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1. Introduction

Changes in parameters in a model often characterize major events like a stock market crash, breakdown of quality or a
suspected major latent change. Inference about the time of change, namely, a so-called change-point, has been the subject of
considerable interest. For both review and original contributions based on likelihood ratio tests, see the excellent book by
Csorgo and Horvath (1997 ) henceforth abbreviated as [C, 1997 ) Important contributions have also been made by Siegmund
(1985). A major contribution to Bayesian inference on change-points is Raftery (1995, who develops Bayes Factors for tests
about the null hypothesis of nochange-point againstan alternative of a change-point having occurred in the given data in the
time interval under consideration.

The above formulation is what Moreno et al. (2005) refer to as a retrospective or offline analysis and distinguish from the
sequential online problemin which one has to find an optimal stopping time to detect a change-point. Our focus in this paper
is on the first problem, more specifically, on a new rigorous approximation [ BIC to the Bayes Factor, valid up to Op(1), as
required by Schwarz (1978 but different from anaive use ofthe BIC developed by Schwartz in the same paper for exponential
families. Our new approximation, which we willcall [ BIC because itis a lowerbound valid up to Oy 1), differs from a naive use
of Schwartz's BIC because the change-pointis a discrete parameter. As Schwartz pointed out, this sort of approximation up to
anerrorof magnitude of 0y 1) does not require specification of a prior. To some extent, this is an advantage because in testing
problems there is less consensus about priors than in estimation problems, in spite of major efforts by Berger and Pericchi
(1996) and the considerable progress as noted in Bayarmri and Carcia-Donato( 2007) for normal linear models. For non-normal
exponential families such priors are still not well studied. Also our approximation via [ BIC is easier to calculate than the
marginal likelihood of the data under H,. Finally, such a quantification of evidence makes sense to a classical statistician, for
whom this provides a penalized likelihood ratiotest, making it unnecessary to specify the type one emror probability. We note
that the standard theory for BIC based on Schwarz ( 1978 ) or Laplace approximation, e.g., Ghosh et al. (2006, Section 4, p. 114)



. Shen, LK. Ghash) Jowrnal of Statistioal Planeing md nference 147 (2011) 1436- 1447 1437

is not applicable because the marginal likelihood of the data under the more complex model of an unspecified change-point
involves not only integrals but also a sum, whereas, Laplace approximations for sums are not known,

The theoretical problem is formulated in Section 2 and solved for independent rv.'s with distribution belonging to an
exponential family. As expected, our new approximation leads to a penalty that is different from the standard Schwartz type
penalty used somewhat naively fora change-point by Yao({ 1993 ). On the other hand our penalty is similarto that of Siegmund
(2004), who derived his penalty in an entirely different way. A similar approach for AIC is given in Ninomiya (2005) who
modifies the usual AIC penalty for a parameterlike a change-point. Our methodology, but not the proof, has a straightforward
extension to independent observations with models satisfying standard regulanty conditions for asymptotic theory of MLE,
e.g., Serfling (1985) or to CARCH models for financial asset price and volatility. We apply the new method in Section 5 to
simulated as well as real data with satisfactory results. We also calculate several Bayes factors including that due to Bayarn
and Garcia-Donato (2007) for comparison. Some general remarks appear in the final section

2. Formulation of the problem

To keep the problem simple, suppose under the no change-point hy pothesis Hg, 2's, 1< i = n, are iid with density fia i)
satisfying standard regularity conditions. Under the one change-point hypothesis Hy, with change-point at k, 1 =k =n,
Xi.... Ay are independent, x;., ... x, identically distributed fix/?,)and x., 1, ... x, are identically distributed fix| %), Under H,, we
have two continuous parameters 1,03 and a discrete parameter k, whereas under Hy, there is only the continuous parameter
f!. Typically a Bayesian would introduce independent priors my (k), (04, #%) and mg(i"), and compare the marginal likelihood

n

m{H.]_ [[[Hf{x,”i.] f{lellfz] myliy, 0a) didy did; |7y ik,
k=1 i=1 = ka1

miHg) = [ T foslth ot do

im
via the Bayes Factor £ = m(H, )/mi{Hy)and reject Hy if 4= 3 (mild evidence) or 4 = 10 (strong evidence), vide Jeffreys (19611

