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Abstract: In the spirit of modeling inference for microarrays as multiple test-
ing for sparse mixtures, we present a similar approach to a simplified version
of quantitative trait loci (QTL) mapping Unlike in case of microarrays, where
the number of tests usually reaches tens of thousands, the number of tests per-
formed in scans for QTL wually does not exceed several hundreds. However,
in tvpical cases, the sparsity p of significant alternatives for QTL mapping is in
the same range as for microarrays. For methodological interest, as well as some
related applications, we also consider non-sparse mixtures. Using simulations
as well as theoretical observations we study false discovery rate (FDR), power
and misclassification probahbility for the Benjamini-Hochberg (BH) procedure
and its modifications, as well as for various parametric and nonparametric
Baves and Parametric Empirical Baves procedures. Our results confirm the
ohservation of Genovese and Wasserman (2002} that for small p the misclas-
sification error of BH is close to optimal in the sense of attaining the Baves
aracle. This property is shared by some of the considered Bayves testing rules,
which in general perform better than BH for large or moderate p's.

1. Introduction

Multiple tests have received considerable attention recently becanse of application
to microarrays, where one simultaneously tests a few thowsands (m) of noll hypothe-
ses with only a small proportion (p) of signals, ie., possibly sipnificant alternatives.
Some recent references are Benjamini and Hochberg [1], Efron et al [5], Efron and
Tibshirani [7], Storey et al. [32], Genovese and Wasserman [1:3], Miller et al. [19],
Sarkar [21] or Scott and Berger [275]. If one increases m further, say m = 10 one
would move from microarrays to problems of homeland security, see for example
Doncho and Jin [ii].

We wish to consider a still different scale, namely m in the range of a few hun-
dreds, which is relevant for quantitative trait loei (QTL) mapping. In this setup we
explore and compare different multiple testing rules, ranging from the Benjamini
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and Hochberg (1] procedure [BH|, Parametric Empirical Bayes [PEB| procedures,
to the fully Bayes rule of Scott and Berger [20]. Also, included is a Bayesian non-
parametric analysis based on Dirichlet mixtures as well as a novel application of
a nonparametric algorithm for mixture estimation, due to Newton [21]. Our study
is based on simulations as well as some theoretical observations. The mapnitude of
sipnals nsed in our simulation study is chosen according to the suppestions included
in Donoho and Jin (6], so as to fulfill the condition of detectability in very sparse
mixtures. For each of the considered multiple testing procedures we study its power
(expected value of percentape of correctly identified alternative hypotheses), fake
discovery rate (FDR) and misclassification error and compare them with properties
of a Bayesian oracle. We pay special attention to BH since one motivation for our
study was to see if we can come up with a better Bayes or PEB rule.

Our results confirm the observation of Genovese and Wasserman [12] that for
very small walues of p's (for m = 200, p < 0.05) the misclassification error of
BH is close to optimal in the sense of attaining a Bayesian oracle. This property s
shared by some of the considered Bayes testing rules, which perform better than BH
for larger p. Moreover, in Section 3 we demonstrate that controlling positive fake
discovery rate (pFDR) is equivalent to controlling Bayes risk with the loss function
depending only on o and thus, somewhat unexpectedly, the rules to control FDR
or pFDR have a strong Bayesian favor.

While our results provide some insight on QTL studies, much further work &
needed to make our results directly applicable to actual QTL mapping. Our model-
ing iz similar to that of microarrays, whereas the QTL designs require more complex
linear modeling than for microarrays. The related multiple testing problem, which
arises when there are many predictors (markers) to choose from, was first addressed
in Bogdan et al. [1], where a suitable modification of BIC, namely mBIC, is pro-
posed. We believe that our current research throws some light on how mBIC can be
further improved by implementing a less conservative multiple testing adjustment.

The outline of the paper is as follows. In Section 2 we introduce our models and
explain how some of them are related to QTL mapping. In Section 3 we discoss dif-
ferent notions of error in multiple testing as well as the relationship between FDR
controlling rules and Bayesian testing. The procedures considered in our study are
described in Section §, evcept for Bonferroni, which is deseribed in Section 5. The
results of simulations are given in Section 5. Section § contains some illustrations of
the problem of nonidentifiability of parameters in the mixture model and justifica-
tion for wsing the informative prior distribution on p. Section 7 contains our main
conchisions. Some theoretical results on the performance of the parametric Bayes
procedure and the nonparametric Bayes procedure based on Dirichlet mixtures are
given in the Appendix.

2. Models and implications for QTL mapping

We consider a multiple testing problem, when the mmmber of tests m iz in the
range of a few hundreds. Such values of m are of importance in QTL mapping and
they have a methodological interest in that the asymptotic results of Genovese and
Wasserman [1:1], Donoho and Jin [ii] or Meinshausen and Rice [15] do not yet apply.

We wuse the parametric model proposed in Scott and Berger [25]. Thus we consider
m test statistics Xy, ..., X, and assume that X; has either the oall distribution
N{0,5?) or the nonrmull distribution N{p;, o?), where p; # 0 represents some
sipnal (e.g. a QTL close to the i-th marker). The signal y; is taken to be random,
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distributed as N (0, 72). Hence the non mull distribution of X; i N(0), o2 +7%). We
also define a random indicator variable ~;, which is equal to 1 if X is generated
by the non-null distribution (ie. it represents the signal) or 0 in the other case. If
p= Plv = 1), then the marginal distribution of X; is the scale micture of normals,
namely,

(2.1) X~ (1 - pIN(0, &%) + pN(0,0% + 72).

