
Neural Comput & Applic (1998)7:343-355
�9 1998 Springer-Verlag London Limited Neural

Computing
& Applications

Shape Extraction: A Comparative Study Between Neural
Network-Based and Conventional Techniques

A. Datta 1 and S.K. Parui 2

~Computer and Statistical Service Centre, 2Computer Vision and Pattern Recognition Unit, Indian Statistical Institute, Calcutta,
India

Extraction of the skeletal shape of an elongated
object is often required in object recognition and
classification problems. Various techniques have so
far been developed for this purpose. A comprehen-
sive comparative study is carried out here between
neural network-based and conventional techniques.
The main problems with the conventional methods
are noise sensitivity and rotation dependency. Most
of the existing algorithms are sensitive to boundary
noise and interior noise. Also, they are mostly
rotation dependent, particularly if the angle of
rotation is not a multiple of 90 ~ On the other hand,
the neural network based technique discussed here
is found to be highly robust in terms of boundary
noise as well as interior noise. The neural method
produces satisfactory results even for a very low
(close to 1) Signal to Noise Ratio (SNR). The algor-
ithm is also found to be efficient in terms of invari-
ance under arbitrary rotations and data reduction.
Moreover, unlike the conventional algorithms, it is
grid independent. Finally, the neural technique is
easily extendible to dot patterns and grey-level pat-
terns also.

Keywords: Binary object; Dot pattern; Grey-level
image; Medial axis; Neural network; Noise; Robust-
ness; Rotation; Self organisation; Skeleton

1. I n t r o d u c t i o n

Shape description of objects is often necessary in
image and document processing. This can be achi-

Correspondence and offprint requests to: Dr Swapan K. Parui,
C. V. P. R. Unit, Indian Statistical Institute, 203 B. T. Road,
Calcutta 700 035, India. Email: swapan@isical.ac.in

eved by transforming the object to its skeleton which
provides a representation of a pattern by a collection
of lines, arcs or curves. The skeleton contains the
essential structure of the object. This transformation
process is called thinning or skeletonisation. Thus,
thinning is the process of reducing the width of a
pattern to just a single pixel. In processing binary
patterns, thinning has been of continuous interest
for the past three decades, and many algorithms
have so far been suggested [1,2]. Skeletons are
useful for topological analysis and classification of
the shape of patterns containing elongated or linelike
parts (for example, printed or handwritten characters,
chromosomes, etc.). Character recognition systems
often require thinning for extracting the basic fea-
tures of the characters. Other advantages of thinning
or skeletonisation are to reduce the memory space
required to store the essential structural information
of the pattern, and to simplify the data structure
required in processing the pattern. Shape represen-
tation and data compression are the main objectives
of skeletonisation, which plays an important role in
image and document processing.

For digital binary objects, there are numerous
definitions of a skeleton, and hence thinning algor-
ithms differ from each other in performance and in
implementation. But the main objective is to achieve
a close approximation of the Medial Axis Trans-
formation (MAT) of the object. The existing skel-
etonisation algorithms can be broadly classified into
two categories - iterative algorithms and noniterative
algorithms. The iterative algorithms remove outer
layer pixels iteratively until a one-pixel thick-skel-
eton is achieved. According to the mode of removal
of pixels, the iterative algorithms can be further
classified into two classes - sequential and parallel
algorithms. The sequential algorithms operate by

344 A. Datta and S.K. Parui

processing the object pixels in a sequential manner,
while in parallel algorithms all or a subset of the
pixels are processed in parallel. The parallel algor-
ithms are of two types - multi-pass and single-pass.
In the noniterative class, various techniques are used
(for example, distance transform, polygonal approxi-
mation, contour following, etc.). This class of algor-
ithms produces a certain skeleton of the pattern
directly in one pass without examining all the indi-
vidual pixels. The output skeleton here may not be
in the form of a raster image. It may be in the
form of a planar graph providing a line-segment
approximation of the input pattern. Henceforth, we
shall call these two types of skeleton a raster skel-
eton and a vector skeleton, repectively.

In the present article, we focus on the perform-
ance evaluation of a new approach to skeletonisation
that satisfies all the above properties. The new
approach is an improvement upon a self-organising
neural network model [3] for the purpose of skel-
etonisation. The earlier algorithm was sensitive to
the choice of parameter values, and the results
obtained were often unsatisfactory for skeletonis-
ation. The present algorithm based on the new
concepts of 'activation level' and 'activation region',
which are data dependent, is sufficiently adaptive
and is more efficient in skeletonisafion. Also, it has
been examined, in a comprehensive manner, how
the improved algorithm performs in terms of several
important aspects which are relevant to skeletonis-
ation.

Self-organisation is a learning phenomenon that
has been observed in the human neural system. It
is simulated with an artificial neural network model
by Kohonen [4]. Kohonen's Self-Organising Neural
Network (KSONN) model is essentially a feature
mapping which has some interesting properties. For
example, it preserves the topological properties of
the input, and can select the dimensionality auto-
matically. The present skeletonisation algorithm uses
the fundamental rules and properties of KSONN
model, but does not use it in its original form. The
model has been modified to make it dynamic to fit
it into the skeletonisation task. Different dynamic
versions of the KSONN model have been reported
by several authors in different contexts [5-7]. Our
model produces a vector skeleton in the form of a
planar graph.