Approximating the integrals by standard of BIC or Laplace approximation for xi,....x and X+ 1.... X, respectively, and
dropping off the O,{1) term, we get a partial simplification

miH, ) = zexp{i{k.r'}.{k],rﬁz{kn——lugn}r.{fn i1
k=1
where p; is the dimension of the smooth parameter under Hy, and
ex ukr} {02 (k) = su x;104) i (a;|0) .
pl 21k Hf{l_[f{lu‘_l:[llf Iz}
Here we have used the well-known Laplace approximation for each integral separately and simplified a little, getting
[[r[f{x,mn [T fixifaym (6,.62) do, do; = exp{uk ke ke — 2 ngri}Dl_Jl].
i=1 i=kd4l

Similarly, use Laplace approximation to a single integral and drop off the Oy 1) term, we get
miHg) = Exp{ i{r}]_ logn } (2)

where py is the dimension DE the smooth para meter under Hy and il is the MLE of # under Hg. 50, the BIC for Hy with fixed kis
Lok ik fatkeni—(py /2)logn and the BIC for Hy is Lid)—(pg,/2)logn. A naive BIC, which treats the discrete change-point k as a
regular smooth parameter and hence denoted as n BIC, is

R 1
nﬂu:=uk.u.{k].r}2{kn—p'; logn, (3}
where
k = argmaxd k.0 (k)0 k). 4
l<k<n

Our main theoretical goal is to further simplify the sum over kfor m{H,)inEq. (1), under H, with assuming the true value of
the two continuous parameters are ' and ¢;. Towards this end, we begin with an upper and lower bound of m{ H, ). First, we
consider the case of the flat prior myiki=n"', ¥k Clearly, up to an error of magnitude 04 1),

logmiH, ) = {E{ﬁ.f).{fé].fiz{ﬁ]]—%- lngri}—lngn. (5]

lngmH.]:c{i{f}.r‘}nﬁ].f}zﬂ:’n—? lngri}. (6}
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To obtain a much more tight upper bound for logmi{H ), we splitm{H1)in Eg. {1)into four terms for some sufficiently large M,
Le.,

miH ) =L +L:+1L3+L4

where

P z exp[i{k.r:i.{k].r}yk]]—pz'- lngri]ri = (7
|he=ky] = M

b= zExp[i{k.l’h{k].f}z{k]]—? lngri]ri L (8)
koM

Li= 3 exp [i{k.l’}|{k},r}2{k1]—p—'lﬂgn]ri L 9
=k = M 2

Iy= z E‘xp[i”(.fh{k].f:’ﬂk]'l—%l lngri] nl, (10
[k=ky | An <k = M

and ko is the change-point. Mote that

L -:_:Exp[f_qfr.r}Hfi’].l’.‘iz{h]—%lngn]n I2M,
Ly -=_:Exp[f_qf}.r-}Hﬁ'Ll’?yﬁ']]—Ez' lc:gri]ri I,

I3 gexp[i{i’.fi.{f;'].r}z{ﬁ']]— pzl- lc:gri]ri M,

then L+ Lo +15 <_:Ex[:ﬁi{ﬂ'.ﬁ.{fh.fizﬂ}]]—qp. /2lognin '4M.
In Section 3, we consider the case of exponential family density fylx: ') and show that Ly is at most in the same order of
magnitude as Ly +L,+L,. Therefore, up to an error of magnitude O4(1],

logmiH) = logLy + L+ 13+ L4) = {i{fé.r}.{f}].r}ﬂf}n_g' logn}—l{:gri.

Hence, for the case of exponential family, the lower bound in Eq. (5) as an approximation to log miH, ), has an ermor of magnitude
04 1)which is thesame as the order of error of the BICin regular problems with continuous parameters. We choose the lower bound
as our BIC for the case of exponential family with flat prior, and denote it as | BIC to distinguish from the r BIC. Clearly, [ BIC is more
conservative for the test. The fact that use of | BIC is also consistent, vide Section 4, provides further justification.

The above justification holds not only for the flat prior 7,0k, but also for a quite general class of priors m, (k) satisfying the
assumption B1 in Section 3, which is a discretization of density function. For these reasons, we choose the lower bound in
Eq.(5) asour [ BIC for Hy for the case of exponential family in all cases. [t leads to a parsimonious test which is close to the full
Bayes test for many priors.

