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Ahstract

In this paper, we consider the classification problem when the predictors are multivariate binary random variables. Variables are
mid eled as independent, but not necessarily identical, Bernoulli. A triangular array for parameters, l{p[‘{].. EE ;J[l‘:',]. ,,'J,l,‘f].. e ,.'J._l,“?}.
is assumed to allow parameters to change and the number of the variables, d, to increase for adopting more flexible models as the
sample size, i, increases. Our results are obtained under moderate assumptions on the triangular array of the probability vectors.
We use maximum likelihood estimators for the parameters and plug them into the Bayes classifier. This is a plug-in classifier, a
sort of objective Baves rule. Itis shown in Wilbur et al. [2002. Variable selection in high-dimensional multivariate binary data with
application to the analysis of microbial DNA fingerprints. Biometrics 58, 378-380] via simulations that the plug-in rule classifies
quite well even when the assumption of independence is violated. The main interest in this paper is in the complex case of d /0" — ¢
for some v = 0 and ¢ = O for which very little is known. Using linearity of the plug-inrule, we show its persistence, a generalization of
the notion of consistency, when the variance of the plug-in rule or a quantity measuring signal to noise ratio is divergent; otherwise
we show there exists an example of non-persistence of the plug-in rule. In case of non-persistence, we introduce the notion of
sparsity and overcome non- persistence by selecting a subset of the variables. This shows why a variable selection procedure may
be effective especially for contemporary practical problems with high dimensional data [Wilbur et al., 2002, Variable selection in
high-dimensional multivariate binary data with application to the analysis of microbial DNA fingerprints. Biometrics 58, 378-386].

Keywords : Persistence: Triangular amay: High dimensional multivariate binary data; Plug-in mle: Sparsity

1. Introduction

In classical asympiotics, the model and the dimension of the parameter space are held fixed while the sample size n
tends 1o infinity. If the true value of the parameter is also beld fixed, one may wish to know if an estimate is consistent,
Le., converges o the rue value in some sense. However, in many cases it may be more realistic o assume the model
becomes more flexible and so increasingly complex as the sample size increases. To realize such a situation one may
consider & tdangular aray of d-dimensional random vectors (X, ..., Xighi b=y n with & depending on n.
In this situation, the true value would also depend on n. Some of the most significant results in the context of linear
regression or exponential families are Huber (1973), Portnoy ( 1984, 1985) and Greenshiein and Ritov (2004 ). Sufficient
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conditions for zero misclassification probability in Bayesian discrimination with infinitely many normal or Bernoulli
random variables is reported in Dawid and Fang (1992) and Fang and Dawid (1993). High dimensional discrimination
15 also considered m Ge and Simpson (19985, but it 1s considered that the Bayes emor converges 1o zem. Recently,
Bickel and Levina (2004) consider a situation where the dimension o 15 bigger than the sample size noand investigate
the case that the Bayes error does not tends 1o zero. Greenshtein and Ritov (2004) consider larger number of variables
than the sample size, but showed the order of best subset of variables is at most o(n / log n).

Independence is a strong assumptlion but there are both practical and theoretical reasons for making this assumption.
According 1o our microbiologist colleagues, assuming independence is a realistic assumption in microbial fingerprint
analysis (Wilburet al., 2002). Moreover, simulations in Wilbur et al. (2002) show that even under dependence the linear
classifier obtained under independence classifies well. Further experimental support comes from bacterial wxonomy
(Gyllenberg and Koski, 2001 ) and medical diagnosis. Choosing independence may also be thought of as an application
of parsimony in model selection when we sometimes prefer a simple but false model o the true complex model.

In problems of this kind, the Bayes rule is a linear classifier if the true probability model is known. In Devroye
etal. {1996), it is shown that the empirical risk minimizer among linear mles attains the Bayes error asymptotically if
d=o(n/logn).

There are two main ssues i this paper:

(1) we investigate asymptotic behavior of the plug-in rule, ie., its persistence or lack of it in classification with
multivariate binary vanables,

(2) we justify in asymptotic sense why variable selection procedure is effective in classification of high dimensional
multivariate binary data under sparsity condibon.

To describe in detail different possible scenarios for the plug-in rule, we inroduce moderate conditions on the pa-
rameter space and study different sets of sufficient conditions for persistence. In Section 2, we introduce basic no-
tations and define persistence. In Section 3, we introduce our moderate condition on the parameter space and dis-
cuss its monvaton. In Section 4, we introduce a sparsity condition under which we show how selection of a good
subsel may overcome non-persistence shown i Section 3. The proofs of main results depend on several lemmas,
which are somewhat delicate becavse one has to compare sums of different functions of parameters of Bemoulli,
prioand py (e.g., Lemmas 3.2, 33 and A3 in the Appendix). This 1s done through the introduction of relative or-
ders of magnitude of partitions, which need to be somewhat different in different contexts. The partitions act like
sieves.

2, Multivariate binary dala and notations

In Wilburet al. (2002}, the number of variables are d = 84 and the sample size is n = 89, The fact that d and n are of
the same magnitude is typical of many contemporary problems. In some cases, d exceeds n. Since d increases with n,
these problems are high dimensional. All such problems are difficult but the cases where d Zn or at least of the same
order of magnitude are the most difficult. In some studies as in Wilbur et al. (2002), new methodologies are required.
In others, as in the present asymplotic study, we need a new formulation of optimality, namely, a notion of persistence
introduced next.

Multovanate binary data are common in several applications ansing in agriculture, social sciences and medical
diagnosis. In bacterial mxonomy, Gyllenberg and Koski (2001) discuss identification of new bacteria on the basis of
many Lests, each of which results in a binary output of yes or no. Hand ( 1981 ) discusses a similar example for identifying
people likely o be suffering from non-psychotic psychiatric illnesses on the basis of binary responses to the General
Health Questionnaire (GHQ).

We consider below an example from agricultural microbiology in Wilbur et al. {2002). Plots are placed under four
treatments formed by combining rotation (present or absent) and tilling (present or absent). The crop grown was corn.
As expected, the four treatments are well-separated by crop yields. To get some microbiological insight about the
treatments, soil samples were taken from each of the plots and subjected to DNA analysis. Based on the analysis, for
each plot one knows which of o bacteria are present and which are absent in each soil sample. The important question
wias whether using the full set of & binary variables or a subset, one can provide a good classification of plot into four
classes, thus identifying the treatment corresponding to a plot. In this analysis, the yields of the crop is ignored and
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the primary objective is correspondence between the treatments and values of the selecled binary variables. The set of
variables which classify with least error identifies the important bacteria.

Since the number of variables and hence the number of parameters grows with n, we consider a triangular array of
parameters and data. The data are binary and modeled as Bemoulli random vardables. The study in Wilburet al. {2002)
is based on assumption of independence, which was considered reasonable by the associated microbiologists. In many
practical studies, the independence assumption is a reasonable approximation, especially in high dimensions. See this
connection in Hand and Yo (2001).

Since we consider triangular arrays, for each class j = 1, 2, the parameters of Bemoulli variables are denoted as

E.'“” =(p “” “” _____ pf;]}l, j=1and d = d, depends on n, e.g.,
8 = (p LI]L

_il']—{ F'rr}

i) Ui‘] (L] [J?]
0 =Py iz Pig )

Remark. For notational convenience, we omit (n) in the parameters, i.e., we use P i inslead of p;.:.” and d = d,.