The performance of an algorithm should be
judged not only by measuring how well it works
on perfect input data, but also by measuring how it
works on noisy data. An algorithm may give good
results with noise-free input, but very poor results
in the presence of even a little amount of noise.
Such algorithms are not of much use. Since noise

is almost unavoidable in practice, more robust algor-
ithms are needed. Here, we first describe our model
and algorithm for skeletonisation of a noise-free
binary image. The image consists of two levels -
black for object pixels and white for background
pixels. We then add random noise (black noise in
background and white noise in object) to the image
with different SNR values, and study the difference
among the resulting skeletons. The proposed algor-
ithm is qualitatively different from the conventional
skeletonisation algorithms in terms of noise sensi-
tivity. In conventional algorithms, the noise type
that is usually considered is boundary noise only.
In the present study, both the boundary and object
noise types are taken care of. It can be seen that
the proposed algorithm is highly robust in terms of
both these types, while the conventional algorithms
are not designed to tackle object noise.

We describe in brief, before going into the actual
comparisons, our neural network model for skel-
etonisation [3] in Section 2. Section 3 presents the
comparative studies, with the help of some
examples, between the neural algorithm and some
conventional thinning algorithms. The comparative
studies are done on the basis of the following
properties of a good skeletonisation algorithm: (a)
noise immunity or robustness; (b) rotation invari-
ance; (c) close approximation of the medial axis;
(d) high data reduction efficiency; (e) extendibility
to other input types - dot patterns and grey-level
patterns. These properties are dealt with in different
subsections. Conclusions are given in Section 4.

2. Network Model and Algorithm

There are a few shortcomings of Kohonen's SONN
model in view of the skeletal shape extraction of a
pattern. In Kohonen's SONN model, a network hav-
ing either a linear topology or a planar topology is
used. In general, such rigid neighbourhood top-
ologies are found unsuitable in some situations and,
in particular, it poses problems in skeletal shape
extraction of a pattern. When the input pattern has
a prominent shape such neighbourhood definitions
are found unsuitable [8]. This is due to the fact
that, during the update process, the weight vectors
lying in zero-density areas may be affected by input
vectors from the surrounding parts of the nonzero
distribution. As the neighbourhoods are shrunk, the
fluctuation vanishes and, as a result, some processors
may remain outlier due to the residual effect from
the rigid neighbourhood. For example, if the input
vectors have a circular distribution, the processors
near the centre are not representative of the input.

Shape Extraction 345

Another problem with the SONN model is that it
assumes a predefined fixed topology of the network
which is maintained throughout. But in skeletonis-
ation tasks, at different localities of the input pattern,
we require a varying topology of the network. For
example, at different portions of the pattern, it may
have different structures namely, an arc, a fork, a
crossing, etc. Thus, a linear chain of processors fails
to adapt the skeletal shape of circular and fork
structures. For a circular pattern, in the SONN
model, the topology of the pattern is no longer
preserved by the output network (the pattern is a
closed loop while the output network is open). The
fork structure cannot be adapted by a linear network
structure. To adapt the fork structure, the network
requires one processor to have three neighbours. To
overcome the limitations of Kohonen's model, we
suggest some modifications [3] of it in which the
set of processors and their neighbourhoods change
adaptively during learning, in order to extract the
skeleton of a binary image.

Kohonen's feature mapping net is composed of
an array A (1- or 2-dimensional) of processors
(neurons) receiving input signals from a feature
space V to be mapped onto A. Each input vector is
presented to the net on m input lines, where m is
the dimension of the space V. Each processor in
the array is connected to one or more surrounding
processors. Every processor is also connected to all
input lines. The map is adapted on the basis of a
set of input vectors from the feature space.

Denote the set of processors by {Trl,Tr2,...,%}.
The neighbourhood N~ of a processor 7r~ is {TrplTr p
is connected to 7r~}, which includes 7r~. Let the
weight vector for the processor 7r~ be W/(t) =
(Wil(t),Wiz(t),...,Wim(t)) at the time instance t. The
starting weight vectors W/(0) are chosen at random.
Suppose the set of input vectors is S = {PI,P2,...,PN},
where the dimension of each Pj is m. The weight
vectors are updated according to the following rule.

At time instance t, Pj is presented to the net. All
the processors compete and let Wk(t) be the nearest
weight vector to Pj. That is,

Iw,(t) - P ; I - - m i n l w ~ (t) - Pjl (1)
i

Then, the weight vectors of the processors within
the neighbourhood of 7r~ are updated as [4]:

Wp(t + 1) = Wp(t) + c~(t)[Pj - Wp(t)], (2)
for 7rp E N~, 0 < c~(t) < 1

where ~(t) is the gain term which decreases with t.
We have classified the input binary patterns into

three categories: (1) Arc patterns like character pat-
terns 'C', 'L' , 'S', 'M', etc. which have a linear

structure; (2) tree patterns like 'T' , 'X', 'Y', etc.
which have forks and branchings; (3) loop patterns
like 'A', 'B', 'O', etc. which contain a loop struc-
ture. These categories are dealt with separately.

