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Abstract 

With an introduction to soft computing we discuss how the three main ingredients, fuzzy logic, neural networks and 
genetic algorithms can play significant roles in the design of successful pattern recognition systems. Then we concentrate 
only on one aspect of pattern recognition, feature analysis, and discuss various methods using fuzzy logic, neural networks 
and genetic algorithms for feature ranking, selection and extraction including structure preserving dimensionality reduction. 
Finally, the methods are illustrated with both real and synthetic data. (~) 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

A computer can complete a job much more effi- 
ciently than a human being when the job involves sub- 
stantial amount of routine computation like inversion 
of a matrix of large dimension. On the other hand, if 
the task requires perceptual power or cognitive capa- 
bility of human beings, the Von Neumann machine 
is far behind human beings. For example, human be- 
ings can recognize shapes of different sizes, orienta- 
tions even in an occluded environment much more 
efficiently than by a computer. Computers are good for 
well structured precisely formulated problems. Typi- 
cally, human brains are better for solving real world 
ill-defined, imprecisely formulated problems requir- 
ing huge computations. To overcome the limitations 
of traditional computing paradigm, scientists are in 
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search of new computational approaches that can be 
used to solve real world problems efficiently. As a re- 
suit, in the recent past several novel modes of com- 
puting have emerged which are collectively known as 
soft computing [33, 46]. 

As to the understanding of the author, a precise defi- 
nition of soft computing is yet to emerge. However, as 
of now soft computing may be viewed as a consortium 
of various computing tools to exploit the tolerance for 
imprecision and uncertainty to achieve tractability, ro- 
bustness and low cost [46]. Usually, it attempts to find 
an approximate solution to a precisely or imprecisely 
formulated problem. Neuro computing (NC) is one of 
the major components of soft computing. The other 
two important constituents are fuzzy logic (FL) and 
probabilistic reasoning (PR) with PR subsuming be- 
lief networks, genetic algorithms and chaotic systems. 
FL primarily provides a paradigm for dea!ing with im- 
precision and approximate reasoning. NC deals with 
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learning and curve fitting. PR, on the other hand, deals 
with probabilistic uncertainty, propagation of belief, 
etc. 

Pattern recognition may involve two types of data. 
The first category is called the object data while the 
second one is called relational data. In object data a 
pattern or an object (say, a human being, tank, animal 
etc.) is characterized by a set of measurements like 
height, weight etc. On the other hand, in relational 
representation a set of n objects is represented by an 
n ×n  proximity (similarity/dissimilarity) relation. 
The proximity relation may be computed from the 
object representation or could be obtained by experts 
or by some other means. In this paper, we concentrate 
only on object data. 

There are three major tasks of pattern recognition: 
Feature analysis, Clusterin9 and Classification. Fea- 
ture analysis is an essential and important step towards 
designing effective clustering and classification algo- 
rithms. Clustering looks for substructures present in a 
data set, i.e., it partitions the data set into homogeneous 
groups. For example, in case of a remotely sensed 
image, the goal of clustering may be to group the pix- 
els based on gray values and properties of neighbor- 
ing pixels in such a manner that pixels corresponding 
to each type of surface (land, vegetation, water etc.) 
form a separate cluster. Note that, for clustering we 
do not know the actual type of region a pixel corre- 
sponds to, but we expect our clustering algorithm to 
identify such groups. We emphasize that the process 
of clustering only finds "homogeneous" groups but 
cannot say which groups correspond to what. A clas- 
sifier, on the other hand, partitions the feature space 
so that any unlabeled data point can be assigned the 
appropriate class label. A classifier is designed using 
some training data for which the actual class labels 
are known. For example, to design an analysis sys- 
tem for remotely sensed images we may be given one 
or more images for which we know the class label of 
every pixel; in other words, for every pixel we know 
whether it corresponds to water, land or vegetation 
etc. Based on these (training) images we can devise a 
scheme so that when new images come, we can assign 
possible class label to every pixel considering "simi- 
larity" of the pixels in the new image with the pixels 
in the training images. 

