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Two Efficient Connectionist Schemes for Structure
Preserving Dimensionality Reduction

Nikhil R. Pal, Member, IEEE,and Vijay Kumar Eluri

Abstract—We propose two neural-net-based methods for struc-
ture preserving dimensionality reduction. Method 1 selects a
small representative sample and applies Sammon’s method to
project it. This projected data set is then used to train an MLP.
Method 2 uses Kohonen’s self-organizing feature map (SOFM)
to generate a small set of prototypes which is then projected by
Sammon’s method. This projected data set is then used to train
an MLP. Both schemes are quite effective in terms of computation
time and quality of output, and both outperform methods of Jain
and Mao on the data sets tried.

Index Terms—Connectionist models, dimensionality reduction,
feature extraction, multilayer perceptron, self-organizing feature
map.

I. INTRODUCTION

FEATURE extraction and dimensionality reduction are two
important problems in pattern recognition and exploratory

data analysis. Feature extraction can avoid the “curse of
dimensionality,” improve generalization ability of classifiers
by eliminating harmful features, and reduce the space and
computational requirements associated with analyzes of the
data. Many features not only lead to more computational
overhead but often it can create confusion thereby degrading
the performance of a classifier designed on them.

Dimensionality reduction can be done mainly in two ways:
selecting a small but important subset of features and gen-
erating (extracting) a lower dimensional data preserving the
distinguishing characteristics of the original higher dimen-
sional data. Dimensionality reduction not only helps in the
design of a classifier, it also helps in other exploratory data
analysis. It can help in both clustering tendency assessment as
well as to decide on the number of clusters by looking at the
scatter plot of the lower dimensional data.

Object data are represented as , a set
of feature vectors (signals) in . The th observed object
(some physical entity such as a tank, image, patient, stock
market report, etc.) has vector as its numerical representa-
tion; is the th characteristic (or feature) associated with
object . Feature extraction and data projection can be viewed
as an implicit or explicit mapping from a -dimensional
input space to a -dimensional output space

(1)
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such that some criterion,, is optimized. Usually , but for
some feature extraction problemsmay be greater thanalso.
This formulation is similar to a function approximation prob-
lem. However, unlike the function approximation problem,
where the mapping function is estimated from training patterns
which are input–output pairs (desired outputs are known), in
feature extraction and data projection the desired outputs are
not available. In effect, any feature extraction method has to
produce .

A large number of approaches for feature extraction and data
projection are available in the pattern recognition literature
[1], [2]. These approaches differ from each other in the
characteristics of the mapping function, how is learned,
and what optimization criterion is used. The mapping
function can be eitherlinear or nonlinear, and can be learned
through eithersupervisedor unsupervisedmethods.

In this paper we propose schemes for structure preserving
dimensionality reduction. The first method integrates the the-
ory of statistical subsampling, structure preserving characteris-
tic of Sammon’s function and the generalization capability of
multilayer neural networks; while the second scheme combines
Sammon’s function, self-organizing feature maps along with
multilayer perceptron networks. Both methods can produce,
like Sammon’s algorithm, lower dimensional data which are
coherent with the original data at a much lower computational
cost. Both methods have been compared with original Sam-
mon’s algorithm and a connectionist method due to Jain and
Mao.

The remaining part of this paper is organized as follows:
Section II deals with conventional methods while Section III
considers connectionist methods. In Section IV, we present
our proposed methods. In Section V, we discuss the imple-
mentation and the results obtained. The paper is concluded in
Section VI.

II. CONVENTIONAL METHODS FORDATA PROJECTION

We describe here two unsupervised methods for data pro-
jection: Principal Component Analysis (PCA) and Sammon’s
nonlinear projection method.

A. Principal Component Analysis

Principal component analysis (PCA) [1] is a well-known
widely used statistical technique for feature extraction and
data compression. It appears under various names, including
the Karhunen–Loeve transform in signal processing and the
Hotelling transform in image processing. It is a linear or-
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thogonal transform from-dimensional space to-dimensional
space ( ), such that the coordinates of the data in the new
-dimensional space are uncorrelated and maximal amount of

variance of the original data is preserved by only a small
number of coordinates.