3. New BIC for change-point of the exponential family

Here,asin[C, 1997], we consider the case of exponential family with density flx; ) = hixiexp[T(x —A( )], where {? is the
natural parameter. For a change-point problem of this exponential family, without loss of generality, one may assume the
natural parameter space & is open. It is well known that A(f) is infinitely differentiable, e.g., Lehmann {1991, Section 2,
Theorem 9). It is also well known that this family satisfies

1. E|Tix)| < oo, for all @ € &;
2. Al is strictly convex;
3. A'(f), the derivative of A((), has a unigque inverse (A '(0);

vide Bickel and Doksum (2007, Theorem 1.62-1.6.4, Section 1). Therefore, both @, k) and f2(k) have the closed form, ie.,

n

k
At =k ' 3Tk, Atk =in-ky' Y Tix;).
i=1 i=k+1

It is convenient to use the re-pammeterized notation fihfn = Aill ik and r};_m = Aiflz ik instead.
Elementary calculation yields Lk, 80k, i,k = kgif | (k) +(n—kig(i, i), where g(ih) = [(A) " @)0—A(A) ). By the
chain rule of derivative, g"((!) = [{A’) iy, Hence, g} is also strictly convex as well as A(-), Le.,

‘i[nlll [teif 1 +{1 —tig(fa)—g(th +({1 -1} = 0, ¥[ab] c {0,1).
&
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Mow, suppose kg, orformally, ke(n)is the true unknown change-point forthe parameterd, i.e., {x,]J oy didfee thoyand () g
tid fia: 070, where 1y and i are the two distinct unknown parameters. In the change-point problem, kq{n){ sometimes simply
written as k) is usually assumed to satisfy

AL D= limy .0 'kgimi=cg = 1.

As for the prior my(k), one may assume
k!

Bl mik)= [}y, dtrdt, k=12....n

where ¢4 ) isa pdfwith support on [0,1]and ¢4y = 0. This guarantees m (kg )0 = max, 7, (k) for sufficiently large n, wherecisa
constant independent of k or n. Other similar assumptions are possible,
With the assumptions A1, Bl above, one has the following basic lemma. The proof is given in the Appendix.

Lemma 1. For ¥e&= 0, there exists some constant Mgie) (independent of n, k, hereafter written as Mg), such that for
wink) e DY {Mg) U T2 Mg), where

DI{MU] = (k) : n—ky = Mg kg—k = Mg .k = Mg,

DE{MU] = (k) : kg = Mg k—kg = Mg.n—k = Mg),
with a probability larger than 1 —g, one has
L ke, 1k, B20ky)—Liko, 01 (ko). B2(ka ) = —dlk—kal,

for some constant &= 0, & independent of n, k and &.

Remark 1. & is explicitly defined by Eq. {18)in the proof. My is implicitly defined in the proof while using the Law of [terated
Logarithm {LIL) and inequality (A.5).

Remark 2. D'(My), T8 (M) = kg = Mg n—lkg = Mg), which is equivalent to {n : n = Ny for some constant Ny, by virtue of the
assumption A,. Clearly, Ny depends on My only.

To apply this lemma for estimation of the Ly term in Eqg. {10), we first let n = Ny, then for fixed n (5o that kg is also fixed ), we
consider all the k satisfying kg —k = Mg, k= My as in D' {Mg) and also all the k satisfying k—ky = Mg, n—k = My as in D?(Mg),
respectively.

The crux of the Laplace approximation for the integral | > qiihe"™™ dif is that hit!) takes a sharp maximum within the
neighborhood of #y, where (; =argmax;, hif!1, so that the integral over the entire domain is reduced to the integral over a
neighborhood of . The lemma above is analogous to this. For Eqg. (7). the lemma asserts that Lk, r}|{k1 H;_{k]] has a sharp
maximum value in a neighborhood of ky so that the sum of Lk, r}|{k] H;_{kn over all k is reduced to the sum over a
neighborhood of k.

Clearly, this lemma mellesﬂl’ Itg| =001}, the conclusion of Lemma 1.5.1 in [C, 1997], Section 1. Therefore, together with
assumption B1, ¥& =0, 3IN,(£), such that ¥n = N,(£), with a probability larger than 1 —z, one has r{k]c = max, k). (Hereafter,
we also denote Ny(g) as Ny

Let N=max{ Ny, N, }. This lemma alsoimplies that for n= Nand then k & {kg—k = Mgk = Mg} J (k—ky = Mg.n—k = Mg), with
a probahility larger than 1—&

Lk, 01k Gaikn —Lik, 01k ), 020k 1) < — 8| k—kal.
Therefore, by Eq. ( 10) and some elementary calculation, with a probability larger than 1—g,

Ly= ]Exp{f_{k.r}nk]. f);_{k]]—%tngn}r:.{k]

+
ko—kkz My k-ko.n-kz Mg

-=_:Exp{i{f}.r}ﬁf;'],r}z{f;']]—pzl[Dgri}r:.{f{]c 3 expl—dlk—kql)
k| = My

EEKP{.E{.‘;.’.I’}H.{’],[};{.{’]]—%[Dgﬂ}R|{.i.’]fE‘XFI{—1§Mﬂ]1’j{’1—EKp{_Jj]] I
Of course, as discussed in the flat prior case in Section 2, with a probability larger than 1—g one has

