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Ahstract

We establish weak and strong posterior consistency of Gaussian process priors studied by Lenk [1988. The logistic normal
distribution for Bayesian, nonparametric, predictive densities. J. Amer. Statist. Assoc. 83 (402), 500-516] for density estimation.
Weak consistency is related to the support of a Gaussian process in the sup-norm topology which is explicitly identified for many
covariance kernels. In fact we show that this support is the space of all continuous functions when the usual covariance kernels are
chosen and an appropriate prior is used on the smoothing parameters of the covariance kernel. We then show that a large class of
Giaussian process priors achieve weak as well as strong posterior consistency (under some regularity conditions) at true densities
that are sither continious or piecewise continuous.

Keywords: Gaussian process: Logistic tronsfonmation; Nonparametric density estimation; Posterior consistency ; Sup-nonm suppart

1. Introduction

Logistic Gaussian process priors for Bayesian nonparametric density estimation were introduced and studied by
Leonard (1978) and Lenk (1988, 1991). Lenk ( 1988) showed that the posterior has an elegant descrption through a
conjugacy class of generalized logistic Gaussian processes. Different numereal approaches for caleulating the Bayes
estimate were also proposed by Lenk (1988, 1991). Compared to the Dinchlet mixtures of normals, which are cur-
rently the most popular as well as the most studied priors for densities, logistic Gaussian process priors have greater
flexibility in modeling smoothness through covarance. Somewhat different Gaussian process priors appear in the
works of Kimeldod and Wahba (1970), Wahba (1978), which relate to estimation of integrated mean square risk of
splines. See also Gu and Qiu (1993}, However, the connection of these priors with the priors of Lenk is not et fully
explored.

In this paper, we initiate a theoretical study by examining weak and strong posterior consistency of the logistic
Gaussian process prior Posterior consistency is discussed in Ghosal et al. (1999), Baron et al. (1999), Ghosh and
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Ramamoorthi (2003) ete. It is well-known that weak and strong consistency of the posterior imply weak and strong
consistency of the Bayes estimates (see Ghosh and Ramamoorthi, 2003, Proposition 4.2.1).

Our study of consistency, more specifically, Theorems 4. 1-4.6 have helped us in identifying a novel and fast way 1o
compute the posterior under a logistic Gaussian process pror. The details of this work will be reported elsewhere.

The prior is formally introduced in Section 2 for the space of densitics on a bounded interval of B, d = 1. Section
3 details the basic concepts and results about weak and strong posterior consistency. In Section 4, Theorem 4.1 relates
weak consistency of a logistic Gaussian process prior o the sup-norm support of the undedying Gaussian process. A
precise and useful characterization of this sup-norm support for a general class of Gaussian processes is obtained in
the subsequent theorems. In Section 5, we obtain sufficient conditions required for strong consistency to hold. It is
worth noting that when & = 1, conditions for strong consistency differ significantly from those in the case of d = 1.
For the higher dimensions, certain differentiability conditions of the underlying process are required and the proof
works through a different sieve, vide Van der Vaart and Wellner (1996), which first came to our notice from the paper
of Ghosal and Roy (2005).

2, Logistic Gaussian process priors

Asindicated before, we shall focus only on densities supported on a fixed bounded interval T in B for some d = 1.
Without loss of generality we take 7 = [0, 119, Denote by w +— f,, the logistic tansformation from the space of
functions on I to the space of densities (w.r.t the Lebesgue measure) on I given by,

U"IU]

frJ{f}ZW fel, (1)
whenever the integral exists.
Consider a fixed function p-) on I and a family of covariance functions {apl-. -Jbond x [ that depends on a finite
dimensional parameter §. Take a probability distribution H on the space of i, Let GP(0, o) denote the distibution of
aseparable mean zero Gaussian process on [ with covanance of -, <) Assume that,

Wi e support(H), W ~ GP0, rJIr,u}l = fb’:”"']_w'*‘]d_\- —— (2)
i)

This assumption allows us 1o model a random density f on [ in the following way:
FIW. = fusw,
W ~GPi(0, ap),
fi~H.