Moreover, we assume that (X;, ), 1 < i < m, are iid. random vectors. We
will consider both sparse mixtures, with p < 0.2, and non-sparse mixtures, with a
relatively large p. Usnally we assume that p and 7 are not known, while o can be
known or wmknown, depending on the application.

For each 1 we test whether X; has a null or non null distribution, i.e.

(2.2) Hyii=0vs Hay iy = 1.

A major potential application of our model is QTL mapping. Our modeling takes
into acconnt the possibility that apart from QTL the trait can be influenced by a
large nmmber of poly genes, i.e. genes with very small effects, distributed over the en-
tire genome. If our main interest is in identifying markers linked to QTL we consider
a sparse mixture (2.1), where p is small and N (0, &%) represents the distribution
of the sum of polygenic and random (environmental) effects. In this context o &
wsually imknown. The second component in the mixture, namely N{0, o2 + 72),
represents the distribution of the QTL effect, ;. and the sum of polygenic and
random effects. Following the majority of Bayesian papers related to QTL map-
ping (see e.g. Yi [31]) we use N{0,7%) to model the distribution of p;. Thus our
madel assumes that the probabilities of a positive and a negative QTL effect are
the same and is suitable in the sitnation when the analyzed trait is not the subject
of a strong selection. Note that under this scenario detecting QTL is particularly
difficult. Another plausible distribution for | is the pamma distribution (see e.g.
Otto and Jones [22]). A completely robust alternative & to model p,’s with a non-
parametric distribution P and put a further prior P ~ Dirichlet, which leads to
Dirichlet location mixture distribution for X;'s. We investigate this approach and
propose an alternative nonparametric inference based on Newton [21].

If our main interest is in both QTL and polypenic effects, the null component,
N(0,5?%), represents the distribution of random effects, and N{0,7°), represents
the distribution of effects due to QTL and polygenes. In this setting p need not be
small and o2 may be assumed known, since we can precisely estimate it through
replications.

Remark 1. The number of strong QTL, which are significantly different from the
background of polygenes, is usually small. In this case only relatively large QTL
effects, || > oy2Togm, may be identified, since extreme values of the “pull”
component of the mixture are approximately equal to oy 2logm. In order that
such signals are generated by the non null component 72 should be comparable or
larger than 22 logm.

Remark 2. The assumption of the mdependence of X; can be used when markers
are distant from each other. When markers are close to each other, the correspond-
ing test statitics might be strongly correlated. However, the results reported in
this paper demonstrate some general properties of the multiple testing procedures
and show the directions in construction of related methods for detection of linked

QTL.
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3. Different notions of error in mmltiple testing

Consider the problem of testing of m hypothesis Hyy, .. ., Hy, specified in (2.2).
For each individual test two types of error can oceur: the null hypothesis can bhe
rejected even though it is true (type | error) or be not rejected when it & false (type
II error). Following the notation of Benjamini and Hochberg (1], Table 1 defines
wariables deseribing counts of possible ontcomes of a multiple testing procedure.

The main focus of classical statistics is on tests minimizing the probability of the
type Il error (or maximizing the power), while controlling the probability of the type
[ error at a given significance level o, The natural extension of the type Lerror to the
sitnation of testing m hypotheses is the family-wise error rate, FWER = P(V = 0).
Additionally, the notion of power can be naturally extended to the multiple testing
as E{%hm =), Here, as well as in the next part of the paper, E is used to denote
the frequentist expectation (i.e. conditional on the vector parameters of the model
(2.1)). The classical approach to the multiple testing problem relies on constructing
procedures maximizing the power while controlling FWER at a given level (see e.g.
Holm [14]).

In the situation when m is large, procedures controlling FWER are usually very
conservative. Note that in many practical applications one would often accept fake
discoveries as long as they consist only a small proportion of all discoveries. Going
along these practical expectations Seeger [20] elaborated on the idea of Eklund
{unpublished seminar papers) and discussed a stepwise multiple testing procedure
aimed at controlling the proportion of false discoveries among all discoveries. The
same stepwise multiple testing procedure has been later discovered by Simes [27],
who proved that it controls FWER in a weak sense (when all hypothesis are true).
The notion of proportion of false discoveries appeared again in a paper by Sorié
[24]. Following this paper, Benjamini and Hochberg [1] formally defined the fake
discovery rate as FDR = E{%j, where % = {} if B = (. Benjamini and Hochberg
also proved that the multiple testing procedure of Seeger and Simes controls FDR
at a desired level when the test statistics are independent. Following Benjamini and
Hochberg [1] this procedure gained a large popularity and is currently known as
the Benjamini and Hochberg (BH) procedure.

Let Py = Foy. .. = Fyey be the ordered p-values of m tests. Let

i3.1) k=max{?§:P,:,-]EE}.
m

BH rejects all hypotheses for which the corresponding p-values are smaller than By,
In Benjamini and Yekutieli [3] and Sarkar [23] it is proved that BH controls FDR
also under certain forms of positive dependence between test statistics. Following
Benjamini and Hochberg [I] many other criteria and procedures which allow for
controlling a number or proportion of false discoveries, were developed (see eg.
Lehmann and Romano [17], Sarkar [24], Storey [31] and references given there) but
BH still remains one of the most popular methods of multiple testing.

TapLE 1
Counts of possible ouicomesz of m hypothesis fests

Accept null Reject null Total
Null true U v Mg
Alternative true T ] Ty
W R m
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Multiple testing problems can be approached ako from the point of view of
decision theory. Depending on the specifics of the problem, different loss functions
can be assipned to the two types of errors and the procedure minimizing the related
risk can be constructed. The corresponding procedures in the framework of Bayesian
decision theory were discussed e.g. in Miiller et al. [19], Miiller et al. [2(] or Scott
and Berger [20]. Further references to Bayesian multiple testing procedures as well
as a novel Bayesian stepwise multiple testing procedure can be found in Chen and
Sarkar [7].

