
E L S E V I E R Fuzzy Sets and Systems 103 (1999) 201-221

FUZZY
sets and systems

Soft computing for feature analysis
Nikh i l R a n j a n Pal *

Machine Intelligence Unit, Indian Statistical Institute, 203 B.T. Road, Calcutta 700 035, India

Received May 1998

Abstract

With an introduction to soft computing we discuss how the three main ingredients, fuzzy logic, neural networks and
genetic algorithms can play significant roles in the design of successful pattern recognition systems. Then we concentrate
only on one aspect of pattern recognition, feature analysis, and discuss various methods using fuzzy logic, neural networks
and genetic algorithms for feature ranking, selection and extraction including structure preserving dimensionality reduction.
Finally, the methods are illustrated with both real and synthetic data. (~) 1999 Elsevier Science B.V. All rights reserved.

Keywords: Soft computing; Feature selection; Connectionist models; Feature attenuators; Dimensionality reduction; Feature
ranking

1. Introduction

A computer can complete a job much more effi-
ciently than a human being when the job involves sub-
stantial amount of routine computation like inversion
of a matrix of large dimension. On the other hand, if
the task requires perceptual power or cognitive capa-
bility of human beings, the Von Neumann machine
is far behind human beings. For example, human be-
ings can recognize shapes of different sizes, orienta-
tions even in an occluded environment much more
efficiently than by a computer. Computers are good for
well structured precisely formulated problems. Typi-
cally, human brains are better for solving real world
ill-defined, imprecisely formulated problems requir-
ing huge computations. To overcome the limitations
of traditional computing paradigm, scientists are in

* E-mail: nikhil@isical.ac.in.

search of new computational approaches that can be
used to solve real world problems efficiently. As a re-
suit, in the recent past several novel modes of com-
puting have emerged which are collectively known as
soft computing [33, 46].

As to the understanding of the author, a precise defi-
nition of soft computing is yet to emerge. However, as
of now soft computing may be viewed as a consortium
of various computing tools to exploit the tolerance for
imprecision and uncertainty to achieve tractability, ro-
bustness and low cost [46]. Usually, it attempts to find
an approximate solution to a precisely or imprecisely
formulated problem. Neuro computing (NC) is one of
the major components of soft computing. The other
two important constituents are fuzzy logic (FL) and
probabilistic reasoning (PR) with PR subsuming be-
lief networks, genetic algorithms and chaotic systems.
FL primarily provides a paradigm for dea!ing with im-
precision and approximate reasoning. NC deals with

0165-0114/99/$ - see front matter (~) 1999 Elsevier Science B.V. All rights reserved.
PII: S01 6 5 - 0 1 1 4 (9 8) 0 0 2 2 2 - X

202 N.R. Pal~Fuzzy Sets and Systems 103 (1999) 201-221

learning and curve fitting. PR, on the other hand, deals
with probabilistic uncertainty, propagation of belief,
etc.

Pattern recognition may involve two types of data.
The first category is called the object data while the
second one is called relational data. In object data a
pattern or an object (say, a human being, tank, animal
etc.) is characterized by a set of measurements like
height, weight etc. On the other hand, in relational
representation a set of n objects is represented by an
n ×n proximity (similarity/dissimilarity) relation.
The proximity relation may be computed from the
object representation or could be obtained by experts
or by some other means. In this paper, we concentrate
only on object data.

There are three major tasks of pattern recognition:
Feature analysis, Clusterin9 and Classification. Fea-
ture analysis is an essential and important step towards
designing effective clustering and classification algo-
rithms. Clustering looks for substructures present in a
data set, i.e., it partitions the data set into homogeneous
groups. For example, in case of a remotely sensed
image, the goal of clustering may be to group the pix-
els based on gray values and properties of neighbor-
ing pixels in such a manner that pixels corresponding
to each type of surface (land, vegetation, water etc.)
form a separate cluster. Note that, for clustering we
do not know the actual type of region a pixel corre-
sponds to, but we expect our clustering algorithm to
identify such groups. We emphasize that the process
of clustering only finds "homogeneous" groups but
cannot say which groups correspond to what. A clas-
sifier, on the other hand, partitions the feature space
so that any unlabeled data point can be assigned the
appropriate class label. A classifier is designed using
some training data for which the actual class labels
are known. For example, to design an analysis sys-
tem for remotely sensed images we may be given one
or more images for which we know the class label of
every pixel; in other words, for every pixel we know
whether it corresponds to water, land or vegetation
etc. Based on these (training) images we can devise a
scheme so that when new images come, we can assign
possible class label to every pixel considering "simi-
larity" of the pixels in the new image with the pixels
in the training images.

For clustering and classification, as mentioned
earlier, objects are usually represented by a set of

measurements or feature values each of which char-
acterizes some property of the object. Features could
also be qualitative values like red, blue, good, bad
etc. Success of a clustering algorithm or of a classi-
fier depends heavily on the discriminating power of
these features. A given set of measured features, as it
is, may not have enough information to discriminate
between different classes. For example, the raw gray
values of a digital image are not good features for
most applications of image processing. In this case
we need to extract features like average gray level,
standard deviation, gradients etc. each computed over
a neighborhood. (We emphasize here that although
image processing is a pattern recognition task, often
it requires some special operations because of the
spatial relation of pixel values on the digital image.
In this article we shall not consider these issues).
Too many features are not necessarily good. Some
of the features (obtained as a result of measurements
or computed from measurements) may be redtmdant
causing extra computational overhead; some of the
features may again result in confusion in the feature
space leading to degradation in the performance of the
pattern recognition system. Feature analysis addresses
these issues. It consists of two tasks: feature selection
and feature extraction. Feature selection deals with
choosing some of the measurable quantities which
are important for the problem at hand; while feature
extraction computes some new attributes (features)
based on some selected measurable quantities.

For the sake of completeness we first briefly intro-
duce the three main ingredients, FL, NN and GA, of
soft computing and then explain their role in pattern
recognition. Since it is almost impossible to provide,
in a single paper, the state of the art in the use of
soft computing tools to the main three tasks of pattern
recognition we decided to concentrate only on feature
analysis. We chose feature analysis because it plays a
crucial role to the successful design of both classifier
and clustering algorithms.

1.1. Artificial neural networks

Although the concept of artificial neural networks
(NN) has been inspired by biological neural networks,
the heart of this computing paradigm is rooted in dif-
ferent disciplines. Biological neurons are the structural
constituents of the brain and they are much slower than

N.R. Pal/Fuzzy Sets and Systems 103 (1999) 201-221 203

silicon logic gates. But inferencing in biological NN
is faster than the fastest computer available today. It is
believed that the brain compensates for the relatively
slower operation by a really large number of neurons
with massive interconnections between them. Biolog-
ical neural networks have the following features:
• They are highly parallel, robust and fault tolerant

nonlinear devices.
• They have built-in capability to adapt their synaptic

weights to changes in the surrounding environment.
• They can easily deal with imprecise, fuzzy, noisy

and probabilistic information.
• They can generalize from known tasks or examples

to unknown ones.
One of the main motivations of Artificial NN is to

design problem solving devices incorporating some
or all of these characteristics [13, 14,36]. Although
the development of neural networks is inspired by
models of brains, the purpose is not just to mimic
biological neurons, but to use principles from ner-
vous systems to solve complex problem in an efficient
manner. The neuro-computing paradigm is different
from programmed instruction sequence. Here infor-
mation is stored in the synaptic connections, not in
the main memory. A neuron is an elementary proces-
sor with primitive types of operations, like summing
the weighted inputs coming to it and then amplify-
ing or thresholding the sum. The computational neu-
ron model proposed by McCulloch-Pitts is a simple
binary threshold unit. The jth neuron computes the
weighted sum of all its inputs from other units and out-
puts a binary value, zero or one, depending on whether
this weighted sum is greater than equal or less than a
threshold 0i. Thus

xi(t + 1) = f w U x j (t) - Oi ,
• , /)

where

1 ifx>~O,

f (x) = 0 otherwise.

If the synaptic weight w(/>O (from neuron j to i),
then it is called an excitatory connection; if wij < O,
it is viewed as an inhibitory connection. Often the f
is replaced with a more general non-linear function.
In principle a network of such neurons is capable of
doing quite complex tasks.

A neural network is characterized by the network
topology, connection strength between pairs of neu-
rons (weights), node characteristics and the status up-
dating rules. The updating or learning rules may be
for weights and/or states of the processing elements
(neurons). The adaptability of a neural network comes
from its capability of learning from "environments".
There are several models of NN which are suitable for
different tasks [13, 14, 36]. Some examples are: Hop-
field Net (suitable for pattern storage and recall and for
optimization), Multilayer Perceptron (classifier and
function approximator), Sell-Organizing Feature Map
(basically does clustering but can be used fbr generat-
ing semantic maps and designing classifiers), Learn-
ing Vector Quantization (can be used for clustering),
and Adaptive Resonance Theory (clustering) network.

In our subsequent discussion, we shall use only the
multilayer perceptron (MLP) network and hence an
adequate description of it will be provided in an ap-
propriate place.

1.2. Fuzz), sets

Fuzzy sets were introduced in 1965 by Zadeh [45]
as a new way to represent vagueness in everyday life.
They attempt to model human reasoning/thinking pro-
cess. Fuzzy sets are generalization of crisp sets and
have greater flexibility to capture faithfully various
aspects of incompleteness or imperfection in informa-
tion. For an ordinary set, an element either belongs to
it or not; while for fuzzy sets, an element can partially
belong to the set; for example, a set of TALL per-
sons [20]. Here there is no precise boundary to the set
TALL, and therefore, we cannot really isolate a col-
lection of people labeled as tall. Fuzzy sets are con-
ceptual sets, whose semantic is more important than
its mathematical characterization. Mathematically, a
fuzzy set is nothing but a mapping (known as mem-
bership function) from the universe of discourse X to
[0, 1]; i.e., # :X --~ [0, 1].