2.1. Arc Patterns

The structure of these patterns can be represented
by a linear structure. The initial net having a linear
structure is represented by a list of processors
[rrl,~r2,...,%], where 7ri is connected to exactly two
processors ~ri_i and ~'~+1 (the two end processors are
connected to exactly one processor each). Here, the
input feature vectors are the co-ordinates of the
object (black) pixels of the image, and hence m = 2.
S={PI,P2,...,PN} is a set of N pixels, where
Pj = (xj,yj). The weight vectors of the processors ~ri
are updated iteratively on the basis of the pixels in
S. The initial weight vectors of 7r~ are, say,
(wil(0),w~2(0)). Suppose, the pixel P~ is presented at
the tth iteration. Let

dist(P;,Wk(t)) = min [dist(P;,WM))].

P~ updates the weight vectors according to Eq. (2).
If this updating process continues, the weights

tend to approximate the distribution of input vectors
in an orderly fashion. The limiting weight vectors
define the ordering. One presentation each of all the
pixels in S makes on sweep consisting of N iter-
ations. After one sweep is completed, the iterative
process for the next sweep starts again from Pl
through PN. Several sweeps make one phase. One
phase is completed when the weight vectors of the
current set of processors converge, i.e. when

]Wi(t) - Wi(t') I < e Vi (3)

where t and t' are the iteration numbers at the end
of two consecutive sweeps and s is a predetermined
small positive quantity. Only after a phase is com-
pleted are processors inserted or deleted. Suppose,
at the end of the sth phase, the weight vectors of
the processors are Wl(ts),...,Wn(,) (ts), where n(s) is
the number of processors during the sth phase and
ts is the total number of iterations needed to reach
the end of the sth phase. If the weight vectors of two
neighbouring processors now become very close, the
processors are merged. If their weight vectors are
far apart, a processor is inserted between them.
More formally, if

]Wk(t~)-W~,(ts)l= min min IW~(ts) (4)
i=l,...,n(s) ~i,~Ni-{Tri}

- w~ , (t ,) l < ~

then the two processors 7rk and ~'k' are merged, and

346 A. Dat ta and S.K. Parui

the new processor has the weight vector as [Wk(ts)
+ Wk,(t,)]/2. If, on the other hand,

[W1(t ,)-Wr(t ,) = max max IWi(ts)
i=l,...,n(s) rri, eNi {rri}

-wi,(t,)l > 8~ (5)

then one processor is inserted between 7rl and 7rr
and the new processor has the weight vector as
[W~(ts) + Wr(t~)]/2. Note that 81 and 8a are two prede-
termined positive
the insertion and
phase starts with
process continues

for all i, 8 2

> 8 1 , V'TT i,

quantities such that 81 < 8 2. After
merging of processors, the next
the new set of processors. The

until, at the end of a phase,

> [w,(t)- ~,(t)l (6)
e Ni - {~'i}

The condition (6) means that the weight vectors of
no two neighbouring processors are either two close
or too far apart. The distance between two neigh-
bouring processors (after convergence) is controlled
by 81 and 62. The processors (on the basis of their
weight vectors) at this stage give an approximate
skeletal shape of the input pattern. It should be
noted that the quality of the skeleton depends on
the choice of 81 and 62. This issue is discussed in
more detail in Section 2.4.

2.2. Tree-like Pat terns

For tree-like patterns, it is required that some pro-
cessors in the net have more than two neighbours.
The degree of a processor is defined as the number
of its neighbours. Unlike in the case of arc patterns,
the degree for each processor should be learned here.

Let us consider a pattern with a fork. Since
initially there is no topological information about
the pattern, we start with a linear net with five
processors (Fig. la). After a number of iterations,
some processor forms a significantly small acute
angle (decided on the basis of some threshold) with
its two neighbours (Fig. lc) to indicate a fork in
the pattern. Such a spike is formed because, by a
property of Kohonen's feature map, the net tries to
span the entire range of input pattern space, and
also the topologic~ relationship of the pattern is
preserved in the net. In Fig. l(c), processor X forms
a spike with its neighbouring processors Y and Z,
indicating a juncture lying between Y and Z. There-
fore, the following actions are taken to adapt the
degree (Fig. ld) when processor X forms a spike:

(a) Create a new processor say, U (denoted by a
solid circle) halfway between Y and Z.

(b) Delete the link between X, Y and the link
between X, Z.

Fig. 1. Different steps of convergence of the net for pattern 'A'
without noise. (a) initial net, (b) after 12 sweeps, (c) formation
of an acute angle after 94 sweeps, (d) after 105 sweeps with a
new processor (solid circle) created with degree = 3, (e) after 394
sweeps immediately before loop formation, (f) final net after 518
sweeps. (61 =6, 62= 12 and s=0.01.) .

(c) Establish links between U, X; between U, Y
and between U, Z.

The same actions are taken for all the processors
forming a spike. These actions are taken after a
phase is complete, and then the subsequent phases of
learning are continued to enable the net to approach
towards a closer approximation of the shape of the
pattern. Similar principles used in the case of arc
patterns are followed for insertion and deletion of
processors, and for convergence of the algorithm.

2.3. Loop Pat terns

The techniques discussed above work for patterns
excepting those containing loops. Consider the pat-
tern 'A'. Our algorithm can generate, on the basis
of the principles discussed in Section 2.2, an incom-
plete skeleton, as shown in Fig. l(e). It is now

Shape Extraction 347

necessary to complete the loop by means of bridging
the gap (between processors E and F in Fig. le).