To point at some similarities between controlling FDR and Bayesian approach
to multiple testing we now briefly discuss the positive false discovery rate,

o FDR
P79 7 20 ol - VIR 0 Ll
kDR (Rl }“) PR = 0)

defined i Storey [3] and Bayesian false discovery rate
BFDR = P{Hy is true[H; is rejected ),
defined in Efron and Tibshirani [7].

Theorem 1 of Storey [#)] states that in case when individual test statistics are
generated by the two-component mixture model, like in our setting, pFDR =
BFDR. It iz also pointed out that there are situations in which BFDR can not
be controlled. An obviows example is when p = (), since then BFDR = pF DR = 1.
It is however easy to show that in our testing problem (2.2) BFDR can be con-
trolled at any piven level o if p = (). The corresponding threshold for the absolute
wvilue of the test statistic X; is given by the formula

(1 —p)(1 —Po(z))
1 — F(z) {”}

(3.2) eygr = inf {;r =10 :

where ®; and F are cdfs of N(0, 72) and the mixture distribution (2.1), respectively.
Remark 3. The difference between FDR and BFDR may be relatively larpe for

small p and a small deviation between the mull and alternative distribution (i.e.
small power). However, in typical QTL or microarray experiments, where m i
large and some rejections typically ocour, the difference between BFDR and FDR
is usnally very small. Based on the asymptotic approximation of FDR by BFDR,
Genovese and Wasserman (1] call (3.2) an oracle threshold to control FDR.

Remark 4. Theorem 5.1 of Benjamini and Yekutieli [1] states that if the test
statistics are continnows and independent then FDR of BH is equal to amg/m.
Thus FDR of BH is close to « only when my is close to m and converges to ) when
mmyg — (1. When my is known one can easily modify BH to control FDR at the level
a by replacing & (see 3.1) with

(3.3) k1 = max {f.c : Py < E} .

ey

In Benjamini and Hochberg [2] a graphical method to estimate my is proposed and
the formula (3.3) is used to construct an adaptive version of BH.

Under the mixture model (2.1) the expectation of my is equal to m(l — p) and
a corresponding modified version of BH can be obtained by replacing &1 with

(3.4) F.:2=mz-|.x{?i: H,]Em}
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TapLE 2
Matriz of losses
Accept Hpi Reject Ho:
Hy; true 1] B
H 4; true LY L]

It is easy to prove that this version of BH also has FDR equal to a. Moreover,
in Efron and Tibshirani [7] it is noticed that the modified BH (3.4) is equivalent
to the BFDR controlling rule (3.2), with the edf of the mixture distribution esti-
mated by the empirical distribution function. In many consecutive papers (see e.g.
Efron et al. [5], Efron and Tibshirani [7], Storey [20] and Genovese and Wasserman
[13]) different nonparametric methods of the estimation of (1 — p) and F(z) were
considered, leading to FDR controlling rules which are more liberal than BH.

Let us now consider the multiple testing problem from the perspective of decision
theory. Table 2 defines the specific matrix of losses for making the wrong decision.

Let us denote by #; and #; the probability of type 1 and type II errors of a single
test. The Bayes risk related to the above matrix of losses & given by the following
equation

(3.5) B R, 6, = &l — plt + dapta.

The Bayes rule, i.e., the test which minimizes this risk, rejects the null hypothesis
if
falXs)  (1—p)do

(8.6) FolX5) - pda d

where fy and f4 are the densities of X; under Hy and H 4, or equivalently if

_ O

do+ 04

We call this test a Bayes oracle and compare other tests to this oracle.
Let us observe that

(3.7) = P(Ha|X,) =

BFDR= — Q—Ph
=P +p1— 1)
Thus
(3.8) BFDR < o iff (1 —a){l —p)fy + apta < ap

and controlling BFDR controls the Bayes risk with a loss §g = 1 —a and 44 = .
The classical flavor of BFDR & however strongly reflected in assipning much larger
loss to the type | error than to the type I error.

The accuracy of the multiple testing procedure can be judpged by its misclas-
sification probability, M P = w Note that MP = BR, ;. where BF; | &
the Bayes risk corresponding to 0-1 loss. In our parametric setting {2.1) the Bayes
oracle minimizing B, ; rejects the hypothesis Hy; if

9 2 2y 2 1 2 2 it
(3.9 X2 > Lo log Ak + log 2
T2 2 al P

In Figure 1 we compare the Bayes oracle (31.9) to BH and the standard test-
ing procedure based on the Booferroni correction. The sipnificance level for each
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individual test in Bonferroni procedure is equal to o/m. For this presentation
as well as for simulations reported in Section 5 we use m = 200, ¢ = 1 and
T = /2 #log(200) = 3.26. For BH and Bonferroni procedures a = 0.05. Apart
from the standard BH we use its modified version, with the cutoff for p-values
k2 specified by (3.4). The reported characteristics for the Bonferroni correction
and Bayes oracle were obtained theoretically, while the characteristics of BH were
computed wsing computer simulations, based on 10000 replicates.