We assume uniform prior for classes, P(j=1)= P{j =2) =}, which is the usual choice for classification problems
unless other information is available. Below j = 2 and —1 denote the same class. Then, the Bayes classifier is

i e 1-X; ~ | N B
L’H{X}"‘:'Il—l T Py (1= pi)'™ > [T py (1 = pa)' =,

otherwise,
where X = (X, ..., X4). Taking logarithms, the Bayes classifier becomes linear. 1n other words,
_11 if (X)) =0,
R = I —1  otherwise,

where dg( X) = Z:-'l=| {ci Xi + cig) and

il —pa 1 — i ;
O = Iug( ) . cin=log ( ) l<isd.
: P2l —py : 1 — pay

The plug-in rule g substitutes the mle {) based on observed data for the unknown 0 in gj- The plug-in rule. g;(X), is
F,gn{n’.'l,,r{X}l} where d,(X) = Z:-=| (£: X + Sip). To avoid the difficulty of having log 0 in &;, we use

1 1 " |
it b=+ — _FII+_2
& =log T =l &= Z log e (1)
ﬁ'ﬂ'+—-_,1—f?u+— i=l 1 —pu+—
n= n- n=

nh,n,p_“_.r_“_{l,.-n}ﬁ_H i ".i.-'l'JLrL.xJt iskth observation of th vardableinjthelassforl i< d, j=1,2and 1 <k <n.
The performance of g inrelation to gy depends on how well 0 estimates 0. The Bayes erroris L= %{P{:S,J{X} <0lj=
1) + P{dy{X) = 0]j = 2)) and error of the plug-in rule is L, 4 = IE{F'{S,;{X} =ji=1)+ P{S,;{X}l =0|j =2)).

For a triangular array, where the true parameters change with s, an appropriate modification of the notion of consis-
ency is persistence. Following Greenshiein and Ritov (2004), we define persistence as follows.

Deefinition 2.1 (Persistence). 1 the parameters form a riangular array, a classification rule is said to be persistence if
Lya— L:} — (.
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We assume the true class is j=1 since the other case can be handled in the same way. So, for example, the Bayes error
is P{dy(X) =0]j=1), but we omit j= 1 for notational convenience, we write P{d (X)) <0|j=1)as P{dg(X) < 0).In
asimilar way, expectation, E{-), 18 conditional expectation Fiwn j=1.Forexample, E{d;(X)) = Eid(X)|j=1)=
Y K (pui. pa) andvar(8,(X)) = var(34(X) [j=D=Y(_ c7 pii(1—p1;) where K (p. q)=plog £ +(1—p) log =&

P L= Py

and o = log ey

3. Persistence and non-persisience of plug-in rule

As mentioned eardier, the performance of g; depends on how accurately @ is estimated. Under the assumption of
the true parameters with fixed dimension, one can estimale the classifier accurately as the sample size increases. So
the plug-in rule can achieve Bayes emor asymptlotically. But, a triangular array with increasing dimension causes two
diffic ulties:

(1) the number of variables increases with the sample size,
(2) the parameter (f changes with the sample size.

Since the number of parameters increases, the accumulation of inaccuracy does nol guarantee improvement of the
estimated classifier. The problem becomes particularly difficult if the number of variables is almost the same as the
sample size, d = n also, as indicated in the previous section, in many practical problems this condition holds. Under
this condition, we show that the plug-in rule may be persisient or not persistent depending on other conditions. More
generally, we present similar results whend = n" forv= 0.

A second difficulty oceurs when parameters, pj;, are close o 0. From an empirical point of view, estimation of such
pji leads to difficulties since sampling fluctuations can easily inflate the differences between pi; and pr;. In partic ular,

0 i Pill—py)
the coefficient of variation >————

can be large if pj; is small. If p is close to one, the same problem appears for
1 — Xj;. In our experience, data tend o give less importance to such variables.

Also, since the plug-in rule, d,(X). includes &; and &, we want to consider the first order or the second order
approximation at the neighborhood of the rue pj;. In other words, using this approximation, we would like o claim

8 oo (PU—PU . P—pn - AR i ahili . - A ATATTIAATS
that c; — o; = {p““_p“] p}ll_p}]}l{l + op{1)) and ¢; — ¢; — Oin probability as n — oc. Bul, if those parameters
converge 1o 0 or 1 very fast, Taylor expansion may be useless. For example, suppose Xﬁ-‘- ~ Bernoulli{ p""), 1 <k<n
and p"' = J'—r, then

=1—P(§Xﬁ‘.jg (1__)““})
(G-I

To avoid this, we restrict the range of p ; such that a P pi<1 —n P for 0 < f < 1. Then, it can be shown that
Biu—Pii

¢ — o converges 1o 0 in probability through TTET for j=1,2.
Let Ag = A" N AP and A7 = L Aji for j = 1.2 where Aj; = (|5 4245 <n ="} for 1 — §—2¢* > 0.On

each A; M Az;, we may consider Taylor expansion for & and &. [ is enough o consider our expansions on A7 since
P{A}) is negligible even when d increases. The following kemma clarifies this idea.
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Lemma 3.1. fd =n" for some v=0and 0 < ff < 1, n* P(A5) — 0 forall integer k =0.
Proof. Fromthe definition of Ag. P(AG)=P({L (A5 UA3;,) < X5 ((POA )+ P(AS)) where AG ={| 705 | =
) = {1pji — pjil = pji(1— pj-‘-}ln“:'}_ We only need to show the case j=1. LuLX'L. ~ Bemoulli{ pj; ) for 1<k <n.
Then, for £ = ”—l;, using Lemma ALl in the Appendix,
; piitl — pui) S
F ([PII — Pl = ‘—.‘ = P

”J.

1
| I[Xf,- - pu}! =np;(l— pu}”?)
k=1

1
':,EEupr—Enp“{l = pu}lﬂnzﬁ,]

—B
= 2exp !—Egl

In the same way, we deal with j = 2. Hence, n* P(A) *;E-J=|J!R{P{A‘l‘-} + P(A5 ) <2 - nt.d. Emp{—%n I—fi—iy
— 0. O

Based on the above discussion, we set the baseline conditions and call them Condition A.

Condition A. (1) :;l; — ¢ for some v=0and 0 = ¢ = e,
(2)yn—F < pii =1 —igP for0=ff=<1.