Suppose we have a linear transform from a-dimensional
zero-mean input vector to a -
dimensional output vector , where
and is related to by the expression , is a

matrix, with . PCA sets the successive rows
of to the eigenvectors corresponding to thelargest
eigenvalues of the input covariance matrix .
Thus represents the component ofin the direction of the
largest eigenvector of , is the component in the direction
of the second largest, and so on. The computation of principal
components is summarized in the following algorithm:

PCA( )

Input , and : ;

;

;

Compute and order the eigenvalues
of ;

Construct the associated (ordered) orthogonal
eigenvectors ;

Form the matrix ;
Compute ;

Note that can be used with any new vector that
has not been used to compute the projection. Let and

be the matrices computed with :
and ,

respectively. Then

As long as is not widely different from the vectors used
to compute , . Thus can be used to
project new data points, as long as the data points used to
compute adequately represent the population generating

.

B. Sammon’s Nonlinear Projection Method

Sammon [3] proposed a simple yet very useful nonlinear
projection algorithm that attempts to preserve the structure by
finding points in -dimensional space such that interpoint
distances approximate the corresponding interpoint distances
in -dimensional space.

Let ,
be the set of input vectors and let

, be
the unknown vectors to be found.

Let and
, where be the Euclidian

distance between and . Sammon suggested looking for
minimizing the error function

(2)

Minimization of is an unconstrained optimization problem
in the variables ; .
Sammon used the method of steepest descent for (approxi-
mate) minimization of . Let to be the estimate of
at the th iteration, . Then is given by

(3)

where the nonnegative scalar constant(Sammon called it a
magic factor and recommended 0.3 or 0.4) is the step
size for gradient search. Now

(4)

and

(5)

where .
Most authors follow Sammon in continuing to exhibit
in deference to the original formulation. However, it is

not necessary to maintain in (4) and (5) for a success-
ful solution of the optimization problem, since minimization
of and

yield the same solutions.
Our implementation of Sammon’s algorithm is shown at

the bottom of the next page.
With this method we cannot get an explicit mapping function

governing the relationship between patterns in-space and
corresponding patterns in-space. Therefore, it is not possible
to project new points. This method also involves a large amount
of computation, as every step within an iteration requires the
computation of distances. The algorithm becomes
impractical for large . Finally, there are many local minima
on the error surface and it is usually unavoidable for the
algorithm to get stuck in some local minimum.

There have been a few attempts [4]–[7] to reduce the com-
putational overhead of Sammon’s method using concepts of
clustering. For example, Schachter [4] partitioned the feature
space into a number of bins (hyper-rectangles). Letbe the
location of the th bin and be the number of points in
the th bin. (In [4] it was not clearly spelled out how was
computed, we assume that it was the centroid of the associated
bin.) Instead of using the entire data set, Schachter projected
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only the where the projected vectors are learned using an
update rule which is almost like Sammon’s update rule. We
say “almost like” because the learning coefficient for updating
the pair of vectors corresponding to binsand were taken
to be proportional to and , and in
the denominator of the update expression there was an extra
term . This is a heuristic update rule and may not minimize
Sammon’s error function.

III. CONNECTIONIST METHODS FORDATA PROJECTION

The potential of artificial neural networks (ANN’s) in var-
ious applications is well established. Such massively parallel
computing models are being widely used in many branches
of applied computer science. One interesting feature of such
an ANN is its ability to learn from the environment in an
adaptive manner. Recently a large number of ANN’s and
associated learning algorithms have been proposed for feature
extraction and multivariate data projection [8]–[20]. These
networks exhibit some nice properties which are different
from classical approaches. Although these methods do not

necessarily provide new approaches to feature extraction and
data projection (from the viewpoint of functionality performed
by the networks), they do possess some advantages over
traditional approaches: 1) Most learning algorithms and neural
networks are adaptive in nature, thus they are well-suited for
many real environments where adaptive systems are required.
2) For real-time implementation, neural networks provide
good, if not the best, architectures which can be easily im-
plemented using current very lage scale integration (VLSI)
and optical technologies. 3) Neural-network implementations
offer generalization ability for projecting new data.

A. PCA Networks

Due to unavoidable computational complexity with the
conventional matrix algebraic approaches, especially when
is very large, the neural-network approach for PCA has been
widely studied recently. A variety of neural networks and
learning algorithms have been proposed for PCA [12]–[14].
Most of them are based on the early work of Oja’s one-unit
algorithm [10], [11]. We discuss here only one of them that
has been used in our study.