L= z Exp{f_{k.r}Hk}.f!yk]]—%lngn}r:.{m<_:Exp{f_{f;'.r}|{f:'].r}z{f:m—%lngn}r:.{ﬁ']ZcMﬂ.
kg | = Mg

and the similar upper bound for L, and Ly, respectively.
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All the above reasoning implies that ¥e = 0, 3N, which depends on £ only, such that ¥n = N, with probability larger than
1—g, one has

lngm{H.]-=_:{ﬁ{ﬂ'.r}nf}].r}z{f}}]—%lngri}+lngr:|{fl'1+M5.
where M;, = log|4cMy +cexpi —dMg)d 1 —expl—d)) '\. But, by Eq. (1), one has the lower bound for m{H, ), Le.,

logmiH;) = {iu}.r}.uh.r}zu}n—pz'. lﬂgﬂ} +logm,ik)+0,(1) (11
Therefore, one has a further simplification for mi{H, ), Le.,

logmiH, 1= {i{f}.r} |{f}].f}211}1]—p2' lngri} +ng;r:.{f;'1+Dl_.{1]. (12
We state this as a theorem for future reference:

Theorem 1. With the assumption Al, B1 specified above, the new BIC for Hiy with unknown ko(n) for the exponential family,
mrmely,

fBIC:f_{ﬁ'.r}|{f:'].l'}z{f;'n—%lngrlﬂngrmﬁ']. (13)
satisfies log m{ Hy J=IBIC+0,[ 1}

As explained earlier, | is areminder that it is an approximation to m(H, ) through a lowwer bound. Clearly a flat prior m, (k)
satisfies the assumption B1. If one further requires v(-) = 0 in assumption B1, then m(k) has the same order as n—', for
Wik=12,...,n Thus, our new BIC for the exponential family with change-point in its parameter ¢/ becomes

rmc=iué.r}.qfh.r}2n&n_p';2

logn.
It is different from the naive BIC in this setting which is egual to

nBIC = Lok, @k, Dtk — F'T“ logn.

We think this is due tothe fact that the change-point kg is not a regular parameter, as discussed in Ninomiva (2005 ), where the
bias-comrected term for AIC in the presence of change-point was treated differently.

As for the case of multiple change-points, similar results can be achieved by replacing the assumption Al, B1 with the
following two assumptions:

A2, the change-points kgin) < kyin) =< .- - <k, (n) satisfy

limn'kiny=c, ¥i=0,1,..., q-1,
LI e
where 0 =cg =cy = - - =0y =1;
B2. denote c* = (cg.0y. .. .. Cyoah I=lg i 0y o) where 1 <y <l < ... < Iy y =n. The prior m(l) for the g change-points
satisfies

Tl = [{qn:,b{r]dr.
40

where ¢b(-) is a pdf with support on [0,1]7 and ¢ic*) = 0; I} is the g-dimension hypercube 1'[:!'_::,1{fj—1],e'r1.fj,a'r1].

Following the same approach showed earlier in this section, one may obtain the new BIC for the multiple change-points
problem in this case, ie.,

BIC = Lik,0, k), f2(K), .0, |{ﬁ]]—§lngn+lngn|{ﬁ]. (14)

where k = argmath_{k.l"h{k1.|’}2{k1 ..... i, 11k, p is the number of smooth parameters under Hy and g is the number of
change-points under H,. If one further requires ¢(-) = 0 in assumption B2, then m(k) has the same order as n~ 7, for vk
Therefore,

IBIC = Lk.,0, (k). Bk, .0, , .n‘:]]_(g +q}lngn.

4. Consistency of the [ BIC

Forone change-point problem of the exponential family, under Hg, the diffegem:e between log mi Hy) and | BIC is just half of
the frequentist’s log likelihood ratio test statistic plus{{pg —py)/2logn+logm (k). The upperbound forthis log likelihood ratio
test statistic is up to the order of log log n, vide [C, 1997 ], Section 1, Eq( 1.1.1),(1.1.19) and ( 1.3.6). This fact implies, under Hg,
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our | BIC is consistent. On the other hand, under Hy, elementary calculation yields

IBIC—logmiHyg) = (Likg. 0 iheg), 2 (kg1 — Lo + @ logn +logm, (k)

= n{ks B 1+ (l—j::')g{ﬂy—g(? i + (l—j::') I'};_) }+ Pﬂ;m logn +logm, (k).
By the strictly convexity of gi-) for the exponential family and the assumption B1, this difference is Opy{n) with positive
coefficient. Therefore, our | BIC is consistent under Hy as well. The consistency of our [ BIC can be easily extended to multiple
change-points problem for the exponential family.
The proof above also shows that, as expected, use of the exact Bayes Factor, namely 4 =mi(H;)/m(Hy), also leads to
consistency of BIC. The consistency of BIC for hypotheses about exponential families was proved by Schwarz ( 1978). Berger
et al. (2003) show BIC is inconsistent in high dimensional problems.