Figure 1 demonstrates that, as expected, the modified version of BH keeps FDR
exactly at the level (.05, while FDR of the original BH decreases linearly with p.
Comparison of 1{a) and 1{h) shows that the difference between BFDR and FDR
is substantial when p < 0.03. In particular, neither versions of BH controls BFDR
in this range of p. This seems due to the fact that for very small p the threshold
based on the empirical mixing distribution & substantially more liberal than the
one provided by (3.2). Both versions of BH take an intermediate position hetween
the Bonferroni procedure, which is most conservative, and the most liberal Bayes
oracle. Figure 1 demonstrates that the most powerful Bayes oracle has also the
largest FDR . However, as expected, type | and type I errors balance in such a way
that the misclassification probability (M P) of the Bayes oracle is smaller than that
of any other method. Interestingly, the modified version of BH performs very well in
terms of M P over the entire range of p. When p is very small also the original BH
has a very low MP, which for p = 0.015 is very close to the optimal valie provided
by the Bayes oracle.

{H]I I XL {Ir:I I1¥E
Banfenori ; — Honteren
Bawes oracla i __| | ——~BeyeE orazle ,"'_
: E 11 g BI_ .
i rnadifiad 2H e b rodified BH
] . P :
B G 8| e
T . 1. \
o fad B 3 "
u s ;)_Il.i 1 Lh 1 1 :l 1 1] & ;)_Ili 1 Ik 1 : 1
P P
{¢] Power {d) MP
—_— 5-.'.-n1e-n:c-r| _: ; Barfaran
T === 3eyeg 0racla - ] Bagen nracla
RH o Gl e
radified BH /-’ X rradifed BEH ¥
o r e
_E w
5 = .
o -~

Fic 1. Chamecferigdics of muliiple testing procedures.
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4. Bayes, parametric empirical Bayes and modified BH procedures

PEB procedures: The natural way of applying the Bayes classifier (3.9) in the
sitnation when parameters of (2.1) are unknown is to use their consistent estimates
and plug them into (3.9). In particular, maximuom likelihood estimators (MLE)
coukd be considered.

Let

L(Xy,.... Xulp,7,0) = [[(0Fa(X) + (1L —p) fo(X0)).

i=1

We estimate our model parameters in two steps. First we fix p and estimate v(p)
and a(p) wsing the EM alporithm. In the second step we estimate p by maximizing
LiX;, .. .. Xulp. 7(p), #(p)) vsing mmmerical methods. We plug our estimated pa-
rameters into (3.9) and denote the resulting Parametric Empirical Bayes Classifier
as PEBI1. As reported in Section 5, PEB] performs very well for moderate values
of p. However, when p is very small PEB1 has larpe FDR and MP. This behavior &
related to the problems with identifiability of parameters of mixture distributions
disenssed in Section 6. Since our main interest is in sparse mixtures we consider
the following modification of PEB1. Firstly we stabilize the performance of MLE
by supplying the information included in the data with the prior information on p.
Using a subjective, informative, prior on p is also strongly recommended in Scott
and Berger [27], where the following prior density is proposed;

(4.1) flp) =B(L—p)° .

In simulations reported in Scott and Berger [27], the parameter 3 is set to be equal
to 11, so the corresponding prior on p has its median close to .07, To adjust to the
sparsity typical for QTL mapping experiments we slightly shift this prior towards
0 and choose 7 so that the prior median is 0.03, which for m = 200 corresponds to
G sipgnals on average. In our simulations 3 = 22.76. The results aren’t sensitive to
amall chanpes in 3.

The estimate of p is obtained by maximizing

(4.2) log LiXy, ..., Xulp. 7lp).alp)) — (3 — 1) log(l — p)

and can be interpreted as a mode of the “posterior” density of p.

The second modification relies on replacing the maximuom likelihood estimates of
T(p) and a(p) with the moment estimates based on the fourth and the second mo-
ment of the mixture distribution. We observe that wing the fourth moment makes
our procedure sensitive to the change in the tail of the mixture distribution and
hence yields good results in a very sparse mixture case. The resulting Parametric
Empirical Bayes Classifier is denoted by PEBZ,

When o is known PEB1 and PEB2 are constructed accordingly. For PEB2 7(p)
s estimated wing the fourth moment of the mixture distribution.

Modified BH: We use estimates of p and o computed by PEB methods to
construct modified versions of BH, with the threshold specified by (3.4). The version
based on MLE is denoted by BH1 and the sparse mixture version, based on the
estimates derived by maximizing (4.2), by BH2.

Full Bayes approach: We use the framework of Scott and Berger [27] and con-
struct the full Bayes procedure minimizing the posterior Bayes risk corresponding
to the 0-1 loss (1 for making type I or type Il error). We use noninformative priors
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for 7 and o7, suggested in Scott and Berger [27], with densities

a2

1

(4.3 mgplot) = = and wsr(rie?) = m.

When o & known only the prior for 7 is wsed. The prior on p is the same as the
one used by PEB methods, namely (4.1), with 3 = 22.76. To compute the posterior
probability of Hy; (see formula (9) of Scott and Berger [20]) Markov chain Monte
Carlo (MCMC) is applied, which according to owr simulations is more stable than
the importance sampling suggested in Scott and Berger [27]. The hypothesis Hy; is
rejected if

(4.4) P(Hyl X1, ..., Xm) < 0.5

and the resulting multiple testing procedure is denoted by SB.

Remark 5. Note that minimizing the posterior Bayes risk is conceptually different
from minimizing the risk BR; ; (see (1.5)). BR,; is conditional on the vector of
parameters of the mixture model (2.1), while the posterior Bayes risk is conditional
on the data and depends on the prior. However, Theorem 8.2 in the Appendix states
that if the parameter space (ie. p€ (0. 1), 7 = 0 and 7 = 0) and m increased then
the misclassification probability of SB converpes to the optimal value provided by
the oracle (3.7). This result & a consequence of Theorem 8.1 on posterior consistency
under the considered mixture model. Obviously, for each fived m, the difference
between misclassification probability of 5B, and the oracle depends on the accuracy
of prior assumptions and due to the choice of the prior on p we expect 8B to resemble
the oracle when the data are generated by the sparse mixture.