SammonProjection( )

Input , and : ;
Input ; / Limit on Sammon’s error /
Input maxstep; / Maximum number of updating steps/
Generate randomly : ;
Compute ;
Compute = ;
error High value; / Any arbitrary large value/

;
while((error ) and ( maxstep))

for( ; ; )

for( ; ; )

Compute using (4);

Compute using (5);

;

Compute ;

;

;
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B. Rubner’s PCA Network

The PCA network proposed by Rubner and Schulten [12]
and Rubner and Tavan [13] consists of an input layer with

nodes and an output layer with nodes. The two layers
are completely interconnected. The connection weight between
input node and output node is denoted by . All output
nodes are hierarchically organized in such a way that the output
node is connected to the output nodewith connection
strength if and only if .

The set of weights connecting an output nodeto all input
nodes forms the weight vector , the transpose of which is
the th row of the weight matrix . Given the input vector

, the corresponding output vector is computed
by the network as

(6)
The weights between the two layers are adjusted upon

presentation of an input pattern according to the Hebbian
rule,

(7)

The lateral weights adapt themselves according to the anti-
Hebbian rule,

(8)

where and are positive learning coefficients. Note that (7)
updates a complete weight vector, while (8) updates only one
weight at a time.

Rubner and Tavan [13] proved that if the learning parame-
ters and are chosen according to

(9)

then the learning rules (7) and (8) force the lateral weights
to vanish and the activities of the output cells to become
uncorrelated. Consequently, the weight vectors converge
to the eigenvectors of the covariance matrix. Although
in practice, it is difficult to determine the values of and

according to the inequality (9) without computing the
eigenvalues, (9) does provide a range for the values ofand

if and can somehow be estimated.
As in [9] the convergence rate can be improved introducing

a momentum term and letting the learning rate and momentum
decay with time. Equations (7) and (8) with momentum term
can be rewritten as

(10)

and

(11)

where

(12)

(13)

(14)

In (10)–(14) is the iteration index and is the decay rate.
We used the following implementation of the PCA network

as shown at the bottom of the next page.
The PCA network has the same level of generalization

abilities as that of computed in Section II-A and hence
is able to project new data as expected when the origi-
nal data have linear relationship.However, PCA networks
and learning algorithms have some limitations that dimin-
ish their attractiveness: 1) PCA networks are able to realize
only linear input-output mappings and 2) PCA networks can-
not usually separate independent subsignals from their linear
mixture.

To overcome these drawbacks PCA networks containing
nonlinear units are gaining attention [21], [22]. Also inde-
pendent component analysis (ICA) has been introduced as an
interesting extension of PCA in the context of signal separation
problem [23].

C. Neural-Network Architecture for Sammon’s Projection

Let us express Sammon error given in (2) as

where

and

and are the distances, respectively, in the input space
and in the projected space between patternsand .

Jain and Mao [8], [9] proposed an interesting multilayer
feedforward network for Sammon’s projection. The number
of input nodes is set to . The number of output nodes
is equal to . Let , ,

be the set of -dimensional input vectors.
The output of the th node in layer is denoted by ,

; , where is the number
of nodes in layer , is the number of layers, and ,

. The connection weight between nodein
layer and node in layer is represented by . The
output of the th node in layer is given by

(15)
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Using the above notation, can be written as

Using backpropagation of errors, the update rule for the
output layer is given by

(16)

where is the learning rate.
Similarly, the update rule for all hidden layers,

is given by

(17)

where

and

Next we provide a schematic description of the Sam-
mon_Network [8] as shown at the bottom of the page.

In [8], it was experimentally shown that two layered net-
works perform better than three layered networks. It was
also shown experimentally that results can be improved by
increasing the number of free parameters.The system requires
a lot of space and training time to get good results. The error
after training, as we will see, is also not found comparable to
that of Sammon’s algorithm.

In [9] another approach was followed for training so as
to take advantage of the nonlinearity of the above network.
Initially the PCA network is used to project data and then
standard backpropagation algorithm is used to approximate
principal components. The connection weights of such a
trained MLP are then used to initialize the weights of the
Sammon’s neural net. This means that Sammon’s network is
initialized such that it behaves like a PCA network.