The process fow () realizes its values in the space of densities on [, thus inducing a prior on this space. We shall call
this a logistic Gaussian process prior and denote it by 1L

The choice of a bounded interval avoids integrability problems. In this case, (2) is tue whenever W oadmits almost
surely continuous and hence bounded sample paths under GP (0, o). Such a condition is rather easily satisfied by
many . In principle, we could define a process on an unbounded set and study the conditions required in defining
(1). In this paper we concentrate on the bounded case for technical convenience. A major effort would be required 1o
extend the results o the unbounded case.

The density fy sort of captures the central path of the process feew. This can be seen from the identity
Ellog fuew (1)) = pit) + const., whose logistic transfom s nothing but Su. This enables one Lo appropriately
elicit the parameter pin presence of prior knowledge . One default choice is ¢ = (0 which produces the uniform density
as the prior guess.

A simple way 10 choose the family o 15 the following. Let ap(-, -) be a lixed covanance function on R x R and
ket f € (RT)?. Then,

rJIrg{.\', ty=aplfis, ft), s.rel
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is a covariance function on § x I. Here, for d = 1, fix is the vector of coordinatewise products of § and 5. What makes
this formulation appealing 15 that,

o & . -

W ~GPi0, ag) = W(:)= Wai i) with Wy ~ GPgi (0, ap). (3
Hence small § results in smooth sample paths of f and large f§ produces oscillating sample paths. In other words,
f acts like a (inverted) smoothing window in this model. The base covarance kernel op determines the degree of
differentiability of the sample paths of W and can be selected appropriately to reflect prior expeclations.

3. Basics of consistency
Suppose independent observations X, ..., X, are available from a density f belonging 1o some space of densities
F _Let I be a por distribution on # . The notion of consistency of the posterior (- X, .. ., X)) at fy is formalized

by the following two definitions, which differ only in terms of the topology on # under consideration.

Definition (weak consistency). A prior [1 on # is said o achieve weak posterior consistency at fiy if for any weak
neighborhood U of fi, H{U|X,, ..., Xy ) — 1 almost surely under Pg,.

Definition (strong consistency). A prior I on # is said 1o achieve strong posterior consistency at fiy if for any
Li-neighborhood U of fiy, IHU|X,. .., Xy ) — 1 almost surely under Pg,.

For weak consistency, an elegant sufficient condition was derived in Schwartz (1965) in terms of a Kullback-Leibler
(KL} support condition on 11 and fiy. We give the details below.

Definition (KL support). Let K( f. g) denote the KL divergence | f log( f/g) between any two densities f and g. An
fo & F is said to be in the KL support of 17 if

Ve=0, If:Kifo, f)=2=0
We would use the notation fiy € KL{I) 1o mean that fj is in the KL support of {1
Theorem 3.1 (Schwartz). If fo € KL{I1), then [1 achieves weak posterior consistency at fj.
Remark. It is natural that for any kind of postedor consistency to hold, the rue f; should belong to some sort of
support of the prior. Otherwise, the posterior probability near fiy would be always zero. Theorem 3.1 says that even for

weak consistency one requires this condition in a fairly strong form, namely, fj is in the KL suppon of 1.

For strong consistency one needs more than just having fiy € KL(IT). The following theorem from Ghosal et al.
(19949, Theorem 2) gives a precise sufficient condition using metnic entropy. We first provide with the definition of this.

Definition. Let (.7 d) be a metric space. For any set & < 3 and any & = 0, the metrc cntmpfv J{a. G, d) s defined
as the logarthm of the minimum & = 1 for which there exist gy, ..., gr e Fsuchthat G C ;1 f :di fgi)=d}h

In the following we would use || - ||} to denote the L norm on the space of densities on [,
Theorem 3.2. Suppose for all & = () there exist <, b <22, ey, €1 = 0 and sets F, such that for all large n,

(a) INFS)=cre™™" and
(b) J(d, Fy. || - 1)) <=nb.

