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Model selection – An overview 
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We provide an introduction to some of the most well-
known model selection criteria and indicate how they 
work in actual examples. We also provide new insights 
based on current research. 

 
FOR many scientists models are synonymous with para-
digms. They are models of some aspects of reality as  
depicted in a particular science. So the problem of choos-
ing a model appears when that science is at the crossroads. 
An example of this was the situation in the twenties, when 
physicists had to choose between Newton’s classical  
theory of gravitation and the theory of gravitation in  
Einstein’s general theory of relativity. One of our exam-
ples, Example 2, illustrates this sort of problem, but  
most others are of a different kind. They occur all the  
time. 
 Typically, when one has to analyse data arising  
from complex scientific experiments or observa- 
tional studies in social sciences and epidemiology,  
there are various aspects that are not deterministic.  
One way of modelling nondeterministic phenomena  
is through a probability model. For complex pheno- 
mena it is quite rare to have only one plausible model, 
instead there are several to choose from. In all  
such situations model selection becomes a fundamental 
problem. 
 To the extent that large data sets are increasingly com-
mon because of advances in information technology,  
selecting a model has tended to become an essential part 
of analysis of such data. They present challenging meth-
odological, computational and theoretical problems and 
have led to a fast-growing literature in both statistics and 
computer science. 
 This article reviews some of the major statistical deve-
lopments in this area. No previous background in model 
selection is assumed. The next section presents a brief 
background, followed by six examples, some theory and 
analysis of some of the examples in later sections. The 
last section provides some concluding remarks. The  
section ‘State-of-the-art’ is based mainly on Shao1 and  
Mukhopadhyay2. 

Background 

In classical statistics, also called the Neyman–Pearsonian 
theory, model selection is usually made at the stage of 
exploratory data analysis, with all subsequent statistical 
analysis depending on the selected model. Occasionally, 
but not always, there is some study of sensitivity of the 
subsequent analysis with respect to the selected model. 
However, classical statistics does not emphasize model 
selection. Nor does it provide for the uncertainty due to a 
model that is assumed by convention or selected through 
exploratory analysis. 
 Nonetheless, there are certain areas of classical statis-
tics where model selection has played an important role, 
for example, linear regression and time series. In both sets 
of problems one asks essentially the same question – 
which variables in a linear relation or a linear predictor 
are worth keeping? This becomes a model selection prob-
lem if one identifies each set of retained variables with a 
model (vide Example 3). 
 It would be naive to expect the best results by including 
all the variables in one’s model. One way of seeing this is 
to note that it violates the fundamental scientific principle 
of parsimony, which requires that of all the models that 
explain the data well, one should choose the simplest. 
Another justification for not choosing the most complex 
problem comes from a predictive approach. Typically, 
predictions based on models which are too complex for a 
given data set will do badly because even a large data set 
may not be large enough to provide reliable estimates of 
all the parameters, i.e. unknown constants appearing in 
the model. One would be better off with a simpler model. 
In other words, the complexity of a good model ought to 
depend on the size and complexity of the data set and 
there is a threshold beyond which it does not pay to add 
complexity. Model selectors often refer to this as a trade-
off between bias and variance. Complexity helps reduce 
bias, but increases variability, i.e. uncertainty in estimat-
ing the parameters of a model. 
 A good model selection rule provides an automatic 
threshold for allowable complexity which has some theo-
retical justification and works well in practice in some 
easily understood sense. 
 Generalized linear models is another area in classical 
statistics where model selection is popular3–6. In these 
applications it is used as an alternative to classical testing 
of hypothesis, with the advantage of not having to choose *For correspondence. (e-mail: tapas@isical.ac.in) 
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a conventional level of significance like 5% or 1% which 
is often inadequate in large samples. Burnham and Ander-
son7 provide applications in ecology. However, it is  
unclear if uncritical use of Akaike Information Criterion 
(AIC; see the section ‘Bayes factor, BIC and AIC’), 
which is very popular in this area, really provides a satis-
factory alternative. 
 A recent development favouring model selection, is the 
popularity of Bayesian analysis as an alternative paradigm 
for statistics. There are several reasons for this. A Bayesian 
analysis can include the uncertainty due to models in his 
assessment of total uncertainty. This is not easy, but  
doable – certainly not as difficult as in classical statistics. 
Moreover, testing a hypothesis, which is a common 
statistical problem, is no different from model selection in 
Bayesian analysis (Examples 1 and 2). Finally, advances 
in information technology and sophisticated versions of 
Markov Chain Monte Carlo (MCMC) (see e.g. refs 8 and 
9) have made it relatively easy to implement Bayes model 
selection rules. 
 Model selection rules are also widely used by computer 
scientists. One major application is in finding an optimal 
architecture for a neural network that is trained to do a 
particular task. This is very similar to model selection 
problem for linear regression, except that the basic rela-
tions are much more complex and nonlinear10–12. Another 
major application is in data mining. 
 Interestingly, model selection rules used in these com-
puter science applications are either AIC (Akaike Infor-
mation Criterion) or BIC (Bayes Information Criterion), 
which are the two most popular statistical rules, or their 
close cousins. There is a wholly different theory of model 
selection based on Kolmogorov’s theory of algorithmic 
complexity and developed by theoretical computer scien-
tists, which has not been used in data mining or neural 
networks. A good source for this theory is Li and Vitanyi13. 
It turns out that BIC can be justified from this point of 
view. Rissanen14,15 assumes a predictive framework with a 
logarithmic loss comparing the actual and predictive distri-
bution. Rissanen believes this comes close to using Kolmo-
gorov complexity. Laplace integration, as explained in the 
section ‘Bayes factor, BIC and AIC’, leads to maximizing 
BIC as an approximation to the Bayes rule. 
 One of the major problems in model selection is that 
for large samples the BIC and AIC usually select very 
different models, the AIC providing much less penalty for 
complexity than the BIC. 
 