Dirichlet mixtures: The procedures presented so far are based on the assump-
tion that the distribution of the sipnals (of w;'s given ~; = 1) is completely known
up to finitely many parameters. In practice, however, a lot less is known about the
sipnals. A realistic model for such a situation is to consider : (v = 1) ~ P* for
some unknown probability measure P9 with P*9({0}) = 0, which doesn't need
to be restricted to any parametric family. In this case, X;'s arise as independent
observations from the mixture density f(z) = [ ¢.(z — p)dP(p), where P is a
probahility measure that puts some positive mass at the point 0 and distribotes
the remaining mass p according to P™Y. A Bayesian analysis of this model is pos-
sible by using a prior distribution on the space of such probability meassures P. A
suitable candidate is a Dirichlet process prior. Below we introduce a new procedure
based on this model and prior.

Let wgp(72,a%) = (e + 72)~? denote the joint prior distribution on (72,%)
recommended in Scott and Berger [25]. We assume that

Xl s RJE,T‘EJW,J'! ~ N{_u.,'.,a‘zj._
wilP e, 2 poe ~ P,
Pla* 7. po,e ~ Dirfe,(1—pg)dggy + poN(0,7°)),
{pmr:,TE.,a‘zj ~  Beta(l,22.76) x Gamma(l, 1) = wsB{TE,u’g]._

where Dir(c, Fy) denotes the Dirichlet process prior (see Ferguson [11]) with pre-
cision constant ¢ > () and base measure F; - a probability measure on the real
line. Our choice of the base measure, namely By = (1 — po)dy + poN (0, 7°), ensures
that a random P ~ Dirle, By) almost surely puts some positive mass 1 — p on
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and distributes the remaining positive mass p on the real line according to some
probahbility measure P*?_ which is singular to d10y. Therefore, without any ambi-
puity, we can import our familiar signal indicators +; into this model by defining
¥ = I{p: # 0).

Note that the priors for py and (72, 62) match the priors chosen for these param-
eters in the model proposed in Scott and Berger [27] and presented in the previous
section. The preciion constant ¢ is modeled with a Gamma(l, 1) prior, which &
quite diffuse with a mean equal to 1 — a conventional choice of this parameter.

Toward implementation of this model, we first integrate out P from the hier-
archical structure by wing the Pdlya urn representation of a Dirichlet process.
Although our specification includes an improper prior on o2, it turns out that the
posterior distribution of (g, ..., @, 02,72, pg) is indeed a proper distribution; see
Theorem A3 in Appendic. This allows us to obtain an MCMC sample of obser-
vations {_u.i”._ i .__H.H.]:I, I =1,...,L from the posterior distribution of p;'s given
the data. We use the algorithm described in Escobar and West [10] with snitable
adaptations to our model. Our model differs from the one considered in Escobar
and West [10] in two aspects: 1. we consider only a location mixture of normals and
2. our base measure has a point mass at {0}. The adaptations, however, are not
complicated and we omit further details.

With the sample of p;'s collected from the posterior we caleulate Pl = 0JX,
o ¢RI D f{_uEI] = {}). Az before, we reject Hy; if this estimate is smaller
than 00.5. We denote this multiple testing procedure by DPP.

Approximate nonparametric Bayes procedure based on Newton's al-
gorithm, NPBN: A somewhat related procedure can be obtained by combining
the above nonparametric model with Newton's algorithm (see Newton [21]), which
produces an easy to compute, recursive estimate of the distribution P. In particu-
lar, we start with an initial guess of P given by Fy = (1 — po)dgoy + paV(0,72) and
then recursively update this guess as

ba(2: — p)Pi—1(dp)
J Galwi — )Py (dv)’

Fidp) = (1 —aw) P_y (du) + wy

where w; € (0,1) are prefixed weiphts (we take w; = (i + 1)71). We take the
final update P, as the estimate of P. Note that the estimate P, too, puts some
positive mass 1 — py, at 0 and distributes the rest according to some density f,, on
the real line. Testing & then performed by mimicking the Oracle rule and replacing
P with the estimate B, : we reject Hy, if (1/p, — Vg {z)/ fﬁbr, (z — ) () dp <
1. We call this procedure Nonparametric Bayesian Procedure based on Newton’s
algorithm (NPBN).

For every i, if one models z; ~ [o¢,(z — p)P(dp) with P ~ Dir(1, F,_;) then
the posterior expectation of P given the singleton sample {z;} equals P;. In spite
of this resemblance, NPBN should not be taken as an approximation to DPP. The
former, however, has its own set of advantapes.

The biggest advantage of wsing NPBN is that it produces extremely fast com-
putation while wsing a nonparametric model. The reason for its speed stems from
the one pass routine employed by the algorithm.

The output of the NPBN procedure depends on the order in which data are fed
to the alporithm. In our simulations we align the observations in their ascending
order of magnitude. With thi alipnment, P,’s are first trained on small observa-
tions, which are mostly noise, followed by the larpe ones coming mainly from the
sipnals. However, as the later updates are rather less influential (small wy), the
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concentration of Py, on ) would be systematically inflated. Therefore the chosen
alipnment would systematically result in a more conservative procedure than what
a random alipnment would produce. Such a conservative approach is well snited to
our anticipation of a small to moderate number of signals.