Then, Il achieves stimong posterior consistency at any fo € KL{IT).
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Remark. The assumption in Theorem 3.2 is a kind of regularity condition on the prior. It identifies a relatively small
set Fy outside which the prior puts exponentially small probability.

4. Weak consistency of logistic Gaussian process priors

We start by exploring the relationship between the processes Woand fiow inan attempt to find the KL support of 11,
The following simple theorem is crucial. In the subsequent sections, || - || s would denote the sup-norm on functions
over [

Theorem 4.1. For any two functions w i) and w2(t) on 1,

T
[+l
; — 7}-

Il
iy — wz|loe =& = " log

_.f.;:-i-u:g S

Proof. Since w2(t) — &< w{t) =w2(t) +&lorallt € I, 11 follows that,

':—Jiujt[l']-i-rﬁz[l’] {cﬂlf]—:"’jlf] {clicji[l']*r]"_&[!] "‘i'r.r = .II

and hence,

C—J:fu_.::[:]ﬂrg[:]df{fc_.::[:]+u',[:]df{cl:fu_.::[rHu:g[:] dr.
1 ') ')

Therefore,
€™ fusun (1) < fusw, (1) < € frsuy(t) V1 €1
from which the result follows easily. O

An immediate consequence of this result s that |w — w2 |lac < & implies that K{fpawg. fuews) =26 Therefore,
one can reformalate the condition of Theorem 3.1 as

Jfo= fusrwg with some wp satisfying Ye= 0 Pri|W — wqlloc =) =0 i)

However, such a representation of fi is possible only if fiy is stdetly positive on 1. The stronger form stated above
would be more useful o address fj that may touch zero at some points (see Theorem 4.6 and the remarks following it).
The reformulation given in (4) suggests that one should study the sup-norm support of the process W It is worth
pointing oul that up to this point we do not need W oto be a Gaussian process.
To obtain a precise characterization of this sup-nom support we would require the Gaussian assumption Lo a large
extent. The following theorem gives the key result in this direction.

Theorem 4.2. Define a set of functions on I as,

k
== Zﬂ;crlr_g{f‘-*, -} for some f§ € support(H), k=1, a; e R, 1

=l

and let =/ denote its sup-norm closure. Assume

(A1) 3M., m =0 such that m < aolt, 1) <M. ¥t € (R,
(A2) 3C = 0.q = Osuch that [ag(t, 1) + agis, 5) — 2ag(t, V< Clls — 1|9 Vs, 1 € (R
{A3) Foranynzlandany fy, ..., Iy € {I]?i':“}l"r, E=({og, 1500} is nonsingular

Then,

un € o = Y¥e= 0, Pri| W —wmp|lac = &) = (L
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After proving this result we have found out from a referee that the result about Gaussian processes is known. In
view of this we offer only a brief plausibility argument of the if part in the Appendix. This is the part needed for
posterior consistency. We choose o omit the plansibility argument in the less important converse direction. Full detals
are available from us on request.

Remark. Thequantity on the left-hand side of (A2) is nothing but the canonical metric d (s, £)=[Vari Wy(s) —Woi(r)] V2
on the index set induced by the process Wy ~ GP(0, gp). The Lipschitz condition in {A2) relates this metric to the
Euclidean distance on the index set. This condition produces strong bounds on the oscillations of Wy and ensures that
it admits continuous sample paths almost surely.

Remark. A number of commonly used covariance functions satisfy the assumptions stated in the above theorem. For
example, aneasy way o satisfy (A3) ford =1, iswoput agls, 1) =¢s — 1) where ¢ is the characterstic function of some
symmetric probability density. Such stationary covariance kernels can be easily generated by taking ¢ ) = expi{—h?)
ar ¢p{h) = 1/(1 + h?). For this special case of stationary ay, the condition in { A2) reduces to ' 1 — (k)= clh| This
miakes the verfication straightforward.