Examples 

Example 1: We begin with a simple, but generic exam-
ple. We have n observations X1, X2, . . ., Xn known to be 
independent, each having a normal distribution with mean 
µ and variance σ2. Symbolically, X ~ N(µ, σ2). We have 
two models 

  M1: µ = 0, 
 
  M2: µ is arbitrary.  
 
For simplicity σ2 will be taken to be known and equal to 
one. Many statistical problems are of this kind, except 
that σ2 will be rarely known. Let us explore this a little 
further. Suppose n = 1, i.e. we have only one observation. 
Then it is clear that if | X1 | is ‘close’ to zero, parsimony 
requires that we select M1. Statistical theory shows for 
general n, we should do the same with the mean 
X  = (X1 + X2 + . . ., + Xn)/n replacing X1. The catch is we 

do not know how to define when | X | is close to zero. 
According to BIC, you choose M1 if  

 | X | < {(loge n)/n}1/2.  (1) 

According to AIC, you choose M1 if  

| X | < (2/n) 2
1 .  (2) 

The BIC is more conservative, in that it chooses the sim-
pler model more often. 
 
 
Example 2: Einstein’s theory of gravitation predicts that 
light is deflected by gravitation and specifies the amount 
of deflection. Einstein predicted that light of stars would 
deflect under gravitational pull of the sun on the nearby 
stars, but the effect would be visible only during a total 
solar eclipse when the deflection can be measured through 
apparent change in a star’s position. A famous experiment 
by a team led by British astrophysicist Eddington, imme-
diately after the First World War (see ref. 16), led to  
acceptance of Einstein’s theory. Though many other better 
designed experiments have confirmed Einstein’s theory 
since then, Eddington’s expedition remains historically 
important. There are four observations, two collected in 
1919 in Eddington’s expedition, and two more collected 
by other groups in 1922 and 1929. The observations are 
X1 = 1.98, X2 = 1.61, X3 = 1.18, X4 = 2.24 (all in seconds 
as measures of angular deflection). Suppose they are nor-
mally distributed around their predicted value µ . Then 
X1, . . ., X4 are independent and identically distributed as 
N(µ, σ2). Einstein’s prediction is µ = 1.75. We will test 
the models M1: µ = 1.75 and M2: µ is arbitrary, where σ2 
is unknown. 
 
 
Example 3 (Hald’s regression data): Table 1 presents a 
small set of data on heat evolved during the hardening of 
Portland cement and four variables which may be related 
to it17. This classic data set has been used by several  
authors; see Burnham and Anderson7 for references. The 
sample size (n) is 13. The regressor variables (in per cent 
of the weight) are x1 = calcium aluminate (3Cao.Al2O3), 
x2 = tricalcium silicate (3CaO.SiO2), x3 = tetracalcium 
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alumino ferrite (4CaO.Al2O3.Fe2O3), and x4 = dicalcium 
silicate (2CaO.SiO2). The response variable is y = total 
calories given-off during hardening per gram of cement 
after 180 days.  
 Usually such a data set is analysed using normal linear 
regression model of the form  

 yi = β0 + β1x1i + β2x2i . . . + βpxpi + ε i,  

  i = 1, . . . , n, (3)  

where p is the number of regressor variables in the model, 
β0, β1 , . . . βp are unknown parameters and εi’s are inde-
pendent errors having a N(0, σ2) distribution. There are a 
number of possible models depending on which regressor 
variables are kept in the model. In the section ‘Calcula-
tions for the examples’ we will analyse the data and 
choose one from this set of possible models using differ-
ent model selection criteria. 
 
Example 4: We consider all subsets regression as in 
Example 3, but add an orthogonality condition that sim-
plifies things a lot. This makes the penalized likelihood 
criteria like AIC and BIC, as defined in the next section, 
as easy to interpret as in Example 1. 
 We consider the linear regression model (eq. (3)) and 
in addition assume orthogonality, i.e.  
for j ≠ k where xj = (xj1, xj2, . . . , xjn)′, j = 1, . . . , p + 1. 
With suitable renormalization we can assume 

|| xj || = .1
1

2 =∑ =
n

i jix  

A model consists of choosing the variables xj1, . . . , xjk
 

that really matter. The assumption of orthogonality  
ensures that the least squares estimate of βj is   , 
irrespective of which model we are looking at. The pena-
lized likelihood like AIC or BIC with penalty λ chooses 
the model that minimizes 

y′y ,ˆ)1( 2

0

2 σλβ ++− ∑
=

p
p

j
j

)
 

where 2σ) is an estimate of σ2 . This is the same thing as 
choosing only xj’s for which the square of the least 
squares estimate of βj exceeds λ .2σ)  In particular the xj’s 
for which AIC and BIC will differ are those satisfying 

,)(log2 222 σβσ )))
nj <<  

and these j’s will be kept in the model by AIC, but not by 
BIC which is more parsimonious. This has the effect that 
BIC will do better in identifying the correct model when 
there is no signal and only noise, i.e. none of the explana-
tory variables matter, but on the whole, AIC will do better 
in prediction of future observations when many of the 
unknown βj’s are non zero, but too small to be pass 
through BIC. 
 This example is a slight simplification of problems in 
telecommunication where the xj’s are related to wavelets 
of different bands and identifying them when there is no 
signal is important. In such cases the BIC or similar crite-
ria would be preferred to AIC. We expect the situation to 
be similar even if there is no orthogonality, provided there 
is no high correlation between a pair of variables as in  
Example 3. 
 