Under Condition A, we will show that if Edy(X)/+/var(d,(X)) diverges, then the plug-in rule is persistent. But,
it Edg( X))/ varidg{ X)) is bounded, then persistence or non-persistence of plug-in rule depends on the behavior of
var(dy(X)). The eriterion Ed, (X )/ +/var(d,(X)) acts somewhat like a signal to noise ratio in the context of classifica-
tion. See the discussion in Section 3.1,

The following lemma shows the critical role played by the unboundedness of var(d,(X))/n"~". The phenomenon

of persistence and non-persistence are determined to some extent by the following lemma. Additionally, this lemma is
used in the proof of Lemma 3.3,
In several kemmas, starting with Lemma 3.2, we need the following sets. Fora givene = Oand!, m=1,2, .., [ #l %,

By = {fgfi_f‘ﬂ+ll_l]J:£p["{l — i) {H—IHH:}’
81, :{EEH_I':I!+[JN—|.]H_S; pai(l — pa) {"—fﬁﬂm;h

D ={illci| <%},

where ¢ = 0 is arbitrary. The sets By and B, forms a suitable finite pantition of pii(1 — pi;) and pai(l — pai) such
that in each By 1M By, the order of magnitude of %::;’:] is estimated accurately enough. This fact is used repeatedly
in the proof of lemmas. In some cases, e.g., in L{';c proof of Lemma A3 in the Appendix, By; and B, are a similar

partition but in terms of py; and py;. One may think of such sets as sieves.
Lemma 3.2. Under Condition A,

. pes ) il —pmi
(1) If var(d4(X))/n"~! — oc, then - mugd[x”g:, ﬂ;h_ﬁ;; =o(l).

(2) Ifvar(dg(X))/n""! is bounded, then % ‘-'r=l% =en" "Y1 4+ o(1)).
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= L
Prool. (1) On D, |¢;| = c* impliese™ e« «::—'”’;—"1-:: o' From LU 1P et PU e o w ginee | 4

- Py I—py P T e
pg;{cﬁ-* — 1) = 1. In the same way, t—_'ﬂT Frome™ < —’% —f— we derive —'”— < ¢ Therefore, %ﬁi—“] <o,
On D* = J; ,, (D*NBy M Bay ), we consider each DN By N By forl, m=1, ..., [{-’fl, jr?'!and denote the cardinality
of the sets by |DF M By N Bay|. Then,
1 1
- = 5 - — : 2)
var(dg (X)) (c*)Y n—F+0-151D¢ 1 By 0 Ba|
PII“ i PU}' e "—ﬂ-l-h: G}
N - e —fi(m—1x
e DB )M By P {1 PZJ} TeD M8y M8y o B J
= |DF N By N By %, )
From these facts,
d
! Z.ﬂul[l—.ﬂu} = 1 ZPU“—PLJ SN P pull —pu)
nvar{d (X = prill — pu) mvar(dg( X)) et paill — pag) oo i pall — pa)

e Z |DF 1 By N Bay fp -+ 1
S nar,00) (*)2n—F+0=D8| DE () By 1 Bay|

by (2) and (4)

21.‘
e d 1 1
el U i S
novar(dg( X)) IZ (c*)2 nl-fi+m-2)
il

-

e en"™ 1 + o(1)) i L 1
ST w0 ([;] 4. 1) A

— 0.

(2) We will show that if var(d,;(X))/n"~! is bounded. then |D¢| = o(d) and |D| = d + o(d). If |D| = O(d).
then var(8;(X))/n"~' = ¥ pec?pri(l — pri)/n'~' 2 ()20 FHI-08 D=1 = p!=F+0=D8 oo, This is a
contradiction. So | DF| = old) and | D] = d + old).

On D°,

piill —pu) prill — pu)
;ZPM{I—_D) _EZ &y Tmmer

Iom Qe D9OB pnBrm PIJ“' T ph}

=£Z 3 czm.:u—m.:}

Iom Qe DEOE By Ci P “- I p-’l}

Z,_[f'_ﬁ'h“ — Pl

{C*}—"l ]
var(dy (X))
= {C*}an—ﬁ!
=o(n""1).
The last equation is due to the fact that var(34(X))/n I=F = O(n" ' /'~ F) = o(n"~"). On D, for a sufficiently small
C*,c_q'{%x .Lete™ 2‘"=1—Crand|:2"=l+c'§,thcn

1 _ FlJ — Pl
~(d+old)(1 - )<~ E “_m {d+n{d}}{1+c}
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For arbitrary small ¢ = 0, e7(= () and c3(= ) are also small. S, L 5 2aieD % =cn" 1 4+ o(1)).

Iy P}:J.};,!f'y 2 Z P}:_L{;{?“ Z P““ _-fLL.
— p2i(l — p2i) il — pai)

=m“‘{1+n{1}}_ O

In (2) in Lemma 3.2, the boundedness of var(d;(X))/n*~! implies that most of ;s converge to 0 which means py;
and py; are close. Most of % converge o one, so ﬁ :'r=l EH—_F“: == :: e m‘_l o

By using Lemma 3.2, we have the following result which plays an imporant role in this paper as explained in the
paragraph below.

Lemma 33. Under Condition A,

(1) Ifvar(dg(X))/n"~! = oo, then var{:i,,r{X“}}l = var{dg (X1 +o{l1)).
(2) If var{d (X)) /n""" is bounded, then var(d4(X)) = var(d,( X)) + o(var(5(X))) + 2en" ! + oin™ ).

Proof. (1) Let 5;(X) = &X; + &g Decompose 3;(X); 6;(X) — E&; (X) = &X; + &g — EG;(X)) = ¢(X; — pyi) +
(& —ei ) X; — Pl + E'J'FU + &in — E(; (X)) = Ty + Iy + I3, where Iy =ci(X; — pli), I = (& — i) (Xi — Pl

and Iy = & p1; + G0 — E(8;(X)). We will show that % =14ao(l).

var(dg (X)) 1 &

i - i 1) + var(Ix) 4 var({y;
var{dg (X)) var(dg (X)) E{Wﬂ 1i) + var(fy) + var(fy))

1
+ —————— % (cov (Fig. Tom) + cov(Ty, o) +covily, T
mm,{m};“ Vs Tom) + coviba, Ban) +cov(ly, fim))
i

]
=1k T E\-‘&r{fy}

a a
1

1
+ G § var(l3) + e Emv{h;, ),

since forl = m, covilay, f1,) =covi{ly, I,) =0and Z:L, var( £);) = var{d ( X ). 1L 1s sufficient 1o show that the last
three terms are of 1).

By Lemma A.2, var(ly) = E[(& — )" (Xi — p1)’1 = E(& — i) E(Xi — pu)” = (5 + %}{1 + o(1)).
Using this, we derive

i i
1 1 1 I pyill — pyi
SN ar( I ) = ( Pl pii)

_datoay 1 Z":puu—pu}
nvarids (X)) nvar{dg (XN — prill — pa)

(1+o(l)) =o(l),

Filge = l { pull—py) 5
Since o =o(1) and - »'ar[;,\u[xng o =o0(1) by Lemma 3.
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We will show ozl 30 var(f3) = o(1). Since, E(3;(X) — §i( X)) (Ay) = BELHPL=PU) (] 4 o(1) Iy =

npy (1—p)
- A = A - - 2pu—=11(pri— Py —g*
&ipi + éio — E&i(X) =& pui + & — E&i(X) + SE BRI 4 o(n=™))

o o
Y var(h) I (Ag) = Y E@ipu + o — ESi(X) + E&i (X) — E&i(X)I(A)
i=l

i=l

|

var( (X)) var( dg{ X))

2 d 5
= E = I =y 4 ik
= var{dg(X)) = Fleput o= £or)

2 o i B
A E(d;(X)— Es(XNI{AN0)"
oy 2o E@iC0 (XN1(Aq))

i=l1
i
< A Bl e o2
?&r{d‘;{X}}E (Cip1i + cin — i pP1i — cip)

o

Z 7[!'?11'_!?[1'!_ -_r+““}'
n={p2i(l — pa))”

2
T p
var(dy (X))

i=1
= o(l1).