Theorem 4.2 underlines the necessity to understand the set . better. We would do so for some specific covariance
functions arsing from both stationary and nonstationary processes, It turns out that if support{H) = (E7)", then in
most of the cases the set .o/ equals C (/) —the set of all continuous functions on [

For the following theorems we would use the notation /5, g o emphasize the dependence of the set 7 on the
particular oy and A that define it. Theorem 4.3 deals with the case when the undedying process is & Brownian
motion with a random shift. Theorems 4.4 and 4.5 cover the broad category of stationary covariance functions like

exp{—2_ I —sil"). lf'r]._.[i{ 14 |t — 5i[%), ete.
Theorem 4.3. Supposed = | and ap(t,5) = | + minit, 5), then -'-'_fP'lal..H =C{N.

Prool. Observe that any function f; g of the form

0, t=ua,

; t—a

ffr.h{f}'zl s ast-=h, (5)
I, b=,

for some 0= g = b < 1, admits the representation,

. aolt, &) — oolt, a)
Japit) = (6)
bh—a
and that any precewise inear continuous functon f withknots at {0 =ty <= = --- =ty = 1} can be expressed as the
lmear combination

k
fin) = fli)oolto. 1) + Z{f{h‘} = Flti—)) foy (0. (T

=l

Since the collection of piecewise linear continuous functions forms a dense subset of C([1), the proof is complete. O

Theorem 4.4. Take d =1 and suppont{ H) =R". Suppose ag can be written av ap(t, ) = ¢ (1t — 5) for some continuous,
nowhere zero, svmmetric density function ¢ on B, Then o7 5, gy =C(I).

Proof. For i =0, define ¢hyix) = (1/ )i x/f) and let
k
ol g=qwit)= Zﬂ,,-(j:,»,{r,f‘-*} for some i=0, ke, g e, 7 1;. (8)
i=l
It is straightforward that /5, 5 = .o 5. Now if f = g # oy, for some continuous function g supported on [, where
fi # f2 denotes the convolution of two functions, then f € o/, This follows from the approximations given by the
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Riemann sums of the integral in the convolution. Now take any arbitrary continuous function fj on . Fix an & = 0 and
consider the function

: ; iy, (1) ot (r = 1)
= B ] LSRR i ) 9
filr) = folt) — fol }'%U o) foll) ) (9)
where fig = (18 suitably chosen o ensune that
maxi{| ], | Al =ef12. (100
Using continuity of f] we can find a d = 0 such that
WPil.f'lif}'—fl{&'}'i‘iﬁflz- (1)
|r—5|=<d
Take i = ) such that
bl
dy (x)dx 21 — e/(12M), (12)
where M =sup, ;| f1i{r)| = cc. Take f2 = fi % ¢by,. Then forany r € 1,
1
LAl — 200 = !fl{f} _./t; Srixhgy(r —-T}"llr!
| 1
= !fl {r)— ./t; Sty (t — x)dx + ./t; (filt) — frlx))gy (t —-f}'d-rl
1 1
AN (1 _./t; Pt — x) d.r) +./:; LAl — fiaedehy (it — x)dx
1
<A (1 —L dult — 1) d_r)
+f [ fule) = fila)ehy it — x)dx
1N —a 1 44]
+f Al — frlxedehy i — x)dx (13}
Ir[r—ad 1 +aF

The first term of { 13) is smaller than £/6 by (10) forr € [0, 8) U{l — §, 1] and by (12) for ¢ € [4, | — d]. The second
and the third terms of {13) are always less than £/6 by (11) and (12), respectively. From this the result follows. O

Theorem 4.5. Suppose d = |, supporti H) = (R ¥ and

1 2 el
oo(t.s) =y (11,500 (12, 52) - 3 (ta.54) (14)
Jor some functions a:;.]{r, sholsi=d,on[0, 1]x [0, 1]. Assume 'E"fn'” g = C[0, 1] for each i where H; is the marginal
LU

distribution of f; under H. Then o 5, 5y = C(I).