Example 5: This is a somewhat complicated example 
from ecology with a large data set and many parameters. 
Burnham and Anderson7 (to be abbreviated below as  
B–A) generated data to mimic the experiment presented 
by Stromborg et al.18. The experiment is designed to study 
the survival effect of a pesticide administered to nestling 
European starlings in an island. All birds under study are 
leg-banded with uniquely numbered coloured bands. Half 
of these birds are randomly assigned to a treatment group 
and receive a dose of pesticide and the remaining birds 
are assigned to a control group. Birds in these two groups 
are believed to be under otherwise very similar condi-
tions. After a 4-day period following the dosage, all birds 
are released. Surviving starlings are potentially resighted 
and resighting efforts are made on a day (say, Friday) in 
each of the following few weeks. The birds captured in a 
week are released again. For more details of the experi-
ment and the data see B–A7 and the references therein. 
 B–A generated data with 300 birds in both the treat-
ment and control groups with 8 resighting occasions, 
weeks 2, . . . , 9. Thus the birds are released on 8 occa-
sions, weeks 1, . . . , 8. Table 2 is reproduced from B–A 
and presents the data as a matrix (n(i, j)) for both the 
groups, where n(i, j) denotes the number of birds released 
at week i and captured in week j for the first time after 
week i (i = 1, . . . , 8; j = i + 1, . . . , 9). It also gives the 
total number (N(i)) of birds released at week i (i = 1, . . . , 8). 
 A product multinomial model is assumed for the given 
data. Each row corresponds to a multinomial distribution. 

01 =Σ=′ = kiji
n
ikj xxxx

yx′
j

Table 1. Cement hardening data with 
four regressor variables x1, x2, x3 and 

x4 and a response variable y 
     
     
x1 x2 x3 x4 y 
          
 7 26  6 60  78.6  
 1 29 15 52  74.3  
11 56  8 20 104.3  
11 31  8 47  87.6  
 7 52  6 33  95.9  
11 55  9 22 109.2  
 3 71 17  6 102.7  
 1 31 22 44  72.5  
 2 54 18 22  93.1  
21 47  4 26 115.9  
 1 40 23 34  83.8  
11 66  9 12 113.3  
10 68  8 12 109.4 
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As denoted in B–A, let φti and φci be the conditional proba-
bilities of survival from week i to i + 1 (i = 1, . . . , 8) for 
the treatment group and the control group, respectively 
and pti and pci be the conditional probabilities of resight-
ing at week i, i = 2, . . . , 9. The possible models are 

Mr,s: φ t1 ≠ φ c1, . . . , φ tr ≠ φ cr, φ ti ≠ φ ci, 

   i = r + 1, . . . , 8, 

pt2 ≠ pc2, . . . , pt,s+1 ≠ pc,s+1, ptj = pcj,  

   i = s + 2, . . . , 9, 
   r = 0, . . . , 8, s = 0, . . . , 8. 
 
For example, the hypothesis of no treatment effect corres-
ponds to the model M0,0. For discussion on these models 
and other related matters see B–A7, where some other 
models employing transformations on the parameters are 
also considered. We, however, restrict only to the above 
models for the sake of simplicity. 
 It is to be noted that although B–A state that n(i, j)’s 
are being reported for i = 1, . . . , 9, j = 2, . . . , 10, they 
indeed report for i = 1, . . . , 8, j = 2, . . . , 9. Also the  
parameters φ8 and p9 are not separately estimable, only the 
product φ8p9 is estimable, so we treat this product as a 
single parameter. Therefore, e.g., for Model M0,0, the num-
ber of estimable parameters is taken to be 15 (compared 
to 17 reported in B–A). However, this does not affect the 
AIC-differences (∆-values) reported in B–A. An analysis 
of the data will be presented in section ‘Calculations for 
the examples’. 
 

Example 6 (a slightly modified version of a problem of 
Stone19): We have p normal populations N(µ1, 1), . . ., 
N(µp, 1). From each of them, r samples have been drawn, 
yielding n = pr independent random variables with 
Xi1, . . ., Xir distributed as N(µi, 1), i  = 1, . . ., p. One has 
to choose one of two models: 

M1: µ1 = . . . = µp = 0, 

  M2: µi’s are arbitrary.  
 
We consider a situation where r is fixed, but p → ∞, so 
that n = pr also tends to infinity. Following Stone one can 
show AIC performs better in identifying the true model 
than BIC. However, Mukhopadhyay2 has shown that in 
this problem BIC is not an accurate approximation to the 
Bayes factor, which is not surprising since Schwarz’s  
basic assumption of fixed p does not hold there. The sec-
tion ‘State-of-the-art’ continues a discussion of this  
example. 