This implementation style has a number of disadvantages:
1) training time is long; 2) memory usage is high; 3) to try a
different (new) architecture, again an MLP with the same (new)
architecture should be trained to approximate principal compo-
nents for initialization of the weights of Sammon_Network, i.e.,
we cannot add any extra hidden layer even if it is demanded, in
fact we cannot even add an extra node; and finally 4) the main
purpose of this network is to handle nonlinear data,1 as, linear
data is very well projected by the PCA network, but, even this
may not be achieved by the proposed three-step (PCA-MLP-

1Loosely we call a data set linear, if a linear transformation can project
it to a lower dimension preserving the cluster structure in the original data;
otherwise, the data set is nonlinear in nature.

PCA Network( )

Input , and : ;
Input ; Threshold for lateral weights
Input maxstep; / Maximum number of iterations allowed
Input ; Learning Rates for and
Input ; Momentum and decay rate
Generate initial weights randomly; and

;
flag true;
while(( maxstep) and (flag true))

Randomly select an input pattern ;
Compute output vector using (6);
Update connection weights between the input nodes
and output nodes according to (10);
Update lateral weights according to (11);
Normalize each weight vector to unit norm;
Modify and according to (12), (13), (14) respectively;

;
if ( ( ))

flag false;
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Sammon_Net) implementation [9], as shall be seen from the
results section. Note that all results reported in Section V are
obtained by this three-step implementation.

IV. PROPOSEDMETHODS

A. Method 1

Sammon’s algorithm and some of its derivatives work very
well for small data sets. But, these methods involve a large
amount of computation, as every step within an iteration
requires the computation of distances. Therefore,
these algorithms quickly become impractical for large.
Moreover, as mentioned earlier, Sammon’s algorithm cannot
project new data points; with every new data point the entire
augmented data set is to be reprojected. These problems can
be eliminated, if we can get a mapping function governing
the relationship between patterns in-dimensional space and
patterns in -dimensional space, by projecting a small repre-
sentative subset of the data. The various implementations of
Sammon’s algorithm [4], [7] do not give an explicit mapping
function representing the relationship between patterns in
-dimensional space and patterns in-dimensional space.
We propose here a very simple method, which performs

better (at least on the examples we tried) than methods
given in [8], [9] in terms oftime, space, and quality of the
projected map. This method combines the statistical theories of
subsampling along with the advantages of Sammon’s method
for projecting small data sets and capabilities of MLP for
function approximation, as it is known that backpropagation
networks can approximate any square integrable function to
any desirable degree of accuracy [24]–[27].

When we talk about projection of unknown data based
on a mapping (explicit or implicit) estimated from a given
data set we implicitly assume that the given data have some
structure which future data points are expected to follow. This
is natural, otherwise, prediction does not have any meaning.
In other words, we can assume that the data points are
generated from some (unknown) time-invariant probability
distribution. Therefore, if we can extract a small but an
adequate representative sample of the given data set and then
estimate the mapping function based on these we can expect
to have a good generalization.

In fact although not explained or stated explicitly this was
the philosophy behind Jain’s method also. It then raises two
issues: How to get an adequate but small sample and what
do we do with that. For the time being let us assume that we
are provided with a solution to the first issue (we discuss it
later), i.e., we are given a small representative data set.
Now we propose to run Sammon’s algorithm on to
generate . Then we use , to train
an MLP. Note that such a trained MLP will capture the
structure present in , . In [9] PCA net was used to
initialize Sammon’s net but PCA is a linear mapping which
has, as such, no relation to Sammon’s projection. Finally,
in [8] and [9], Sammon’s network is used to extract the
relation which, as their results reveal, demands too many free
parameters to get a reasonably good solution. While in our
scheme the relation is already captured by the pair ,

and MLP simply learns it. Hence, as will be seen later,
our scheme is expected to get much better results at a lower
cost.