5. Application to simulated and real data

In this section, we extend the methodology, but not the proof, to simulated observations from exponential distribution,
normal distribution, GARCH{1,1) model and to the weekly observations on the 3-month treasury bill yvields. We also
compared the Bayes factor via our | BIC with that via conventional prior proposed in Bayarri and Garcia-Donato (2007 ),

5.1. Case of simulated data

In the numerical study, we first simulated data from three distributions expi( ), M .7 ) and GARCH(1,1), respectively, each
with n=2000 observations and with a change-point kg=1001. In such a case 1- kyn)/n=0.5. To be specific,

1. for expith, the first half observations iid exp(1)and the remaining half observations iid exp(2);
2. for N{u,7), the first half observations iid from MN(1,1) and the remaining half observations fid from N{2,27;
3. for Garch({1,1), the first half observations from CARCH{ 1,1)

Xk='1+'l-'k.
Vi =G by,
di=01+01v¢  +0.8s2
kT LT | Rl T |

and the remaining half observations from CARCH(1,1)
X =2+'|-‘k.
Yy = 7
ai=04+01vi | +08a] |,

where &, L M0, 1.

Clearly, the exponential distribution exp(¥) has density function fulx) = exp{ —af 4 logl?], so itis amember of the exponential
family in Section 3; the MN{u, ) case with both grand & unknown is a member of another standard exponential family; and the
GARCH(1,1) case does not belong to the exponential family in Section 3 either. As for the number of smooth parmameters,
exp(iy has pp=1, py=2; Mg, ) has pp=2, py=4 and the CARCH{1,1) has py=4, py=6.

In order to see the pedformance of our [ BIC, we also simulated data from the above three change-point models with
Ieg=1940, 1990 res pectively. Table 1 summarizes some interesting statistics of the model fitted with the flat prior for the three
cases. Clearly, our approximation of m{H, ) through [ BIC is quite satisfactory in each case except the case of GARCH{ 1,1 ) with
the change-point very close to the end of the data, i.e., ko= 1990. The much larger value of | BIC than log m{ Hy) leads support to

Tahle 1
Statistics of the Atted models for simulated data.
Maodel kg i log mi Hy) log miH,) T BIC n BIC
expiiy 1000 1000 — 145927 — 134644 —1347.52 —-1343.72
1940 1940 — 1988 .53 - 198271 —1983.49 —1979.69
1990 1980 — 205406 — 205714 — 205441 —2055 61
N{p ) 1000 1002 —3R08 52 —3505.46 —3506.97 —-3503.17
1940 1941 — 24561 —2EE2 00 —2BE2 OR —28T918
1990 1989 - 287737 — 286035 —2861.25 —2B5T7 A5
Gamh{1,1) 1000 a8 —3661.40 — 355046 —-3560.77 —3557.12
1940 1941 —2911.00 — 200503 — 2006 48 — 2902 &8

1990 1393 —2775.99 —2781.37 - 278656 —2782.76
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Fig. 1. The fitted log-likelihood for the models.
Table 2
Statistics of the Atted model for iid Exp 1)
Lk iy iay log mi Hy) log mi H,) TBIC n BIC
—1991.35 — 1995 98 — 200057 —H00R55 ~ 200275

the correct model H, in all these cases except the case of GARCH(1,1 ) with ky=1990. Fig. 1 shows the fitted i{k.r} 1k, f};_{k]] of
the simulated data for all the three models with ky=1940,

Toverify the consistency of our! BIC, we also simulated 2000 observations iid from exp(1). Table 2 lists the statistics for the
simulated data. Clearly, the much smaller value of | BIC than log m{ Hy) leads support to the correct model Hy.

Bayarri and Garcia-Donato {2007 ) suggested an objective proper prior for the change-point problem on normal linear
models where a change occurs only in covariate coefficients at a fixed known change-point kg This setting is different from
ours where the change-point kg is not assumed to be a known constant. However, one may also use their prior as an
alternative to the Laplace approximation to compute the marginal likelihood and then, likewise, apply flat prior m, (k) on the
change-point to derve the Bayes factor. As to compare the logBF via our | BIC with that suggested by Bayarri and Carcia-
Donato { 2007 ) via their objective proper prior, we simulated data from the model of Mju, 1), with n=500 and change-point
k=250, 475, 490 respectively.