For clustering and classification, as mentioned 
earlier, objects are usually represented by a set of 

measurements or feature values each of which char- 
acterizes some property of the object. Features could 
also be qualitative values like red, blue, good, bad 
etc. Success of a clustering algorithm or of a classi- 
fier depends heavily on the discriminating power of 
these features. A given set of measured features, as it 
is, may not have enough information to discriminate 
between different classes. For example, the raw gray 
values of a digital image are not good features for 
most applications of image processing. In this case 
we need to extract features like average gray level, 
standard deviation, gradients etc. each computed over 
a neighborhood. (We emphasize here that although 
image processing is a pattern recognition task, often 
it requires some special operations because of the 
spatial relation of pixel values on the digital image. 
In this article we shall not consider these issues). 
Too many features are not necessarily good. Some 
of the features (obtained as a result of measurements 
or computed from measurements) may be redtmdant 
causing extra computational overhead; some of the 
features may again result in confusion in the feature 
space leading to degradation in the performance of the 
pattern recognition system. Feature analysis addresses 
these issues. It consists of two tasks: feature selection 
and feature extraction. Feature selection deals with 
choosing some of the measurable quantities which 
are important for the problem at hand; while feature 
extraction computes some new attributes (features) 
based on some selected measurable quantities. 

For the sake of completeness we first briefly intro- 
duce the three main ingredients, FL, NN and GA, of 
soft computing and then explain their role in pattern 
recognition. Since it is almost impossible to provide, 
in a single paper, the state of the art in the use of 
soft computing tools to the main three tasks of pattern 
recognition we decided to concentrate only on feature 
analysis. We chose feature analysis because it plays a 
crucial role to the successful design of both classifier 
and clustering algorithms. 

1.1. Artificial neural networks 

Although the concept of  artificial neural networks 
(NN) has been inspired by biological neural networks, 
the heart of this computing paradigm is rooted in dif- 
ferent disciplines. Biological neurons are the structural 
constituents of the brain and they are much slower than 
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silicon logic gates. But inferencing in biological NN 
is faster than the fastest computer available today. It is 
believed that the brain compensates for the relatively 
slower operation by a really large number of neurons 
with massive interconnections between them. Biolog- 
ical neural networks have the following features: 
• They are highly parallel, robust and fault tolerant 

nonlinear devices. 
• They have built-in capability to adapt their synaptic 

weights to changes in the surrounding environment. 
• They can easily deal with imprecise, fuzzy, noisy 

and probabilistic information. 
• They can generalize from known tasks or examples 

to unknown ones. 
One of the main motivations of Artificial NN is to 

design problem solving devices incorporating some 
or all of these characteristics [13, 14,36]. Although 
the development of neural networks is inspired by 
models of brains, the purpose is not just to mimic 
biological neurons, but to use principles from ner- 
vous systems to solve complex problem in an efficient 
manner. The neuro-computing paradigm is different 
from programmed instruction sequence. Here infor- 
mation is stored in the synaptic connections, not in 
the main memory. A neuron is an elementary proces- 
sor with primitive types of operations, like summing 
the weighted inputs coming to it and then amplify- 
ing or thresholding the sum. The computational neu- 
ron model proposed by McCulloch-Pitts is a simple 
binary threshold unit. The jth neuron computes the 
weighted sum of all its inputs from other units and out- 
puts a binary value, zero or one, depending on whether 
this weighted sum is greater than equal or less than a 
threshold 0i. Thus 

xi(t + 1 ) = f  w U x j ( t ) -  Oi , 
• , /  ) 

where 

1 ifx>~O, 

f ( x ) =  0 otherwise. 

If the synaptic weight w(/>O (from neuron j to i), 
then it is called an excitatory connection; if wij < O, 
it is viewed as an inhibitory connection. Often the f 
is replaced with a more general non-linear function. 
In principle a network of such neurons is capable of 
doing quite complex tasks. 