The set TALL can be modeled by a function shown
in Fig. l(a). This is not the only function that can be
used to model the fuzzy set TALL. There may be many
other functions and they may not even be continuous
but all of them should have the general non-decreasing
characteristic to keep the membership function consis-
tent with the semantic of the fuzzy set. Such functions
are known as S-type membership functions. We shall

204 N.R. Pal~Fuzzy Sets and Systems 103 (1999) 201-221

1.0_

0.~ .

F
~(~)

0.0
(a)

/ /,
/

/ , /
d / '

/ '

/
,,,'

f

,s'
/

t/,re

i -
x

1.0

0.5

~(~)

0.0
(b)

/ # ' ' \ .
,/ '..~

/

/,!' "%

/ t..

. i . . j " x .

7 x ~

Fig. 1. (a) Fuzzy set TALL. (b) Fuzzy set CLOSE to 7.

show an example of S function in Section 2.2.1. Sim-
ilarly, fuzzy sets like "CLOSE TO 7" can be modeled
by the membership function shown in Fig. l(b).
Again, there could be several other choices. But they
should have a membership value of 1 at 7 or over a
neighborhood of 7 and then the membership values
should decrease as we move away from 7. Such func-
tions are often called//- type membership functions.
These membership functions can be either obtained
from an expert or estimated from data.

Since fuzzy sets characterize imprecise properties,
they can be effectively used to model vagueness as-
sociated with real-life systems. Fuzzy logic is based
on the theory of fuzzy sets and approximate reason-
ing. It is much closer in spirit to human reasoning
and natural language than the traditional logical sys-
tem. Thus, fuzzy logic provides an effective means to
model faithfully the approximate and inexact nature
of the real world.

1.3. Genetic algorithms

Genetic algorithms [7, 12] (GAs) are another bi-
ologically inspired computing tool for optimization.
GAs are parallel and randomized search techniques,
where a population of solutions evolves over a se-
quence of generations to possibly a globally optimal
solution. Based on a fitness function good solutions
are selected for reproduction using two genetic recom-
bination operators: crossover and mutation.

GAs are optimization algorithms which can solve
problems resistant to other known optimization meth-
ods. They do not require differentiability or continuity
of the fitness function. However, if the fitness func-
tion is differentiable then this information can be ex-
ploited to expedite searching by GAs [3]. Even if the
fitness function is not mathematically well structured,
they can be used to find an optimal solution. GAs
work simultaneously on multiple points in the search

N.R. Pal~Fuzzy Sets and Systems 103 (1999) 201-221 205

space, not on a single point, unlike conventional search
techniques. Due to the stochastic characteristic, they
have a low chance of getting stuck to a local mini-
mum. Good search algorithms should have the capa-
bility of both exploitation and exploration. GAs are
believed to support a balanced mixture of both these
features. The criterion of "survival of the fittest" pro-
vides evolutionary pressure for populations to grow
with increasingly fit individuals and thereby exploits
good solutions while the crossover and mutation oper-
ations enable GAs to explore the entire search space.
GAs work on a set of coded solutions not on the so-
lution themselves. Although different coding schemes
are possible, binary coding is the most popular. There
are many variants, but the basic mechanism of GAs
(conventional GAs) consists of the following steps:
1. Start with an initial population (a set of strings/

chromosomes).
2. Evaluate fitness of every string and select candi-

date strings with probability proportional to fitness
value to form the mating pool.

3. Perform crossover and mutation.
4. Repeat steps 2 and 3 until the system ceases to

improve, or some stopping criterion is reached.
Each member (which corresponds to a solution of

the problem) of the population (i.e., each chromo-
some) is represented by a fixed length coded string.
Selection or reproduction creates the population for
the next generation using a probabilistic selection pro-
cess which offers a string with higher fitness a greater
chance of selection. Mutation corresponds to random
flipping of one or more bits of an individual string.
Mutation increases the diversity in the population and
ensures that the probability of attaining any point in
the search space is greater than zero. Usually mutation
is done with a low probability. The simplest imple-
mentation of crossover selects two parents (randomly)
from the mating pool and then after choosing a ran-
dom position each parent string exchanges its tail at
that position. The resulting offsprings are included in
the population for the next generation. The crossover
probability is normally high.

1.4. The role o f soft computing in pattern
recognition

Any decision making system will have some
inputs and some outputs. Usually the inputs are

measurements by some sensors. Every measuring in-
strument has a finite precision. Therefore, with every
input value we have an inherent imprecision. For
example, if a sensor with two digit precision reads
10.53, then the actual value may not (usually will
not) be exactly equal to 10.53 but it is something
CLOSE TO 10.53 - a fuzzy concept. Thus fuzzy set
is a natural tool to model such vagueness. Now con-
sider another example, an image analysis system for
remotely sensed images. For such an image each pixel
may represent a surface area of even 20 × 20 m 2. As
a result part of a pixel may correspond to, say, land
and while the rest may represent water. Therefore,
while segmenting the image if we make a hard deci-
sion (either water or land) we are bound to commit
some error and then in the later stage of the interpre-
tation we may not be able to recover this mistake.
Incorporation of fuzziness (fuzzy segmentation) here
can result in a more meaningful and useful system.
Depending on the characteristics of the neighboring
pixels, the pixel under consideration may be assigned
memberships to different classes. Thus we see that
fuzzy sets can be used both at the input level and also
during processing. Now consider another problem of
designing a classifier to discriminate between painters
and singers. Suppose we have data for a person who
is partially a painter and partially a singer, then our
classifier should be able to provide such information.
Conventional classifiers cannot provide such details.
However, fuzzy sets can be quite effective to model
such unsharp decision boundaries between classes,
i.e., at the output level of a decision making system.
There are several other ways in which FL can be used
in pattern recognition, like fuzzy reasoning system
for classifier and so on [5, 15,44].

One of the distinctive features of FL is that it can
model the imprecision associated with real-life situa-
tions, while given a problem we find a computational
neural network model to solve the same. For example,
when the input information for a classifier is impre-
cise or vague, we can use fuzzy sets to model them.
On the other hand, given a problem of designing a
classifier, we can easily use a multilayer perceptron
network, or to find the "homogeneous" sub-groups in
a data set we can use Kohonen's self-organizing fea-
ture map or Learning Vector Quantization. For some
other problems we may need to design problem spe-
cific new neural architectures also. Often some of the

206 N.R. Pal~Fuzzy Sets and Systems 103 (1999) 201~21

common architectures can be easily modified to solve
some problems for which the original net was not de-
signed. We shall see later how the MLP or its variants
can be used for feature analysis although MLP was
originally designed to be a classifier. A natural ques-
tion then arises, what do we gain out of these? Well, we
may achieve robustness, parallelism, fault tolerance
and often better performance (generalization) than the
traditional methods.

Irrespective of whether a problem is modeled us-
ing fuzzy logic or a neural network, often finding of
solutions becomes equivalent to solving an optimiza-
tion problem. Some such examples are: choosing an
"optimal" architecture for an MLP for a given task,
finding the parameters defining membership functions
of a fuzzy rule-based system or selecting a small but
adequate rule set to solve a problem. Sometimes clas-
sical gradient based optimization schemes are not suit-
able, as in the case of finding an "optimal" set of
rules for a fuzzy classifier. Since, GAs, do not re-
quire derivatives/continuity of the objective function,
in principle, GAs can be used to solve any such op-
timization problems. Sometimes searching with GAs
can be made faster with judicious use of gradient infor-
mation maintaining the stochastic nature of GAs [3].

Readers should not get the false impression that
GAs can solve every problem efficiently. For exam-
ple, if the searching is done in the real domain and the
number of parameters to be identified are reasonably
large (sometimes 15 parameters may even be large),
GAs may not be an efficient choice. In such a case the
guidelines may be, if you have some other reasonably
good search technique, use that. For example, use of
GAs to optimize the fuzzy c-means [2] objective func-
tion even for the IRIS [1] data may not stand in com-
parison to the usual alternating optimization scheme.

With this background we now concentrate on the
feature analysis problem.

2. Feature analysis

Feature analysis may be represented by an implicit
or explicit mapping f :R p ~ R q where for feature
selection q < p; in this case f simply selects some
features and for feature extraction (computation of
additional features from the given features), q > p.
One can of course view feature selection as a special

case of feature extraction. Often a part of the feature
analysis task is called dimensionality reduction. When
feature analysis suggests a set of q (q < p) features
which has the necessary information to accomplish
the task at hand (i.e., the q features can be used in
place of the p original features) it may be called
dimensionality reduction. These set of features may
be obtained by selection or computed from the raw
measurements.

We emphasize here the fact that the quality of a
feature is dependent on the type of problem or clas-
sifter we use to evaluate it. For example, the most im-
portant feature for training an MLP may be different
from the most important feature for a nearest proto-
type classifier.

There are many techniques for feature selection.
Some of these techniques are based on interclass and
intraclass distances [9, 11], some are based on neu-
ral networks [8, 28, 39] while some others use genetic
algorithms [29,42]. Similarly, for feature extraction
there are several methods including principal compo-
nent analysis [16, 21,25, 30, 38, 40].

2.1. Neural networks Jor feature analysis

Since majority of the connectionist schemes that we
are going to present are based on MLP or its variant,
for the sake of completeness we provide a brief de-
scription of the backpropagation algorithm.

2.1.1. The backpropagation algorithm
A multi-layer perceptron net can be trained to learn

the relation between a set of inputs and outputs. Each
node of a hidden layer is connected to every node in
its immediately preceding and immediately following
layers. At each node all incoming signals (weight mul-
tiplied by the output of the connecting node in the pre-
vious layer) are summed algebraically to give the total
input, which is then transformed by a non-linear ac-
tivation function. The backpropagation (BP) learning
algorithm updates the connection weights with a view
to minimizing the total square error over the whole
training data.

