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Abstract

A variety of pseudo-Bayes factors have been proposed. based on using part of the data to update an
improper prior, and using the remainder of the data to compute the Bayes factor. A number of these
approaches are of a bootstrap or cross-validation nature, with some type of average being taken over the
data used for updating. Asymptotic characteristics of a number of these pseudo-Bayes factors are discussed,
and it is shown how many behave quite differently from ordinary Bayes factors. It is also shown that
arguments of predictive optimality, based on simply inserting the empirical distribution in place of the ‘true
predictive distribution’, can be misleading; the particular example of this that is studied is the argument
given in Bernardo and Smith [1994. Bayesian Theory. Wiley, Chichester] to the effect that the geometric
intrinsic Bayes factor has an optimal predictive property.

Kevwords: Bayes Factor; Training sample

1. Introduction

Baves rules for model selection in a prediction problem with squared error loss and their
asymptotic properties are studied in Barbieri and Berger (2004), Mukhopadhyay (2000) and
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Berger et al. (2003). Prediction may be interpreted in the same sense as Akaike, that is, one tries to
predict a future replication of the given data. Possible other approaches to prediction may involve
use of other loss functions, for example the Kullback—Leibler logarithmic loss function. Also, one
may not want to predict a full replicate of the entire given data. A general formulation under
squared error s given in Barbieri and Berger (2004). If one has » 1.1.d. observations under models
of fixed dimensions, and wants to predict the next observation with a loganthmic loss, then
Rissanen (1986) shows that the optimal Bavesian model is asymptotically (as n — oc) the same as
that obtained by maximizing BIC.

An interesting but somewhat different approach, based on cross validation, 15 due to Aitkin
(1991), Geisser (1975) and Gelfand and Dey (1994). We are given a data set, X' = (xy,...,x,). The
data are subdivided into K sets §;, j=1,..., K. Let X be the x;i’s in §; unde_,»;f be the x;'s not
in S;. If § is a singleton {x;}, one writes x; and X_; for X5 and X _g. The rule is to choose the
model that maximizes the predictive probability

K
[T antXs X ). (1)

j=I

where ¢, is the posterior predictive density for model M defined as

g(X5|X_s)= 1 _foXx}lEM }i’fﬂr{EM |X‘-“}}dEM‘
where f; is the likelihood and my; is the prior under model M.

In this paper, we study some aspects of model selection based on predictive probability. In the
first part, namely Sections 2 and 3, we rigorously explore a suggestion of Bernardo and Smith
(1994) (also appearing in the discussion of O'Hagan (1995)) concerning replacement of the ‘true
predictive’ by an empirical estimate; we show that the error arising from this replacement can be
too large for the asymptotic approximation of Bemardo and Smith (1994) to be valid. In the
second part of the paper, namely Sections 4 and 5, asymptotic characteristics of a number of
cross-validatory Bayes factors are discussed, and it is shown how many behave quite differently
from ordinary Bayes factors; in particular, they can even be inconsistent under the simple null
maodel, M.

QOur basic paradigm consists of two models, M, and M, for predicting the future observation
¥, with predictive densities g,(y| X) = g(y| X, M;),i =1,2. The true model g, assumes an
exchangeable distribution for (X |, X5....,X,. ¥). A Bayes factor proposed in Berger and Pericchi
(1995}, the geometric intrinsic Bayes factor (GIBF), is given as

l/n
T (X _lx)
GIBFy = {H qle_r-lx:-}] ;

i=l1
This was originally introduced as a device for developing Bayes factors with improper priors; such
priors cannot be used directly because they involve an arbitrary multiplicative constant. Later, in
Berger and Pericchi (1997), the GIBF is shown to correspond to an actual Bayes factor with
respect to what is called a proper ‘intrinsic prior’, under some conditions. In the following section
we discuss the predictive interpretation of the GIBF given by Bernardo and Smith (1994).
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The range of Bayes factors studied in Berger and Pericchi (1996) and Gelfand and Dey (1994)
cover the two extremes (minimal and maximal) of the size of the training sample. In view of the
predictive approach of these Bayes factors, as explained in the preceding paragraph, they are
referred to as predictive Bayes factors. In Section 4 we give a comparative study of these Baves
factors.

