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Abstract. In a multiparameter set-up, this paper characterizes priors which 
ensure frequentist validity, up to o(n-1), of confidence regions based on the 
highest posterior density. The role of Jeffreys' prior in this regard has also 
been investigated. 
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i .  Introduction 

The problem of characterizing priors leading to posterior confidence regions 
with approximate frequentist validity has received a considerable attention in re- 
cent years. As noted in Tibshirani (1989), such a study can have practical utility 
in two ways: (a) it provides a method for constructing accurate frequentist confi- 
dence regions and (b) it helps in defining a non-informative prior which could be 
potentially useful for comparative purposes in Bayesian analysis. Welch and Peers 
(1963) considered this problem, with reference to one-sided confidence sets, in the 
one-parameter case. This work was extended by Stein (1985) who gave the explicit 
form of the difference between the posterior and the frequentist coverage proba- 
bilities. Tibshirani (1989) extended the findings in Welch and Peers (1963) to a 
situation where interest lies in one of several parameters (see also Peers (1965)). 
Lee (1989) explored the frequentist validity of elliptic confidence regions and also 
of half spaces in the multiparameter case while Ghosh and Mukerjee (1991, 1992) 
considered the same problem with reference to posterior regions based on posterior 
Bartlett-corrected likelihood ratio and conditional likelihood ratio statistics (see 
also Bickel and Ghosh (1990) in this context). Loh (1988) considered a problem 
of this kind with reference to confidence sets for a multivariate normal mean. For 
further references and an excellent review of the literature, we refer to Lee (1989). 

* The work of Rahul Mukerjee was supported by a grant from the Centre for Management 
and Development Studies, Indian Institute of Management Calcutta. 
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The objective of the present work is to characterize, in the multiparameter 
case, priors ensuring, up to o(n-1),  the frequentist validity of confidence regions 
based on the highest posterior density (HPD). In the Bayesian context, the use 
of such regions is particularly appealing (see e.g., Lindley (1965), p. 25). The 
present problem was studied earlier in the one-parameter case by Peers (1968) who 
considered posterior regions in the form of intervals with equal posterior densities 
at the extremeties. The approach of Peers (1968) does not seem to work in the 
multiparameter case and new techniques are called for. This has been attempted 
in the next section. We have also investigated conditions under which the HPD 
regions based on Jeffreys' prior have frequentist validity up to o(n-1). 

2. Results 

Let {Xi}, i _> 1, be a sequence of independent and identically distributed 
possibly vector-valued random variables with common density f ( x ;  O) where 0 = 
(01, . . . ,@)/  E ~P or some open subset thereof. We make the assumptions in 
Johnson (1970). Let 0 have a prior density 7c(.) which, as in Johnson (1970), is 
positive and thrice continuously differentiable for all 0. In case w(.) is not proper, 
as assumed by Johnson (1970), we shall require that there is an no (> 0) such 
that for all X1, • • •, Xno, the posterior of 0 given XI, •. •, Xno is proper. In this 
case, Johnson's (1970) proof for a proper prior goes through. Let P be the joint 
probability measure of 0 and X = (X1,. • •, Xn)/, where n is the sample size. All 
formal expansions for the posterior, as used here, are valid for sample points in a 
set S, which may be defined along the line of Bickel and Ghosh ((1990), Section 2 
with m = 3), with P0-probability 1 + O(n -2) uniformly on compact sets of 0. 

Let L(O) = Ein=a log f (Xi ;O) ,  l(O) = n-eL(O),  and for 1 < i, j ,  r, s _< p, 

ai = {Dil(O)}o= O, aij = {DiDjl(O))o= O, cij = - a i j ,  

a~j~ = {DiDjDrl(O)}o=O, aijr~ = {DiDjD~-Dfl(O)}o= O, 

where Di is the operator of partial differentiation with respect to 0i and 0 is the 
maximum likelihood estimator of 0. The p × p matrix C = ((cij)) is positive 
definite over S. 

With a prior 7@) for 0, we consider a HPD region R,~(X) for 0 of the form 

(2.1) R (x) = {0: (01 x)  _> x)}, 

where k(~r, X) is such that 

(2.2) y' (o e n (x) p x )  = 1 - + 

P ~ (  I X) is the posterior probability measure for 0 under the prior 7c(.), 0 < c~ < 1, 
and 

(2.3a) 7r(0 I X) = 7r(0) exp{L(0) - L(O)} /N~(X)  
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is the posterior density of 0, with 

(2.3b) Nr(X) = f 7r(O) exp{L(O) - L(O)}dO. 