We use the following symbols in our subsequent
discussion. Let xi be the ith component of an input
vector x in the training set, O~ be the output corre-
sponding to the ith node of the kth hidden layer for
the input vector x, Ti be the desired output for the ith

N.R Pal~Fuzzy Sets and Systems 103 (1999) 201-221 2 0 7

output node corresponding to input vector x, and Wi~
be the weight connecting the jth node of the kth layer
to the ith node of the (k + 1)th layer, k = 0, 1 n.
Here k = 0 corresponds to the input layer, n is the to-
tal number of hidden layers and (n + 1)th layer is the
output layer. Also let f be the activation function, f.,k
be the value of the derivative of the activation func-
tion at the ith node of the kth hidden layer, e be the
error for the input x, and ~/be the learning rate.

The BP algorithm consists of two passes: the for-
ward pass and the backward or weights adjustment
pass. The forward pass computes the output of each
node. The output in the first hidden layer is com-
puted as, O: = f (~ / x ~ W/~'). The outputs computed
by the nodes in the kth (k = 2 n) layer are given
byOi k= f(~-~jOf ' k-I W/~). The output from the out-
put layer n + 1 can be written as

o: '+' = f oj w,

In the backward pass, weights are adapted to minimize
e using the gradient descent on e in (2) generated

by each input vector in the training set:

1 1
e= 5 ~_, (l£i)2= s Z (T i - Zi)2. (2)

i i

Using the gradient descent method the weight correc-
tions for the output layer can be shown as

A W ! 1 = n :] ? +1 /Q:~ ,,,: .,v, v~, (3)

where

fi7 +1 = Eif,: ''+L . (4)

Similarly, using the chain rules the weight updates for
the hidden layers can be written as

where,

6(: ,k Wi~ 1. (6)
i

The incremental changes A Wi~ may be summed up
over all patterns in the training set and the weights W~
may be updated with the resulting sums (batch mode),
or the weights may be updated for each pattern (on
line mode).

2.1.2. Feature extraction
(a) Neural nets for PCA. Principal component

analysis (PCA) is a linear orthogonal transform from
p-dimensional space to q-dimensional space (q ~< p),
such that the co-ordinates of the data in the new
q-dimensional space are uncorrelated and maximal
amount of variance of the original data is preserved
by only a small number of co-ordinates [17].

Suppose we have a linear transform from a
p-dimensional zero-mean input vector x = (xl, x2
x;) v to a q-dimensional output vector y = (yl, y2,...~
yq)T and y is related to x by the expression y = Wx
where W is a q x p matrix, with q ~< p. PCA sets the
q successive rows of W to the q eigenvectors cor-
responding to the q largest eigenvalues of the input
covariance matrix S = E(xx T) Thus, Yl represents
the component of x in the direction of the largest
eigenvector of S, y2 is the component in the direction
of the 2nd largest, and so on.

Let 14;, and W,,+l be the W matrices computed
with X, = {xi C ~P: i = 1,2 n} and X,,+t =X, U
{ x,+ l C .~P }, respectively. Then,

y,,+l = w,,+tx,.+l ¢ w,,,x,.+l = ~ . l - (7)

As long as x,,+l is not widely different from the vec-
tors used to compute W,, y,+ l ~ Y/,+ t- Thus W,, can do
a good job of projecting new data points, as long as the
data points used to compute W,, adequately represent
the population generating x: E ~P. Due to unavoid-
able computational complexity with the conventional
approaches, especially when p is very large, neural
network approaches for PCA have been widely stud-
ied recently. A variety of neural networks and learn-
ing algorithms have been proposed for PCA and its
variants [22-25,37,38]. Most of them are based on the
early work of Oja's one-unit algorithm [23, 25]. We
discuss here only one of them as a representative.

Rubner's PCA network. The PCA network pro-
posed by Rubner et al. [37,38] consists of an input
layer with p nodes and an output layer with q nodes.
The two layers are completely interconnected. Let the
connection weight between input node i and output
node j be denoted by W/i. All the output nodes are hier-
archically organized in such a way that the output node
i is connected to the output node j with connection
strength ui/if and only i f j < i. The set of weights con-
necting an output node j to all input nodes forms the

208 N.R. Pal~Fuzzy Sets and Systems 103 (1999) 201-221

weight vector w j, the transpose of which is the j th row
of the weight matrix W. Let {xk = (Xkl,Xk2 xkp) r,
k = 1 n} be the set of n input vectors with zero-
mean and {Yk = (ykl, yk2 ykq) T, k = 1 n} be
their corresponding output vectors produced by the
network, as computed by

yk/= (wj, xk) + Z (Uj, x Ykl). (8)
l<j

The weights between the two layers are adjusted upon
presentation of an input pattern Xk according to the
Hebbian rule,

wj(t + 1) = wj(t) + qxkykj (j = 1 q). (9)

The lateral weights adapt themselves according to the
anti-Hebbian rule,

Ujl(t + 1) = u j l (t) -- ~YkjYkl (l< j) , (10)

where q and # are positive learning coefficients. Note
that (9) updates a complete weight vector, while (10)
updates only one weight.

Often a momentum term is added to each of (9)
and (10) to expedite the learning. Rubner and Tavan
[38] proved that if the learning parameters r/and # are
chosen according to

~ / () . 1 - - ,~p) 2
21(1 + r/2p) < # < ~ (11)

then this learning rule forces the lateral weights to
vanish and the activities of the output cells to be-
come uncorrelated. Correspondingly, the weight vec-
tors Wj converge to the eigenvectors of the covariance
matrix S. Although in practice, it is difficult to deter-
mine the values of r/and # according to the inequality
in (11), without computing the eigenvalues, (11) does
provide a range for the values of r/and/~ if 21 and 2p
can somehow be estimated.

The PCA network has the same level generaliza-
tion abilities as that of W computed with the eigen-
vectors of S and hence is able to project new data
as expected when the original data have linear rela-
tionship. However, PCA networks and learning al-
gorithms have some limitations that diminish their
attractiveness: (i) Standard PCA networks are able
to realize only linear input-output mappings. (ii) The
PCA networks cannot usually separate independent
subsignals from their linear mixture.

To overcome these drawbacks PCA networks con-
taining nonlinear units are gaining attention [18, 24].
Also Independent Component Analysis (ICH) has
been introduced as an interesting extension of PCA
in context with the signal separation problem [6].

(b) Neural net for Sammon' s nonlinear projection.
Sammon's method: Sammon's [40] nonlinear pro-

jection algorithm (SM) attempts to preserve the struc-
ture by finding n points in q-space such that their
inter-point distances approximate the corresponding
inter-point distances in p-space.

Let X = {xk I xk = (X k l , X k 2 Xkp) T, k = 1,2
n} be the set o fn input vectors and let Y= {Yk lYk =
(Ykl,Yk2 ykq) z, k = 1,2 n} be the unknown
vectors to be found. Let d~=d(x i , xj),xi, x j E X
and dij =d(yi ,Yj) , Yi,Yj E Y, where d(xi, xj) be the
Euclidean distance between xi and xj. Sammon sug-
gested looking for Y minimizing

1 (d;j - d,j)2
E - E l < j a b i<j d--i;j " (12)

Sammon used the method of steepest descent for (ap-
proximate) minimization of E. Let yi(t) be the esti-
mate of Yi at the tth iteration Vi. Then yi(t + 1) is
given by

[/ O2E(t)]
Yij(t + 1)=Yij(t) - ~ [O Y i j (t) / [~ _ ' (13)

where the non-negative scalar constant ~ is the step
size for gradient search.

With this method we cannot get an explicit map-
pin9 function governing the relationship between
patterns in p-space and corresponding patterns in
q-space. Therefore, it cannot project new points. It
also involves a large amount o f computation, as ev-
ery step within an iteration requires the computation
of ½n(n- 1) distances. The algorithm becomes im-
practical for large n. Finally, the algorithm usually
gets stuck in a local minimum.

Connectionist implementation o f Sammon' s
method: Jain and Mao [16,21] used the multilayer
perceptron network with an error function defined
in a different manner for Sammon's projection. The
number of input and output nodes are set to p and
q, respectively. An MLP needs an error function to
drive the backpropagation algorithm. As such for
Sammon's method the target value is not known. To

N.R. Pal~Fuzzy Sets and Systems 103 (1999) 201-221 209

realize the Sammon's error, the net is given a pair
of data points, say xi, xj E ~P one after another as
input. Let the corresponding outputs of the net be
yi,yj E ~q. Once Yi,Yj are known, d(*/ and dij and
consequently

Ei/ - .
dq

(14)

can be defined. Jain and Mao used gradient descent on
Eii with a view to minimizing Sammon's error func-
tion. The process is repeated with randomly selected
pairs till convergence of the net.

It was shown experimentally that the number of
nodes required in the hidden layer is to be around nq to
get good results. This method requires a lot of space
and training time to get good solutions.

In [21], a different approach was followed for train-
ing so as to take advantage of the nonlinearity of the
above network. Initially a PCA network is used to
project data and then standard backpropagation algo-
rithm is used to approximate principal components.
The weights of this trained MLP are then used to ini-
tialize the weights of the Sammon's net.

We offer the following remarks about this imple-
mentation: (i) training time is high, (ii) memory us-
age is high, (iii) to try a different (new) architecture,
an M L P with the same new architecture should again
be trained to approximate principal components for
weight initialization i.e., we cannot directly add any
extra hidden layer even i f it is demanded; in fact we
cannot even add an extra node and (iv) the main
purpose o f this network is to handle nonlinear data,
as, linear data is very well projected by the PCA
network, but, even this may not be achieved by the
proposed implementation, as shall be seen from the
results.