A neural network is characterized by the network 
topology, connection strength between pairs of neu- 
rons (weights), node characteristics and the status up- 
dating rules. The updating or learning rules may be 
for weights and/or states of the processing elements 
(neurons). The adaptability of a neural network comes 
from its capability of learning from "environments". 
There are several models of NN which are suitable for 
different tasks [13, 14, 36]. Some examples are: Hop- 
field Net (suitable for pattern storage and recall and for 
optimization), Multilayer Perceptron (classifier and 
function approximator), Sell-Organizing Feature Map 
(basically does clustering but can be used fbr generat- 
ing semantic maps and designing classifiers), Learn- 
ing Vector Quantization (can be used for clustering), 
and Adaptive Resonance Theory (clustering) network. 

In our subsequent discussion, we shall use only the 
multilayer perceptron (MLP) network and hence an 
adequate description of it will be provided in an ap- 
propriate place. 

1.2. Fuzz), sets 

Fuzzy sets were introduced in 1965 by Zadeh [45] 
as a new way to represent vagueness in everyday life. 
They attempt to model human reasoning/thinking pro- 
cess. Fuzzy sets are generalization of crisp sets and 
have greater flexibility to capture faithfully various 
aspects of incompleteness or imperfection in informa- 
tion. For an ordinary set, an element either belongs to 
it or not; while for fuzzy sets, an element can partially 
belong to the set; for example, a set of TALL per- 
sons [20]. Here there is no precise boundary to the set 
TALL, and therefore, we cannot really isolate a col- 
lection of people labeled as tall. Fuzzy sets are con- 
ceptual sets, whose semantic is more important than 
its mathematical characterization. Mathematically, a 
fuzzy set is nothing but a mapping (known as mem- 
bership function) from the universe of discourse X to 
[0, 1]; i.e., # :X --~ [0, 1]. 

The set TALL can be modeled by a function shown 
in Fig. l(a). This is not the only function that can be 
used to model the fuzzy set TALL. There may be many 
other functions and they may not even be continuous 
but all of them should have the general non-decreasing 
characteristic to keep the membership function consis- 
tent with the semantic of the fuzzy set. Such functions 
are known as S-type membership functions. We shall 
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Fig. 1. (a) Fuzzy set TALL. (b) Fuzzy set CLOSE to 7. 

show an example of S function in Section 2.2.1. Sim- 
ilarly, fuzzy sets like "CLOSE TO 7" can be modeled 
by the membership function shown in Fig. l(b). 
Again, there could be several other choices. But they 
should have a membership value of 1 at 7 or over a 
neighborhood of 7 and then the membership values 
should decrease as we move away from 7. Such func- 
tions are often called//- type membership functions. 
These membership functions can be either obtained 
from an expert or estimated from data. 

Since fuzzy sets characterize imprecise properties, 
they can be effectively used to model vagueness as- 
sociated with real-life systems. Fuzzy logic is based 
on the theory of fuzzy sets and approximate reason- 
ing. It is much closer in spirit to human reasoning 
and natural language than the traditional logical sys- 
tem. Thus, fuzzy logic provides an effective means to 
model faithfully the approximate and inexact nature 
of  the real world. 

1.3. Genetic algorithms 

Genetic algorithms [7, 12] (GAs) are another bi- 
ologically inspired computing tool for optimization. 
GAs are parallel and randomized search techniques, 
where a population of solutions evolves over a se- 
quence of generations to possibly a globally optimal 
solution. Based on a fitness function good solutions 
are selected for reproduction using two genetic recom- 
bination operators: crossover and mutation. 