While preater speed is a selling point for NPBN, it does suffer from some in-
flexibility in model specification. Unlike DPP, the NPBN setting does not allow
a further prior specification on the parameters py, 72,02, It is hard to generalize
the recursive algorithmm to include wnknown parameters. In the present paper we
consider NPBN only when o is known and specify 72 = o2, which is equal to the

mean of the prior distribution on 72 used by SB and DPP.

We choose py as
1 ﬁbr.r {"E!j )
= — | ———— 1),
= z ( i) =

T \omrral
This quantity is equal to the proportion of rejections one would make by assuming
= %50 + %N{{}, 72). This choice calibrates py to 72 in a natural way - once 72 &
picked we update our noniformative choice of py = 1/2 by wsing this chosen value
of 72. Our simulation study indicates that this data dependent choice of py leads
to an overall higher efficiency compared to any fixed choice of py.

5. Simulation results

Thble 3 and Figure 2 demonstrate characteristics of 5B, PEB1, PEB2, BH1, BH2
and NPBN. “Efficiency”, represented in Figures 2(a) and (¢}, is defined as
MP of the oracle

MP of a given procedure

E=

We do not report the results of the original BH since the performance of BH2 is
systematically better. The parameter values used in the simulations are m = 200,
g=1and v = /2 +log(200) = 3.26. Due to the computational complexity the
results for 5B are based on 3000 replicates. The results of all other procedures are
based on 10000 replicates. The larpe scale simulations were not feasible for DPP,
which iz not represented in Table 3 and Figure 2.

Table 3 demonstrates that for p < 0,05 PEB1 and BH1 have large MP and FDR.
The properties of these rules quickly improve with increasing p and for p = 0.2 MP
of PEB1 & close to optimal and FDR of BH1 is close to 0.05. When o is known
the characteristics of PEB] and BH1 stay at the assumed level for all p = 0.2
but when o is unknown these rules deteriorate again when p > 0.8. The sparse
mixture rules: 8B, PER2 and BH2, perform well for very small p. When o is known
these rules retain good properties for p € [0,0.6] but when o & unknown they
deteriorate already at p = 0.3. Figure 2(d) demonstrates that at this point all sparse
mixture rules start to loose power and become overly conservative. The reason for
this behavior as well as the corresponding loss of power for PEB1 and BH1 when
p = 0.8 is the difficulty with identifying the model parameters, discussed in detail
in Section .

Figures 2{a) and (¢) demonstrate the “efficiencies” of the sparse mixture roles in
the most interesting range p < (.2, PEB]1 and BH1 are not represented since their
“efficiencies” for p < 0,03 are below 50%. Figures 2{a) and (¢) show that when
p € [0.01,0.03] BH2 is almost optimal and has the “efficency” slightly larger than
the “efficiencies” of other procedures. However, this characteristic of BH2 system-
atically decreases with an increase of p and at p = (0.2 it is substantially smaller
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TABLE 3
FDR and Misclassification Probability of muliiple feding procedures. B stands for
the Bayes Oracle (5.9)
o known o unknown
P B0 SB PEB1 PEB: BH1 BH2 NPBN SB PEB1 PEB:2 BH1 BH:
Misclassification probability in %
LIXI] 1] L1 H24 LURL R T LIN 1] L1 2 31.3 i 14.3 [IX15
2s  1.76 1.4 14.3 1.77 168 1.77 1.42 1.54 11.0 1.1 h.1 1.81}
LIX1 4368 334 7.1 KR | 6.19 342 346 J.44 .36 344 4.3 3.51
.2 11.7 114 11.8 11.8 12.1 122 11.4 12.4 12.2 12.3 12.3 13100
.5 23.5 24.5 24.1 24.5 255 w2 2400 a36.5 24.49 Al 268.4 12.6
LI} 200 206 21.1 20.5 248 351 223 TH.6 .2 TH.T 1.y 799
False Discovery Rate in %
LIX1] [ 3.1 .1 6.0 T4 h.2 24 1.4 1.4 5.5 424 hb
2s 94 T.H 31.5 7.2 2.5 5. h.b X} 240 6.3 14.7 4.1
s 11.2 BT 17.5 A1) X1 .49 6.4 D2 19.4 TA) 11.0) 4.4
.2 12.2 0.2 12.49 H3.4 Al 4.7 X} b.G 13.49 7.8 6.5 249
.5 13.49 A 14.7 A1) b3 4.1 11.40} 1.1 14.6 2400 6.2 0.7
.4 20010 A} 17.2 h.1 6.1 24 14.4 LK1 13.1 LIX1] 4.4 LIX1]
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Fio 2. Chamderigdics of muliiple festing procedures.

than the “efficiencies” of PEB2 and SB. The “efficiencies” of PEB2 and 8B stay
constant at the level close to 99% when o is known and only slightly decrease to
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94.5% at p = 0.2 when o is unknown.

When o & known the nonparametric NPBN procedure performs surprisingly
well over the entire range of p. It is slightly less efficient than 5B and PEB2 when
p< 0.2 but it retains good properties also for p close to 1.

In order to pet a feeling of the performance of DPP we compare it with 5B on a
case by case basis with the help of a few toy data sets. We penerated 10 data sets,
each of size 200, from the model described in Section 1, with o =1, 7 = +/2log 200
and various values of p. Five of these data sets are represented in Figure 3. On each
panel, two scatter plots of Pr{~; = Olzy, ..., 7, ) versus oy are presented. The open
circles joined by the solid line correspond to DPP, whereas the filled circles joined
by the dotted line correspond to SB. The left column in Figure 3 corresponds to
the known o case — i.e., both DPP and SB are employed with o fixed at 1 and the
conditional prior 7{72|e? = 1) & used for 72. The right colimn corresponds to the
unknown o case.