The asymptotic values of the weight vectors con-
stitute some kind of vector quantisation [4]. In
particular, the distance measure and the update rules
as considered in our algorithm, induce a partition
of the input pattern space specified as

Si = {Pj E Sdist(Pi, W 0 <- dist(Pj, Wr) Vr}

The above partition is a Voronoi tessellation
which, in the present situation, means partitioning
of the input pattern space into regions within each
of which all input vectors have the same weight
vector as their nearest one. Therefore, each set S,
is associated with a single processor. Hence the
input pattern vectors can easily be labelled according
to the S~ to which it belongs. In other words, each
input vector is given a label according to its nearest
processor. Such input labelling has earlier been used
by Sabourin and Mitiche [5].

Definition. When the input pattern is a binary image,
two processors rr~ and 7rj (i#=j) are said to be
adjacent if there exists at least one pair of object
pixels P ~ Si and Q ~ Sj such that P and Q are 8-
neighbours of each other.

After convergence (let us call it initial
convergence) as mentioned in Sections 2.1 and 2.2,
label the input vectors as mentioned above and then
for each processor, check whether it is adjacent to
any processor other than its neighbours. If it is,
introduce a link between these two processors. In
Fig. l(e), processor E is adjacent to processor F,
and they are not neighbours to each other. So, they
are connected and become neighbours. After this we
continue the algorithm until the final convergence is
reached (Fig. lf), i.e. when condition (6) is satisfied.
The algorithm can now be stated briefly as:

The Algorithm

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

[Initialisation]
Initialise t = 0;
Initialise the weight vectors Wi(t),
(i = 1,2,...,n) with random values.
[Sweep]
For all input patterns Pj, j = 1,2,...,N
Update weight vectors according to rule
(2).
[Phase]
If condition (3) is not true then go to
Step 2.
Merge or insert according to condition (4)
or (5).
If condition (6) is not true go to Step 2.

Step 6:
Step 7:

Step 8:
Step 9:

Step 10:

Step 11:
Step 12:

If no processor forms a spike go to Step 9.
Create a new processor U, as mentioned
in Section 2.2.
If condition (6) is not true go to Step 2.
Label the input vectors as mentioned
above.
If no processor is adjacent to any processor
other than its neighbour then Stop.
Join the processor and the processor adjac-
ent to it.
If condition (6) is not true go to Step 2.
Go to Step 6.

The final network obtained by the above algorithm
gives a vector skeleton for the given input pattern.
The raster skeleton can easily be derived from the
network. For each link, the line segment connecting
the weight vectors of the two corresponding pro-
cessors is considered. The set of all pixels lying
closest to such a line segment gives the raster skel-
eton.

The above algorithm has been tested on a number
of input patterns. The final results along with a few
intermediate stages are shown in Fig. 2 for character
patterns 'S', 'X', 'a' and 'y' . The initial nets for
all of them are the same as shown in Fig. l(a).

For arc patterns, it can easily be seen that the
resulting net, after convergence, gives a skeletal
shape of the pattern. Here the array of processors
is linear, and the inputs are from a two-dimensional
distribution (see [4, p.153]). In the present model,
we start with a given number of processors and, at
the end of a phase, we obtain an output similar to
the Kohonen's model. After each phase, either a
processor is deleted or two consecutive processors
are merged into a single one. In the process of
insertion and merging, the existing global ordering
of the processors is never disturbed. Note that each
phase here can be looked upon as a full execution
of Kohonen's algorithm, because each phase starts
with a given number of processors and converges
to an output. Thus, the only difference between our
model and the original model in terms of conver-
gence is that the former is a repetitive application
of the latter, each time increasing/reducing the size
of the net without disturbing the global ordering.
From the fact that once the processors are ordered
they remain so for all t (see [4, p.143]), the output
net in the proposed model will give the skeletal
shape of the pattern, as given by Kohonen's model.

For tree-patterns, after a few phases (when almost
all the weight vectors are positioned within the
pattern, or at least quite close to it), a spike in the
net is replaced by a 'Y'- or 'T'-like structure locally.
The starting net being linear, a spike here represents

348 A. Datta and S.K. Parui

Fig.2. Two intermediate steps and the final skeletons for patterns 'S', 'X', 'a' and 'y'.

a junction in the local neighbourhood of the pattern.
The method is repeated after each phase. For a '+'-
like junction, two such replacements are required.
For other parts of the pattern, the argument holds
good, since a tree-pattern is a union of several
arc-patterns.

If the pattern has a loop, the algorithm (up to
Step 8) yields only a tree-structured net. Sub-
sequently, loops are formed depending on the
Voronoi regions. If two Voronoi regions are adjacent
but the respective processors are not already linked,
then a link between the two processors is estab-
lished.

2.4. Choice of 6~ and 32

It is easy to see that 61 and 62 play a role here.
Very low values of 61 and ~2 might produce a zig-
zag (peano curve) network (Fig. 3a-b) which does
not represent the true skeletal shape of the pattern.
On the other hand, if 6i and 62 are very high, the
skeleton does not properly represent the medial axis

(Fig. 3e-J0. Experiments have shown that the skel-
eton starts becoming zig-zag when 82 (with 61 -~- 162)
becomes less than �89 where T is the local thickness
of the pattern. Values of 62 larger than �89 can
prevent the zig-zagness. Thus, if the input pattern
has more or less uniform width and the approximate
width value is known, then the choice of 61 and 62
is easy. But in practical situations, the thickness
may not be uniform or, even if it is, its value may
not be known. In such situations, some adaptive
mechanism is necessary. One such mechanism is to
introduce an activation level in the weight updating
process, which is described below.