Bayes factor, BIC and AIC 

We begin with the generic Example 1 to define, motivate 
and explore Bayes factor (BF) and BIC. 
 Since M2 involves an unknown parameter µ, a Bayesian 
introduces a prior probability density p(µ  |  M2) ≡ p(µ) to 
integrate out µ and get the integrated likelihood of the 
data as 

,|(
1

µiIR

n

i

Xf∫ ∏
=

M2) p(µ) dµ 
def
= f(X1, . . ., Xn | M2), 

(4)  
where 

f(Xi | µ, M2) =
2/)( 2

e
2

1 µ

π
−− iX , 

is the density of Xi under µ. The likelihood under M1 is 

def

1

2/2

e}2/1{ =∏
=

−
n

i

X iπ f(X1, . . ., Xn | M1). (5) 

The Bayes factor BF1,2 of M1 relative to M2 is the ratio 

 .
)|,(

)|,(

21

11

MXXf

MXXf

n

n

L

L
 (6) 

Large values of BF1,2 indicate evidence in favour of M1, 
whereas small values suggest M2 is likely to be true. 
 If one is also able to assign prior probabilities π1 and 
π2 = 1 – π1 to M1 and M2, then the posterior or conditional 
probability of, say, M1 given the data X1, . . ., Xn is 

Table 2. Starling data presented as a matrix (n(i, j )) for both the 
treatment and control groups where (n(i, j )) denotes the number  

of birds first captured in week j after last being released at time 
i (i = 1, . . . , 8, j = i + 1, . . . , 9) and the total number  

(N(i)) of birds released at week i (i = 1, . . . , 8) 
   
   

 n(i, j ) 
 

 
 
Week 

 
 

N(i ) j = 2 3 4 5 6 7 8 9 
 
 
Recapture for treatment group 

1 300 158 43 15 5 0 0 0 0  
2 158  82 23 7 1 1 0 0  
3 125   69 17 6 1 0 0  
4 107    76 8 2 0 0  
5 105     67 20 3 0  
6  82      57 14 1  
7  81       53 12  
8  70        46 

 
Recapture for control group 

1 300 210 38  5  1  0  0 0 0  
2 210  157 20  8  2  0 0 0  
3 195   138 24  2  1 0 0  
4 163    112 24  2 0 0  
5 145     111 16 6 0  
6 139      105 16 4  
7 124       93 12  
8 115        89 
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One would choose M1 if this posterior probability is 
greater than half, i.e.  

BF1,2 > .
1

2

π
π

  

Often one sets π1 = π2 = ,2
1  in which case the criterion for 

choosing M1 becomes 

BF1,2 > 1. 

 There is a catch in this simple machinery. One has to 
specify the prior p(µ | M2) in order to calculate BF1,2. A 
common nonsubjective choice is p(µ | M2) = 1 or some-
what more generally 

p(µ | M2) = c > 0. (7) 

While this specification works well in estimation prob-
lems, there are serious problems in testing or model selec-
tion. These were first pointed out by Jeffreys20 and 
recently, have been the starting point of a new theory that 
will be briefly discussed in the next section. There is a 
way of bypassing this choice by using an approximation 
due to Schwarz21. 
 Let the integrand  

,|(
1

µi

n

i

Xf∏
=

 M2) ≡ f( X~    | µ, M2)  

be  maximized  at  µ = .µ)  Easy  calculation shows µ)  = X
–  , 

where X
–  = (X1 + X2 + . . . + Xn)/n and 

log  f( X~    | µ, M2) = log  f( X~    | ,µ)  M2) –
2

n
(X

–  – µ)2. 

A famous principle of approximation due to Laplace sug-
gests that the integral in eq. (4) is well approximated by 
the integral in a small range µ

)
– δ to µ

)
 + δ. Assume p(µ) 

is continuous and positive everywhere. On such a set  
p(µ) is nearly a constant, so that eq. (4) can be approxi-
mated by  

p( µ) )f( X~    | ,µ)  M2) .)(
2

exp 2 





 −−∫

+

−
µ

δ

δ
X

nX

X
 (8) 

The integral in eq. (8) converges to n/2π as n → ∞. All 
this finally leads to the approximation 

log f( X~    | M2) = log f( X~    | ,µ)  M2) – 2
1 log n  

  + log π2 + log p (X
–  ) + o(1). 

It is easy to justify this rigorously using the (strong) law 
of large numbers. 
 Schwarz21 suggested the approximation up to 2

1− log n, 
pointing out that this does not require a specification of 
the prior p(µ). The log Bayes factor is approximated by 

log BF1,2 = log f( X~    | M1) – (log f( X~    | µ
)

, M2) – 2
1 log n) 

    = 
2

n
−  X

–  2 + 2
1 log n.   

 
 More generally, suppose we have k nested models  
M1, . . ., Mk with Mi having pi parameters θ~   pi = (θ1, . . ., 
θpi). Then the integrated likelihood under Mi is approxi-
mated in the logarithmic scale by 

log  f( X~    | Mi) = log  f( X~    | θ ,
ipθ

)

 Mi) –
2

ip
log n. (9) 

An elegant and rigorous justification was given by 
Schwarz21 for what are called linear exponential families. 
A derivation under general regularity conditions and with 
pi’s fixed as n → ∞ is given in Chapter 1 of Ghosh  
and Ramamoorthi (manuscript under preparation). The 
expression above is called the BIC. One chooses the 
model for which eq. (9) is a maximum. This is an app-
roximation to the rule which chooses a model maximizing 
the integrated likelihood. Usually one multiplies eq. (9) 
by – 2 to get 

 – 2log  f( X~    | ,
ipθ

)