GAs are optimization algorithms which can solve 
problems resistant to other known optimization meth- 
ods. They do not require differentiability or continuity 
of  the fitness function. However, if the fitness func- 
tion is differentiable then this information can be ex- 
ploited to expedite searching by GAs [3]. Even if the 
fitness function is not mathematically well structured, 
they can be used to find an optimal solution. GAs 
work simultaneously on multiple points in the search 
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space, not on a single point, unlike conventional search 
techniques. Due to the stochastic characteristic, they 
have a low chance of getting stuck to a local mini- 
mum. Good search algorithms should have the capa- 
bility of both exploitation and exploration. GAs are 
believed to support a balanced mixture of both these 
features. The criterion of "survival of the fittest" pro- 
vides evolutionary pressure for populations to grow 
with increasingly fit individuals and thereby exploits 
good solutions while the crossover and mutation oper- 
ations enable GAs to explore the entire search space. 
GAs work on a set of coded solutions not on the so- 
lution themselves. Although different coding schemes 
are possible, binary coding is the most popular. There 
are many variants, but the basic mechanism of GAs 
(conventional GAs) consists of the following steps: 
1. Start with an initial population (a set of strings/ 

chromosomes). 
2. Evaluate fitness of every string and select candi- 

date strings with probability proportional to fitness 
value to form the mating pool. 

3. Perform crossover and mutation. 
4. Repeat steps 2 and 3 until the system ceases to 

improve, or some stopping criterion is reached. 
Each member (which corresponds to a solution of 

the problem) of the population (i.e., each chromo- 
some) is represented by a fixed length coded string. 
Selection or reproduction creates the population for 
the next generation using a probabilistic selection pro- 
cess which offers a string with higher fitness a greater 
chance of selection. Mutation corresponds to random 
flipping of one or more bits of an individual string. 
Mutation increases the diversity in the population and 
ensures that the probability of attaining any point in 
the search space is greater than zero. Usually mutation 
is done with a low probability. The simplest imple- 
mentation of crossover selects two parents (randomly) 
from the mating pool and then after choosing a ran- 
dom position each parent string exchanges its tail at 
that position. The resulting offsprings are included in 
the population for the next generation. The crossover 
probability is normally high. 

1.4. The role o f  soft computing in pattern 
recognition 

Any decision making system will have some 
inputs and some outputs. Usually the inputs are 

measurements by some sensors. Every measuring in- 
strument has a finite precision. Therefore, with every 
input value we have an inherent imprecision. For 
example, if a sensor with two digit precision reads 
10.53, then the actual value may not (usually will 
not) be exactly equal to 10.53 but it is something 
CLOSE TO 10.53 - a fuzzy concept. Thus fuzzy set 
is a natural tool to model such vagueness. Now con- 
sider another example, an image analysis system for 
remotely sensed images. For such an image each pixel 
may represent a surface area of even 20 × 20 m 2. As 
a result part of a pixel may correspond to, say, land 
and while the rest may represent water. Therefore, 
while segmenting the image if we make a hard deci- 
sion (either water or land) we are bound to commit 
some error and then in the later stage of the interpre- 
tation we may not be able to recover this mistake. 
Incorporation of fuzziness (fuzzy segmentation) here 
can result in a more meaningful and useful system. 
Depending on the characteristics of the neighboring 
pixels, the pixel under consideration may be assigned 
memberships to different classes. Thus we see that 
fuzzy sets can be used both at the input level and also 
during processing. Now consider another problem of 
designing a classifier to discriminate between painters 
and singers. Suppose we have data for a person who 
is partially a painter and partially a singer, then our 
classifier should be able to provide such information. 
Conventional classifiers cannot provide such details. 
However, fuzzy sets can be quite effective to model 
such unsharp decision boundaries between classes, 
i.e., at the output level of a decision making system. 
There are several other ways in which FL can be used 
in pattern recognition, like fuzzy reasoning system 
for classifier and so on [5, 15,44]. 