We specify an activation region of a processor
so that if an input vector falls within the region
then only it activates the processor. The activation
region decreases over time. In the present problem,
it is taken as the circle with the corresponding
weight vector as the centre and the activation level
as its radius. The values of the activation level ai(s)
for i,...,n(s), at the end of the sth phase, are com-
puted as follows:

Shape Extraction 349

Fig. 4. The raster skeletons obtained (a), (b) without and (c), (d)
with activation level. 61 = 1, 6a = 2.

Fig. 3. The role of 6~ and 52 on the output skeleton. (a) 6~ = 3,
62=6, (b) 6j=4, 6~=8, (c) 61=5, 62=10, (d) 51=6, 62=12,
(e) 61 =7, 62= 14, (f) 61 = 8, 62 = 16.

a~(s) = max Iw (ts)- wi,(ts)l (7)
~i' ~Ni--{Tri}

A processor is called active if the presented input
vector lies within its activation region. In other
words, if an input vector lies outside all the acti-
vation regions, it is ignored in the competition and
updating process (Eqs 1 and 2). Only active pro-
cessors are qualified for the competition, after which
the winner processor is selected. As the activation
region is shrunk over time (according to Eq. 7), the
object pixels away from the medial axis gradually
and symmetrically loose their effects on the weight
adjustments. Thus, all the weight vectors approach
the medial axis. The algorithm described earlier is
modified to incorporate the activation level. Results
of the modified algorithm are shown in Fig. 4. It is
found that the modified algorithm gives much better
results, In the original algorithm, if 61 and 6 2 take
small values (say, 6~ = 1, 62 = 2) then the skeletons
become zig-zag (Figs 4a, b), but in the modified
algorithm, the skeletons do not become so with the

same 61 and 62 (Figs 4c, d). Thus, we can always
set 61 = 1 and 62 = 2 and, by introducing the acti-
vation level, a satisfactory medial axis representation
can be obtained.

Note that smaller values of 61 and 62 will take a
longer time to converge. However, in some appli-
cations, a crude approximation of the skeletal shape
serves the purpose. In such situations, we can choose
higher values of these two parameters and get the
output more quickly. Thus, the user has an option
to make the algorithm faster at the cost of accuracy.

3. Comparisons Between Neural and
Conventional Techniques

3.1. R o b u s t n e s s

An important aspect of a skeletonisation algorithm is
noise immunity, which makes the present algorithm
qualitatively different from the conventional ones.
Two types of noise, namely boundary noise and
object noise, are considered here. If the original
object contains noise, the skeleton should not deviate
much from the skeleton of the same object without
noise. A serious problem with most of the existing
algorithms is that they sometimes produce noisy
skeletons if the input patterns contain noisy bound-
ary (see Datta and Parui [9] and Jang and Chin
[10]). Moreover, these algorithms cannot handle
object noise. On the contrary, the proposed algo-

350 A. Datta and S.K. Parui

rithm is designed to take care of both these types
of noise and is highly robust to them.

The above claim of robustness of the present
algorithm can be argued as follows. The resulting
skeleton here is given by the weight vectors after
convergence, and their links. Its final position is
highly insensitive to noise pixels because of two
factors. First, the weight vector converges to the
centre of gravity of the respective Voronoi region
(Si) and this centre is not greatly affected by noise
pixels. Secondly, the activation region of a processor
decreases over time and, as a result, the boundary
noise pixels are kept outside it, to a great extent.
Thus, the noise insensitivity of the present algorithm
is clear from its learning mechanism and conver-
gence property.

Most existing conventional algorithms use a rigid
definition of connectedness of the object - which
in effect causes noise sensitivity. Our method relaxes
the concept of connectivity, and it is found that
such a relaxation helps the robustness, particularly
in situations where SNR is very close to 1.

3.1.1. Boundary Noise. The boundary noise is dis-
tributed on the boundary of the object (white noise)
and on its immediate neighbourhood in the back-
ground (black noise). The proposed skeletonisation
algorithm is found to be very robust to such bound-
ary noise. Here we add black and white boundary
noise pixels and study the effect they have on the
skeleton. We have experimented on several
examples with different SNR values, where the SNR
is defined as follows:

Number of boundary black pixels
SNR8 = (8) (B+ W)

where B = n u m b e r of black noise pixels and
W= number of white noise pixels. To demonstrate
the effect of boundary noise, results are presented
for a straight line pattern of length 33 pixels and
width 5 pixels, where '0' represents an object pixel
and '*' represents a skeletal pixel (Fig. 5). The
skeletons obtained by the present algorithm, and by
several conventional algorithms [9,11-14] are shown
in Figs 5(b)-(e) for a fixed SNR= 18. There is no
distortion in the output skeleton obtained by our
algorithm. For different SNR values, the output
skeletons obtained by our algorithm from the same
pattern are given in Figs 5(f)-(i). The output skel-
eton remains undistorted even with SNR= 3. At
SNR= 2, the output skeleton has some distortion
with me = 0.31, where (as in Jang and Chin [10])

Area[SK_S,K] + Area[S'K-SK] I
me = rain 1, Area[Sx] J (9)

where Sx and S'x are the skeletons obtained from S
and its noisy version, respectively. Area [.] is an
operator that counts the number of pixels.