Another new connectionist scheme: Sammon's al-
gorithm and some of its derivatives work very well
for small data sets [10,40]. As mentioned earlier
Sammon's method cannot project new data points
and is computationally prohibitive for large data sets.
These problems can be eliminated, if we can get
a mapping function governing the relationship be-
tween patterns in p-space and patterns in q-space, by
projecting a small representative subset of the data.

We proposed a very simple method [30], which
performs better (at least on the examples we tried)

than methods given in [16,21] in terms of time,
space and quality o f the projected map. This method
combines the advantages of Sammon's method for
projecting small data sets and capabilities of MLP
for function approximation. We call this method
SAPRONN - Sammon's projection with neural net-
works.

When we talk about projection of unknown data
based on a mapping (explicit or implicit) estimated
from a given data set, we implicitly assume that the
given data have some structure which future data
points are expected to follow. In other words, we can
assume that the data points are generated from some
time invariant (unknown) probability distribution.
Therefore, if we can extract a small but adequate
representative sample of the given data set and then
estimate the mapping function based on these we can
expect to have a good generalization.

In fact, although not explained or stated, this was
also the philosophy behind the Jain and Mao's method.
It then raises two issues: How to get an adequate but
small sample and what do we do with that!

We propose to select a small subset X (s) of repre-
sentative data points using SRSWOR (simple random
sampling without replacement) scheme so that statis-
tical characteristics of X are retained by X ~s) based on
~2 or divergence statistic [43]. Our computational ex-
ercise shows that 30% data points are usually enough.
Now we run Sammon's algorithm on X (s) to generate
y(S) C ~q. Then we use (X (s), y(S)) to train an MLP.
Note that such a trained MLP will capture the struc-
ture present in X (s) c ~P. Jain and Mao used 50% of
the data points first to train a PCA network and used
that net to initialize Sammon's network. Unlike Jain
and Mao, in our scheme the relation is captured by the
pair (X (s), y(S)) and an MLP simply learns it. In this
scheme it is easy to try different NN architectures.

Next we provide a schematic description of the
algorithm:

A l g o r i t h m S A P R O N N ()
{

Input X = (X i c'~P: i= 1,2 n};

Normalize xi to get xl x), i= 1,2 n};
L e t Y (x) = {xlN}: i = 1,2 n};
Select a random sample x(S), of size n~ by
SRSWOR-scheme from X (x)

210 N.R. Pal~Fuzzy Sets and Systems 103 (1999) 201-221

using){2 or divergence or like Jain & Mao a
random sample of size ns = n/2;

Run Sammon_projection with X (s) to get
y (S) = { y l S) E ~ q : i= 1,2 (ns)}

where yl s) corresponds to xlS);
Normalize yl s) to get yl u), i = 1,2 (ns)};
Let y(N)= {ylN): i= 1,2 (ns)};
Train an MLP with X (s) and y(N),
yl u) is the target corresponding to xlS);

Use this trained MLP to project the complete data
set X (N) and any new data points.

1 1 0

1 0 0

9 0

8 0

70

F2 6 0

5O

4O

3 0

2 0

1 0

o o
o o o o o

o o o

° o ° o o o

o ° o

o

** o . :
. .° ".'. J . .

* * o ~ ° * N ~

* . " 7 " : ' :
o o om

o
o

. .

o o

o o o
o o o o

o o ° o

o o

I I I I

5 0 100 1 5 0 2 0 0
Fa

I
2 5 0

2.1.3. Feature ranking & selection
When an MLP is reasonably trained we can ex-

amine the sensitivity of the net's output with respect
to input for finding important features. Based on this
philosophy we discuss two methods.

Saliency based feature ranking (SAFER): Ruck
et al. [39] possibly were the first to propose use of
sensitivity of output of the network to its input for
ranking of input features. The expression for feature
saliency measure as proposed by them is

dok(x, w)
Z Z Z 0xj '

A j =
x E , ~ k x i E D j

(15)

where D/ is the set of values for the j th feature that will
be sampled and oh is the output of the kth output node.
6 ~ is the training set. The matrix W is an array of all
connection weights in the network arranged in some
suitable form. They used sum of the absolute values
of the derivative as an indicator of the sensitivity of
the output of the network with respect to the input
feature. Therefore, Aj > Ai is assumed to indicate that
the importance of the j th feature is more than that of
the ith feature.

For evaluating ~ok(x, W)/Oxj in (15) the chain
rule can be used as discussed for the backpropagation
algorithm.

To reduce the computational load, Ruck et al.
suggested to sample the data at the most important
points. The points of greatest importance in the input
space are those for which training data exist; hence,
the training vectors are used as starting points to
sample the input space. For every training vector,

Fig. 2. T h e sca t t e rp lo t o f a 2 - d i m e n s i o n a l da t a set.

each feature is sampled over its range to compute the
saliency.

Note that the method of sampling data points in
[39] sometimes may mislead the scheme. Let us take
a pattern set in two dimension as in Fig. 2.

Fig. 2 has two classes viz. class 1 (left) and class
2 (right). Consider a pattern vector x in the training
set from class 1. If the value of feature 1 (Fl) is kept
fixed and that of F2 is varied over its range, some of
the points may be generated outside of both classes
1 and 2. The network is neither trained with these
pattern points nor do these points belong to any of the
two classes. Therefore, incorporation of these points
in calculating the feature saliency may mislead the
process of ranking. Further details in this regard can
be found in [8].

Sensitivity based feature ranking (SEFER). After
an MLP successfully learns a data set, the weights
of the links are expected to be so adjusted that the
value of a redundant (less importance) feature will
not influence the output vector much. Lesser the
importance of a feature in discriminating between
classes, lower would be the influence of its value on
the output of the network. SEFER is banked on this
concept [8].

Using the trained MLP, for every feature q we
compute a feature quality index, FQIq and then rank
the features according to FQlq. To compute FQIq we
proceed as follows: For each training data point xi,
i = 1 ,2 , . . . ,n we set Xiq to zero. Let this modified

N.R. PallFuzzy Sets and Systems 103 (1999) 201-221 211

data point be denoted by ~1”; i.e., .x;) =xij ‘dj # q

and .Iq) = 0. Setting the 9th component to zero is
equivaent to delinking the 9th input node and hence
delinking all connections associated directly with the

9th input node. Thus, the impact of the 9th feature

will not reach any node of the network. Let the output
vectors obtained for xi and x:‘) be oi and ojq), respec-
tively. Note that oi is not the target output correspond-
ing to xi, but the actual output that is obtained for xi

from the trained net. For a less important feature, the
output vectors 0; and 0:“’ are not expected to differ

much. Any function of Oi and 01’) that can measure

this variation between the two can be used as an in-

dex for feature ranking. A very simple choice would

be to define

I7

IO,/ - oyy . (16)

Here t > 1 and c is the number of classes. After com-

puting FQ$s for all p features, they can be ranked

according to their importance as ql, 92,. . . , qD when
FQI;, > FQI;, 3 ... >FQ$ &

Another interesting choice could be to use the sym-

metric divergence function of Kullback FQIo,

FQID = c (ov - 0:‘) log (oi,io$‘). (17)
,=I

Note that, FQID cannot be called entropy as oijs are

not probability and it is not a metric also.

If the problem is to select k (k<p) best fea-
tures (feature selection), best from the point of
view of discrimination between classes, the feature

set {ql,q2,.... qk} may not be the optimal set. But
ql ,q2,. . . , qk will definitely represent a good subset

of features. However, the best set of k features can
be obtained by evaluating FQI setting every possible

subset of k features to zero.
In SEFER we find the output of the net after remov-

ing a feature and then measuring the deviation of this
output from the learnt output but not from the target

output. We have not considered the target output

because the network might not have been able to learn

the target output to a desirable level. It is more logi-
cal to consider the sensitivity with respect to what has

been learnt by the network. Moreover, setting a fea-
ture value to zero is equivalent to assuming absence

of that feature. Thus, it is a conservative approach.
SAFER ranks individual features but cannot select the

best subset of k < IZ features. But SEFER can rank the
features individually as well as select the best subset

of k <n features.

An attenuator basedfeature selection (AFES). In

a standard multilayer perceptron network, the effect
of some features (inputs) can be eliminated by multi-

plying them with zero and the rest with unity before

they propagate into the network. They can be made

effective again by changing these “multipliers” or
“feature attenuators” from zero to unity. The binary

version of these “attenuators” can be further general-

ized into continuous “attenuation functions”, whose
range is [0, 11. In AFES the inputs are attenuated
by their corresponding “attenuation functions” be-

fore they pass into the network. Parameters of the

attenuation functions are also trained by the gradient

descent method along with the connection weights
[28]. At the end of the training input features with a

high attenuation can be eliminated.

In addition to the symbols introduced earlier, we

use the following:
Let F be the attenuation function, F,! be the deriva-

tive of the attenuation function associated with the

ith input node, Mi be the argument of the attenuation
function associated with the ith input node, p be the
learning rate of the attenuator, and Ai be the attenua-

tion of the ith feature = 1 - F(Mi).
In the forward pass corresponding to an input vector

x we get the attenuated vector X’ after the attenuation

has occurred for each input feature (x,) as,

x(= F(M;)x;. (18)

To realize (18) we may assume that the ith node in the
input layer has an activation function x!(x) = xF(Mi),
with tunable Mi, i = 1,2,. . . , p. Thus, the output 0;
for the first hidden layer becomes,

(19)

212 N.R. Pal~Fuzzy Sets and Systems 103 (1999) 201-221

Propagating the signal further into the network we
have,

O~i = f Oj. k-1 Wi j , (20)

where k = 2 n + 1. The final output, as before, is
given by O n+l .

In the backward pass, weights and parameters of the
attenuation functions are adapted with a view to mini-
mizing ~ e using the gradient descent on e generated
for each input vector in the data set.