2

s fi y ST . . . 2 : [P —pi | P d
The first term converges o 0 by Lemma A4 and the second e, e g Y

Fipyail—py 00 wvar g (X! ei =1
mi—pul . by Lemms
ma A3
Tputl—pu Y

Using Lemma A3,

1 o a

T A VR _ cipull — pu) _
a0 2o ) = S & (a= i) a-+oun=ot,

(2) In the proof of (1) in this Lemma, the only difference is, by Lemma 3.2, 0 Ely =30 (4 + 2RIl ) 4
o(1))=2en 11 4+ 0(1)). Except this term, all the other terms are the same as those in (1) in this lemma with the help
of Lemma A3, Therefore, var(dg (X)) = var(d (X)) + 2en™ Y1 4+ o(l). O

Lemma 3.3 shows how the behavior of var(54(X)) depends on that of var (3, (X)), When 2980 o6 yar(3,(X))
increases at the same rate as var{dyg (X)), however, when % is bounded, i.e.. var{d (X)) = O(n"~ '), then

var(dg( X)) is larger than var(d,;(X)) by 2en"~! which is a non-negligible term. For convenience, these two resulls can
be combined to

var(d, (X)) = var(d (X)) + olvar(d (X)) + 2cn’~' + o(n"). (5)

. . . ar(y (X . coa .
Based on Lemma 3.3, we show the persistence of the plug-in rule when w diverges under Condition A; otherwise,

there exist cases of non-persistence of the plug-in rule. For both results, we also need other conditions.

3.1, Persistence of the plug-in rule

As we mentioned eadier, without loss of generality, letthe troe elass be j = 1. Sothe Bayes error is Pd (X)) =0) =
Pi{dg(X) =0|j=1). Let M6 _ pygpg —EMIK rg. Inthe same way, for the plug-in rule, SyX)—Edg 0

A varidgixn - & varidg(x v -r-nr[:i,.u(x 1 -
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Ny and % = fy. dg(X) 15 a measure of what is called the margin in the lilerature of classification. In view
yvarids (X1

of this, we refer to ry {or Fy)as S.NR. (signal o noise ratio) of d4{X) (or d4(X ). First, we investigate the behavior

of Bayes rle with the known parameters under Condition A. When ry diverges, then d,( X) discriminates two classes

perfectly, e, misclassification emror converges to 0as d increases. By Chebyshey's inequality, this can be easily shown

in the following way:

: 1
PlogX) =0 =P((Ng = —rg)s—= =0,

L
as d — oo, In the same way, if $.N.R. of the 5,;{){'}, Fy, diverges, then P( :‘iur{.r}l < () converges 1o (. By showing
that the divergence of ry implies that of £y, we show that P{dg{x) = 0) converges to 0. The following theorem shows
plug-in rule, d,4(X), is persistent when ry — oo with some additional condition and Condition A.

Theorem 3.1. Under Condition A, if var (845(X))= Ln"~! for some constant Land ry — o, then P{E,;{X}I =0) — 0.

To prove Theorem 3.1, we need the following lemma.

Lemma 34. Under Condition A, JrEuil,.ux] Z:Ll J_;":J[al—_ﬂ;;] = o(1) and Ed4(X) = Ed4X)(1 +o(1)).

Prool. See the Appendix.

Proof of Theorem 3.1. As we showed for Bayes rule 840 X)), we need w show that 7y — oo, By Eq. (3), var(ag(X)) =
var(dg(X)) + 2en"~' (1 + o(1)). And it can be shown that Edq(X) = Edq(X) + } YL, BRI (1 4 o(1)).
Therefore, by Lemma 3.4,

Eby(X)  Ed(X)(1+0(1)
ﬁ'ffrk'HI{S,,r{X}} Vvar(84(X)) + 2en "1

td =

rall + ol
Il1 I 2:‘:!"_1_
\ var(dy (X))

Since var(64( X)) = Ln""!, we have

r=1

- 2en i
2 Tarsgy and

ol 154

mone TR EOU))  rgllepolly -

P = =
2en | n'll 2e
14— flpi
\/ vare(x)) VL

So P(3g(X)<0) = 0. O

Example 1. Suppose d = n (i.e, v=1 and ¢ = 1) and all of the p;; converges to O and pi; and py are getling
closer. In other words, we Lake pj; ~ n=F and % —l=n"7{14o0(l1)) for §and 7 such that § + 23> 1. Then
leil = 1B — 1(1 + 0(1)) = n~7(1 + o(1)) so var(34(X)) = Xi_ 7 prill — pii) ~ d -n~Fn~F ~ pl=2F - o0
and ry ~ n''=2=B2 5 oo sinee 1 — f§ — 27 = 0 which satisfies the conditions in Theorem 3. 1. Therefore, S,;{X}l IS
persistent.
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In Theorem 3.1, we showed that both Pid (X)) = 0) and P{B,;{X}l < () converge to 0 by using the divergence of
ry and 7y But, when ry is bounded, it is not guaranteed that P{d(X) <0) converges to 0. We need 1o consider
the difference of two probabilities .md investigate convergence of difference of them, P r),,r{X}l}l — Pi{dg(X)). The
difference of two probabilities is P{ﬂ,,r{X} =) — Pldg(X)=0) = P{N,r < — Fy) — Pi{Ny <= — rg). For the plug-in

rule to be persistent, we expect that Ny — Ny — 0 in probability and 7y — ry — 0. The following lemma provides an
ANSWET.

Lemma 3.5. Under Condition A, if var(dz(X))/n""! = ccand 0 < L <ry <M < oc for some L and M, then

f]-::' fﬂ'-i,l' —Fd — ﬂ:
(2) Ng — Ng — O in probability.

Prool. Seethe Appendix.

Evenif Lemma 3.5 issatisfied, P{d (X)) =0)— P{ﬁl,,r{X}l = 0) may notconverge o O when ry (or Fy ) isa discontinuity
pomt of Ny (or N,,u}l It 15 not necessanly true that Ny and Ny have limit distribution, but it can be claimed that there
exists a subsequence that converges 1o a random variable by Helley selection Theorem. See Billingsley (1995). To
claim the persistence of S,;{X}l, we wanl ry Lo converge Lo a continuity point of limit of Ny. Suppose ry converges Lo
some random variable, say ¥, and ry converges to v, then misclassification emor rate converges 1o P{Y < v). Then, if v
is o continuity pointof ¥, P{d (X)) =0) — P(Y < y) since Ny weakly converges o ¥ by Lemma 3.5, Using this, we
may claim the persistence of the plug-in rule under restricted situation in the following way:

Under the conditions in Lemma 3.5, if Ny converges weakly to some random variable, ¥, and ry converges o some
continuity point of ¥, then plug-in rule is persistent.

The above claim can be proved in the following way. Let Fy, 4 and F,; be distribution function of Ny and Ny,
respectively. Since N, converges weakly o ¥, Ny converges weakly to ¥by Lemma 3.5. In the same way, 7y converges
to y. With these facts, P(34(X) <0) — P(84(X) <0) = Fp a(—Fa) — F(—y) + F(—y) — Fy(—rg) — 0.