2. The predictive approach of Bemardo and Smith

We start with the motivation of a cnterion due to Gelfand and Dey (1994) which takes the
predictive density, as in Eq. (1), by conditioning on a training sample of size n — 1. The
logarithmic utility function arises from comparing the Kullback—Leibler divergence of the two
models from the true model g, as follows. M is chosen if

9401 %) a4 X)
g\ 2515 1 X)dy = | log| ——== | X)dy=0
free @01 | N DY [ 1ot wOTT | 101 DG

; g2y X) =
ie., [lﬂg 4010 g4y X)dy=0. (2)

But evaluation of the above is not possible, since g 4 15 not specified. In the case of exchangeable
x;'s, a Monte Carlo approximation of the LHS of Eq. (2), suggested in Bernardo and Smith
(1994), 15

N ‘?‘s{\,rlx—,r}] 1
- lo log BF,[ i
oy . thﬂx—:} Z B ek ok o

Thus the selection criterion chooses Ms if

HBFI[[—T;,X-;]}], [4}
i=l

which is one of the criterion proposed by Gelfand and Dey (1994). In the sequel, we denote the
LHS of (4) as BFSP.

The transition from (2) to (3) is not easily justified for two reasons. In (2), X has dimension n,
while in (3) the prediction is based on (1 — 1) dimensional x’s. StELD[ldl}f., in Eq. (2). X 15 held fixed,
whereas in (3) one seems to use the empirical distribution of the x's.

For these reasons, it seems more reasonable to replace X' by X'x where X5 denotes a subset of
size 5 of the whole data set X and to replace (2) by an expectation with respect to the empirical
distribution function of X 5. Then the criterion would become: choose M if

g X _5]| X 5) o _
,.,. Zf (fth Xs }) q (X _s|Xs)dX _s=0.
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A Monte Carlo approximation to this expression yields the GIBF with training sample of size s.
The critennon becomes: choose M if

H BF» (X _g, Xg)= 1.
5 subsets

If one starts with a training sample of size <€ n, it 15 not reasonable to talk of predicting a large
data set of dimension (17 — 5) based on a small segment of length 5. (For s close to n, the prediction
motivation 1s more reasonable.) Thus, for s< n, Bernardo and Smith (1994 ) refer to the criterion
as a measure of “‘fidelity to the data’.

In the next section, we examine the accuracy of the above approximation and the extent to
which it clarifies the derivation or significance of the GIBF.

3. Calculations with a general likelihood

Consider the GIBF with a training sample of size s = 1. We are concemed with the accuracy
with which (3) approximates (2) for, say, M. As explained in the previous section, we begin by
replacing (2) with a further expectation with respect to the empirical distribution function of x.
Denote y, = (y,..., ;). Then, following the suggestion of Bemardo and Smith (1994),

'I "
[ log qi(Vi—1 Mg 4 (Vi—ny ) dyg_yy = ”Z log q(x_i|xi), (5)
. i=l

where = simply means that the approximation is good in some sense. Here y,,_,, denotes a future
observation of size # — 1, independent of the data, and x is the training sample, assumed to vield a
proper posterior; specifically, suppose g, = [ f,(x)m(df), where m(f) is the prior and [ f,(x)n(df) <oc.
Making a Laplace approximation to the RHS of Eq. (5) (which is easy to justify rigorously) vields

Iy J Ll.f alx;)m(dd)
e ;ZIDE{ [ falx:)m(de)

=l
~2
— |Dg["’?r}+ th’gfu{‘!}_ |Dg( Z{. log f—n[h})
ez = s
e _Zlng [f”n,}mdﬂH log 7(d) + op(1), (6)

where f is the MLE and fi, is the true value.
Assume that g, = f, . Then, the LHS of Eq. (5) 1s Ey(log g,(y;,_y,x)). A similar Laplace

approximation of log g,(y,,_,|x) yields

n—1
log q,(y,_ylx) = —lﬂ'gfjﬂ} + Z log fg{};} + log f;(x) — log f f gl )mid )

i=

, L@’ log f3(n) @ log f(x)
- alog(— Z B

Py P ) + log n(t) + o4(1). (7T

=1
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The derivations of (6) and (7) are done by simple Laplace integration under the assumption of
boundedness of the third denvative of the log likelihood and boundedness of o',