 
Mi) + pi log n, (10)  

probably because the first term has a χ 2-distribution with 
pi degrees of freedom, if Mi is the true model and selects 
the model for which eq. (10) is minimum. The χ 2-
distribution will not play any role in the sequel, but we 
will follow the convention that BIC is defined by eq. (10). 
 The term pi log n is a penalty for dimension pi which 
measures the complexity of Mi. The term log n is called 
the penalty. 
 What makes the BIC very attractive is that it comes up 
with an automatic penalty that is easy to justify in some 
sense. AIC appeared earlier22,23 with another automatic, 
but very different penalty, 

AIC = – 2log  f( X~    | ,
ipθ

)

 
Mi) + 2pi. (11) 

According to Akaike one chooses the model which mini-
mizes AIC. Since the penalty is now only 2, instead of 
log n, AIC will tend to choose much more complex mod-
els than BIC. 
 Which rule should one use in a particular case? Unfor-
tunately, to answer this one needs to understand the moti-
vation and justification for using AIC, but that is not as 
easy as in the case of BIC. We offer below some basic 
insights due to Akaike. A more precise theoretical justifi-
cation will be given in the next section. 
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 Akaike pointed out that as n → ∞, in many cases the 
complexity of models will grow with n, i.e. the pi’s will 
also tend to infinity as n → ∞. Moreover, the object may 
be to make a good prediction rather than decide which 
model is true. Indeed, the true model may be too complex 
to be included in the space of usable models. As George 
Box has observed, all models are false, some are useful. 
 Akaike suggested that in situations like these his meth-
ods should do better than BIC. On the other hand, one 
expects that if one has a set of fixed models, at least one 
of which must be true and can have as large a data set as 
one wants, i.e. pi’s are fixed and n → ∞, then one would 
expect the BIC to lead to the most parsimonious true 
model but AIC may fail to do that. In problems like  
Example 1, BIC is expected to lead to the true model, but 
AIC may choose M2 even if µ = 0. Notice that if µ = 0, 
logically both M1 and M2 are true, but parsimony requires 
we choose M1 in preference to M2. A precise justification 
of some of these results (due to Shao1) appear in the next 
section. 
 Stone24 (discussion of Shao1) suggests BIC is suitable 
for ‘hard science’ with given fixed models whereas AIC is 
suitable for ‘soft science’ with models chosen for good 
prediction rather than discovery of the truth. 
 It turns out that the problem has a rather simple resolu-
tion at least in the case of our second generic problem, 
Example 6, vide Mukhopadhyay2. 
 The next section contains a brief introduction to the 
results of Shao1 and Mukhopadhyay2. 

State-of-the-art 

There are three subsections. The first presents recent  
results on optimality of AIC in a predictive framework. 
The second subsection discusses some problems with 
nonsubjective priors like that presented in eq. (7) and 
various solutions proposed by Jeffreys20 and more recently 
by Berger and Pericchi25,26. The third subsection discusses 
the relation between Bayes rules, including the Bayes fac-
tor and their relation to AIC as well as possibilities of 
improvement over AIC. The first subsection is based on 
Jun Shao1, the second on Berger and Pericchi25,26 and 
Ghosh and Samanta27, the third on Mukhopadhyay2. 

Predictive optimality of AIC 

Consider linear models with normal error. All the exam-
ples, except Example 5, can be put in this form. Possibly, 
even Example 5 can be put in this form with suitable  
approximations. Let 

Yj = µj + εj,  j = 1, . . ., n, 

where εj’s are independent N(0, σ2) variables and µj’s are 
unknown constants, i.e. what we have been calling  
parameters. Asymptotically, it does not matter much 

whether σ2  is known or not – wherever σ2  appears below, 
one simply substitutes an estimate that converges to σ2  in 
the long run. So for simplicity we assume, as in Example 1, 
σ2  is known. 
 What are the models? We assume µ~   = (µ1, . . ., µn)′ lies 
in some linear space. Each linear space in IRn corresponds 
to some model Mi of dimension pi. We assume there are k 
models, k and pi’s can tend to infinity as n → ∞. The true 
model, say, M may not be among the models being used. 
The prediction loss for assuming Mi is defined as follows. 
Assuming Mi, let the least squares estimate of µ~   be ~

µ) (i). 
Imagine the Yj’s are fixed and suppose we have a new 
replicate ,1Y ′  . . ., .nY ′  Calculate the (conditional) expecta-
tion of the squared error prediction loss Σj( jY ′  – jµ) (i))2 
keeping the Yj’s and hence the Yj’s/ jµ) (i)’s fixed. The exp-
ectation is over all possible future replicates. A little algebra 
shows this prediction loss is of the form: Σj( jµ) (i) – µj)

2 
plus a part which does not depend on which model is  
being used. Here µj’s correspond to the µ’s under the true 
model M. This fact shows we can compare different 
model selection rules, using only the part that depends on 
model Mi, namely, 

L(Mi, µ~  ,  Y~   ) = ∑
=

n

j
j i

1

)(ˆ(µ – µj)
2. 