Unforunately, we have not been able to construct any example where all the conditions of this theorem hold.

3.2, Non-persistence of the plug-in rule

In Theorem 3.1, we showed the plug-in rule is persistent under some conditions. In this section, we discuss some cases
of lack of persistence of the plug-in mule. In Lemma 3.4, EE,;{X} = Ed; (X 1 +0(l1)), but as we mentioned in Lemma
33,1 var( 640X ) = O(n "1, then var{:iur{nX}}l has a bias in the sense #'HI{S,;{X}} = var{d (X)) + ol var(d (X)) +
2en* ! + o(n*"!). The biased term in var(dy( X)) makes ry and 7y quite different, which leads to lack of persistence
of the plug-in rule. To be more precise, we consider a case where Ny has a limiting normal distribution and show error
rates of Bayes rle and the plug-in mle may be different.

Lemma 3.6. Under Condition A withv =1, if

i
D e P il = pu) fvar( (X072 — 0,
i=]1

then

(1) Ng— N{D, 1),
(2) Ng— N0, 1).

Prool. Seethe Appendix.

With Lemma 3.6, we derive non-persistence of the plug-in rule.



L Park, Javanta K. Ghosh ! Joumal of Statistical Planning and Inference 137 {2007 36873705 a7
Theorem 3.2. Under the conditions in Lemma 3.6,

(1) (i) rg — o, (i) var(dg (X)) = o(n" 1) and (iil) Eé4(X) = O@n"" 12y or
(2) if0 < L <ry< M < oc for some constant L and M and var{8,;(X)) = O(n" 1),

then the plug-in rule is not persistent.

Prool. By Lemma 3.6, P{d (X)) < 0) —di —r ) =0(1)and, by using vur{é,,r{X}}l:var{éﬂr{ XN 4+2en" ' +oi(n"') and
ES,J{X}:{E@,J{X}}{I +oi 1)) in Lemma 3.6, P{SJ{X} = — P —F ) =0(1) where Fy= —Eﬁﬂ'[x]—{l +o(1)).

& varidg( X +2en !

Based on these, we prove the theorem for two different cases.

(1) Since ry — oo and Ny has asymptotic normal distribution, P{d4(X) =0) = @{—ry)(1 + 0(1)) = o{1). Since
var(4 (X)) = o(n" 1),

Fa = Ed4(X)/+/2en"=1(1 4 o(1)) = O(1),

which means lim inf, ®{—F;) = 0. Therefore, P{S,;{X}l <) — P{dg(X) = 0)=0, ie., the plug-in rule is not
persistent.
(2 Since 0 < L <ry< M < oo for some constant L and M and var (5, X)) =0(r"~"), im inf(ry — 7y) = lim inf(ry —

rall4oilh) 0. This imolies B{—fs) — B(—r 0. O
V 142en’ e S Sl et oy Pl

These two cases of non-persistence depend on the behavior of var (6,0 X)) ). In var( :i,,r{X}l y=var(Sg( X)) +2en" "1+
of 1)), the term 2en"! is due to estimating & = 2en” parameters. In (1) of Theorem 3.2, if var{d (X)) = o{n"™!),
the variability due to estimating parameters dominates var{d;(X)). With Ed ( X) = O(n" "2y in (1), this makes 7y
bounded while ry — oo, In (2), with the same argument, var(dg(X))=0(n"~!) makes 2en"~" non-negligible term and
this cause non-persistence of the plug-in rule. These cases of non-persistence occur since there are 0o many parameters
o be estimated and due 1o this, the variability of the plug-in rule, var(a (X)), is significantly larger than the onginal
variability, var{d (X)), while ESJ{X} ~ Ed (X) by Lemma 3.4,

Example 2 (Case of (1) in Theorem 3.2). Supposed =n” (ie.,v=1and ¢ = 1) and when 1 <i < [/nl. |p1i — pul=ze
for some & = (; otherwise | p; — pai|=0in ). Then ZLI leil2 pii(l — p1i) fivar(d (X 1))* 7 — Oand var(d (X)) ~
O(/n) <oin® Y and Edg(X) = /n<0(n' >~ 'Y, Therefore, ry = /n/n'* — oc. But 7y = O(1) shows the plug-in
rule is not persistent.

Example 3 (Case of (2) in Theorem 3.2). Suppose o= 1,i.¢.d/n — 1.Let pyy =n~" and py; such that % =1+n"7
where §+ 279 = 1 and ¢ = 0. Then |¢;| ~ n~7 and var{d; (X)) ~ j-'l=ln_23'n_1r'!{1 —n Py~ g=T-F ~ 1, Since
E‘LI lei i3p|;{1 —pPL)~—n I-37-f _, 0, Ng = i—%ﬁ has asymptotic normal distribution. Since var(d (X)) ~
n' =7 ~ 1 and ESp(X) ~n' " F ~ 1, r, ~ land P(3,(X) <0) — d(—1) =o(1). But 7y ~ 1//T+ 2c=1/43

implies P{é,f{ X)y=0— 'f'{—ll.-’ﬁ}. Therefore, the plug-in rule is not persistent.
4. Sparsity condition under linear rules

In many situations, classification rules with suitably selected vardables outperform the orginal classifier especially
in high dimensional data. For varable selection o be effective, sparsity condition is needed o ensure that only a small
subset of the variables is helpful in classification. In our context, one defines sparsity condition in arather simple way as
follows. Suppose there is a subset of the variables, D with | D] =ofd). Let §4(X) =3}, plci Xi+cio) + 2 cpelciXi+
cin) = 85(X) + Y (X). Assume var(85 (X)) = var(8,(X))(1 4+ o(1)) and E52(X) = Ed4(X)(1 + o(1)). In this
situations, the vanables in D are redundant in the sense that var( L’.'l-fl (X)) and En’ifl { X) are neghgible compared 1o
var( 65 (X)) and E85( X), respectively. With these, we propose sparsity condition especially under linear classifier.
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4.1, Sparsity condition under linear rule

There exists a subset, D, such that | D] = o(d), E6Y (X)/ E8Y (X) — 0 and var(L" (X)) /var( (X)) — 0.
This sparsity condition implies the vadables in D¢ do not affect d,;(X) asymptotically. We define some notations
EdfiXi+E&S (X)

such as rf', r':rj' . Pu:f', fo ; Ff and F“P in the same way as done earlier for DU DY Thenry = — L — =
y v O i vari ™ (X0

- sk
B (X (1+oil)= r'f{l + o{1)). We consider below | D] = o(n var (3,0 X)) under conditions of Theorem 3.2,

y var(dg (X

Theorem 4.1. Underthe conditions in Theorem 3.2, if the re exists a subset D such that | D) =oln var(d (X)) satisfving
~D E
sparsity condition, then P(o, (X)) =0) — Plog(X) =0 =o(l).