The LHS of Eq. (5) is the expectation of Eq. (7) for fixed x. We now integrate x w.r.t. f, . From
the structure of {(6) and (7). the LHS and RHS of (5) have the same expectation, with a difference
of order o(1) if the term on LHS of (5) 1s integrated out as mentioned above. But, although their
expectations agree up to o(1), the LHS and RHS of Eq. (5) do not agree up to op(1). It is easy to
see that the difference between RHS and LHS of (5) can be written as a sum of # (or n — 1) 1.1.d.
random variables and their mean. This difference is O,(,/n) by the central limit theorem. So the
difference between the target quantity, namely LHS of ( 5) and the approximation, namely RHS of
(5), 15 far from being negligible.

The log(GIBF) may be thought of as a refinement to BIC, as log{GIBF) differs from BIC by
Op(1). So, any attempt to prove a stronger desirable property possessed by log(GIBF) but not
BIC, must display log{GIBF) as an approximation to some desirable target up to op(1). The target
(2) fails this test. It is interesting that the expectation of log( GIBF) matches the expectation of the
log of the target quantity (LHS of 5) up to O(1), but this does not result in an implementable
procedure in general.

If one adds a null model and calculates the Bayes factor, the conclusion does not change. The
next section demonstrates an example showing this.

3.1 Example
A simple example will demonstrate that the phenomenon also holds for s = n — 1. Suppose

Xy ooy Xn LN[H, 1) and that we are companng the models M : 0 = 0and Ms: 0 2 R, m:(0) = 1 for
all #. Easy algebra shows that

Zlog myx)x ,}_——Ingfuﬂ}——z i
}Zh, x5 ——Ing( ])

So the Bayes factor of Gelfand and Dey (1994) is given by

1 5 |
log BFSP = ;f jm_”Zfﬁ:f—f}-—gIog( +—]) (8)

Suppose y =(y,...,¥,) are independent future observations, x=(x, X2, ...,x1) are all
independent with distribution given by the above models. Suppose g , 1s the true unknown density
N(B,1), 0 unknown. Then, using m(0| x) = N(Z,1/(n — 1}) as prior, we have as target,

0 qif{ £4 =nE, (lo Vi — 1= =572
En0 1 W\ T e

) 1

] Hﬁq.!(; {"rl

-7} - e

3 log ma(xilx_) = — 5 log(2

Eff A
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Thus the difference between the approximation (8) and the target quantity (9) 15 given by

1 1. ) . .1_”_] o~ 2
{{”_”th—j} —nf +n.a%{;,l ——i x}}}

1 i A : :
{{n s Z[If — Xy —nX" +nk, () —(n— 1)E; (» — _{-}-}

{(1 +DP(J—@)) —n(ﬂ+ :_—])_-F-H‘fﬂ:-le— 1) — (n - l}ﬁ}

- 2{ =257+ )
= O,(+/h).

Hence the apparent motivation or justification given by Bernardo and Smith (1994) does not
hold. The above argument will go through for any fixed s but, for large 5 close to n, replacing (2)
by an expectation with respect to the empirical distribution of X s cannot be justified.

A=

1
2
1
2

i

Il

bR -

4. Comparative study of different Bayes factors

How do these heuristic BF's compare with each other? There seem to be at least two different
ways of doing this. The first method, due to Berger and Pencchi (1996), is to compare the intrinsic
priors, m, corresponding to each BF under consideration; an intrinsic prior is a prior distribution
such that the Bayes factor with respect to that prior differs from the ad hoc Bayes factor by oy(1).
The second method is to study consistency of the BF's by exhibiting their logarthms as penalized
likelihoods and then compare the penalties as well as their impact on consistency. We will follow
the second route here, for a special case in which exact algebraic expressions can be derived.