Prool. By Stone-Weierstrass theorem, the collection of functions

n

#H=1flh, ..., i) = ZEHUL}'HMUI}""H.h.f{fg.f}' tnzl, gy e CM0 1) (15)
k=l

forms a dense setin C{[1). But, since support{H) = (RHY, g, g 1tselfl 15 8 dense subset of # and hence the result
follows. [

Remark. 1t is claimed in Lenk (1988) that for any Z ~ GP, (0, 7) and any integrable function g on I, Pr{|Z —
gl = &) =0 foralle = 0. Our results in this section suggest that this is not true in general but holds for many commonly
used covariance kernels.
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A ot can be gained whenever the sup-norm support of W is identified as C(7). The following theorem implies
that for any such logistic Gaussian process prior {1, any continuous density function fiy belongs to the KL support. In
particular, this covers the case when jfiy = Betal(a, b) with a, b= 1. The proof needs Theorem 4.1 in its full force since
the representation (4) may not always apply.

Theorem 4.6. Suppose oy satisfies the assumptions (A1)—~(A3) and that .« = C(I). Also assume that ji(-) is continuous.
Then any continuous density function fo on I satisfies fy € KL{I1).
Proof. For any & = 0 take § = 0 such that log{ 1 + 8) = &/2. Define fj as

oo Jole) +8
fiiny = g tel.

Then f is continuous and strictly positive on I, Therefore, w(-) = log f1(-) — pi-) € o . Observe that,

K (fo. fusw) = ffm log £ fﬁ]f” e 1)

i) Juswir)
Solt) f Suzun (1) Sy
+ log( 1+ 8) + 1o, dr= - + loy
f.fn'[f}' O +E og( ) Jotr) log ———— B " f;r+1+ !m

Therefore, by Theorem 4.1,

fjr ru" £ £
— | = — ] o = = | =
_-..-Fr(||'l-'l-" w || {4) 0

Prikifo. fusw) <) = PT("”E
_.|F,::+1-'Ir Il s =

since w € o7. This proves the result as & = (0 is arbitrary. [

Remark. A similar result can be proved when fi is 2 uniform density on some compact subinterval K of I. Here
again, for any &£ > (), we construct a strctly positive continuous density f on I for which K{ fy, f1) =g/2. But the
construction is a little more involved and uses Urysohn’s lemma to obtain an intermediate f; that is continuous and
close w fy.

Remark. The above two results can be extended o the case when fi is a finite mixture of densities that are either
continuous on § or uniform on a subinterval. Such finite mixtures cover the large class of piecewise continuous densitics
ond whend = 1.

5. Strong consistency of logistic Gaussian process priors

For strong consistency results, we simply produce F,;'s that satisfy the regularity condition of Theorem 3.2, When
d =1 wewoulduse Fyy ={fpaw : W £ 5,} where,

Sp=qw: sup |wis) —wir)]<gf12
li—r|=1/n

That such F,;’s satisfy the requirements of Theorem 3.2 can be assessed using the following result.

Theorem 5.1. Let oy satisfy the assumptions ( A1)+ A3) and suppose Prif} = n1/?) < exp{—cn) for all large n for some
Jixed o =0 Then Je, Fy. || - 1) < nb and H{Ffr'}l < Aexpl{—na) for some A, a, b,

Prool. A simple calculation along the line of Theorem 4.1 shows that ||w — wallae =&/4 = || fusw, — fuswsll =2
for small enough & = (0. Therefore, Sz, Fy, || - 1) = Flefd, S | - )
Fixannz1andlett; = j/n, 0= j< n Define,

Ay ={m=imp,..., my) € ' img =0, Imjp —mjl=l, j=0}
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and let €, denote the set of w such that wi{0) =0, wit;) = m;e/12 for 1< j<n for some m € A, and w is
lincar m every [f;, f;11 ] A standard argument produces that C, forms an g/4-net of §,;. From this we conclude
Hefd, S || - lacd= log(#C,) = log(#4, ) = nlog 3. Note that the constant log 3 could be changed to any constant b
by redefining F,, with a suitable scaling on n.