Let h =_ h(O) = nU2(O - 0). Define ~- = ~r(0), 9i : {D{Tr(O)}o= 0 (1 _< i _< p), 
"?hi = {DiDjTr(O)}o=O (1 <_ i ,j  <_ p) and so on. Then, as noted in Ghosh and 
Mukerjee ((1991), hereafter abbreviated to GM), from (2.3a), (2.3b) it can be 
seen by a Taylor's expansion that  the posterior density of h = ( h i , . . . ,  hp) l under 
the prior ~r(.) is given by 

(2.4) 9(h ] X) : C(h; C-1) [1+ n-1/2 {Tu(Tr, h) + ~T12(h) } 

{1 + ~-1 ~(r,~(~, h) - GI(~)) 

+ ~(T~(h) - a~) 

+~ 

I (Tf2(h)-G4)} ] -}- 0 (7Z-1) ,  
+~5 

where ¢(.; C -1) is the multivariate normal density with null mean vector and 
dispersion matrix C -1, and 

(2.5) 

Tl~(Tr, h) = Tll(Tr, X,h) = ¢r -1 ~h{Cri,. 

fl2(h) = Z12(/' h)= E E E hihjhraijr' 
i j r 

i j 

i j r s 

(2.6) 

j 

i j r s 

G3(~) = G3(Tv, X)-- 7% -I E E E E a{j<gsC~] )s, 
i j r s 

G 4  = G a ( X )  : E E E E E E  aijrasuvC~2"~suv~a 
i j r s u v 



296 J.K. GHOSH AND RAHUL MUKERJEE 
{ c  -~ ((dJ)), ~(1) =~%~ ~i~d~ ~d~, 

= Cijrs -~- ~- 

~(2) = ciJc~c~ + ciJc~c~ + ciJc~c~ + ci~d~c~ + ci~cJ~c~ 
(2.7) ~ J ~  

+ c~cJ~c~ + ci~cJ~c ~ + ci~cJ~c ~ + ci~cJvc~ + ci~cJ~c~ 
@ ciUcJsc rv @ ciUcJvc rs ~- ciVcJrc su ~- ciVcJSc T M  -~ ciVcJucrS ' 

each of the summations in the above being over the range 1 to p. As an interme- 
diate step in the derivation of (2.4), from (2.3a) one also gets 

7r(O I X ) : 7 r  [1-~-~t-1/2 {Tl1(71, h) @ ~T12(h ) }--I-n-l{ 1T,21(71-, h) @ ~4~22(h) 

@ 1T11(Tc, h)r12(h) T @~Z22(h)}l e-h 'Ch/2 /NTr(X)-~-O(n-1) ,  

whence after some algebra one obtains 

~- { ~ 1 - 1 }  
(2.8) 7 r ( O l X ) - N ~ x ) e X p -  W(Tr, X,h)+~n Gs(Tr) + o ( n - 1 ) ,  

where 

(2.9) as(~) = G~(~, x)  = ~-2 } 2  ~ ~i~J ~j, 
i j 

(2.10) W(Tc, X,h) = h'Ch- n-1/2 {2Tll(Tr, h) + ~T12(h)} 

+ ~-1 Tll(~,  h) + ~T12(h) - T21(~, h) 

and, as noted above, h =- h(O). The inclusion of Ga(Ir) in (2.10) simplifies our 
calculations to some extent. 

Let 

(2.11) A(X)= z2 {I + I  (np)-L (G2+ ~G4) } , 

where z 2 is the upper a-point  of a central chi-square variate with p degrees of 
freedom and G2, G4 are as in (2.6). Then, as shown in the Appendix, from (2.4), 
(2.10), (2.11), 

(2.12) 

Hence defining 

(2.13) 

P~[W(~, x, h(O)) < ~(X) I X] = 1 - a + o(~-1). 

11 } 
~(~, x )  = x . ( x )  exp - ~ ( x )  + } ~  Gs(~) , 
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it follows from (2.8) and (2.12) tha t  

(2.14) W(~r(OIX) > k(~v,x) I x)  
= Prr(W(Tr, X,h(O)) ~ )~(X) I X) ~- o(n -1) 
= 1 - a + o(n-1) .  