Proof. By using var{d (X)) = vu.r{f‘if{X}l}{l + oi1)) from sparsity condition, it can be shown that 3,5 ;c'?ip”{l -

pii)/ (var(37(X))¥? — 0 which implies N? has asymptotic normal distribution. Therefore, P{d) (X)<0) —
'f’{—?f}l=u{1}|.5incc;‘ﬂf=1}{n "u'i'ir{ﬁ,,l{X}I}I}I.."r'tlr{;i:f{X]I}:?&lr{ﬂ-f{X}l}l{1+{’}{1::I::I+2{‘:-DEI.'rl'!{1+{’}{1}}=¥'tll'{5,,r{x::l}{1+

. ; g | By
of(1)). With Eﬂ:}:‘{X} = Ed (X )1 + o{1)) by sparsity condition, F,,rﬂ = E:‘.I,,I{X}II.-’%.-' u'u.r{ﬁf{X}l}l =rail +0(1)). This
~ D o ~D - = -
proves Plo, (X)=0)— Flog(X) =0 =Pid, (X)=0) —P(—rg)+ P{—rg) — Pl—ryg)+ Fl—ra) — Plog( X) =)=
o1y which shows ﬁif{X}l as persistent with the subset D s persistent although 5,;{){'} as nol persistent by
Theorem 3.2. O

Example 4. Suppose d=n{ie,v=landc=1). Let D={i : puzn_ﬂ, plifpr=14n"}and ¥ ={i : p;/px=1+
n~2} with | D|=[n?*#] where 0 < 29+ = land[n 21+ is the integer part of ™'+ F Then Eéf{X}l ~ 1 and vur{é::;]}l ~
1. From this, |2} ~ nir+h oln var(d, (X)) = o(n). ﬁif{X}l has asymptotic normalily since Zj-l__ﬂ';c';’!p”{l -
1)/ (var{d (X ))? ~ n 2483 =Bl —n Py~ n 7 = 0 by Lyapounov condition (see Billingsley, 1995). By
Theorem4. 1, P(3 (X) <0) — P(84(X) <0) — O,i.c., 85 (X) is persistent while P(34(X) < 0) — &(—1/+/3) =o(1)
which implies non-persistence of the plug-in rule.

The above theorem shows that if there are many variables, then using all the variables increases variability and
var( SJ{X}} is significantly larger than var{d (X )). This causes a bad prediction performance of the plug-in rule. But,
under sparsily condition, selection of a good subset of variables achieves a better performance than the plug-in rule with
all the varables. Wilbur et al. (2002) proposed two variable selection methods. Their resulis show that the plug-in rule
with selected varables improve performance. In the Appendix all the lemmas are collected. Before stating a lemma,
we mention where it is used. The lemmas have been aranged so that no lemmas requires a later lemma in its proof.

Appendix A. Prool of Lemmas
The following Lemma is used in the proof of Lemma 3.1

Lemma A.1. When X; is i.id. Bernoulli{p), then, forl=g <1,

o
P Z{X" — p)=enp(l — F}] gu—ﬂ,‘lrml—pu.—,’};"
i=l
i G
P 1Y (Xi—p)<—emp(l— p}] e A R
i=l1
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Proof. Using the fact | X; — p| <1 and Bernstein’s inequality (see Devroye et al., 1996),

np*(l — p)*e
X — T g2
gi p) =nep( p}'] L*P{ z{p{l—p}+zp{1—f?}'f3}]
) np(l — piet
<ew -S|
-3
E»ZcxPI—MTWI'

The second inequality can be shown in the similar way, O

kil

In 5,;{)(} Z 106 Xi + cip), we approximate &; — o by gy — pig and py — px. Using Taylor expansion, on

Aa= S < j = 1,2} & — i =T (1 + ol P D oréi — i =Ty +Ri (1 + o(n ™)), where

T — Pli — pu o P — pa
pull = pii) P’_H“—PII}"

_ (1 —2p1;) {f?l'_ﬁ'l'}'z— (1 —2px) f?:r'—p)'}lz
(pull—pid® 0 (pul—p?

The following lemma will be used in Lemma 3.6.

Lemma A.2. Under Condition A,

(1) ET; =0, ER; I {Ay) = D{J‘i‘ﬂ A=) -+ ”‘m[l ey ]}{1 +ofl)),
2 L

(2) ET} = wpu(—pul T sz;il )

(3) Eid — o) A = {Jr.ﬂ,,Ill—.n],] + o [l = ]}{1 + ofl)).

Proof. The proof follows from Lemma and direct computation of EK; where K; =T, R;, 'l‘2

This lemma is used in the proof of Lemma 3.3,

Lemma A.3. Under Condition A, if var{d (X))/n"~' — oo, then

1 7 k .
(D) ooy Li=ilal® = o(1) for k21,

K
| e pull—pu) .
P — gt L st A o R -
(2) n-nm‘l,,.Uf]] R oy =o{l) for k=1,

lPa—pul

(3) Wz_lm = ol 1) if var(4(X))/n""" is bounded, then

i) L ‘_lEq; =o(n" Y fork=1,

L a F].'[I- TR v—lIy 2~

(] 15 T e =oin" ) forkzl,
1xd Pr—pul v—1

(6) R v ey =on" ).

Proof. (1) Take D,={i|lc;|<n "' ~"/*}and By;. By, as inthe proof of Lemma 3.2, By using | Dy,| <d and |c;| < logn,

1

a
o
n m{ad{m}‘;'c‘; = nvar(a (X)) \-'ﬂr{c’.‘l,,r{X}l}l ‘Z et +20 >

Im ieDSMBy "Bl
(1) + (I0).

1l

lei [Jt

nvar{dg (X))
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We first handle the first eom (1) as follows:

cn'! cn'!

{[}g‘,![k[l—f.ﬂ].fl],,.m-{aﬂx}} g‘,![k[l—ﬂ]ﬂ][‘ 0.

To handle the second term (11), we have to proceed with the following lower bound for var{ 3,0 X ). On I 7 By M Bayy,

! 1
var(dg (X)) Z.Eﬂ‘, ~Eun P11 — P11)
< ! _
|2 M By M By n —f+i—1x

With the above as well as using n="""#/3 < |¢;] < log n, the second term (I1),

(< Z | DE N By N Bay | (logn)*
= 2= 3 L—fi+ (- 8| DE O By N Ba|

[ﬁ] 2 (logn)*

n——f 31— f
B * (log n)*
-s;([; 4 nll-M3 el

This proves meﬂIC‘-!k =0+ ) — 0.
(2) Take Dy = {i|jei| < n~ 1= A-0/3)

d
1 3 fei [ pri(l — p1i)

nvar{d (X 1 paill — pa)

1 leil* pridl — pii) 1 lei 1 pritl — pui)
e 4
n var (d4( X)) Zﬂ: p2ill — pa) nvar(dg(X)) | Z pai(l — pai)

= (1) + (11).