As before,

1
13 = ~ Z (El)2" (21)

i

The weights of the network are adjusted exactly in the
same manner as described earlier except for the minor
changes given below.

a -- .a) 4 -- x/X(Mj). (22)

The learning rule for the attenuators (/14.) can be
shown [28] to be

0 1 =]Axifi' Z (Wji (~J)" (23)
J

Here the attenuation for the ith feature is given by,
Ai = 1.0 - F(Mi) .

I fAi is close to 1.0 i.e., when F(M/) is close to zero,
xiF(Mi) will have values close to zero. Under such a
situation the feature will not pass into the network. On
the other hand, when Ai is close to 0.0 (F(Mi) nearly
equal to 1.0), x iF(mi) will have values close to xi, and
hence, the feature passes almost unattenuated into the
network. The training starts with all attenuation func-
tions set to almost zero value, i.e., Ai-- 100%. Thus,
at the beginning of the training, practically none of the
features is allowed to pass into the network. As the
network trains, it selectively allows only some impor-
tant features to be active by increasing their attenuator
values as dictated by the gradient descent. The train-
ing can be stopped when the network has classified
satisfactorily, i.e., the number of mis-classifieations
has gone down to a tolerable value and/or the error is
low. Features with high attenuation may be eliminated
from the feature set.

2.2. Fuzzy sets for feature analysis

There are not many attempts to feature anal-
ysis using fuzzy logic. We just illustrate here
a few such approaches for feature ranking. Let
X = {xl,x2 xn} C R be the universe of discourse
and a fuzzy set ~¢ = {p~,,(xi)/xi [xi EX; i = 1, 2 n;
#,u E [0, 1]} be defined on X where #s¢(xi) denotes
the membership of xi to ~¢. A measure of fuzziness
for ~¢ can be defined as [27]

//

H (J) = k Z f(#.~e(xi)),
i-I

(24)

where k is a constant and the function f (.) can be de-
fined in various ways [27]. One can obtain the fuzzi-
ness measure suggested by Deluea-Termini using

f (p.~ (xi)) = - #.~¢ (xi) In (#~:¢ (x i))

- (1 -]Aj(xi)) In (1 - #d (x i)) (25)

in Eq. (24) . H (d) with (2 5) is also called entropy of
the fuzzy set. Thus, the entropy becomes,

H (~ ') - n In 2 { - #'~ (xi) In (K4 (Xi))
i=1

- (1 - # , ~ (x i)) In (1 - # , ~ ' (x i)) } , (26)

where k = 1/n In 2 is the normalization factor. Pal and
Chakraborty used Eq. (26) for feature ranking [32].
H (d) attains the maximum value when ~¢ is most
fuzzy, i.e., when p.4(xi)=0.5 Vi and it attains the
minimum value when #.,e(xi)=0 or 1 Vi. Pal and
Chakraborty used S-type and n-type [32] membership
functions for modeling of #. Let us consider only the
standard S-function, defined as

I 0, xi<~a,

[12 2 x i - a , a<~xi<~b '
L c - a j]~o~¢(Xi" ~ a, b, c) = 2

fxi - c] , b<~xi <~c,
1 - 2 L c _ a j

1, X i ~C

(27)

in the interval [a, c] with b = (a + c)/2. The para-
meter b is known as the crossover point for which
#,.~¢(x; a, b, c) = 0.5.

N.R. Pal~Fuzzy Sets and Systems 103 (1999) 201-221 213

Let X = {xl ,X2 Xn} C R p, be the given data set
where each x~ is from one of the c classes, i.e., each
xz has a class label (dj which it comes from.

Let av, max and min be the average, maximum and
the minimum value Of Xqj, respectively, of the j th fea-
ture for class k.

Define [32]

b = (xq/)~, (28)

c = b + max{ I(xqj)a~ - (Xqj)max],

I(Xqj)av -- (Xqj)min I},

and

(29)

a = 2b - c. (30)

Compute H (in (26)) of the class ~. for the qth
feature using (28)-(30) . Now for the qth feature of
class k if each Xqj is equal to b, H will be maximum
and equal to 1; H tends to zero as Xqj moves away
from b towards either c or a. The higher the value of
H, the greater would be the number of samples having
#(x) ~ 0.5 and hence greater would be the tendency of
the samples to cluster around its mean value, resulting
in less (internal) scatter within the class. If we pool
together the classes ~ and cgk and compute the mean,
maximum and minimum values of the qth feature over
all (nj + nk) samples where n~ (r = j , k) is the number
of samples in class Cgr, H for the pooled sample would
decrease as the goodness of feature increases. This is
because, for a good feature, the samples from both
classes should be away from the overall mean, i.e.,
most of the points will have #(x) ~ 0 or 1. The feature
evaluation index for feature q, (FEIq), can thus be
defined as [32]

Hqjk (3 1)
FEIq - Hqj + Hqk'

where Hqj,¢ is the value of the entropy for feature q
after pooling the classes ~ and cd k; Hqj, Hqk are those
for the feature q computed for ~. and cdk, respectively.
The lower the value of FEIq, the better is, therefore,
the quality of the qth feature in characterizing and dis-
criminating classes ~ and cdk. Instead of using only
one feature q, FEI can be calculated even for a set
of features [31]. In this case, we need to use a multi-
dimensional membership function [34]. Note that, in-

stead of H in (26) any measure of fuzziness [27] can
be used.

This method can be used to assess features for a
pair of classes only. It may happen that a feature p
is good in discriminating ~ and ~ , while feature q
may be a better discriminator for classes cgk and ~ .
Further, it may happen that some other feature r is, on
an average, a better discriminator for all the classes %,
~., C~k and ZI taken together. Thus, with FEI it may
be difficult to assess the goodness of a feature keeping
in view all classes taken together.

To get around this problem, Pal [31] extended his
earlier work to define the average importance of a set
of features 5g as

(FEI)a~ = Z Z WjW~(FEI)!Jk)' (32)
i k

where Wj=nj/nt, Wk=n~/nt, n t = ~ j n j , j , k =
1,2 c; k e j , are weight factors.

Here the weights are nothing but the a priori prob-
abilities of different classes. Hence, (FEI) av depends
on the number of points in a class and this may not be
desirable. Preferably, (FEI) av should depend only on
the structure of the classes but not on the number of
points in a class. Suppose nj + nk = ~b (a constant) for
two different pairs of classes. Here Wj Wk attains the
maximum value when nj = nk = ~p/2. Thus, (FEI) a~
is biased towards equiprobable classes but this is not
desirable. With a view to relaxing this bias a new in-
dex, called overall feature evaluation index or OFEI
is defined in [8].

The objective of OFEI is to account for some
of the issues just discussed. Feature q will be good
if it can discriminate every pair of the c classes.
Therefore, the goodness of a feature q increases as
Hqjk (j , k = l , 2 c and j ¢ k) decreases and Hq/
(j = l , 2 c) increases; i.e., ~-~.k=lj#kHqjk de-

c creases and Y'~j=l Hqj increases. Thus, the overall
feature evaluation index for feature q (OFEIq) can be
defined as

C

OFEIq = ~j" k=,.l,j#k Hqjk (33)
~ j = l Hqj

I f OFEI is low, we can expect the associated fea-
ture to be better. It may happen that Hqij < Hr~j but
nqkl > I-Irkl, i.e., feature q is more important to discrim-
inate classes i and j than feature r but the converse is

214 N.R. Pal~Fuzzy Sets and Systems 103 (1999) 201-221

true for classes k and l. Since Eq. (33) considers all
possible pairs of classes, OFEIq will reflect the overall
(average) discriminating power of the feature q. Note
that, OFEIq does not directly depend on the size of a
class.

2.3. Genetic algorithms for feature analysis

There have been a few attempts to solve the feature
selection problem using GA. Siedlecki and Sklansky
[42] used k-NN rule to find a small subset of fea-
tures for which the classifier's performance does not
deteriorate below a specified level. They did this by
constructing a GA chromosome consisting of a binary
string whose length equaled the number of features. If
a bit is "1", that feature is selected for evaluating the
performance of the classifier.

Kelly and Davis [19] and Punch et al. [35] solved
the same feature selection problem using GA. Unlike
Siedlecki and Sklansky they multiplied each feature
by a real-valued weight and then used that weighted
feature for computing distances required for imple-
mentation of k-NN classifier. GAs have been used to
learn these weights. Features with high values for the
learned weights are considered important features and
vice-versa.

These methods cannot be used to select a fixed
(given) number of good features i.e., say q, good fea-
tures. The algorithm may terminate at a point where
the total number of l 's in the solution string may not be
equal to q in [42]; while for other two methods [19,35]
those q features having highest weights can be se-
lected. But this can create another problem. Suppose,
there is a feature which is more or less constant for
all classes. For this feature whatever be the weight the
classifier performance will not change. Since GAs are
probabilistic search techniques, the algorithm might
terminate at a point with high weight for this indiffer-
ent feature and thereby indicating a false importance.

In order to maintain a fixed number of l 's in a
chromosome, yet keeping the evolutionary character-
istic of GA, Pal et al. [29] proposed a new crossover
operator, named self-crossover. Unlike conventional
crossover, self-crossover alters the genetic informa-
tion within a single potential string selected randomly
from the mating pool to produce an offspring. This is
done in such a manner that the stochastic and evolu-
tionary characteristics of GAs are preserved.

Let

S = 00010010011001011011 (34)

be a string of length 20 selected from the mating
pool. For self-crossover, first we select a random posi-
tion p (0 < p <L) and generate two substrings Sl and
s2: sl = bits 1 through p of S and s2 = bits p + 1
through L of S. Now we select two random positions
Pt, 0~<pl ~<p and P2, 0~<p2~<(L - P). Then four
substrings are generated as follows:

sll =bits 1 through p - pl of Sl,

s12 = bits (p - pl + 1) through p of sl,

s21 = bits 1 through L - p - p2 of s2,

s22 = bits (L - p2 + 1) through L of s2.