It appears that DPP and 5B perform quite similarly, although the former is a
little more conservative than the latter, particulary when the mumber of signaks s
very small. This is further illustrated by Table 4. The ten columns in the table
represent the ten data sets, with the number of signals shown on the header row.
In each cell of the body of the table, the two values give the mmmbers of correct
and incorrect discoveries of sipnals made by the corresponding procedure for that
particular data set. From Table 4 we ako note that DPP and NPBN are quite
similar except for samples with many sipnals (last two columns), where the prior
on p used by DPP was strongly inappropriate.

5.1. When the prior assumplion is wrong

In this section we demonstrate the results of simulations llustrating the perfor-
mance of our methods in the situation when the assumption that the distribution
of p; under the alternative is normal does not hold. For this simulation we consider
the case with o known and penerate p;'s using a symmetrized gamma distribution
instead of normal distribution.

Let gz, u) denote the density of the gamma distribution with the shape pa-
rameter ¢ and the scale parameter 1. The symmetrized pamma density describ-
ing the prior distribution of p; under the alternative is given by the equation

24/ 2log me
ean
As demonstrated in Figure 4, the deviation from the prior assumption strongly

affects the behavior of PEB1 amd BH1, which are based on the maximum likelihood
estimates of parameters under the wrong mixture model (2.1). In particular, for
p € (0.3,0.8) these procedures are much too liberal and do not achieve the assumed
characteristics. The misclassification probability of PEB1 is close to optimal only in
the range of p £ ((.1,0.2) and p > 0.9, Also, only in this range FDR of BH] is close
or below the assumed value of 0.05. Over the entire range of p the misclassification
probahility of the nonparametric procedure NPBN is decisively smaller than for

galx) = 0.5g{|z|, v, u). For the current simulation we we r = 4 and v =

PEB1, which clearly demonstrates the advantage of wsing nonparametric methods in
case when the prior distribution & not known. Surprisingly, PEB2 and BH2, which
are based on the moments estimates under the wrong model and wse the strongly
informative prior on p, behave very well over the entire range of p. We believe that
their good behavior for moderate and large p is just a coincidence, resulting from
the opposite influence of different types of errors of our estimation procedure. As
noted before, under this particular violation of the prior assumption the methods
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which do not use the prior on p are too liberal when p € (0.3, 0.8). In case of PEB2

om using the informative

but not adjusted to this range, prior on p. However, other simm

amnd BH2 this error seems to cancel the error resulting fi

ions, not reported
in this paper, suggest that the pood behavior of PEB2 and BH2 for p < 0.2 i5 a

quite peneral rule, working under a wide set of different, also asymmetric, prior

distributions on g;. A theoretical explanation of this phenomenon still needs to be
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worked out.

fi. Problems with identifiability of model parameters

An early treatment of the problem cawsed by lack of identifiability of mixtures
can be found in Ghosh and Sen [15]. Another recent reference is Elmore et al. [1].
In this section we illustrate this problem by a mumerical study on the Kullback-
Leibler distance between different mixture densities and the resulting behavior of
the maximum likelihood method.

Consider the problem of a choice between two competing probability models
M and Ma, characterized by the density functions fi{z) and fo{z). Let K2 =

J [log( L) Il fi(z)dz denote the Kullback-Leibler distance between these two dis-

Fziz)
tributions and let Via = [ [log( ﬂ E:]] )2 fi(z)dz. Further assume that Viz i finite.
We consider the case when no prior information & available and our choice of the

madel depends only on the likelthood of the data under My and Mas.

Assume now that a sequence of iid. data Xy, .., X is penerated according
to the model M;. Let Ly = ]2, f1(X:) denote the corresponding likelihood. Let
Ls = [[iL, f2(X;) denote the likelithood of the data under the wrong model M.
The probahility that the likelihood points at the the wrong model M5 is equal to
Pllog Ly < log La). Let us denote Dya = log Ly — log La. Note that

e

B h(X)
Dya = ZI{}E_ XD

i=1
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Thus, by the Central Limit Theorem, for sufficiently large m the distribution of
Dys can be approximated by the normal distribution with mean equal to mKs
amd variance mlis.

Consider now the case when the models My and Ms belong to the class of mixture
densities specified in (2.1). The parameters for the model M) are p =001, 7 =1
and 7 = +/2log 200 = 3.26 and the corresponding parameters for the model Ms are
p2=1,02 = 1 and 75 = ,/pny = 0.326. The parameters for the model M5 are chosen
in such a way that the probability distributions corresponding to M; and Ms have
the same wvariance. We wsed the Monte Carlo method to caleulate K2 = 0,083 and
Vi = 0.33. Thus E(Dya) = 393, Var(D2) = 66.58 and a probability of making a
wrong decision P(Da < ) = 0.31. Note that while the Kullback Leibler distance
between M and Ms is rather small these models are completely different in the
percentage of alternative hypothesis and the resnlting testing procedures give very
different results. Wrong decision of accepting the model Ms leads to a rejection
of all null hypothesis, whike in reality about 99% of them are true. Interestingly,
the probability of wrongly detecting the corresponding "full” model M quickly
decreases with an increase of p. This dependence is demonstrated in Figure 5(a).
The described phenomenon appears when o is known and unknown and forees uws to
uwse the informative prior distribution on p when testing is performed in the sparse
mixture setting.