Given an actual rule like BIC or AIC or any general  
penalized likelihood rule, not only Y~ ⋅ , but Mi is random. 
The chosen model depends on  Y~   in a highly nonlinear 
way, making risk evaluations of a rule, evaluation of  
expected loss over all  Y~  , a practically impossible task, 
except asymptotically or through simulations. We only 
present the asymptotics. 
 In order to define optimality, we first define an oracle –
something that is good to have, but requires special 
knowledge. If a rule does as well as such an oracle, with-
out using its special knowledge, the rule must be optimal. 
 Now for definitions. Let the special knowledge consist 
in knowing the true values µj. Given this, the best model 
is chosen by minimizing L(Mi, µ

~  , Y~   ) with respect to a 
variable model Mi. Let M0 be the model chosen in this 
way with dimension p0. Then with this knowledge, L(M0, 
µ
~  , Y~   ) is the best one can do. So if a model selection rule 
choosing a model iM )  is such that, say, 

,1
),,(

),,(

0

→
YML

YML i

µ
µ

 

 
in the sense of convergence in probability or some other 
asymptotic sense, one would be entitled to calling iM )  
optimal. 
 With this background, we can now state Shao’s main 
results about AIC. 
 Suppose the true model is not in the available model 
space or there is a unique true model in the available 
model space. Assume also a blanket condition on the true 

~  ~ 

~  ~ 
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µj’s which prevent them from being too small (condition 
(2.6) of Shao1). Then AIC is asymptotically optimal. The 
penalty λ = 2 plays a special role in this, as indicated  
below. 
 Consider a general penalized likelihood rule which 
chooses a model minimizing the information criterion 

– 2log  f( Y~    | ~
µ) (i), Mi) + λpi = T(Mi), say. 

Suppose all available models are false. Then (for λ = 2 
and only in this case) Shao shows that σ2T(Mi) differs 
from L(Mi, µ~  , Y~   ) by an amount which is random, but does 
not depend on Mi plus a negligible quantity. Thus, asymp-
totically, minimizing L or T will lead to the same model, 
i.e. the oracle will coincide with the model chosen by 
AIC. This proves Shao’s theorem when the true model is 
not in the model space. The other case is also based on 
the above fact, but requires a little more work. 

Problem with improper priors 

The nonsubjective prior for µ usually proposed in Exam-
ples 1 and 2 is of the form, vide eq. (7) 

p(µ | M2) = c. 

This integrates to infinity and so cannot be normalized to 
integrate to one. Nonsubjective priors like this have been 
used a lot from Laplace onwards and lead to sensible  
estimates. For example, the posterior mean of µ given M2 
is just X

– . It does not depend on the arbitrary c which  
cancels when one calculates the posterior distribution under 
the model. But when one evaluates M2 by the integrated 
likelihood, the constant c remains; in the Laplace approxi-
mation it remains in the O(1) term neglected in the BIC. 
 This phenomenon was first pointed out by the distin-
guished astrophysicist, probabilist and statistician H. Jeffreys, 
who is very well-known for his many seminal contribu-
tions to nonsubjective Bayesian analysis. Many nonsub-
jective priors, currently used, are due to him. In Examples 
1 and 2, Jeffreys20 suggested the priors N(0, 2σ2) and 
Cauchy (µ, σ) on certain logical and mathematical 
grounds. Calculations for Example 2 based on these priors 
are reported in the next section. 
 New cutting edge work on general problems of this 
type have been done by Berger and Pericchi25,26. They 
have introduced the notion of intrinsic Bayes factors 
(IBF) and intrinsic priors which are very similar or identi-
cal to nonsubjective priors of Jeffreys. Ghosh and 
Samanta27 who provide a unified approach, show that the 
Cauchy prior can be viewed as a sort of intrinsic prior in 
Example 2. 

Example 6 and more on BF, BIC and AIC 

We start with Example 6 once more to motivate a few 
general observations that emerge from Mukhopadhyay2 
and Berger et al.28. 

 This example which is essentially due to Stone19 was 
used by him to show that the penalty of BIC is inappro-
priate compared with that of AIC, in the sense AIC picks 
a correct model more often. We note in passing that this is 
different from the original purpose of AIC to predict well. 
 It turns out that BIC itself is an inappropriate tool for 
this problem because the Schwarz type assumption of 
fixed dimensional models is not valid here. In fact if one 
calculates a Bayes factor BF1,2 with the p-dimensional 
Cauchy prior 

,1
)(

)2/)1((
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2/)1(
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used in Zellner and Siow29, it can be shown that BF1,2 
identifies models correctly all the time, but BIC is a very 
poor approximation. Indeed, Berger et al.28 propose a new 
GBIC which works well for this example and reduces to 
BIC if p is fixed as n → ∞. In other words, the problem is 
not between AIC and Bayesian methods, but between AIC 
and an inadequate Bayesian method for this problem. 
 One can go a step further and ask what would be a 
proper Bayesian approach to prediction with squared  
error loss. This is quite different from the interesting 
predictive Bayes factors due to Aitkin30, Geisser and 
Eddy31 and Gelfand and Dey32 and often used in the 
computer science literature. They have not yet been 
studied from the point of view of fully Bayes optimal 
prediction with respect to a suitable loss function. 
 We return to the problem posed at the beginning of the 
last paragraph. The solution is the Bayesian model aver-
age obtained in the following way. Let µ~   

B(i) be the pre-
diction or estimate of µ

~   assuming Mi. Now form a 
weighted average using the posterior probability of a 
model as the weight to be attached. For many practical 
applications and numerical recipes in the presence of 
many models, see Hoeting et al.33. Asymptotic theoretical 
properties are not known. 
 In Example 6 we have only two models and it turns out 
that an asymptotic treatment is possible, but non-trivial. 
The main result is that with a nonsubjective prior like the 
Cauchy prior (or a normal prior with empirical Bayes  
estimation of parameters of the normal prior), the model 
average outperforms AIC by an order of magnitude! 
 The result throws further light on AIC. Suppose M2  
is true and  Σµ2

i   → τ2 > 1. Then the AIC chooses M1 
almost always, but the Bayes rule chooses M2 almost  
always. But after choosing the more complex model, the 
Bayes rule shrinks the estimates of µ