The proposed algorithm has been tested on 62
test patterns (English upper and lower case charac-
ters and numerals), and the average values of m~
against different SNR values are computed. Using
the same measure, Jang and Chin's [10] algorithm
has been shown to be superior to several other
conventional algorithms. The average rn~ values, in
our algorithm, are found to be less than 0.04 for
SNR values ranging from 20 to 3. For SNR = 2,
the average value of m~ ~ 0.35. In Jang and Chin's
algorithm, even for SNR = 10, the average value of
m~ is higher than 0.2; and for S N R = 2 0 , it is
higher than 0.1. For SNR values higher than 20,
our algorithm produces me that is practically zero.
Thus, it is found that our algorithm is even better
than Jang and Chin's algorithm in terms of boundary
noise immunity.

3.1.2. Object Noise. By object noise we mean the
white noise distributed over the entire object, includ-
ing its boundary. The existing conventional algor-
ithms are not able to handle such noise, which is
interior to the object, but such noise may occur
in practice for several reasons. The problem with
conventional algorithms (for example, the iterative
ones) are that they use the property of local con-
nectivity within a small window (mostly 3 x 3), and
try to preserve such local connectivities throughout.
Secondly, due to the use of a fixed set of templates
of a small size, they treat a single white noise pixel
as a hole consisting of a single pixel. As a result,
in the output skeleton it appears as a big hole
(Fig. 6(b)). Figure 6 demonstrates how only two
noise pixels misclassify a '1'-like pattern to an '8'-
like pattern. On the contrary, the proposed algorithm
uses the connectivity concept in a more global sense
(for example, while joining two processors, we
check whether the two respective regions are
adjacent). The algorithm treats small holes as white
noise at the cost of the possibility of missing a true
small hole. Thus, very small holes have hardly any
effect on the resulting skeleton (Fig. 6(c)). But if
the hole is large enough and is in fact a part of the
pattern, it is output as a hole in the resulting skeleton
(Figure l(f)). We have experimented, and found that
the algorithm is robust and performs satisfactorily
with moderately low SNR (moderate amount of
noise), where the SNR is defined by

Number of object pixels
SNR = (10)

Number of noise pixels on the object

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

*

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

(b
)

0
0

0
0

0
.0

0
0

0
0

0
0

0
0

0
0

0
.0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
.*

**
**

0
0

0
0

0
0

.0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

**
**

*0
0

0
0

0
0

.*
**

**
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.*

0
0

0
0

0
0

0
0

0
0

0
.0

0
0

0
0

.*
**

**
**

**
**

0
.0

0

0
0

0
0

0
0

0
0

0
0

.0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

.0
0

0

(c
)

0
0

0
0

0
.0

0
0

0
0

0
0

0
0

0
0

0
.0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
'0

0
0

0
0

0
0

0
0

0
0

0
.0

0
0

0
0

0
0

0
0

0
0

0
0

0

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

0
0

0
0

0
0

0
0

0
0

.0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.0

0

0
0

0
0

0
0

0
0

0
0

.0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.0

0

(a
)

0

0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

*

0
0

0
0

0
0

0
0

0
0

.0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
.0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

(e
)

0

0

0

0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0

0

(f
)

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
(g

)

0
0

0
0

0
0

0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

**
**

**
**

**
**

**
**

**
**

**
**

**
**

**
**

*

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0

0
0

0
0

0
0

0
0

0
0

0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

O
0

0
0

0

(h
)

0
0

O
0

0
0

0
O

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0

0
0

0
0

0
0

0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

.0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

'0

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

0
0

0
0

0
0

0
0

0
0

.*
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0

0
0

0

0
0

0
0

0
0

0

O
0

0
0

0

0
0

0
0

(i
)

Fi
g.

 5
.

'0
'

m
ea

ns

ob
je

ct
 a

nd

'*
'

m
ea

ns

sk
el

et
on

.
(a

)
R

as
te

r
sk

el
et

on

ob
ta

in
ed

by

 o
ur

al

go
ri

th
m

.
T

he

sa
m

e
w

it
h

S
N

R
=

18

 (
b)

 b
y

ou
r

al
go

ri
th

m
,

(c
)

by

[1
1,

12
,1

3]
,

(d
)

by

[t
4]

,
(e

)
by

[9

];
 (

f)
-(

i)
 s

ke
le

to
ns

 b
y

ou
r

al
go

ri
th

m
 w

it
h

ap
pr

ox
im

at
e

SN
R

va

lu
es

 a
s

10
,

5,

3
an

d
2,

 r
es

pe
ct

iv
el

y.

352 A. Datta and S.K. Parui

be neighbours to each other. Therefore, we join two
processors by a link if they are close enough, but
are not already joined. The closeness is determined
on the basis of 62. Formally, loop joining step can
be stated as follows:

For every processor, its nearest among other
processors (excepting its neighbours) is found.
If the distance between these two processors
is less than 82, then they are joined by a
new link.