One of the distinctive features of FL is that it can 
model the imprecision associated with real-life situa- 
tions, while given a problem we find a computational 
neural network model to solve the same. For example, 
when the input information for a classifier is impre- 
cise or vague, we can use fuzzy sets to model them. 
On the other hand, given a problem of designing a 
classifier, we can easily use a multilayer perceptron 
network, or to find the "homogeneous" sub-groups in 
a data set we can use Kohonen's self-organizing fea- 
ture map or Learning Vector Quantization. For some 
other problems we may need to design problem spe- 
cific new neural architectures also. Often some of the 
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common architectures can be easily modified to solve 
some problems for which the original net was not de- 
signed. We shall see later how the MLP or its variants 
can be used for feature analysis although MLP was 
originally designed to be a classifier. A natural ques- 
tion then arises, what do we gain out of these? Well, we 
may achieve robustness, parallelism, fault tolerance 
and often better performance (generalization) than the 
traditional methods. 

Irrespective of whether a problem is modeled us- 
ing fuzzy logic or a neural network, often finding of 
solutions becomes equivalent to solving an optimiza- 
tion problem. Some such examples are: choosing an 
"optimal" architecture for an MLP for a given task, 
finding the parameters defining membership functions 
of a fuzzy rule-based system or selecting a small but 
adequate rule set to solve a problem. Sometimes clas- 
sical gradient based optimization schemes are not suit- 
able, as in the case of finding an "optimal" set of 
rules for a fuzzy classifier. Since, GAs, do not re- 
quire derivatives/continuity of the objective function, 
in principle, GAs can be used to solve any such op- 
timization problems. Sometimes searching with GAs 
can be made faster with judicious use of gradient infor- 
mation maintaining the stochastic nature of GAs [3]. 

Readers should not get the false impression that 
GAs can solve every problem efficiently. For exam- 
ple, if the searching is done in the real domain and the 
number of parameters to be identified are reasonably 
large (sometimes 15 parameters may even be large), 
GAs may not be an efficient choice. In such a case the 
guidelines may be, if you have some other reasonably 
good search technique, use that. For example, use of 
GAs to optimize the fuzzy c-means [2] objective func- 
tion even for the IRIS [1] data may not stand in com- 
parison to the usual alternating optimization scheme. 

With this background we now concentrate on the 
feature analysis problem. 

2. Feature analysis 

Feature analysis may be represented by an implicit 
or explicit mapping f :R p ~ R  q where for feature 
selection q < p; in this case f simply selects some 
features and for feature extraction (computation of 
additional features from the given features), q >  p. 
One can of course view feature selection as a special 

case of feature extraction. Often a part of the feature 
analysis task is called dimensionality reduction. When 
feature analysis suggests a set of q ( q < p )  features 
which has the necessary information to accomplish 
the task at hand (i.e., the q features can be used in 
place of the p original features) it may be called 
dimensionality reduction. These set of features may 
be obtained by selection or computed from the raw 
measurements. 

We emphasize here the fact that the quality of  a 
feature is dependent on the type of problem or clas- 
sifter we use to evaluate it. For example, the most im- 
portant feature for training an MLP may be different 
from the most important feature for a nearest proto- 
type classifier. 

There are many techniques for feature selection. 
Some of these techniques are based on interclass and 
intraclass distances [9, 11], some are based on neu- 
ral networks [8, 28, 39] while some others use genetic 
algorithms [29,42]. Similarly, for feature extraction 
there are several methods including principal compo- 
nent analysis [16, 21,25, 30, 38, 40]. 

2.1. Neural networks Jor feature analysis 

Since majority of the connectionist schemes that we 
are going to present are based on MLP or its variant, 
for the sake of completeness we provide a brief de- 
scription of the backpropagation algorithm. 

2.1.1. The backpropagation algorithm 
A multi-layer perceptron net can be trained to learn 

the relation between a set of inputs and outputs. Each 
node of a hidden layer is connected to every node in 
its immediately preceding and immediately following 
layers. At each node all incoming signals (weight mul- 
tiplied by the output of the connecting node in the pre- 
vious layer) are summed algebraically to give the total 
input, which is then transformed by a non-linear ac- 
tivation function. The backpropagation (BP) learning 
algorithm updates the connection weights with a view 
to minimizing the total square error over the whole 
training data. 