1. for ky=250, the first 250 observations fid N{1,1) and the remaining 250 observations fid M(2,1);
2. for kg=475, the first 475 observations iid M(1,1) and the remaining 25 observations iid N(2,1);
3. for ky=250, the first 490 observations fid M(1,1) and the remaining 10 observations iid N(2,1);

For each case, we computed the log Bayes factor logd = logmi{H,)/mi{Hy) via the BIC approximation of m{H,) in Eg.{1) and
mi{Hg) in Eq. (2), we denoted it as logd™. The logd via [ BIC as a further approximation to m{H,)in Eq. (1) is also studied. We
denoted this log as logd®. The log/ suggested in Bayarri and Garcia-Donato (2007 is also included in this numerical study,
denoted as log.i”. Table 3 lists the log Bayes factor forthe simulated data of each case. Clearly, in all the three cases, logi”, logi®
and log4”® are pretty close to each other.



G. Shen, [ K. Ghosh) Jowrnal of Statistionl Planning md nference 147 (2011) 1436- 1447 1443

Table 3

Log Bayes factor comparison
kg g log” logs®
250 51.70 5087 50.12
475 3.36 1.15 286
490 141 — 020 0BG

Table 4

Statistics of the Atted models for 3-month treasury bill yields, 1973 /02- 1982/ 10,

Model k ke iy 3 mi Ha) m{Hy) I BIC n BIC
LEVEL 370 —15242 — 18070 — 18124 —184.05 —180.94
GARCH 342 ~ 11358 —142.14 — 14258 —144.72 — 14161

52, Case of weekly observations on the 3-month treasury bill yields

The short-term risk-free interest rate is fundamental to much of theoretical and empirical finance. There are two popular
classes of empirical models for short-term interest mate volatility, namely LEVELS models and GARCH models. Brenner et al.
(1996) indicate that LEVELS models over-emphasizes the dependence of volatility on interest level and fails to capture the
serial correlation in conditional variance; on the other hand, CARCH models rely too heavily on serial comrelation in variance
and fails to capture the relations between interest rate level and volatility. In consideration of structural break or change-
point, a model is preferred if it is robust to the occurrence of major events on market. Between 10/1979 and 101982, Federal
Reserve did a monetary targeting experiment to lowwer the volatility of the short-term interest rate. Empircal study of a data
set of weekly observations on the 3-month treasury bill yields starting from 02/09/1973 indicates that Fed's monetary
targeting experiment might cause a structural break in LEVELS models, but not GARCH models, e.g., Ball and Torous(1994) or
Brenner et al. {1996), However, Chan et al. {1992) found no structural break in the LEVELS models. We may tackle this issue
with the Bayesian approach as discussed above for the data set of the 506 weakly observations, 02{1973-10/1982. For this
case, the change-point ko if any, shall be the start time of Fed's experiment, corresponding to ke=350. Assuming we do not
lkknow kg and the structural break ocourning at k, the LEVELS model becomes

ri=ay 4+ 4w,
Vi =38,

oy
o} =g,

for i =k and

ri= o+ far 4+,
Vi =7,
o} =¢ars,

foriz=k, 1.-.rl'neneﬁ,-f MiD, 1), i=1,....506. Clearly, py=4 and p,=8 in this case. The summary of the statistics of the model fitted
with the flat prioris given in Table 4. k =370 isa little bit far away from the value of kg. This might be due to the factthatthe
volatility in LEVELS model relies too much on the level of interest rate and the interest rate level was relatively high when the
Fed's experiment started, thus the alarming signal is delayed. However, our approximation for m{H, ) through [ BIC is guite
satisfactory. The larger value of | BIC than mi Hy) supports that there is a structural break in the LEVELS model for this case.
Mow we proceed to check whether there is a structural break in the ARMA-GARCH model for this data set, i.e.,

ri=ay + Mo+
Vi = 78,
62 = +avi | +ba? |,

for i =k and

ri=ap+fr g+,
Vv, =08,
67 =t +avi | +ba?

[ e =11
for i = k with -I-.:jl:'tj M0, 1) Clearly, for this case, pp=5 and p,=8. The summary of the statistics of the model fitted with the flat
prior is also given in Table 4. Our approximation for m{H, ) through [ BIC is quite satisfactory. The smaller value of [ BIC or
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Fig. 2 The fitted log-likelibood for 3-month treasury bill vields, 02/1973-10/1982.

mi(H,) than m{Hy) suggests no structural break in the ARMA-CARCH model for this case. In contrast, one would conclude
mi(H, ) if using n BIC instead. Our result confirms the conclusion of structural I:lregl-c al:lgut LEVELS models and CARCH models
in Ball and Torous (1994 and Brenner et al. (1996). Fig. 2 shows the fitted Lk, #,(k),02(k)) of the real data for both models.