Using operations similar to crossover we gener-
ate S 1 =Sl l [s22 and S2=s21 [sj2. Finally, the self-
crossovered offspring of S is generated as $1 = S l [S 2.
It is easy to see that number of 1 's in S and SI is the
same. Let us now explain it with the example string
S in (34).

A random position, p = 9, is selected for splitting
the string into two substrings (st, s2) as follows:

s l -000100100 and s2=llO01011011.

Now two random positions, Pt = 4 and P2 = 7, are
selected for sl and s2, respectively. After splitting sl
and s2 at 4th and 7th position, respectively, we get,

Sit = 00010; St2 = 0 1 0 0 ; $21 = 1100;

and

s22 = 1011011.

Now two new substrings S t and S 2 are then obtained
as

S l=000101011011 and S 2=11000100.

Finally, the offspring (St) is generated by concatenat-
ing S 1 and S 2 as

$1 = 000101011011 11000100.

Thus, self-crossover exchanges substrings st2 and s22.
If the parent string consists of all O's or all l 's, the
offspring generated through self-crossover will resem-
ble its parent because of the underlying constraint on

N.R. Pal~Fuzzy Sets and Systems 103 (1999) 201~21 215

the total number of l ' s in the string. If we do not start
GA with a all "1" or all "0" string, GA with self-
crossover technique, will never generate such strings
as offsprings. Self-crossover evolves to new offsprings
as iterations go on.

It can be easily shown that self-crossover (without
mutation) can generate any target string [29]. How-
ever, the result does not say that there is no need
for mutation in GA with self-crossover technique. It
simply says that for problems like TSP, use of self-
crossover without mutation can generate all possible
valid solution strings. For problems like feature se-
lection, data editing for NN classifier where we want
to select a good subset of features or data points of a
prefixed cardinality, self-crossover without mutation
is sufficient. Conventional mutation for such problems
may produce invalid solutions, i.e., it may generate a
substring of arbitrary cardinality, not equal to the pre-
fixed cardinality.

At the first sight, it might appear that self-crossover
is a parallel random search, but this is not the case
for two reasons. Self-crossover is done only on a ran-
domly selected subset of strings and self-crossover
does not alter the substring sll. It exchanges, only s22
and s12. Consequently, through selection & crossover
the evolutionary characteristics of GA are preserved.
The similarity between the parents and offsprings will
be more if we take p l = p 2 = p ' (say)= a random
number selected between 1 and Min(p, L - p); i.e.,
0 < P l = P2 = P' < Min(p, L - p). In this case, the bits
in positions 0 through p ' and bits from p + 1 through
L - pl will remain unaltered. Consequently, the evo-
lutionary pressure will be more.

Let us denote the p features as FI,F2 Fp. We
have to select a set o fq features, say {FiI,Fi2 Fiq}
C {F1, F2 Fp } such that the selected feature sub-
set can do different pattern recognition jobs well.
To use GA for feature selection we need an objec-
tive (fitness) function to guide the feature selection
process. The fitness function should reflect the per-
formance of the reduced data set for different pattem
recognition tasks. For an unlabeled (where class
information is not available) data set the fitness
function may reflect the performance of a clustering
algorithm; while for labeled data (where class in-
formation is available) the fitness function may be
defined to measure the performance of a classifier.
Here we consider the latter case and the fitness func-

tion is defined to be the performance of the nearest
prototype (NP) classifier. Thus the fitness function f
is given by f (F i l , F i 2 , . . . , Fiq, Yq, V) = No. of correct
classification, where Yq = {Yl ,Y2,... ,Y,}, Yi E R q and
the kth component o f y i , i.e., Yik is equal to some lth
component xil o f xi E R p ; V = {vj, v2 v~,}, vi E R'I
is the set of q dimensional prototypes defined by

1
vi = T ~ ~"~ yk, (35)

I l ~ k c c L i

where c is the number of classes and ~. denotes the
ith class. Note that the prototypes may be generated
in many other ways.

A feature subset is now represented by a binary
string of length p. A set of M binary strings of length
p and cardinality k is taken as the initial population
where the cardinality of a binary string is defined as the
total number of 1 's in the string. If the ith position of
the string contains a "1" then the ith feature is selected
for the chosen subset. Thus, a string of cardinality k
denotes a feature subset of size k. Now the iterations
of GA are continued with self-crossover, evaluation
and selection with probability proportional to fitness.
The entire process is repeated for a desired number
of times or till we find no improvement in the fitness
value for several generations.

3. Results

We present our results summarized into two sub-
sections, one for feature ranking and selection, and the
other for dimensionality reduction. For feature selec-
tion and ranking we have implemented the algorithms
discussed on several data sets including both synthetic
as well as real data sets, but we report here only re-
suits on two of them, Crude-oil and M a n g o - l e a f for
the feature selection algorithms and to show the effec-
tiveness of the feature extraction algorithm we con-
sider a synthetic data set, Sphere -She l l and the well
known I R I S data.

Crude-oil [17] has five features and 56 data points
and Mango-leaf [4] has eighteen features and 166
data points. Both have three classes. The Sphere-Shell
[22], on the other hand, consists of 1000 points in 3-
space. 500 points are selected randomly within a hemi-
sphere of radius r l and rest 500 from a shell defined
by two hemispheres of radius r2 and r3, such that

216 N.R. Pal/Fuzzy Sets and Systems 103 (1999) 201-221

Table 1
Results with SAFER, SEFER, (FEI) av and OFEI on Crude-oil

Feature no./ SAFER
Feature
made0 Run 1 Run2 Run 3

Table 2
Results with AFES for Crude-oil for 6000 iterations

SEFER (FEI) av OFEI Features M/ Ai.100

1 1 1 1 1 5 5
2 5 5 5 5 3 3
3 4 3 2 4 4 4
4 2 4 4 2 2 2
5 3 2 3 3 1 1

1 *5.82 *0.29
2 5.52 99.60
3 "6.12 *0.22
4 *4.90 *0.74
5 *6.62 "0.13
Misclassification 2
Error 0.023

r l < r 2 < r 3 . IRIS [1,17] is a four dimensional data
with 150 points in three classes.

3.1. Results on feature rankin9 and selection

In our implementation all features are normal-
ized to the same scale by a transformation. For each
feature x ~ the transformed value x is obtained as
x (x' k l) / (k k l) , where k l ' " ' mlnimmj{xij }
and k = maximaxj{x~.}. Note that this transformation
does not change the structure o f the classes as it is
only a change o f scale and origin o f the entire data.

For the MLP based algorithms we used the stan-
dard sigmoid for both attenuator and activation func-
tions. "On-line" method was employed for training.
One complete pass through the data was considered
to be one epoch or iteration. The initial values o f the
"attenuation functions" should be ideally zero, this
was practically achieved by setting Mi to - 5 . 0 which
corresponds to F(Mi) = 0.006699, i.e., an attenuation
o f 99.33%. A feature is considered important i f its at-
tenuation is low.

We compared our results with Ruck et al . ' s scheme
for which we provided rankings for three typical runs.
The network architectures, learning rates and the num-
ber o f iterations were kept the same for all schemes.
We authenticated our results by running the conven-
tional MLP with different feature subsets.

3.1.1. Results for Crude-oil
For Crude-oil [17] an architecture with six nodes in

a single hidden layer is found to be adequate for an
MLP.

Table 1 reports the results obtained from three typ-
ical runs o f SAFER and also the ranks obtained by
SEFER, FEI and OFEI. The second feature has con-

Table 3
Results of conventional MLP on Crude-oil

Features Iteration Misclassifieations Error

All 5000 3 0.0289
1, 2, 3, 4 5000 4 0.0315
1, 2, 3, 5 5000 2 0.0170
1, 2, 4, 5 5000 2 0.0156
* 1, 3, 4, 5 5000 0 0.0002
2, 3, 4, 5 5000 1 0.0154
1, 3, 5 5000 4 0.0411
2, 3, 5 5000 9 0.0703
3, 5 5000 12 0.1053
2, 5 5000 7 0.0764
4, 5 5000 7 0.0655

sistently been ranked the last for all experiments that
we conducted with SAFER and SEFER, thus indi-
cating that it is the least important feature. Later we
shall see that AFES conforms to this but the ranking
of other features does not agree with that o f AFES.
For a few runs not reported in Table 1 both methods
are found to rank feature 3 as the least important one;
while both o f the fuzzy indices produce significantly
different ranking.

Results o f a typical run of AFES on Crude-oil are
given in Table 2. In Table 2 (and also in Table 3)
asterisks (*) are used to indicate features with low at-
tenuation. Table 2 reveals that features 1, 3, 4 and 5
are the important ones as their attenuations are very
low at the end o f the training. Several different initial-
izations gave the same final result. For the run shown
in Table 2 the initialization was such that feature 2
was activated first, however, later it was eliminated
which tells us that this feature is causing confusion
and is a harmful one. These results were ratified by
running the standard MLP on various feature subsets.
We report this in Table 3.

N.R. Pal/Fuzzy Sets and Systems 103 (1999) 201~21 217

From Table 3, we find that only the feature subset
(1, 3, 4, 5) can result in zero misclassification just
in 1000 iterations and it is the best subset of features
of size four. Among the combinations involving four
features, the one lacking feature 5 has a higher error
than the rest, indicating the importance of this feature
in comparison to the rest. This is also reflected by the
lowest value of the attenuation factor for feature 5 in
Table 2.

Feature sets involving 4 and 5 have given a better
performance than the rest, thereby indicating that fea-
ture 5 is the most important one followed by feature
4. The absence of feature 2 shows improvement in the
performance of the classifier indicating its deleterious
contribution. The column labeled Error in Table 3 rep-
resents the average square error per class.