SammonNetwork( )

Input , and : ;
Input ; Limit of Sammon’s error
Input maxstep; Maximum number of updating steps;
Input ; Learning rate
error High value; Any arbitrary large value

;
Generate the initial weights randomly
while((error ) and ( maxstep))

Repeat k times
Select a pair of patternsand randomly;
Present and to the network one at a time;
Compute outputs of all nodes using (15);
Update connection weights according to (16) and (17);

End Repeat
Present all patterns, compute outputs of the network

Calculate ;

;
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Shankar and Pal [28] demonstrated that it is possible to
obtain a small but adequate representative sample that captures
the basic characteristics of the original data. For the present
case we can have a low cost scheme for selection of a small
subset of representative data points based on or
divergence statistic so that statistical characteristics ofare
retained by . The scheme follows like this: define a
frequency distribution () on . Draw a small random sample

with % of the data points in . We use the simple
random sampling without replacement (SRSWOR) scheme.
Compute the frequency distribution on . Now to check
how good captures the structure present in, we find the
agreement between and by or divergence statistic. If
the agreement is not acceptable at some predefined level, we
append by an additional random sample of% to get the
new old the extra % sample. The hypothesis
of satisfactory agreement between and is again tested.
The process is repeated till the hypothesis is accepted. It has
been empirically observed that 30% data points are usually
enough for the purpose of preserving cluster substructures.
In the present case, this result is applicable too. However, to
keep consistency with the method of Jain and Mao, we used
50% data (note that in [9] 500 data points were taken for data
sets of size 1000) for all computational experiments reported
here.

Next we provide a schematic description of the proposed
method:

Method-1( )

Input : ;
Normalize to get , ;
Let : ;
Select a random sample , of size by

SRSWOR-scheme from using or
divergence or select a random sample of size

;
Run Sammonprojection with to get

:
where corresponds to ;

Normalize to get , ;
Let : ;
Train an MLP with and , is the target

corresponding to ;
Use this trained MLP to project the complete data set

and any new data points.

B. Method 2
In Method 1, we used 50% sample, although 50% sample

is usually not needed. A small but adequate representation

Kohonen’s SOFM( )

Input : ;
Input ; The display grid size, a square of lattice is assumed
Input maxstep; Maximum number of updating steps;
Input ; Initial neighborhood size
Input ; The Initial step size (learning coefficient)
Input and ; Parameters to control effective step size
Generate initial weight vectors randomly

, , , , ; , , , ;
;

while( maxstep)

Select randomly from ;
Find ;
/ r & stand for 2-D indices that uniquely identify a node on the display lattice;/

;
;

where ;
;

;

;

;
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of the data set should be enough. We also explained how
an adequate sample can be selected [28]. Here we propose a
hybrid network-based scheme which uses both Kohonen’s self
organizing feature map (SOFM) and MLP. We use SOFM for
finding a small representative data set. Here the objective is to
reduce the size of the data set further. Thus, instead of using
samples that retain the structure of the original data, we intend
to use one of few prototypes which encode a small region in
the feature space. Note that, even when the data set does not
have a very well-defined cluster substructure, such encoding
will be there.

The set of vectors encoding the data set can be obtained,
if we can cluster it by a suitable clustering algorithm with
the right numberof clusters. But choosing the right clustering
algorithm and the right number of clusters are difficult prob-
lems. When clustering of the data is the only problem to be
solved, we use some clustering algorithm to extract the natural
substructures present in the data. For example, in the IRIS data
[31] one would try to find three clusters corresponding to three
actual types of flowers. But for the problem at hand, projecting
only the centroids of the three clusters will not suffice. Rather,
here for each cluster we need to extract a few prototypes
each of which locally encodes a small but reasonable area
of the feature space and all of them taken together encode
the entire cluster. Use of SOFM [29], [30] could be a good
solution here as we can start with a reasonably large number
of prototypes and then use the weight vectors associated with
winner cells of an SOFM trained with the set. This can
be done because in SOFM, each cell in the competitive layer
has a tendency to encode (become a prototype of) a region
in the input space according to the density distribution of the
data. This is expected to reduce the sample size significantly.
Before describing the proposed algorithm, for completeness,
we briefly present the SOFM algorithm.

SOFM: SOFM [29], [30] is a transformation from
that is often advocated for visualization of metric-

topological relationships and distributional density properties
of feature vectors (signals) in . The visual display
produced by SOFM presumably helps one form a hypothesis
about topological structures in . In principle, can be
transformed onto a display lattice in for any ; in practice,
visual displays can be made only for , and are usually
made on a linear or planar configuration arranged as a
rectangular or hexagonal lattice. In this work we use only
square displays.

Input vectors are distributed by a fan-out layer to
each of the output nodes in the competitive layer.
Each node in this layer has a weight vector attached
to it. We let denote the set of weight
vectors.

