-CBMS Conlerence Series in Prob-
ability and Statstcs, Vol 4. Institute Math. Statist, Havward, CA

5 Guosd, 1K Sy POK anp Mukmues, B9 ), Second-order Pitman coseness and
Pitman admissibility. Ann Starise. 22 11331141,

6, GHosH, . K., anp Sivia, B KL (198110 A necessary and suffident condition for second-
order admissibility with applications to Berksons bicassay problem. Ann. Statist. 9
13341338,

7. Keating, J. F., Mason, B L., anp Sy, P KL (1993). Pitman's Measwre of Claseness: A
Comparizon of Statistical Extimators. SLAM, Philadelphia

B PranzaGL, J., anD WEFELMEVER, W. {1978). A third-order optimum property of the
maximum lkelthood estmator. J. Multivariqte Anal. 8 1-29.

9 Rao, C. R (19811 Some comments on the minimum mean square error as a crilerion
in estimation. In Statistics and Related Topics (M. Csorgo ef al, Bds), pp. 123-143
Morth-Holland, Amsterdam.

10, Sen, PO KL (1986). Are BAN estimators the Pitman closest ones too? Sankhva Ser. 4 48
51-58.

1L Sew, PoKL (19861 On the asymptotic distributional risks of shrinkage and preliminary
test versions of maximum likelihood estimators. Sankhyva Ser. A 48 354371

L2 Sew, Po KL (1989) The mean-median-mode inequality and non-central chi-=square distribu-
tons, Sankhva Ser. A 51 106-114.

LE Sew, PoOK. (1994). lsomorphism of quadratic norm and PC ordering of estimators
admitting first order AN representation. Sankhva Ser. A 56 4654746,

14 Sen, P, K, Kupokawa, T., anp Sacm, A K. M. E. {1989) The Stein paradox in the
sense of the Pitman measure of closeness. Ann. Swarise 17 13751386

15 Staw, C.(1956). Inadmissibility of the usual estimator of the mean of a multivariate
normal distribution. In Procesdings Third Berkelev Symp. Math. Statist. Prabahility,
Vol I, pp. 197-206

=4



	1.jpg
	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg
	9.jpg
	10.jpg
	11.jpg
	12.jpg
	13.jpg
	14.jpg
	15.jpg
	16.jpg
	17.jpg