Hence in consideration of (2.2), the H P D  region may be taken as in (2.1) with 
k(Tc, X)  given by (2.13). 

We now proceed to characterize a prior 7@) for which the HPD region R ~ ( X ) ,  
obtained as above, has frequentist  validity up to o(n-1) ,  that  is, for which the 
relation 

(2.15) Po(O C R ~ ( X ) )  : 1 - a + O(n -1) 

holds for each 0 and each a (0 < a < 1). To that  effect, we consider a prior 
7c*(.) satisfying the regularity conditions in Bickel and Ghosh ((1990), Section 
2 with rn = 3) which are slightly stronger than those in Johnson (1970) and 
make Edgeworth  assumptions as in Bickel and Ghosh ((1990), p. 1078). Then, 
proceeding as in the derivation of (2.14), 

(2.16) P~r* (O E R , , (X )  [ X )  = 1 - a - 2(np)-lZ2qp(z2)H(X;Tr,  Tr *) + o(n 1), 

where %(.) is the central chi-square density with p degrees of freedom and 

(2.17a) H(X;Tr,  Tr*) = {al(7t-*) - Gl(7r)} -~- ~{C3(Tr*) - G3(7r)} 

+ as( ) - a6( , 

with 

(2.17b) G6(zc, z c * ) = G 6 ( % T r * , X ) = ( f r ~ r * ) - l E ~ c i J f r ~ c  j. 
i j 

The derivation of (2.16), which, as in the Appendix,  is based on consideration of 
the approximate  posterior characteristic function of W(Tc, X, h) under the prior 
7c*(-), is omit ted  here to save space. 

F o r l < i , j , r < p ,  let 

Vi -= D i l o g f ( X l ; O ) ,  Vii = D i D j l o g f ( X l ; O ) ,  

V~j~. = D i D j D r  log f (X1;O),  

Zij = Eo(ViVj), Lij,~ = Eo(V~jVr), L~j~ = Eo(V~jr). 

Note that  Zij, Lij,r, Lijr are functions of 0 and that  the per observation information 
matr ix  at 0 is given by 27 - 27(0) = ((Zij)) which is assumed to be positive definite. 

L e t  Z - 1  ~- ((ziJ)) and for 1 _< i, j ,  r, s _< p, l e t  ~(jl~s be defined analogously to 
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(2.7) with C i j ,  C rs, etc. replaced by Z ij, Z ~s, etc. Then from (2.6), (2.9), (2.17a), 
(2.17b), it can be seen that 

(2.18) H ( X ;  % rr*) : H(0; re, rr*) + o(1), 

where 

- , - 1 - , - - - • 

(2.19) H(0;rr, rr*)= ~{Gl(rr )-Gl(rr)}+~{Ga(rc ) -Ga(rr )}+G5(Tr) -G6(rr ,  Tr ), 

with 

(2.20) 

Gl(Tr)  : T r - l E E ~ i J T r i j ,  Gl(Tr*)  : ( T r , ) - l E E ~ i J 7 r ~ j  , 

i j i j 

i j r s 

= (<_1 E E E ' 
i j r s 

l G5(7c): 71--2 E E 7ci7rj~ij' G6(7r' 7r*): (7rTr*)-lE E 7r*Trj~ij, 
i j i j 

; - -  

7ci =- 7ci(O) = Dgr(O), 

7r* = Try(O) : DirF(O) (1 < i _< p), 

7rij = 7cij (0) = DiDjrr(O), 

7ri~ = rqS(O ) = DiDj~*(O)  (1 _< i , j  <_ p). 