To prove the other statement, note that it suffices to bound the probability of F° uniformly over ff < n9/2. It can be
argued using Borell's inequality (also see Van der Vaart and Wellner, 1996, Proposition A.27) that for any ff < n9/2,

F‘r( sup  [Wis) — wl[r};-;-a,rlzgrﬁ) < Aexp(—a'fa))
ls—t|=1/n
from some constants A, o’ whene

o= sup E(W(s)— Wi <(cp/ni*<c?/n.

ls—f|=1/n

From this the result follows easily. O

Remark. For d = 1 the sieve 8, defined above fails as its entropy shoots up to n?. But one can construct a smaller
sieve with large probability using existence of higher order derivatives of W. We briefly overview the structure of these
sieves as presented in Ghosal et al. (2003). Suppose there are numbers fi,, M, — oo and a positive integer 2 such that,

Pr (ma_ix = ﬁ”) <e ™ for some ¢ > (),
4
5 By . ' £
MJ;JE’;'I Zhn and Mfr' = o(n)  for some by =0

and for each ¢ € I, the function ogir, -) admits continuous partial derivatives up to order 22 + 2. Define,

S =1 | DN w) ]| = My, lg| < a}

where forg € {0, 1,2, ..., |g] =3 g; and ¥ (w) stands for the partial derivative (olel jodyy .. 8% g ywin, .., ).
Then 5, satisfies,
TG, Sn |- loc) SKME 8%, Pr(W ¢ S,) < Ae™ (16)

for some K, A, b
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Appendix A

A plawsibifity argument for the if part of Theorem 4.2: To keep the argument simple we only consider the case wy € .o,
MNote that one can write such a wy as wy = Zf:l ajop (17, ) for some k=1, a; € .47 € 1 and fi) € support{ H). It
follows from the representation (3), the assumption { A2) on o and the fact that f; € support{H), that it is enough 1o
prove Pri | W — wy |l < &|ffg) = 0.

First, choosea finegrid {r, ..., ty }covering I that includes the points +*. The prior probability of W and wy differing
by less than £ at these grnid points s positive by (A3).
The conditional distribution of W given W, ={W{n),. .., Wit,, 1) is aGaussian process with covariance free of W,

Let pyy, denote the mean of this conditional process. Then, for a fine grid, the oscillations of the centered conditional
process Wo— gy can be suitably bounded. This makes the conditional process pul positive mass on sample paths
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which are within & distance of py, . The proof of this is somewhat technical, drawing upon the theory of a.s. continuity
and boundedness of sample paths for a GP (see Adler, 1990 and Van der Vaart and Wellner, 1996, Corollary 2.2.8).

It remains to handle the conditional mean fw,, when the vector Wy, 15 close 10wy = (wnif ), ..., wil iy 1) 1 this
function is Lipschite, then the condition |Wir) — wyir)| = £ at the grid points and the fineness of the grid would ensure
| #ty,, — wollae =< . Unfortunately, the Lipschitz property is hard to show since the conditional mean involves inverse
of a high dimensional matrix. It is at this point that the assumption wy € .2 comes handy. An easy direet caleulation
shows that

oy ) = wpl-) (AL}

and hence its Lipschit property follows from that of wy (which is Lipschitz by (A2), (A3)). A little more work shows
that Hy, 1s Lipschitz when max ; [Wit; ) — wyli;)] <&
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