Suppose x;~N(0, 1) and O~na(f) =1, i = 1,...,n. In this section we denote it as model M.
Denoting the subset of size 5, used to update the prior, by X5 and the remaining data set by X _g,
we have

Vs 1 s lsn—s o2
m(X _s|Xs) = mﬂw = i};ﬁm — 38y —5——/— (Fs—%s) . (10)
Thus the geometric average of m(X _5|X 5), denoted by m""[XL is given by

: I
log m"{,}:} = = Z log m(X _5|X5)
Xs

(5)

1 — 5y & s H—F 1 7
=(_§(”_])Z(:ﬁ—_ﬂ o o Ingfﬁﬂ})—ﬁlng;, (11)

i=

where the first term is the maximized likelihood and the second term, namely log(n/s), can be
interpreted as a penalty. The size of the updating sample, X5, can be varied from 1 ton — 1. The
divisor {‘:} i5 not used by Gelfand and Dey (1994) in their definition of the predictive Baves factor.
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One may think of the predictive Bayes factor as a proxy to an unknown product likelihood; the
lack of the divisor keeps the orders of BF“Y and Bayes factors based on a subjective or
noninformative prior comparable.

It 1s interesting to compare the penalties arising froms=land s =n— 1. Fors = 1, 1.e., in the
case of the GIBF,

1 »
mix_;|x) = mﬂ}m_—n,ﬂ‘ip{ ;f\; .‘k_;}_ { —f = -Tr'}_}

and the geometnc average of the above 1s given by

log m""{_};} = —; {Z{x,- —&+n- I} log(2m) + log n}_

The corresponding Baves factor of M. against the simpler model with f = 0, 1s given by

log BF?=[= —%Z{x i o +|Dgn+—2x-

ni — x; 2 + logn.

The other extreme, used by Gelfand and Dey (1994), 15 to update the prior with s=n—1
observations. The marginal density of X, under model M, denoted m“P, simplifies to

log mSl(x) = Z log .if:rG”[x,-|x_,-}

1 n
S > (i - 7. 2
{n—l (x; 1} 4+ n log(2 i’r}-l'—nlng( ])} (12)
leading to the Baves factor for M against the simpler model with € = 0,

2 1 n
I BF(lU = B _fz — __‘.’ I .
og s=n—1 2(n— 1) 2{‘?}_]}2 518 Dg(ﬂ—])

Thus the Bayes factor with m©® acts like a penalized likelihood criterion with a penalty = 1 for
large n, whereas the marginal computed by the GIBF method gives a log n penalty. The constant
penalty of m©Y will give inconsistency under the null. This can be shown as follows. In the above
normal set up, the difference of the maximized loglikelihoods of the two models is given by
A% =1ni’. For any constant penalty ¢, the probability of rejecting the null under the null is
PH,,{:;'_‘I:::- 2¢), which is positive since ./n% has a fixed normal distribution under the null model.

Both methods are consistent under the simpler model M,. For GIBF it follows from the
consistency of BIC and the fact that GIBF differ from BIC by Op(1). BF“" has lower penalty
than GIBF and hence selects M| more often. Hence consistency of GIBF under M, implies that
of the BF“Y. _

In general, the constant penalty ansing in the case of m“" can be chosen to be any other
constant simply by making the size of the updating sample proportional to n. From Eq. (10), an
updating sample of size 5 = [nz] for « € (0, 1) induces a penalty of magnitude log(1 /).

Remark 4.1. The phenomenon of constant penalty also occurs in the posterior predictive density
of Aitkin, 1991, giving a %Iog 2 penalty.
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We can get some further insight into inconsistency of some of the predictive Bayes factors as
follows.

The predictive Bayes factor uses a fraction of the data to update the prior and uses the
remaining part to compute the Baves factor. So an adjustment 1s needed to bring them to the same
scale as a BF with a prior 7 that uses the whole data to compute the Bayes factor. To see what
adjustment is needed, consider the logarithms of the marginal of the simpler model M. A simple
termwise comparison shows, for the marginal under M, with updating sample size s, that
log mY(X) = [(n — 5)/n] log(m,), where my; is the marginal of the simpler model under some
prior m. This suggests that one should adjust the predictive Bayes factor by multiplying by
n/(n— s). That this adjustment makes sense, is clear from the following two special cases leading
to GIBF and the BF¢P:

n

BFY ~GIBF

n—1
= BFSD,

With this adjustment, one obtains the log of the predictive Bayes factor, BF®P, as equal to
%n_f{ up to O(l). It is easy to show, using the last part of Section 5, that this can be
approximated, up to Oy(1), by a Bayes factor with respect to a uniform prior supported on
f = (¢//n). As indicated earlier, this leads to inconsistency under the simpler model. When sis a
constant, free of n, as for the GIBF, then this can similarly be viewed as an approximation to the
Baves factor when 15 an uniform prior on # % ¢. This prior is much less peaked than the prior
associated with s = [nx] and, hence, more acceptable as a default prior. This also leads to
consistency. To this extent, the GIBF seems more acceptable intuitively as a default Bayes method
than the Bayves factors proposed in Gelfand and Dey (1994).