3.1.2. Results on Mango-leaf
This data set [4] has 18 features corresponding to

three kinds of Indian mangoes. The results of SAFER,
SEFER and (FQI) av and OFEI are presented in
Table 4. Ranking produced by three runs of Ruck
et al.'s method and that by others are different but are
highly correlated. We shall see that these rankings
are significantly different from the results suggested
by AFES.

Table 5 shows the results obtained by AFES which
are found to be consistent over several initializations.
Always features 2 and 3 had the minimum attenua-
tions in comparison to the rest. Though feature 3 con-
sistently gave a lower attenuation than that of feature
2 for all runs, the difference in attenuations was small.
Feature 6 and feature 9 were consistently close to each
other and always next to features 2 and 3. Most of
the times feature 6 was found to have a lower attenu-
ation than that of feature 9. However, feature 9 gave
lower values of attenuation than that of feature 6 for
some initializations. Like other data sets for Mango-
leaf also we ran the conventional MLP with different
subsets of features and it is reported in Table 6.

For most runs of SAFER the following four fea-
tures 17, 6, 12 and 18 (listed in order) are found to be
the most important. To authenticate this we ran con-
ventional MLP (Table 6) with feature subsets (17),
(17, 6), (17, 6, 12) and (17, 6, 12, 18). We found
that the most important feature subset (2, 3) sug-
gested by AFES is much better than (6, 17). Similarly,

Table 4
Results with SAFER, SEFER, (FEI) av and FQI on Mango-leaf

Feature no./ SAFER
Feature
made0 Run 1 Run2 Run3

SEFER (FEI) av FQI

1 17 16 14 9 7 7
2 11 11 12 5 l0 9
3 13 12 16 6 16 16
4 6 6 4 1 3 l
5 9 9 10 13 1 2
6 2 2 1 7 13 13
7 16 18 17 17 6 5
8 18 17 18 18 5 4
9 8 8 2 2 9 t2

10 14 t5 8 4 12 11
11 7 7 7 8 18 17
12 3 3 9 10 14 15
13 5 5 13 11 17 18
14 12 13 ll 15 4 6
15 10 10 5 3 2 3
16 15 14 15 16 11 10
17 1 1 3 12 15 14
18 4 4 6 14 8 8

(2, 3, 6) is a rnuch better choice than (6, 12, 17). Sim-
ilar experiments with the ranks suggested by others
showed that AFES is the best among the three methods
discussed.

We also used GA with self-crossover for feature
selection. When the cardinality of the chromosomes
were fixed at 2, 3 and 4 the feature subsets selected by
the scheme are {9, 14}, {9, 13, 14} and {9, 13, 14, 17},
respectively. These feature subsets are found to be
quite good in terms of number of misclassifications
produced by nearest prototype classifiers designed on
them.

3.2. Results on dimensionality reduction

3.2.1. For Sphere-Shell and IRIS
For feature extraction or structure preserving di-

mensionality reduction algorithms, as mentioned ear-
lier, we used two data sets: Sphere-Shell and IRIS.

Table 7 shows that for IRIS original Sammon's
method requires much less time than either of Jain
and Mao's method and SAPRONN, with SAPRONN
requiring about half time of Jain and Mao's method.
In fact, for any small data set Sammon's method
is expected to perform better than the neural

218

Table 5
Results of the multiplier

N.R. Pal~Fuzzy Sets and Systems 103 (1999) 201-221

based method on Mango-leaf

Iterations
Features

1000 2000 3000 5000

Mi Ai.100 Mi Ai. IO0 Mi Ai. IO0 Mi Ai. IO0

1 "1.75 "14.75 *4.03 "1.74
2 *4.52 "1.08 "5.21 *0.54
3 *3.37 *3.32 *5.44 *0.43
4 -4.76 99.15 -2.47 92.24
5 -4.98 99.32 -4.63 99.03
6 -4.97 99.31 -3.59 97.31
7 -4.99 99.33 -4.99 99.33
8 -4.99 99.33 -5.0 99.32
9 *3.03 *4.62 "6.51 "0.15

10 -4.77 99.16 -4.80 99.18
11 -4.97 99.31 *1.00 *26.86
12 -4.96 99.31 -4.08 98.34
13 -4.97 99.31 -4.61 99.01
14 -4.99 99.32 -4.84 99.22
15 -4.89 99.25 -3.83 97.87
16 -4.99 99.33 -4.98 99.32
17 -4.98 99.32 -2.52 92.58
18 -4.99 99.33 -4.86 99.23
Misclassific~ions 24 21
Error 0.162 0.114

*4.22 "1.45 *5.06 *0.63
*5.84 *0.29 *6.70 '0.12
*6.06 *0.23 *6.83 *0.11
-2.94 94.96 -3.70 97.58
-3.44 96.89 *4.76 *0.84
"5.19 *0.56 *6.65 "0.13

-4.99 99.33 -4.99 99.33
-5.00 99.33 -4.99 99.33
*6.70 "0.12 *6.68 "0.13

-1.95 87.50 -3.62 97.40
*3.48 *3.00 "4.61 *0.98
*4.36 "1.27 *6.05 *0.24

-3.20 96.1 *5.55 *0.39
-4.62 99.02 -3.87 97.96
-2.21 90.13 -3.41 96.79
-4.97 99.31 -4.93 99.28
*4.57 "1.03 "6.10 *0.22

-4.56 98.97 *3.25 *3.72
15 l l

0.096 0.078

Table 6
Results of conventional MLP on Mango-leaf

Features taken Iterations Misclassifications Error

All 5000 13 0.1301
2,3 5000 25 0.1301
3,9 5000 34 0.1476
3,6 5000 35 0.1697
2,3,6 5000 18 0.1047
2,3,9 5000 20 0.1134
2, 3, 6, 9 5000 19 0.0609
2, 3, 6, 9, 12 5000 19 0.1007
2,3,6,9, 17 5000 19 0.1025
2, 3, 6, 9, 12, 17 5000 19 0.1023
2, 3,6, 9, 12, 13, 17 5000 15 0.0893
7,8 5000 48 0.1998
7,8,2 5000 47 0.1868
2,3,9,17 5000 19 0.1091
17 5000 48 0.5953
6,17 5000 48 0.5669
6,12,17 5000 28 0.4219
6,12,17,18 5000 31 0.4130

i m p l e m e n t a t i o n in t e rms o f b o t h C P U t ime a n d

S a m m o n ' s error. For IRIS the sca t te rp lo t o f the two

d i m e n s i o n a l p ro j ec t i ons are s imi la r and h e n c e no t

Table 7
CPU time (seconds) for various methods

Data Sammon's Jain and Mao's SAPRONN
method method

IRIS 205.6 1288.5 589.0
Sphere-Shell 8995.8 7611.3 5508.6

Table 8
Values of Sammon's error for various methods

Data Sammon's Jain and Mao's SAPRONN
method method

IRIS 0.00659 0.01252 0.06173
Sphere-Shell 0.00089 0.09 0.03

d i sp l ayed here. Fo r Sphe re -She l l S A P R O N N requ i red

m u c h less C P U t ime than b o t h S a m m o n ' s m e t h o d

and Ja in and M a o ' s scheme , and the p e r f o r m a n c e

(in t e r m s o f S a m m o n ' s e r ro r) o f S A P R O N N is

qui te c o m p a r a b l e to tha t o f J a i n ' s m e t h o d (T a b l e 8).

For Sphe re -She l l S A P R O N N works be t te r than the

m e t h o d o f Ja in and Mao. This is also r evea led b y

Fig. 3. In J a i n ' s m e t h o d some o f the p ro jec ted po in t s

N.R. Pal/Fuzzy Sets and Systems 103 (1999) 201-221

~ o o ¢ % 0 o o ° ~ o o o o ° ~ ° "

~ ° O o 0 8 _ oo o o ® : ° ~ o
-- 0 0 0 u 0 0 0 ~ , o _ 0

u 0 0 0 . 0 " ~ 0 ~
g o ° oV o oO ~ o " ~ -
I l l , * * o ° o ~
e , o o o o o ~'o,,e
i . o o ..:,. :?:..;.. ,, % 0

• " ..<..I. '~" ': I ' . O ,'0 / T - ~ ' o . - . , , . : . . . OOo
HE, o o%..-~.~.,.~....~.;.:.. ^
/ i ° o o "" ~ ' . ~ " % :~'" " ^ ,~og~

/ ' ¢ ' oo o ,o
" ' ' : " ' 0 0

I $ o , oo_'~ I o o o o

I , 9 o ' ~ o "
/ " ~ , , o ° O o o o o ° § 8 ° °
l o o o

c b ~ o ¢ ~ O c~g~o~oc ~ o -~1~

Fig. 3. Sphere-Shell by SAPRONN.

219

* e l b
~ z , ~ , _ , o o_ o~ o oo . ~
• "~ o ~ ' ~ ~**o o , o o

o o o o O o ~ o ~
° o . o " " " x . o

, , o ~''~';¢'::~..''..,,., o o

o '15 o".. ' .~' .-~. ' . :~3~.': o x~o o _ o n~
..' I~'.:: "~; ,~, : . 0 0 • % 0 . _?, :'. . ~ , --,~ ... o o _ o "~ ,,v ,,.,.:..~:r~:,..... ,., ,.,

o - ^ v . . - .c~...,..:?.. o o ~ , ~
o o - :~. ' -~ : ® O-o'~p

o oo oo
o o o

o o ° o o o o ~ oo~
'% O o 0 ° o o O o o ~

~ o o o o o o ~ 8 ~

~ o ® o ~_ g o o e ~ '

Fig. 5, Sphere-Shell by Jain and Mao Algorithm.

o ~ c P o " o o c ~ , o O l b

, ~ o,. ~ o o°~-

^0",^~ o ,.-:.;. ~00 o N ~
.~ ~ 8 a ^ ~.¢~,.;-.'.',.~.,. " # . 7 ~

o 6, o ...,..~:.~.~..::. o ^% ~ S
o , , . o ^ .~'.~-"~:'-,"."¥'i~" .~: o "~ .o
~'.0 " "':.~?"~.~;,':).'.;£'i'° ~ " o o

Oo~ o .;';?,.',, ..,-. Oo 8 o%

°o
° ~ o ~ • - ° 8 o , _ o o e 0,'. 0^ o0 ~ o o .
o o .