As in GM, in consideration of (2.16), (2.18), for a fixed rr(.), 

(2.21) Po(O 6 R~r(X)) : 1 -- C~ -- 2(np)-lz2qp(z2)A~r(O) + o(n-1), 

where At(0) is obtained by integrating H(0; 7r, rr*) by parts with respect to rr*(-) 
such that r~* (.) and its first partial derivatives vanish on the boundary of a rectangle 
containing 0, and then allowing rr* (.) to converge weakly to the degenerate measure 
at 0. By (2.19), (2.20), an explicit calculation shows that An(0), obtained as above, 
is given by 

1 
(2.22) A~r(0) = ~ E E { D i D j Z i j  - 7 r - l z i j T r i J }  

i j 

+ E E [rr-27r/~UZ'j + Di(rr-irrJZiJ)] 
i j 

1 6 E E E E {ps(sijr~}l)s) ~- 7r-lTrsLijrZ}l~s} 
i j r s 

---- 17r--i E E Pi(£riJTrj) ~- 17r-l E E mi{TcCPJ~][iJ)} 
i j i j 
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1 - 1  
= ~ r  ~ i J ~ ~ ~ J 

noting that  ~ i j  : ~ j i ,  Lijr is invariant under permutat ion of subscripts, recalling 

the definition of ~}¢2.~, and using the fact (cf. GM) that  DjZ ij = ~ ~ ~i~zJ~. 
(L~,j + L~)  (1 ~ i, j ~ p). It can be seen that  for p = 1, the relations (2.21), 
(2.22) reduce to the corresponding expression in Peers (1968). 

By (2.21), (2.22), the relation (2.15), ensuring frequentist validity, up to 
o(n-~), of the HPD region R~(X), holds if and only if ~(0) satisfies the partial 
differential equation 

(~.~) ~ ~ . ~ ( z % )  + ~ ~ ~ ~ ~(~z~z.~.~,~) = o. 
i j i j r s 

The relation (2.23) gives the main result of this paper. It is interesting to note 
that  (2.23) does not involve z ~ or ~. 

We now examine the extent to which (2.23) (or equivalently (2.15)) holds for 
Jeffreys' 'non-informative' prior (~Velch and Peers (1963), Dawid (1983)) given by 
~0(0) ~ {detZ(0)} 1/~. It can be seen that  (see GM) 

1 D~o(O) = -~o(o) ~ ~(n~,~ + L~)Z ~. 
r 8 

Hence again noting that  the L j r  s a r e  invariant under permutat ion of subscripts, 
one can check that  (2.23) holds for Jeffreys' prior (that is, Jeffreys' prior ensures 
the frequentist validity, up to o(n-~), of HPD regions) if and only if 

[ ( 1 )? 
(2.24) ~ ~ D ~  {detZ(o)}l/~zi~g ~ L~,~-~C~,~-~ ~ = 0 ,  

i j r s 

a condition that  holds in particular for location or scale families (cf. GM). Even 
outside location or scale families, the relation (2.23) (or equivalently (2.15)) can 
hold under Jeffreys' prior. For example, one can consider 0 ~ ~ and f(x; O) 
representing the bivariate normal density with zero means, variances 1 and 1 + 02 
and covariance 0. 

For the exponentiM family with f(x; O) of the form 

f ( ~ ;  o) = h (~ )  ~xp ~(~(o)~(~)  - ~ ( o  , 
k i = l  

where 0 = (0~, . . . ,  0~)' and Eo{Ui(X)} = 0i (1 ~ i ~ p), it can be seen that  

z~ = z~  = D~¢(~)(0) = D~¢ (~) (0), 

c o ~ 0 ( g ~ ( x ) ,  V~(X)) = Z ~ (~ ~ i , j  ~ p), 

L~,~ = ~ D ~ ( ¢ ) ( 0 )  (~ ~ r, s, j ~ p), 
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and hence one can check that  (2.23) holds with 7r(8) e( {det~-(8)} -1. Also, as in 
GM, for the exponential family with f (x;  O) of the form 

f (x;  8) = h(x) exp 8~Ui(x) - A(8) , 

the relation (2.23) holds with 7r(8) = p, where p is a positive constant.  
Consider now the location-scale model with p = 2, 8 = (81,82) / and f (x;  8) 

given by f (z ;  8) = 8~lf*(8)-1(z - 81)), where - o c  < 81 < oc, 82 > 0. Then  for 
each i, j ,  r, Zij e( 8)- 2 and L+j,r e( Of a, provided they exist. Hence assuming that  
Z is positive definite for each 8, it can be seen that  (2.23) holds with ~r(8) e( 8)- 1. 

We now give examples of two specific situations where (2.23) (or equivalently 
(2.15)) does not hold for Jeffreys' prior but other solutions to (2.23) are available. 