nBFY

s=n—1

5. Calculations

Proof of Eq. (11). From Eq. (10),

1 3 s — 4
log m(X_5|Xs5) = —;{Zl{x,- - 35y 4+ |Dge) + (n — .r}ng{Err}} + 'Ff-'fn ';}[.‘E__u; — Xg).

S

1 ; s 5l —5) >
EZ{;EM—EJ} +— {.T__;;—_f_.,-}}_

Xs

Olx) =

Then ((x)is a quadratic form in (xy,...,x,) that 1s symmetric with respect to permutations of x.
This implies that

"

Q[l} = Z\f + h Z.‘L’j.‘k’j.

i=l i
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Also, Ql{_};} =0 for x; = x» = - - = x,, = d(say) implies
nmfz-t—hn{n— l}d2=ﬂ=}-h=—ni I
Therefore,
" 5 ] n :
Q{_};} = a(z_x; S Zxr-x,-) = a”f i Z{x" _x}z_ (13)
=1 i =1
MNow,
1 . 4 s{n—15) 4 sin—s5) 4 2sln—us)
X)= — X, —(n—=5x . X .- Xl o
Q{ w} {J:} e {; ‘I [n T} N + I N + I N M 5 —h}
| s (m—s)y sin—s5) 5 2s(n—ys) _ _
= ﬁ a {;_\j —— g+ = Xg— . .x‘g_‘u__»;}
1 5. 1 ) ':I{n —9).
0 {Z () () s
Xy | Xs X_ % X
—l l—l Zr’-ﬁ—n_sz v + cross products
- (%) ¥ .\'- : L h ’

-

|_.
=
R M .
=
I

n—](n—l) n—.v(n—]))
=g H e + cross products
1 5 1" 5s—1

1
) + cross products

H 1_.
=
Il

N;

T Ay
'

"

Il
N;

n—l} n 1
. 3
=i X xix; | [by (13)]
(5) (:‘:1 n—1 ; )
=8 B x—=  _3
" n n-1 =lh:_"}
H—5 n
= — (x; — XY
n—1

This imphes Eq. (11). O

3.1 Explanation of criteria with constant penalty as a Bayes factor
Suppose

xi~fg() fi=1...,n and ﬂ{ﬂ}:UniFﬂrm(ﬁ—i~ﬁ+L)_
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Also denote

id=—

1 Z 8’ log f, olx;)
n ar

Then the log marginal of x is

i
log ’”f-};} = IU‘E] anf-"ff}ﬂ{mdﬂ
i=1

n (0 — B = log fylx;
=~ log /exp{Zlog Jilx)+— Z ;‘F” )
£ i=1 =

n ﬁ+“ 1) -
= Z log f(x:i) + log |i£ / o~ 0—0){2na df}]
=l A

}m{ﬂ}dﬂ
i

2r f_]_“ Fm

= i log f4(x;) + log |i—] fwﬁ e~ F/D dﬂ]
=1 = 2{‘,_,."'?! —cja

R o D(cy/a) — D(—c /a)
= ; log f;(x;) + log [Jﬂ e ] (14}

The penalty
i [Jﬂiﬁfﬁ} - ¢[—f~.ff_!}] = {ﬂ as ¢ — 0,

2ea oo 4s € —> 0o,

Thus, by suitably adjusting the value of ¢, we can obtain any constant penalty. The highly
concentrated nature of this prior makes it somewhat undesirable from a Bayesian point of view.
In the above, if we take ¢ = ¢, and ¢, — oo, then the penalty is proportional to log ¢,. Different
choice of ¢, would produce different values of the penalty.
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