Thus, after the initial convergence, we join the
processors satisfying the above criteria. Then we
continue the algorithm until final convergence is
reached, i.e. until condition (6) is satisfied.

An illustration is presented in Figs 7(b)-(d) for
the pattern 'A ' with different SNR values. We have
taken a very high amount of object noise and tested
the algorithm for several character patterns. It has
been found that even in the presence of very high
noise (SNR= 2.0, 1.5 and 1.1), the proposed algor-
ithm is able to extract the skeletal shape of the
original object as can be seen in the example figure
(Fig. 7). The existing conventional algorithms fail to
work in such situations.

Fig. 6. Output skeleton generates big holes in the presence of
even single noise pixels. Output of conventional thinning algor-
ithms (a) without any noise, (b) with two single noise pixels,
(c) output of the proposed algorithm with the same noise as in (b).

For a very low SNR, i.e. for a very high amount
of noise, when the binary object merely becomes a
set of scattered pixels or a dot pattern, the proposed
algorithm with some modifications in the loop join-
ing step can still yield the global skeletal shape of
the pattern, assuming the noise to be uniformly
distributed.

It is clear that the loop joining process, by check-
ing the adjacency of two respective regions' Si's, is
meaningful as long as the connectivity of the object
is preserved after noise addition. Otherwise, the loop
joining has to be done in a different way. In fact,
by the properties of Kohonen's model, two pro-
cessors will be neighbours to each other if the two
respective Voronoi regions are close in the pattern
space, since Kohonen's self-organising map pre-
serves the topological relationship. Hence in our
case, it is expected that two close processors should

3.2. Rotation Invariance

Another advantage of our algorithm is that the out-
put skeleton does not depend upon rotation of the
input pattern by arbitrary angles. This is because
the proposed method does not assume any underly-

Fig. 7. The final skeletons obtained for the pattern 'A' with object
noise. (a) Original binary pattern, (b) SNR- 2, (c) SNR = 1.5, (d)
SNR = 1.1.

Shape Extraction 353

ing grid. The iterative methods for skeletonisation
that use square grid are invariant under rotation by
multiples of 90 ~ only. A recent paper [10], based
on derived grid, reports invariance under 45 ~
rotation also. As an illustrative example, we have
rotated the pattern 'A' by different angles (11 ~ 22 ~
and 45 ~) and shown the output skeletons in Fig. 8.
Figures 8(b)-(d) show almost no effect of rotation
of the input pattern on the output skeleton.

3.3. Medial Axis Representation

As the basic purpose of skeletonisation is to approxi-
mate the medial axis of the object pattern, it is
important that the output skeleton should approxi-
mate the medial axis as closely as possible. In other
words, the skeleton should not be biased. After
getting the raster skeleton, the following measure
[14] is computed for comparison of the goodness
of medial axis representation with some other thin-
ning algorithms:

Area[S']
- Area[S] (11)

where S = set of all object pixels in the input pattern,
and S"=union of the maximal digital disks
(included in S) centred at all the skeletal pixels.
Clearly, ~ ranges from 0 to 1, and the derived
skeleton is identical to the ideal medial axis if ~/ is
1. ~ measures the closeness of the extracted skeleton
to the true medial axis. Jang and Chin [14] found
the average values of 7/ to be 0.712 and 0.881 on

a number of pattems for the algorithms in Arcelli;
et al. [11], Tamura [12] and Hilditch [13] and the
algorithm in Jang and Chin [14], respectively. In
Datta and Parui [9], this measure was further
improved to 0.931. For the proposed algorithm, the
average ~/ value is found to be 0.885 (with 61 = 1
and 62 = 2) for the same set of test patterns.

3.4. Data Reduction Efficiency

The above neural network model using competitive
learning creates an adaptive vector quantisation [4]
of the input set. Each weight vector tends to the
centroid of the respective regions Si. Within each
region, all pixels have the same weight vector as
their nearest one. In general, the output weight
vectors give the prototype or examplar vectors from
the appropriate classes (regions), and these can be
an encoded version of the input, in less storage
space. In the present situation, the set of weight
vectors along with their interconnections, or the
graph (planar straight line graph) with the weight
vectors as its nodes and the interconnections as its
edges, represents the skeletal shape of the input
binary pattern. The graph requires much less space
than the original input set, and hence a considerable
data reduction is achieved.

One of the basic purposes of skeletonisation is to
reduce the storage space required to store the image
data without losing the essential structural infor-
mation. The proposed method can achieve more
data reduction compared to most of the existing
skeletonisation algorithms. It can be seen that the
fewer processors in the network, the greater the data
reduction. By choosing larger values of 6i and
82, i.e. by making the average distance between
neighbouring processors larger, we can make higher
data reduction. But this might worsen the accuracy
of medial axis representation. A proper choice of
61 and 62 (as mentioned earlier) can balance this
trade-off.

Fig. 8. Effect of rotation by angIes (b) 11 ~ (c) 22 ~ and (d) 45 ~

3.5. Extendibility to Dot Patterns and Grey-
Level Images

For a dot pattern, unlike in the case of a binary
image, a skeleton is not be properly defined. But
our biological visual system can still extract the
perceptual skeleton from a dot pattern. For example,
a dot pattern having a definite shape (say, 'A'-like)
can be recognised by the human brain almost as
easily as a binary image having the same shape.
The conventional thinning algorithms that extract
skeletons from binary images do not work for dot

354 A. Datm and S.K. Parui

pattems. In contrast, as seen in Section 3.1.2, the
proposed neural algorithm, with a minor modifi-
cation, can be used to extract a perceptual skeleton
of a dot pattern [15].