~   from their least 
squares values towards zero. The amount of shrinkage 
depends on τ2; the smaller τ is, the more the shrinkage 
towards zero. AIC cannot do this because it is constrained 
to use least squares estimates. So to get the same sort of 
effect as shrinking, it chooses the very low-dimensional 

p
1

~ 
~ ~ 
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model M1. The constraint of using least squares estimates 
leads to its poor performance compared with Bayes rules. 
If one constrains the Bayesian approach in the same way 
by requiring that once a model Mi is chosen the corres-
ponding least squares estimates must be chosen, then the 
advantage of Bayes rules disappears and, in fact, it can be 
shown that asymptotically the Bayes rules and AIC  
behave in the same way. 
 These results have been tested in a classical example  
of Shibata34 of regression with orthogonal polynomials. 
Instead of the signal µ

~   one has a square integrable func-
tion on [0, 1]. What one observes are its values at  
n-equidistant points of [0, 1], corrupted by normal noise. 
The main difference with Example 6 is that the regression 
coefficients which are the analogues of µj’s are square 
summable. So there is less and less additional information 
as the number of observations increase. Bayes rules still 
outperform AIC but not by an order of magnitude. Once 
again the advantage disappears if the Bayes rule is con-
strained to use least squares estimates. 
 It is interesting and ironic that AIC has a Bayesian jus-
tification for high dimensions, if least squares estimates 
have to be used, while the BIC has no Bayesian creden-
tials. However, while these results have been verified in a 
number of non-trivial examples by asymptotics or simula-
tions, no general theory covering high-dimensional prob-
lems is still available. Development of such a theory is a 
hard mathematical problem. In the short run, extensive 
and well-chosen simulations may be more successful. 
 The corrected AIC (AICc) has not been studied as care-
fully as AIC. 
 For alternative points of view on empirical Bayes 
model selection see George and Foster35. 
 

Calculations for the examples 

We present below analysis of the data for some of the 
examples presented earlier in the article. 
 
 
Example 1 and 2: We analyse the data on deflection  
of light presented in Example 2 to examine whether  
Einstein’s prediction of µ = 1.75 is supported by the data. 
The four independent observations are assumed to have 
an N(µ, σ2) distribution. Here µ is the parameter of  
interest and σ2  represents variation in the error of meas-
urements. 
 Even though σ2  is not known, for the sake of illustra-
tion, we first take it to be known and equal to the sample 
variance s2. Note that this is only a simplification of the 
problem and reduces the problem to that of Example 1. 
We consider a transformation x′ = (x – 1.75)/s of the 
original data x, so that the transformed observations may 
be assumed to have an N(µ, 1) distribution with µ = 0 
under M1. If we use an N(0, 2) prior as suggested by  

Jeffreys, the Bayes factor BF1,2 of M1 relative to M2  
(defined in eq. (6)) is calculated as 3.0. For M1 the com-
mon value of AIC and BIC is obtained as 11.35, while for 
M2, AIC is 13.35 and BIC is 12.74. Thus the calculations 
with the given data lend some support to Einstein’s pre-
diction. However, the evidence in the data is not very 
strong. This particular experiment has not been repea- 
ted because of unavoidable experimental errors. There  
are now better confirmations of Einstein’s theory, vide 
Gardner16. 
 If σ2  is not assumed to be known, as is the case, one 
has to specify appropriate priors π1(σ) and π2(µ, σ) under 
M1 and M2, respectively, to calculate the Bayes factor 
BF1,2. The conventional priors suggested by Jeffreys are 
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where µ0 is the value of µ specified under M1 which is 
1.75 in our case. With these priors BF1,2 for our example 
turns out to be 2.98. The values of AIC for M1 and M2 are 
calculated as 6.01 and 8.01 respectively, while the  
respective values of BIC are 5.39 and 6.78. 
 
 
Example 3: Hald’s regression data have been analysed 
by Berger and Pericchi36 and Burnham and Anderson7 to 
select a linear regression model. Burnham and Anderson7 
used the AIC and its variant, AICc (adjustment for small 
sample size), while Berger and Pericchi36 reported the 
BIC, the intrinsic Bayes factors (IBF) and the Bayes  
factor based on the conventional prior of Zellner and 
Siow29 which is a generalization of the conventional  
Jeffreys prior used in Example 2. There are four regres-
sors and hence 24 – 1 = 15 possible models involving at 
least one of the regressor variables. We represent a model 
by the labels of the regressor variables chosen. For exam-
ple, a model that uses only the regressor variables x1 and 
x2 is denoted by {12}. Table 3 presents the values of  
AIC, AICc, BIC, Arithmetic IBF (AIBF) of Berger and  
Pericchi25 and Bayes factor with Zellner–Siow prior 
(ZSBF). The Bayes factors (AIBF and ZSBF) presented 
are those of the full model {1234} relative to all possible 
models. Calculations of AIBF and ZSBF are obtained 
from Berger and Pericchi36. Since these criteria are on a 
relative scale we report only their differences (∆) from the 
respective minimum value over the models (e.g. 
∆(AIC) = AIC – min AIC), so that the model with ∆  = 0 
is to be selected. Models are ordered in terms of the AICc 
differences. Use of AICc rather than AIC is recommended 
for the data as the sample size is relatively small com-
pared to the number of parameters (Burnham and Ander-
son7). Interestingly, all the criteria (except AIC) select the 
same model {12}. AIC chooses {124}, which is also a 
plausible model, vide Burnham and Anderson7. 