In case when o is unknown we observe a parallel problem with identifying the
parameters of the mixture distributions with large values of p. For example con-
sider the model My with p =095, 0y = 1 and 7y = 2log200 = 3.26 and the
corresponding “null” model My with ps = 0 and 02 = /of +pr2 = 3.33. For
this example Ko = 00013, Vis = 0.0505 and a probability of making an error
P{Dya < ) = (.37, Similarly as before, choosing Ms instead of M leads to a
completely wrong testing procedure (i.e. accepting all hypotheses). In this situa-
tion, probability of making a wrong decision increases with p and is illustrated in
Figure 5(b). The described phenomenon camses the power of our testing procedures
tor diminish when the fraction of alternatives exceeds a certain threshold value, as
demonstrated in Fipure 2(d).

i) wrong choice of the waodel with o 0 {b) wrone cholos of the inodel withp 0
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Fiz 5. Probability of making a wrong model choice as a funciion of frue p.
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7. Conclusions

We have examined several multiple testing procedures keeping in mind both FDR
and decision theoretic criteria like MP (Misclassification Probability), efficiency
(MP of oracle/MP) and power. We also studied the robustness to some deviations
from the assumed prior distribution and compared our fully parametric methods
with methods based on nonparametric priors /mixing distributions as in Dirichlet
process mixtures or Newton's alporithm.

We observed that if o is known then most methods tend to perform poorly at
one of the two extremes. The MLE-based methods (PEB1, BH1) suffer near p= 0
due to near lack of identifiability. On the other hand procedures that make use of
a conservative prior on p (PEB2, BH2, 5B) tend to be too conservative near p = 1.
Surprisingly, the NPBN procedure, based on Newton's algorithm, does well over
the entire range.

Our results confirm the observation of Genovese and Wasserman [12] that for
very small p's (for m = 200, p < (L03) the misclassification error of BH is close to
optimal in the sense of attaining a Bayesian oracle. In this range of p BH works
similarly to the Bayes oracle also in terms of FDR and the power. However for
p = 0.03 the Bayes oracle becomes much more liberal than BH and allows to obtain
mnch smaller misclassification rate. Interestingly, the misclassification probahility
of the modified version of BH, which uses the knowledge on p, & comparable to
the misclassification probability of the Bayes oracle over the entire range of p. This
happens even though the False Discovery Rate and the power of these two are quite
different. Our simulations demonstrate that Empirical Bayes methods can be used
to estimate p and construct modified versions of BH when the model parameters
are unknown.

An interesting methodological fact is that in case when o is unknown all of the
considered procedures break down for relatively large p. It is somewhat unexpected
that one would have a problem when p, ie. the proportion of signals, is large.
Section § explains how this arises due to the nonidentifiability of mixtures.

The above facts have interesting as well as useful implications for the two appli-
cations discussed in Section 2. If our main interest is in QTL and polygenic effects,
then o is due to random effects and can be estimated well by appropriate repli-
cation. This will virtnally reduce the case of unknown o to the known o case and
improve the quality of inference. On the other hand, if our goal is QTL mapping
alone, then o represents both random effects and polygenic effects and hence can
not be directly estimated even with replication. But fortunately for the range of
p that is relevant for QTL mapping, namely p < 0.2, unknown o does not cause

"

problems at least for m = 200 (see Figure 2(c)).

Appendix

Theorem A.1. Let Xy, ... X, be the sequence of i.i.d. rv's with the density spec-
ified by (2.1). Assume that the unknoun vector of parameters 8y = (po,og, 1) is
in the interior of the parameter space 0 = [0,1] x BT x RY. Moreover, assume
that the prior density is continuwous and positive at 8y and that there exvists mp € N
such that the corresponding posterior distribution {-|z,. .., 7)) is proper when

m = my. Then the posterior distribution is consistent, Le. with probability 1 for
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every Euclidean neighborhood U of 8y it holds
(A1) {IU| Xy, ..., X }—1 as m — oa.

Theorem 4.4.1 of Ghosh and Ramamoorthi [11] shows that the posterior prob-
ahility of any weak neighborhood of the mixture distribution Fy, tends to one as
m tends to iofinity. However, the same result for an Fuclidean neighborhood of
the true parameter #y requires considerably more work. We omit the proof to save
space.

Theorem A.2. The misclossification probability of the full Bayes procedure 58,

specified in ({4 ), converges to the optimal misclassification probability provided by
the Bayes oracle (3.9).

Theorem A.2 essentially follows from Theorem A1 and regularity properties
of the mixture density, but the full proof, though along standard lines, is also
somewhat long and hence omitted.

Theorem A.3. The joint posterior distribution of (g, ..., s Py T2, 00, €) under
the DPFP specification is proper.

Proaf. We need to show that

f []:[ v,."_{mr" ( %‘;ﬁt)]ﬂ{dﬁ;,__.,:iﬁ,,.,dd’]’z,d".l'z,dpjl

is finite. Integrating out P in the hierarchical specification of DPP leads to the
following joint conditional distribution of the u;'s:

BPiy--- 1ﬁrr||'|72'u 7211‘
e i & 1 i—1

~ M |——— (1 —p)byy + ———pN{O, 72+ ——— % |-
]'_[I[f."i'?;—l{ P {0} vl'!+?;—l? ( ) rf+‘i—l; {ei}
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where the sum is taken over all 5 < {1,....m}, ® € P{{1,...,m} Y S) - the
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From this one can show that T < oo by a direct verification of the finiteness of
each of the integrals entering the above finite sum. This exercise can be carried out
by 1. substituting Z = Lz, 2. integrating out o” and 3. by using the fact that 72 /g>
admits a proper density. O
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