Fi . i I—
In the proof of (1) in Lemma 3.2, we showed that if |c;| <c*, then BUU=BIS < o2 Therefore, on D, BBl <

; 2 & 2 Pl Al =Tk 3y
exp{ 20~ =973y The first term (1) converges to 0 since the first term {I}RJ:ES;"[I]:H, = — 0.
i

On D¢, using n~""F=53 < || < log n, it can be shown in the same way as in the proof of (1) in Lemma 3.2 the
second term (1) converges to 0 since

{logn)* Z mill — pu)
nvar{ (X0 g paill — pa)

i 2 (log n)*
{“([_ +1) —(2(1—fi—8)/3 )y | —fi—&

[ﬁ] * (lognm)*

nil= (I—fi—a)/3

)=

g lei o (L—pui) _
This proves — »nr[ui.,uiJf]]Z‘:l =) — D () — 0.
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(3
i
i E lp2i — puil
n var(dg(X)) = pall — pa)
_ 1 Z lP2i — pul 1 Z lP2i — puil
nvar(d (X)) 1 pall — pxy)  nvar(dy (X)) 1 paill — paj)
pr<3 PHES
P 2 Z lP2i — pul 2 Z (1 — p2;) — (1 — pull
= novar( (X)) | P nvar(d (X)) 1 — pai )
P =3 PuZ3
: S S [(l=pr)—(l—pul| _ ; 1 : L s L lpz—pu| _
Since geeems s Zm 3?-% e =o(1) can be shown in the same way as iy g Z.ﬂz-{rh = =o{l).
Forl.m=1...., [#I,%,dﬁ:num

By= {Jl-ln—f.ﬂ+[!—l ]J:__\-{H Bl "—]".I!HJ:}’
i A — i+ =18 - —fi+ms
= 1|0 % Py <n 1.

Dy = illcil a1 —A3),
Fori € Dy, there exists ¢ such that {‘f = 1 + ¢ where ¢ — 0. For notational convenience, we omil pz; < é— Then
-

1 |p2i — F'Ul
nvar{dg (X)) Z P

Dyl 1 Ip2i — puil
ST O RETT T S P

Im ie DECBYNE 2e

o | Dyl lpz — pul lpz — pul
o e R
novar{dy (X)) Z Z P Z Z :

Im e DENBy N8By, Py 2 Py Lm 1e DENE N Byy Puy< Py P
= (I} + (11} + (I).

The first term (I) is —S812aL_ _ den™! a2
& 11T 5 varlo i X 1)~ varlagiXn < L

If p1i 2 pai. then [ZU=Pil < B2 S the second term (I1) is

. 1 i.r?zx - F'Ui
= nvar{d X)) Z Z P

Im IeDSMByM\Byy, Py 2 P2m

1

i
S T (X)) ) 2, P2

Im IeDSNBY N8B, Py 2= Py

| 2
varfdy 1X ) = | PGB M1 By [ THT= 3 = H = TR

since for sufficiently large n, the above is

_ 2|DE N By N Baw| TP
= g |D,‘; N By N Bmlnu—fhuﬂi—m: =1

B, .\ 2
<([f]+1) i
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If pij < pai, then 2Pl < | The third term (1) is

1
“mgn var{dg (X)) Z Z :

I (e DEOBUNBYm, PlI< Py

< Z | D% 7 By M By |
| D% N By 0 By |n ! -+ 0D

Im
B, V!
<(|=]+1
(F]+)
— 0.
H ~ 1 d =Nl — Lo ; 1 i) J
This pva‘i ;r-;;,;[';sﬁjt']'mz‘—l lew P | — (1) + (1) + (IIl) — O. In a similar WY, s j_l| i 1” — 0. 50
m”ﬁ“xﬂ Yo tuzeal 0, Fnrpnml'ﬂl'(4} (5) and (6), if we use the idea of (2) in Lemma 3.2, [hLyLanbL shown
casily

The following lemma is used in the proof of Lemmas 3.3, 3.5 and 3.6,

Lemma A.4. Under Condition A,
mz,=[E{ﬁFh + &g —cipu _'f'ﬂ]}' =o(l),

(2) if ry = M for some constant M, m Z‘_ VEEipii 4+ 6 —cinpri — cip) = o(1).

Proof. Lety,=¢ pii+cp—e; Pii —c'm We use the first order approximation in (1) and the second order approximation

in(2). Let f(x, y) = pulog({= _—} + log(1=2 ) then ;= f(pui. pa) — f(pu. pu). Define fi. f2. fir, fiz and

Sz as the partial derivatives with respect 1o x and v comresponding to 1 and 2 rc%rn:x:rjvuly Then fi{x,y) = L2

- x(l-x)?
L +_,I‘J;|,.|. P —yi42 Pui¥— My
X, ——— X _—s—ﬂﬁd X — e X, =
falx, y) = —37= 1L],ﬁll[ ¥) e fr(x, ¥) AT fizlx, y) =

g i e o _Pu—iy [, . . . T ST i
(1) T show this, we use the first order expansion. n; = m{p“ Pl m{pm pai ) where, for

j=1,2,y; is the interior point between p;; and pj;. By Lemma 3.1, on Ay, since pj; = pji(l + O(n™")) and Wi
I‘HIH.,LWL‘L[! Pji and Pji.Wji= p_,;{l + O(n~")). In the same way, (1—)=(~— p_,u}{l + O(n—"")). Using these,
T [l 7o .ﬂyil 7 (1 +O(n—")). Since| fi (. ey ) <n fork =1,2 and (a + b)2<2(a® + b7,

ZEn, I(Ag)

var( (X)) i1

I

1 3
= ———— ) E(filthy; o) (Pri — pii) — ol o o) (P — pad) 1 Ag)
var(84(X)) =

o

= Var G (X)) g LECf10 ;. ) (P — pr)) T(Ag) + ECf2(0 ;. o) (P2i — p2i) ) T(Ag)]

9,2t i il — pii 2(1 — pai
” :: (m{ m}'+P (I-» }){1+cu[1}}
var(34(X)) # "

i=l1
< _ 2n—u :ri’g_; 2n—2 ep vt —ol).
varid (X0 + 2en™ YW1+ o(ln " 2en™ Y1 +o0il))
. : ! 1 5d Y] = s 1 T i
And, by Lemma 3.1, mz._l}f[rh HAYI< 5 Y 4_1E['?4 T{AS)] = o(1) since x; is at most of poly

nomial order of n. So WL[T]]EL[EW =o(l).
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To show WELLE'?I — 0, we use the second order Taylor expansion, on Ay, 5; = fi(pu, padp —

pud + fupii pa (o — pa) + 5 fuld b (i — pud™ + 5 f( o) (P — pai)” where i ; is between P

3 4 . —g* —* 1
ﬂndpﬂ ['l_‘}l'_,r =1, Z.Usmg fri’j;':.l'?j;'“"'”{" ) andl_t"‘l'jjzu_j'?j;}l{l+0{:! ) on Ay and v.".,m-(ﬁn,(x]] = 45,4[){]"

1 1 2p1 — M pai — puill
% |En (A, 1+ ol
wa:{d.;m}gi Trel= s/ var(dg( X)) E paill — pa) Cherobt)

M L \p2 — pul
{ ] 4
nEdg(X) ‘Zl: Fll— iy

=o0(l) by Lemma 3.4,

,—mﬁm ——L___5 | EnI(A5) = o(1), we proved mzmlg,ﬁ =o(l). O
Appendix B. Proof of Lemma 3.4
! Z’: lpu—pal 2 ¥ lpi—paul 2 B i1 — p1i) — (1 = pa)l
nEd(X) = pul(l — pu) ~nEds(X) : o nEds(X) l —
B ipu<3 ipy =3

= (I) + ().