6. Concluding remarks

Forthe exponential family, ourl BIC is a lower bound to the marginal likelihood of amodel with change-points, hence more
conservative. It has an approximation error up to Oy 1) like standard Schwartz BIC Like BIC approximation to the integral,
marginal likelihood, | BIC holds for almost any nice priors for smooth parameters there, i.e., so long as the priors are
continuous and positive. The assumption for our | BIC on the prior for the discrete change-point is also fairy weak, which
requires a uniform prior or the discretization of a positive density. For this reason, our approximation is valid for a large
families for priors. The numerical examples provided above also suggest that our approximation of BIC in the presence of
change-point works very well in many cases, in addition to the exponential family as we proved. However, the theoretical
justification of these extensions requires much more challenging theory.

Appendix A. Proof of Lemma 1

Like the approach in [C, 1997], Section 1.5.1, p. 41, our approach for Lemma 1 is to use Taylor expansion and the Law of
Iterated Logarithm (LIL) to approximate the remainder
Ay = Lk, iy (k)03 (ky)—Likeg D kg, D2 k).
= [kg(f (k) +(n—kig (020k)) —[kag( 0 (ko ) +(n—ko)g (02 (ko ))]. A1)

Proof. Without loss of generality, we consider k - kg and let

ko—k n—ka

TiEy= T(n Tifd5). A2
{C) =g [LRES oy 7 (03] [ 1

For convenience in notation, hereinafter we denote
¥ =Tx) =T, &=TH) H=TH) 1A.3)

and T, 051 = [min(f] 65 ), max(?],03)], then £ & DY, 55).
First of all, we give the explicit form of 4. Let

C = 125 (g7 )+(1 g 03 —g( el +01 -6 1),
Iefab]

Ca = g(0)—g(03)—g (00 —05),

Ca= max { (g0, lg" (" ).1g" 1],

Tyl A3
Cq=max|C; .C3|”T—”5|_I
Clearly, due to the strict convexity of gi.), 1,0z = 0. Mow we may define our constant
d=min3 'C.6'Ca). A4
The constant C; above will later be used in defining M.
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Before applying Taylor expansion on Ay in Eg. { A1), we consider the upper bound for the following terms, which are closed
related with the remainders in Taylor expansion later:

k
b=k} (5 —-07),
1
Ky
te, =hkg' ¥ (2 —6)),
1

re={n—=k) 'i{x;— d

k41

rku ={ﬂ—k|:|:|- ! Z{x,'—l'};:}.
kg 41

ka
5= kg —ky ! 3 -6,
ka1

By LIL, ¥& = 0, 3My.C = 0, such that ¥in.k) € D'{My), where
'DI{MU] = (k) : k= Mg.kg—k = Mg.n—kg = Mg,
with a probability larger than 1—z& one has
max [[lg —k]" ?2loglogilg—k)) ' 25| = C,
o' iMy )
max |[n—kg]'*[2loglogin—kg)] ", | =C.
' iMu}
Clearly, the above result implies

max |sg|,  max |n,| = CM, "'2{2lnglng|‘|.'1'ﬂ]"'2.
' iMu) ' Ma)

Mote that r, = ((kg—k)/in—ks, + (n—ky) /in—kyr, . therefore, vk.n satisfying kg—k = My and n—ky = My, with a probability
larger than 1—g, one has

max r,| = CM, " (2loglogMg)' 2.
oYy

Similarly, ¥k,n satisfying k = My, with a probability larger than 1—&, one has

max ||, max |t | =< CM, V2 oglogMg)' 2.
oMy My}

Actually, one may take M, sufficiently large such that further it satisfies
oM, 2 2loglogMy) 2 < 1, 4CM,, "lzizlng[c:gﬂdq}"'zfq =4 (A5}

MNow Taylor expanding A, in Eq. (A1), For ¥ink) (Mg, with a probability larger than 1z, one has
k
0 . . 1 .
H(kul Zx,') =H'[”|]+E"'[”|]ﬂq1+ig 'fﬂllffu+0{kﬂ|].
i
k
g(k '3 x ) g0 +E0 e+ 5 .E"'[” e+ ok ")
i
kﬂ] L