Example 1. Let p = 2 and f (x;  8) represent the univariate normal density 
with mean 81 and variance 82 ( - o c  < 81 < oc, 82 > 0). Then  using some 
calculations in GM, the partial differential equation (2.23) reduces to 

(2.25) 82D2"rc + 28+D+rc - 282D2rc - 6+ = O. 

Here 2-11 = 8) -1, 2-21 = Z12 = 0, Z22 = 8)-2/2, and it can be seen that  Jeffreys' 

prior 7r0(8) o( 82 -3/2 does not satisfy (2.25). However, (2.25) has solutions. In 
particular, (2.25) holds with zc(8) e( 83 or with 7c(8) c< 8~ -1. 

Example 2. Consider the ratio of normal means model (Cox and Reid (1987)) 
given by  f ( z ;  8) = (~1(x(1) - /A1)~I  (x(2) -/-/,2), where Ct (') represents the s tandard  
univariate normal density, x = (x (1), x(2)) ', 8 = (81, 82)', #1 = 8182/(1 + 012) 1/2, 
#2 = 8 2 / ( 1 + 8 2 )  1/2 , and 81, 82 > 0. Then  #1, #2 > 0, 81 = #1/#2, 82 = 
(#2 + #~)1/2. It can be seen tha t  here 2711 = 022/(1 + 012) 2, 2-21 = Z12 = 0, Z22 = 1, 
Ll1,1 = - 2 8 1 0 2 / ( 1  -[- 82) 3, L12,2 = 0, L21,1 = 82/(1 -[- 821) 2, L22,2 = 0. Hence  it can 
be seen tha t  Jeffreys' prior 7c0(8) e( 82/(1 + 82) does not satisfy (2.23) but  tha t  
(2.23) holds under 7r(8) e( 82(1 + 812). 

Since the second term in the left-hand side of (2.23) is ra ther  involved, it is 
difficult to present a general solution, if any, to (2.23) which holds for all parametr ic  
models satisfying the assumptions indicated earlier. This continues to be t rue even 
under  global parametr ic  orthogonali ty when the off-diagonal elements of 27 vanish 
identically in 8 and (2.23) reduces to 

E D+(Zii+'z) + E E D+('zZi'zzJJL+j,J)= O. 
i i j 

However, as seen above, for many models of practical interest, like the location 
model, scale model, location-scale model, exponential model and so on, solutions 
to (2.23) are readily available. 
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Appendix 

Derivation of(2.12). Writing { = (-1)1/2t, the (approximate) posterior char- 
acteristic function of W(Tr, X, h) under the prior ~r(.) is given by 

#(h ] X) exp{{W(Tc, X, h)}dh 

= /  [1q-ft-1/2(1--2~){ T11(Tr'h)+!T12(h)~6 ) 

+ ~-1 {~c~(~) - ~(1 - 2~)~ (~, h) 
% 

1 1 G ~(1 h)T12(h)- 1 + ~ ( 1  - 2~)~T~(h) - ~ ~ + - 2 ~ ) ~ 1 ( ~ ,  gG~(~) 

1 ( 1 -  2~)T22(h)- I G ~(1 2~)T21 (71-, h ) ~ GI (71-) } ] + ~  g~ ~+ - _ 

X e~h'Ch¢(h; C-1)dh + o(n -1) 

1 1 1) (~_~G2q_~_~G4)] +o(n_l) ' = (1- 2~)-P/211+ n-1(1 2~ 

after a considerable algebra using (2.4)-(2.6), (2.9) and (2.10). Inverting the above, 
which can be justified as in Chandra ((1980), pp. 58-60) (see also Chandra and 
Ghosh ((1979), p. 32), Bickel and Ghosh ((1990), p. 1078)), 

(A.1) y ( w ( ~ , x , h ( o ) )  <_ a(x) I x) 
1 _ 1 (  1 )  

= Q p ( ~ ( x ) )  + N n  c~ + 5G~ {Qp+2(~(x))  - Q~(~(x ) ) }  

+ o(n<), 

where Q,(.) is the cumulative distribution function of a central chi-square variate 
with u degrees of freedom. By (2.11), 

1 ( 1 )  
O.(:qx)) = Q.(z ~) + ~(nv ) - l z  ~ c2 + 5a4 q.(z ~) + o(,~-1), 

whence by (A.1), the relation (2.12) follows. 
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