SPECIAL SECTION: STATISTICS 

CURRENT SCIENCE, VOL. 80, NO. 9, 10 MAY 2001 1143

Example 5: Burnham and Anderson7 compared the pos-
sible models on the basis of the AIC and selected the 
model M3,3 (M4p in their notation). Table 4 gives  the val-
ues of the differences ∆  = AIC – min(AIC) for the first 9 
models M0,0, . . . , M4,4 as obtained by them. We have also 
calculated the integrated likelihoods for these models  
assuming independent U(0, 1) priors for the parameters. 
We have used the importance sampling method of  
numerical integration (see ref. 37) to calculate the inte-
grated likelihoods for the models. Note that the parameter 
spaces are of high dimensions and we indeed have sam-
pled from an appropriate neighbourhood of the maximum 
likelihood estimators (MLE) of the parameters. We first 
calculated the integral over the region MLE ± d0, where 
the choice of d0 was guided by an idea about the standard 
errors of the estimates. We then calculated the integrals 
over MLE ± di, i = 1, 2, . . . for some suitable d0 < d1 
< d2 < . . . until the integrals converge. Here we have 
taken d0 = 0.1, d1 = 0.15 and d2 = 0.2 and sampled 500–
1000 million times for each of the models. 
 The values reported in column 4 of Table 4 are differ-
ences (∆) for logarithm of the integrated likelihoods mul-
tiplied by – 2 (i.e. – 2log(Int L)). The Bayes factor of a 
model relative to another may be obtained as the ratio of 

the corresponding integrated likelihoods. Note that on the 
basis of the integrated likelihood we select the model 
M3,2, a model with less number of parameters than that 
selected by the use of AIC. 

Concluding remarks 

We have tried to motivate BIC and AIC and present new 
facts which have either been published very recently or 
are still to appear. We also show these in action in a few 
interesting examples. In actual problems, the difference 
between BIC and AIC or the Bayes factor is not as much 
as popularly believed. This is because the complexity of 
the models used depends on the size of the available data. 
In these examples, models get complex as data increase so 
that the conflict in the two criteria, for low-dimensional 
models tested on large data sets, does not appear here. 
There is some theoretical support for this in Mukho-
padhyay2. 
 One striking fact is that Bayes rules and AIC, properly 
interpreted, may not be as different as they are often  
assumed to be. Another interesting fact is that the com-
mon perception about penalty being much more severe in 
Bayes rules is not correct. Not only are the penalties  
much more similar than currently perceived, Bayes rules  
may select more complex models than AIC in high-
dimensional problems. 
 Bayesian model averages is an extremely powerful new 
tool. It seems to do better than AIC, by an order of magni-
tude in some cases. But in most real-life problems, this 
comes with a price of heavy computations. 
 Finally, the effect of the preferred loss function, zero-
one or squared error, has to be taken into account. One 
has to decide, in Stone’s words, whether it is going to be 
hard or soft science, i.e. whether one wants to know the 
truth or predict well. In the first case, one should use a 
Bayes factor or a good approximation. The BIC is not a 
good approximation if the dimension is large. In the  

Table 4. ∆  values for AIC and  
– 2log(Int L) together with number  

of estimable parameters (k) for different  
models for the starling data of Table 2 

    
    
Model k AIC (∆ ) – 2log(Int L) (∆ ) 
    
    
M0,0 15 45.57 29.97  
M1,0 16 34.46 23.72  
M1,1 17 27.99 20.15  
M2,1 18 12.78 7.28  
M2,2 19 3.59 0.44  
M3,2 20 0.60 0.00  
M3,3 21 0.00 1.38  
M4,3 22 1.17 4.49  
M4,4 23 2.90 8.81 
    
    

Table 3. ∆ values for AIC, AICc BIC, 2log(AIBF) and 2log(ZSBF) together with number of  
estimable parameters (k) for different models for Hald’s regression data of Table 1 

       
       
Model k AIC (∆ ) AICc (∆ ) BIC (∆ ) 2log(AIBF) (∆ ) 2log(ZSBF) (∆ ) 
              
{12} 4  0.45  0.00  0.00  0.00  0.00  
{124} 5  0.00  3.13  2.73  0.74  0.29  
{123} 5  0.04  3.16  2.65  0.95  0.29  
{14} 4  3.77  3.32  3.46  1.88  1.53  
{134} 5  0.75  3.88  3.40  1.09  0.65  
{234} 5  5.60  8.73  8.31  3.79  2.90  
{1234} 6  1.97 10.52  5.06  3.43  2.69  
{34} 4 14.88 14.43 14.80  8.57  6.63  
{23} 4 26.06 25.62 25.82 14.18 11.71  
{4} 3 33.88 31.10 29.60 16.92 16.68  
{2} 3 34.20 31.42 29.78 18.54 16.83  
{24} 4 35.66 35.21 34.42 19.29 16.15  
{1} 3 38.55 35.77 32.18 20.10 18.79  
{13} 4 40.14 39.70 36.84 21.46 18.29  
{3} 3 44.09 41.31 37.90 23.50 21.39 
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second case, one should use the AIC or the model average 
or a model that provides the closest prediction to model 
average. There is some evidence that the last two will do 
better than AIC. 
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