H(m ) =g{r}5]+g'ﬂ};_]r,,n+%g’1r}5_]rfu +ofin—kg)
Jq, 1

g({n —ky”"! ) B+ Jrk+2g (£ +oln—k) !
k41
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Clearly, the approximations above are uniform in k, for ¥k € D' (My). Now plug the Taylor expansions above into A4, then
Ay =1 +L +15+0(1), where

I ={n—k)g( & 1—in—ka)g (03— ko —k)g( ), A6
L ={n—kg( " r,—in—kq)g (05, —(kg—k)g'(1])5),. AT
= Mg"(& Wn—kg +g" (ke —g (05 Nn—ka)rg, —g"(0; ka3, ). (A.8)

First, we check I, in Eg. (A6), the deterministic term of 4. Clearly, by Taylor expansion and mean-value theorem, 35* such
that

01 037

B(E™) = B+ RN E -5 )+ 5

Hence, by Egs. (A.2) and (A.3)

I I
Therefore, plug g(£") in the above equation into Eq. (A.6), one has

h =—(ko—k) [g{rm-g{rﬂ;_]-g{n;urn—n;]—@‘m ,f i -65) ]

s 1—g{r121+g*mz]["” "];r},_n}_} 5'0r) [‘;ﬂ ‘f] 037,

Mote that, due to the convexity of g1, g1 1—gl05)—g 1050 8] —5) = 0, then by assumption Al, one may choose £g = 0such that
for wk further satisfying (kg —k)/(n—k) < #g, one has

Eizfi' to ;{n- 032 < Ig{r},] B(03)—g (0, —~05)).
Hence
[(n—F)g(E" —(n—ko)g(F3 )—(ko—kigi0])] < —Jko—K)lg( 0] )—g () —g (5N —03 ) fort
Clearly, for the rest of ks, iLe., k satisfying (ko —k)/(n—k) = 20, one has
(n—k)g (") (n—ko)g( 0 )—(kg —kig(B) = (n—k) | g(")— nn__j:rﬂg{”‘;-] = ff )
Seelrih) Inf et )-+ 1—rmr}21—g{rr?7 -] (A10)

By Egs. (A9), (A.10) and (A4), with a probability larger than 1—g one has
I = {in-k)g( & ) —(n—kq)g 75 ko~ k)g(97)) = —3dlk—kq|.
Second, we check I, in Eq. (A7), By Taylor expansion and mean-value theorem, 37* such that
E(E) =g (B3)+g (T HE"—B3).
Hence, by Egs. (A.2) and (A.3)
(n—k)g (&I = (n—k)g' (03 Iy + (kg —k)g (T* WO - 03)m.
Plug the above equation into Eq. (A7) and apply the upper bound for |s,|,|r,|. with a probability larger than 1z, one has
[zl = lka— kI g (05)—g (0] 5, — [ (T WO5 0]y | = heg—Ki{|5,12Ca + 1. |Ca)
= |ka—k| (3cM, "2 2loglogMa) ' 2Ca) < dlka—k|.

The last step is by virtue of (A5).
Finally, we check I; in Eg. { A.B). By Taylor expansion and mean-value theorem, 3.7 such that

BN =g+ HE - 0).
Hence, by Egs. (A.2) and (A.3)

(n—kyg"(E" s = (n—k)g" (5% + (ko —k)g (" WH; — 032
Plug the above equation into Eq. (A.8), then

I = g(G)n—kirg —(n—ko)rg, 1+ £(07 )kt —kath, 1+ 18 (W0, — 030 ko— iz (A11)
Mote that, by definition

(n—kyry—(n—kgiry, = (kg—k)sy.
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kg Ly, —kety = (kg —k)5y,
l{n—k)rg —(n—ka )y, | = l(n—k)re—(n—ka)r, |Ir + gl + Mg |lke— ko | = | Sl g+ T |k —Kea | 4 i, || k—Keal,

ety —ka 3, | < | Kt —Katy, ||t 4+ tiy |+ bt | k—Kal = ISkl18x 4+ ti, | k—Kal -+ tety, |Ik—Kal,

Therefore, plug the above result in Eg. (A.11) and apply the upper bound for |s;|, etc., with a probability larger than 1 -z one
has

113l = kg {151 T 4T, |+ 1T, | 1Ca + 3k —hg| F Cq = | k—kgl14[CM,, 2 (2loglogMg) ' 2PCa) = dlk—ky.

The last step is by virtue of (A.5).
The same conclusion holds for ¥ink) & T2 (Mg), where

T (May={ink) : ko = Mo, k—ka = Ma, n—k = Ma).
Hence, for wink) & D' (Mg TF (Mg), with a probability larger than 1, one has

Ay =Lk, 000y 0200)) L ko0 (ko). Btk )) < —dlk—kg|. O (A12)
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