SOFM usually begins with random initialization of the
weight vectors . To simplify notation we suppress double
subscripts. Now let enter the network and let t denote
the current iteration number. Find , the vector in that
best matches in the sense of minimum Euclidian distance
in . This vector has a (logical) “image” which is the cell
in the competitive layer with subscript. Next, a topological
(spatial) neighborhood centered at is defined. Finally,

and the other weight vectors associated with cells in the
spatial neighborhood are updated using the rule

(18)

Here is the index of the “winner” prototype,

and is the Euclidean

norm on (19)

The function in (18) is used to express the strength
of interaction between cells and in the competitive layer.
Usually decreases with, and for a fixed it decreases as
the distance from cell to cell increases. A common choice
for , where and decrease
with time , and dist is the Euclidian distance between
nodes and on the two-dimensional lattice. The topological
neighborhood also decreases with time.

Our implementation of Kohonen’s network algorithm is
given as shown at the bottom of the previous page.

The algorithm for Method 2 can now be summarized as
follows:

Method-2( )

Input : ;

/ Use Kohonen’sSOFM Algorithm /

Run Kohonen’sSOFM with as inputs;
Generate : i is a winner cell ;
Let there be such winners;
Normalize , to get , and

to get , ;
Let : , , , and

: , , , ;

/ Use Sammon’s Projection Method /

Run Sammon’sprojection with to get
: , , ,

where corresponds to ;
Normalize to get , , , , ;
Let : , , , ;

/ Use Backpropagation Algorithm /

Train an MLP with as inputs and
as targets

is the target corresponding to ;

Use this trained MLP to project the complete set
and new data points.
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V. IMPLEMENTATION AND RESULTS

A. Data Sets

To demonstrate the effectiveness of the proposed schemes
we implemented both of them as well as Sammon’s algorithm
and Sammon_Network of Jain and Mao. All of these four
algorithms are tested on three data sets namedIris , Sphere-
Shell, and Elongated-Clusters.

Iris [31] is a well-known data set consisting 150 points from
three classes in a four-dimensional space. Each class has 50
points. One of the classes is well separated from the rest while
the other two have some overlap.

Sphere-Shell [32] is a synthetic data set consisting of 1000
points in three dimensions. 500 points are selected randomly
within a hemisphere of radius ( 0.6) and rest 500 from a
shell defined by two hemispheres of radius( 2.0), and
( 2.013), such that .

Elongated clusters [9] is also a synthetic data set consisting
of elongated clusters of points each in three-space.

B. Computational Protocols

Here we list the values of different parameters used in our
implementations. These are kept the same irrespective of the
data set used.

1) PCA_Network:

iterations

2) Sammon_Projection:

epochs

3) Sammon_Network:

epochs

Hidden Layers 1
Hidden Nodes 30

4) Backpropagation:

epochs

Hidden Layers 1
Hidden Nodes 30

5) Kohonen’s_SOFM:

iterations

TABLE I
SAMPLE SIZE USED IN DIFFERENT METHODS

Data Set Data size Sammon’s
Projection

Sammon’s
Net

Method 1 Method 2

IRIS 150 150 75 75 43
Elongated
Clusters

1000 1000 500 500 68

Sphere-Shell 1000 1000 500 500 145

TABLE II
THE CPU TIME (SECS) FOR VARIOUS METHODS

Data Set Sammon_Projection Sammon_Network Method
1

Method
2

IRIS 205.61 1288.53 588.99 447.25
Elongated
Clusters

9094.53 7555.75 5390.94 502.36

Sphere-Shell 8995.78 7611.33 5508.58 1218.30

Fig. 1. Iris—Projection by Sammon’s Method.

C. Results

Table I lists the sample size used by different methods for
different data sets. Column 6 in Table I shows that SOFM-
based selection can reduce the sample size drastically, of
course, at the cost of training of SOFM. It is interesting to
note that for the elongated cluster, the number of required
data points as suggested by SOFM is less than 7% of the size
of the original data set.

Table II shows the CPU time needed by different methods
for the three data sets. For Iris, since it is a very small data set,
Sammon-Network required about six times CPU time as that
of Sammon’s algorithm; while the proposed methods required
about 2.5 time as that of Sammon’s algorithm. In fact for
any small data set none of the network implementations is
expected to be beneficial. Figs. 1–4 display the scatterplots of
the two-dimensional data sets projected by the four methods
for Iris.