0 ~ , oo~

Fig. 4. Sphere-Shell by Sammon's algorithm.

corresponding to the outer shell got mixed up with
projected points corresponding to central hemisphere
(circle represents points from the shell while dot (.)
indicates points in the hemisphere).

4. Conclusions and discussion

We discussed the main ingredients of soft com-
puting and explained how they can help in the
design of effective pattem recognition systems. We
presented several methods based on soft comput-
ing for feature analysis. In particular, we discussed
how GA, fuzzy logic and NN can be used for fea-
ture ranking and selection. Of the various feature
selection/ranking schemes, AFES is found to be
the best. To avoid the computational overhead of
Sammon's method and to realize a dimensionality
reduction system with predictability, SAPRONN in-
tegrates the tools of statistics, Sammon's function
and neural networks in a novel manner. We also pre-
sented a few other methods for neural realization of
Sammon's scheme. Most of the methods have been
illustrated with synthetic as well as real data.

An interesting area where further investigation
could be done for feature extraction (particularly for
dimensionality reduction) would be the use of neuro-
fuzzy approaches. As is well known, MLP picks up
one of many possible generalizations (equivalently
settles to one of several local minima) which may
not be the desirable one. Consequently, even when
Jain and Mao's method or SAPRONN works well

220 N.I~ Pal~Fuzzy Sets and Systems 103 (1999) 201-221

for the data used to train the net, it can seriously fail
for new data points. This chance of very bad general-
izations can possibly be reduced drastically with the
help of multi-layered neuro-fuzzy architectures. If the
neuro-fuzzy system, maintains the logical reasoning
structure of a fuzzy reasoning system yet exploits the
features of connectionist models, the chance of very
bad generalization is reduced significantly.

Acknowledgements

The author gratefully acknowledges Dr. S. Mitra of
this Institute for her valuable suggestions to improve
the manuscript and Mr. E. Vijaykumar of Vedika
International Pvt. Ltd., Calcutta for his help in
producing some of the computational results.

References

[1] E. Anderson, The irises of the Gaspe Peninsula, Bull. Amer.
IRIS Soc. 59 (1935) 2-5.

[2] J.C. Bezdek, Pattern Recognition with Fuzzy Objective
Function Algorithms, Plenum, New York, 1981.

[3] D. Bhandari, N.R. Pal, S.K. Pal, Directed mutation in genetic
algorithms, Inform. Sci. 79 (1994) 251-270.

[4] A. Bhattacharjee, Some aspects of mango (Mangifora Indica
L) leaf growth features in varietal recognition, Master's
Thesis, Calcutta University, Calcutta, 1986.

[5] S.L. Chiu, Extracting fuzzy rules for pattern classification
by cluster estimation, in: Proc. 5th Internat. Fuzzy Systems
Assoc., World Congress (IFSA'95), Sao Paulo, Brazil, 1-4
July 1995.

[6] P. Comon, Independent component analysis - a new concept?,
Signal Processing 36 (3) (1994) 287-314.

[7] L. Davis, Handbook of Genetic Algorithms, Van Nostrand
Reinhold, New York, 1991.

[8] R. De, N.R. Pal, S.K. Pal, Feature analysis: neural network
and fuzzy set theoretic approaches, Pattern Recognition 30
(10) (1997) 1579-1590.

[9] P.A. Devijver, J. Kittler, Pattern Recognition, A Statistical
Approach, Prentice-Hall, London, 1982.

[10] D.H. Foley, J.W. Sammon, An optimal set of discriminant
vectors, IEEE Trans. Comput. 24 (1978) 271-278.

[11] K. Fukunaga, W.L.G. Koontz, Application of the Karhunen-
Loeve expansion to feature selection and ordering, IEEE
Trans. Comput. 19 (1970) 311-318.

[12] D.E. Goldberg, Genetic Algorithms: Search, Optimization and
Machine Learning, Addison-Wesley, New York, 1989.

[13] S. Haykin, Neural networks - a comprehensive foundation,
Macmillan, New York, 1994.

[14] J. Hertz, A. Krogh, R.G. Palmer, Introduction to the Theory
of Neural Computation, Addison-Wesley, Redwood City, CA,
1991.

[15] H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka, Selecting
fuzzy if-then rules for classification problem using genetic
algorithms, IEEE Trans. Fuzzy Systems 3 (3) (1995)
260 -270.

[16] A.K. Jain, J. Mao, Artificial neural networks for nonlinear
projection of multivariate data, in: Proc. IEEE Internat. Joint
Conf. on Neural Networks, vol. 3, 1992, pp. 59-69.

[17] R.A. Johnson, D.W. Wichern, Applied Multivariate Statistical
Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[18] J. Karhunen, J. Joutsensalo, Representation and separation of
signals using nonlinear PCA type learning, Neural Networks
7 (1994) 113-127.

[19] J.D. Kelly, Jr., L. Davis, A hybrid genetic algorithm
for classification, in: Internat. Joint Conf. on Artificial
Intelligence, Darling Harbour, Sydney, Australia, vol. 2, 1991,
pp. 645-650.

[20] G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic - Theory
and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1995.

[21] J. Mao, A.K. Jain, Artificial neural networks for feature
extraction and multivariate data projection, IEEE Trans.
Neural Networks 6 (2) (1995) 296-317.

[22] H. Niemann, Linear and nonlinear mapping of patterns,
Pattern Recognition 12 (1980) 83-87.

[23] E. Oja, A simplified neuron model as a principal component
analyzer, J. Math. Biol. 15 (1982) 267-273.

[24] E. Oja, J. Karhunen, Nonlinear PCA: algorithms and
applications, Report A18, September 1993, Laboratory of
Computer and Information Science, Helsinki University of
Technology, Espoo, Finland.

[25] E. Oja, Neural networks, principal components, and
subspaces, Internat. J. Neural Systems 1 (1989) 61-68.

[26] E. Oja, Principal components, minor components and neural
networks, Neural Networks 5 (1992) 927-936.

[27] N.R. Pal, J.C. Bezdek, Measuring Fuzzy Uncertainty, IEEE
Trans. Fuzzy Systems 2 (2) (1994) 107-118.

[28] N.R. Pal, K. Chintalapudi, A connectionist system for
feature selection, Neural, Parallel Sci. Comput. 5 (3) (1997)
359 381.

[29] N.R. Pal, S. Nandi, M.K. Kundu, Self-crossover: a new
genetic operator and its application to feature selection, Int.
J. System Sci. 29 (2) (1998) 207-212.

[30] N.R. Pal, E. Vijay Kumar, Neural networks for dimensionality
reduction, in: Kasabov et al. (Eds.), Progress in
Connectionist-Based Information Systems, Proc. 4th Internat.
Conf. on Neural Information Processing, ICONIP'97, vol. 1,
Springer, New York, 1997, pp. 221-224.

[31] S.K. Pal, Fuzzy set theoretic measures for automatic feature
evaluation: ii, Inform. Sci. 64 (1992) 165-179.

[32] S.K. Pal, B. Chakraborty, Fuzzy set theoretic measures for
automatic feature evaluation, IEEE Trans. Systems Man
Cybernet. 16 (1986) 754-760.

[33] S.K. Pal, N.R. Pal, Soft computing: goals, tools and
feasibility, J. IETE 42 (4-5) (1996) 195-204.

[34] S.K. Pal, P.K. Pramanik, Fuzzy measures in determining
seed points in clustering, Pattern Recognition Lett. 4 (1986)
159 164.

[35] W.F. Punch, E.D. Goodman, M. Pei, L.C. Shun, P. Hovland,
R. Embody, Further research on feature selection and

N.R. Pal~Fuzzy Sets and Systems 103 (1999) 201~21 221

classification using genetic algorithms, in: Proc. 5th Internat.
Conf. on Genetic Algorithms, University of Illinois at Urbana-
Champaign, 1993, pp. 557-564.

[36] R. Rosenfeld, J. Anderson (Eds.), Neuro Computing, MIT
Press, Cambridge, MA, 1988.

[37] J. Rubner, K. Schulten, Development of feature detectors by
self organization, Biol. Cybernet. 62 (1990) 193-199.

[38] J. Rubner, P. Tavan, A self-organizing network for principal
component analysis, Europhys. Lett. 10 (1989) 693-698.

[39] D.W. Ruck, S.K. Rogers, M. Kabrisky, Feature selection
using a multilayer perceptron, J, Neural Network Comput.
(1990) 40 48.

[40] J.W. Sammon Jr., A nonlinear mapping for data structure
analysis, IEEE Trans. Computers C-18 (1969) 401-409.

[41] B. Schachter, A nonlinear mapping algorithm for large
databases, Comput. Graphics Image Process. 7 (1978)
271 278.

[42] W. Siedlecki, J. Sklansky, A note on genetic algorithms
for large-scale feature selection, Pattern Recognition Lett.
10 (1989) 335-347.

[43] N.R. Pal, E.V. Kumar, Two efficient connectionist schemes
for structure preserving dimensionality reduction, IEEE Trans.
Neural Networks 9 (6) (1998).

[44] R.R. Yager, D.P. Filev, Generation of fuzzy rules by mountain
clustering, J. Int. Fuzzy Systems 2 (1994) 209-219.

[45] L.A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965)
338-353.

[46] L.A. Zadeh, Fuzzy logic and soft computing: issues,
contention and perspection, Proc. 3rd Intemat. Conf. on Fuzzy
Logic, Neural Nets and Soft Computing, Iizuka, Japan, 1994,
pp. 1-2.