It is enough to show that the first term converges to (. As in the proof of (3) in Lemma A3, denote By = {i :
"—ﬂ+[!—l]4: <pi< "—flf-g-h:}‘ Bom=1i : "—er!+[JH—|.]J:_£- pai < ”—flf-e-.lm:L D={F J‘JJ.-—P:.- | < M,} where M, :”—[l,n'.'!-][l—flf—u]_

H i = v Py —pid 1 [P2i— P H—pPu
:'nhD,|Lc.-1nhu-,hnwnthaLK{pn.pa}—ﬁ;T_'%{l+n{1}|} . Therefare, v.h&n P R,_”HJF_;’L[ <o Ir%b
wihnch means
1 |P2i — Pl
sl
nEag(X) b P
1 lp2i — PLJE 1 0
ZM’—DK{FU FEJ}' n. P "I—ﬁ!

On DF N By N Bay, we use K(pu, p2)=(/Pii — P2i)* (see in Devroye et al., 1996, p. 131) and El>1+

5 .
M and B> Lo For pupy. K(pu. pad) = pul [ B — 172 pul|/ g — D 2n 005 [ — 1 ~
p~RHU-DE —@0 -0 In the same way, for pu > pii K(pu. pu) 2n BOU(ALET — 12 ~
"—ﬁ+[m—l]J:"—iZ,".l][l—ﬁ—J:]_Cﬂmbming these, Kipi. pm.};n—ﬂﬂmx[!.m]—l]J:n—[Z,-'.l][l—fﬁ—::]rm.mmc constant M’

3 e
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—(2 31— fi—g) - | —f+-imax if ) — 15 —fi+im—1)s
n |D¥F 1 By M By e i
< 2|D° N By N By |n—FHmaxim)
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S0 sET Lt il = o(1). Eda(X) = Eda(X)(1 + o1) follows from Eds(X) = Eda(X) + X0,
Coibim—nd 1"y o(ty. O

Appendix C. Proof of Lemma 3.5

(1) When var(8,(X))/n"~" = oc, var(4(X)) = var(d,(X))(1 + o(1)) by Lemma 3.3, Since ry < M, ——L— <

: A/ wariag (X i
M i 5 e |Edy (X1—Edg (X)) L [P0 —pail
. B simg  this, — = e e ] (1)) = =l 1 (1)) =
.Eqinl[.I] ¥ usmg I.fd’ rﬂ"l 'lll.-'.'].r[ﬁ.-.l[x_]] { + { }} nv-"-.-m-tﬁa)(n Z:j_l ,I‘J].'[l—ﬂ].']{ -+ { }}
M ! 1P — Pl -
nfﬁ,ux]zﬁl .I‘J:I.-:::l—ﬂln']{l + o0{l)) — O by Lemma 3.4

o 2 : d B (X —Ed (X )= (X)+E8, (X g (X R — X —
{(2) Since var{dg (X)) = var(d X1 + o(l)), Lioa0 (X —E(X)-§(X)+ES (X)) _ L@ Xi+He—aXi—ao)
) W variag (X W v (X
‘MJ__SE%LE_ The second term is ofl1) by (1) in this Lemma. We only need to show the first term is o(1).
varidg i X 1)

The first term is Zf:l{& Xi4+cio—ciXi—cin) = Z?r:[{a' — il X;i —pul+ E-";[{EIFU + & — CiPli —Cin).
i 1 e T e o ettt L S . R R, - ) e

By Lemma A4, WEEL{CJPH + i — cipl —cin) = 0p(l). By Lemma Ad, ,'._,]r[*inl[x]]g:lE“h

e (X — pu)) = oy Limi (b + AR (1 4+ o) = ol). XL, El@ — e)(X; — pu)] = 0 and

o 5
vy izt ELE — e (X; — p1)’] = o(1) shows

1 o

i "‘._‘. Xi—mi) = 1.
T aR) & {ei —eill pii) =opll)

These results prove N; — Ny — 0 in probability.

Appendix D. Proof of Lemma 3.6

(1) This is a direct consequence of the Lyapounov condition.

(2) We need to show that Y9, E|&; (X) — E&; (X)) f(var@a(X)0)¥? — 0. Let 5:(X) — E&i(X) = cilX;i —
pii) + (& — e(Xi — pui) + &pui + Gio — ES(X) = I + Iy + I3. By the condition 3 [e; [P pii(1 —
P )/ Oar (g (XN T e P i (1 — pua)/ (var(84 (X)) — 0.
We will show that 30 E|f P fvar(Bs ()N = 0.0n Ay, |G — el = [T + ofT)| €207 and |pji —
gjil én_“'pﬁ{l — pji). Therefore,

1 a a o

1
—————— Y Elf = ———— ) ElLlPIAN + Y P IAY)
(var(d (X)))** 2 (var(dg(X)))** g ! g 2

1 I

S——————— Y EM; +o(T)F|X; — pul I{(Ag) + n” P(A)
G :

8= & pu(l— pu)
= = +o(l
(var(dg(X)))** 2= o

i=l
el
By e

" (var(34(X) + 2em (1 + o(1)))2

en" ' 4 o(ly =o(l).

The last equality 15 due to vz 1.
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For 3L, E| x| f{w{mxm“- — 0,0n Ay, | i —Lﬁ.ﬁ'n+-=‘m —cipi —mﬁ%téuq —epiil +
_ o Tt A T RN SN - . N 0 S s
|£‘:] C‘“[ =+ }n.m [l—,l‘h ]E bn USIHE‘ ['niﬂ'[ﬂ,.,l[x]]] o -.'ur(ﬁ,,uixn and - ["-'lf[*l:'.-.l[x]]] :’ {1 + U{I}}’

3
P p— > st

(var(d( X)))> il

™ a a
Gn—t :
£————— ) E[lPHA)I+ ————= ) E[|BiP1(A9)]
V2evar(34(X)) ; T varGa0) ‘; T
o 6‘”_“‘ i {E R LT T }1
R—_Zc'va.r{zi,;{X}} — i Pl i PP i
. ) o
Gn " 1 lpz — pul” 1
£ b — =4 —n’P(A%)
(var(dy(X)))*/* n* g (paufl — py))* 267 g

= (D) + (1) + (LI).

1
—_—
(varidg( Xim™E

| | | i ipy—py)® | |
< ¥or Al o I o T —i—ﬂ‘——rﬂ whenvar(d (X
W w:nﬁd[xn’{ IS Ve var@a (X et SI= il = T e varida X el 8 —l Pail —.I'Jz.-] (04 (X))

= O Y, wsing —L <L 3(1)), the second t 1
{n"7"), using PR 51,—5{ + oi{l)), the secc erm, (I11)=

By (2)in Lemma A 4, (1) converges to (). By (3)in Lemma A 3, when var(d,(X))/n"~' — oc, using

_l' Ly — J.']
388t =1y (1—py®

! - -
S b it il — 0. Sothe secondterm converges 100, By Lemma 3.1, the third u:nn,uu},nlﬂaj,} -

i e 3 3
(0. Therefore, [mﬁd[xm”z_,,a,{x’} EdsiX)P =0 O
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