Conventional binary image thinning algorithms
work only on binary images. They cannot be
extended to grey-level images. On the other hand,
the neural technique discussed here can also be
extended for implementation to grey-level images.
A grey-level image may concern either the whole
image or a subset of it. Here the latter case is
assumed. We consider, as in Arcelli and Ramella
[16], grey-level images where the area of interest
(i.e. the object portion) can be interpreted as consti-
tuting a multi-valued foreground emerging from a
single-valued background. The extension can be
done in the following way.

Suppose for a grey-level pattern, grs is the grey
value of the pixel at the rth row and sth column.
Then the update rule replacing Eq. (2) will be

Wv(t+l) = W:,(t) + oe(t){Pj-Wp(t)]g,.,, for % �9 Nk

(12)

Multiplication by g,., means that the amount of
update will be more for pixels with high grey values
and less for pixels with low grey values. The grey-
level extensions for arc and tree-like patterns are
thus straightforward. But for loop patterns, the
extension is not trivial because the definition of
adjacency is not well defined in that case. If criteria
for the adjacency are available, then the extension
is also possible for loop patterns. In some situations,
the loop joining criteria used for dot patterns may
work. Alternatively, one can use the adjacency as
defined for binary images after local thresholding
(locality being defined by the regions Si). The algor-
ithm has been tested on several grey-level images,
and Fig. 9 shows the result from a chromosome
image.

Fig. 9. Output skeleton of a grey-level chromosome image with
intermediate stages of skeletonisation.

them are robust to boundary noise only. The neural
algorithm is highly robust to both boundary and
interior noise, in the sense that it can produce
satisfactory skeletons even under very low SNR
(close to 1) or a very high amount of noise. Noise
is unavoidable in real-life applications. The neural
technique is useful particularly in a highly noisy
environment.

Another advantage of the neural algorithm is that
it is invariant under rotation by arbitrary angles.
Most of the existing algorithms are invariant under
rotation of 90 ~ only. The data reduction efficiency
of the neural algorithm is higher than that of the
other algorithms. Moreover, the neural technique is
found to be extendible to a dot pattern or to a grey-
level image. Thus the neural technique provides us
with a unified approach to skeletonisation.

4. Conclusions

Performance analysis of a neural network-based
skeletonisation technique for a binary object is the
main motivation here. The technique uses a modified
version of Kohonen's self-organising model. This
neural technique is compared with a number of
conventional thinning techniques qualitatively as
well as quantitatively. The comparative studies, car-
ried out here, demonstrate that the neural technique
has some advantages over the existing conventional
thinning techniques. Most of the existing conven-
tional algorithms are not robust to noise; some of

References

1. Smith RW. Computer processing of line images: a
survey. Pattern Recognition 1987; 20:7-15

2. Lam L, Lee SW, Suen CY. Thinning methodologies -
a comprehensive survey. IEEE Trans. PAMI 1992;
14:869-885

3. Datta A, Pal T, Parui SK. A modified self-organizing
neural net for shape extraction. Neurocomputing 1997;
14:3-14

4. Kohonen T. Self-Organization and Associative Mem-
ory, Springer-Verlag, 1989

5. Sabourin M, Mitiche A. Modeling and classification
of shape using a Kohonen associative memory with

Shape Extraction 355

selective multiresolution. Neural Networks 1993; 6:
275-283

6. Fritzke B. Let it grow - self-organizing feature maps
with problem dependent cell structure. In: Kohonen T
et al. (eds), Artificial Neural Networks, vol. 1, North-
Holland, 1991

7. Choi D, Park S. Self-creating and organizing neural
networks. IEEE Neural Networks 1994; 5 :561-575

8. Kangas JA, Kohonen T, Laaksonen J. Variants of
self-organizing maps. IEEE Trans Neural Networks
1990; 1 :93-99

9. Datta A, Parui SK. A robust parallel thinning algor-
ithm for binary images. Pattern Recognition 1994; 27:
1181-1192

10. Jang BK, Chin RT. One-pass parallel thinning: analy-
sis, properties and quantitative evaluation. IEEE Trans
PAMI 1992; 14:1129-1140

11. Arcelli C, Cordella L, Levialdi S. Parallel thinning of
binary pictures. Electron Lett 1975; 11:148-149

12. Tamura H. A comparison of line thinning algorithms
from digital geometry viewpoint. Proc 4th Int Joint
Conf Pattern Recog, Kyoto, Japan, 1978; 715-719

13. Hilditch CJ. Comparison of thinning algorithms on a
parallel processor. Image Vision Comput 1983; 1:
115-132

14. Jang B, Chin RT. Analysis of thinning algorithms
using mathematical morphology. IEEE Trans PAMI
1990; 12:541-551

15. Datta A, Parui SK. Skeletons from dot patterns: a
neural network approach. Pattern Recognition Letters
1997; 18:335-342

16. Arcelli C, Ramella G. Finding grey-skeletons by iter-
ated pixel removal. Image and Vision Comput 1995;
13:159-167