For the elongated clusters Jain and Mao’s method reduces
the CPU time by about 17% while the reduction for Method



PAL AND ELURI: TWO EFFICIENT CONNECTIONIST SCHEMES 1151

Fig. 2. Iris—Projection by Method 1.

Fig. 3. Iris—Projection by Sammon_Network.

Fig. 4. Iris—Projection by Method 2.

TABLE III
SAMMON’S ERROR FORVARIOUS METHODS

Data Set Sammon_Projection Sammon_Network Method 1 Method 2
IRIS 0.006 590 0.012 521 0.061 734 0.042 415
Elongated
Clusters

0.029 305 0.341 532 0.344 348 0.345 785

Sphere-
Shell

0.000 889 0.09 0.03 0.05

Fig. 5. Elongated clusters—Projection by Sammon’s method.

Fig. 6. Elongated clusters—Projection by Method 1.

1 and Method 2 are nearly 40 and 95%. The computa-
tion time for Method 2 is about 7% of Jain and Mao’s
method, yet the performance of the proposed methods and
Sammon_Network are quite comparable in terms of Sam-
mon’s error function (Table III). Visually also they are quite
comparable, see Figs. 5–8.

Finally for the Sphere-Shell data also a significant im-
provement in computation time is exhibited by the proposed
methods over both Sammon_Network and Sammon’s algo-
rithm. It is interesting to note that Sammon’s error for the
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Fig. 7. Elongated clusters—Projection by Sammon_Network.

Fig. 8. Elongated clusters—Projection by Method 2.

Sphere–Shell data is even less than that for the other two
methods. For elongated clusters and Sphere–Shell, we used
the same sample size and for them each algorithm required
CPU time of the same order, but the Sammon’s error for
Sphere–Shell is much smaller than that for elongated clusters.
There could be several reasons for this; for example, the
Sammon’s error surface for elongated clusters could be more
complex with many local minima than that for Sphere–Shell
and the initiliazations used may be such that the search got
stuck in one such bad minima. The scatterplots of the projected
data for sphere-shell in Figs. 9–12 show that of the three NN
implementations Method 1 produces the best result.

Summarizing results we offer the following conclusions: for
small data sets Sammon’s algorithm may be computationally
better but it does not have the prediction capability. For
large data sets, the computational overhead is likely to follow
the ordering: Sammon’s algorithm Sammon_Network
Method 1 Method 2. The predictability of all the three
network based methods are quite comparable in terms of

Fig. 9. Sphere-shell—Projection by Sammon’s method.

Fig. 10. Sphere-mtbdshell—Projection by Method 1.

Fig. 11. Sphere-shell—Projection by Sammon_Network.
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Fig. 12. Sphere-shell—Projection by Method 2.

Sammon’s error. But scatter plots of the projected data sets
show that for nonlinear data the proposed methods are better
than Jain and Mao’s method.

VI. CONCLUSION

We have proposed two connectionist schemes for struc-
ture preserving dimensionality reduction (feature extraction).
The first method, Method 1, unlike Jain and Mao’s method
which attempts to minimize Sammon’s error, uses Sammon’s
algorithm to project a small data set selected based
on statistical criterion that ensures preservation of the dis-
tributional characteristics of the original data set. Then an
MLP is used to capture the relation between and its
Sammon projected values. This trained MLP is then used for
further projection of new data points. The second method,
Method 2, exploits the substructure encoding characteristic of
Kohonen’s SOFM and the function approximation capability
of MLP’s. Both methods drastically reduce the computation
time compared to Sammon’s algorithm and Sammon_Network
of Jain and Mao, and exhibit good prediction capability for
new data points. Method 2 reduces the size of the data set
drastically and hence the quality of the projected map is not
as good as that of Method 1. Instead of considering only the
winner nodes, it may be interesting to take all prototypes of
the SOFM. In this case the number of nodes on the display
lattice should be taken much smaller than the data set size. This
will ensure reduction of data set to be used with Sammon’s
algorithm and at the same time consideration of the nonwinner
nodes is expected to result in a better projection map. To
summarize the proposed methods are conceptually sound and
simple and overcome the problems of both Sammon’s method
and the network implementation of Jain and Mao.
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