We use the following symbols in our subsequent 
discussion. Let xi be the ith component of an input 
vector x in the training set, O~ be the output corre- 
sponding to the ith node of the kth hidden layer for 
the input vector x, Ti be the desired output for the ith 
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output node corresponding to input vector x, and Wi~ 
be the weight connecting the jth node of the kth layer 
to the ith node of the (k + 1 )th layer, k = 0, 1 . . . . .  n. 
Here k = 0 corresponds to the input layer, n is the to- 
tal number of hidden layers and (n + 1)th layer is the 
output layer. Also let f be the activation function, f.,k 
be the value of the derivative of the activation func- 
tion at the ith node of the kth hidden layer, e be the 
error for the input x, and ~/be the learning rate. 

The BP algorithm consists of two passes: the for- 
ward pass and the backward or weights adjustment 
pass. The forward pass computes the output of each 
node. The output in the first hidden layer is com- 
puted as, O: = f ( ~ / x ~  W/~'). The outputs computed 
by the nodes in the kth (k = 2 . . . . .  n) layer are given 
byOi k= f(~-~jOf ' k-I W/~ ). The output from the out- 
put layer n + 1 can be written as 

o: '+' = f oj w, 

In the backward pass, weights are adapted to minimize 
e using the gradient descent on e in (2) generated 

by each input vector in the training set: 

1 1 
e= 5 ~_, (l£i)2= s Z ( T i -  Zi)2. (2) 

i i 

Using the gradient descent method the weight correc- 
tions for the output layer can be shown as 

A W !  1 = n : ] ?  +1 /Q:~  ,,,: .,v, v~, (3) 

where 

fi7 +1 = Eif,: ''+L . (4) 

Similarly, using the chain rules the weight updates for 
the hidden layers can be written as 

where, 

6(: ,k Wi~ 1. (6) 
i 

The incremental changes A Wi~ may be summed up 
over all patterns in the training set and the weights W~ 
may be updated with the resulting sums (batch mode), 
or the weights may be updated for each pattern (on 
line mode). 

2.1.2. Feature extraction 
(a) Neural nets for PCA. Principal component 

analysis (PCA) is a linear orthogonal transform from 
p-dimensional space to q-dimensional space (q ~< p), 
such that the co-ordinates of the data in the new 
q-dimensional space are uncorrelated and maximal 
amount of variance of the original data is preserved 
by only a small number of co-ordinates [17]. 

Suppose we have a linear transform from a 
p-dimensional zero-mean input vector x = (xl, x2 . . . . .  
x;) v to a q-dimensional output vector y = (yl,  y2,...~ 
yq)T and y is related to x by the expression y = Wx 
where W is a q x p matrix, with q ~< p. PCA sets the 
q successive rows of W to the q eigenvectors cor- 
responding to the q largest eigenvalues of the input 
covariance matrix S = E(xx  T) Thus, Yl represents 
the component of x in the direction of the largest 
eigenvector of S, y2 is the component in the direction 
of the 2nd largest, and so on. 

Let 14;, and W,,+l be the W matrices computed 
with X, = {xi C ~P: i = 1,2 . . . . .  n} and X,,+t =X,  U 
{ x,+ l C .~P }, respectively. Then, 

y,,+l = w,,+tx,.+l ¢ w,,,x,.+l = ~ . l -  (7) 

As long as x,,+l is not widely different from the vec- 
tors used to compute W,, y,+ l ~ Y/,+ t- Thus W,, can do 
a good job of projecting new data points, as long as the 
data points used to compute W,, adequately represent 
the population generating x: E ~P. Due to unavoid- 
able computational complexity with the conventional 
approaches, especially when p is very large, neural 
network approaches for PCA have been widely stud- 
ied recently. A variety of neural networks and learn- 
ing algorithms have been proposed for PCA and its 
variants [22-25,37,38]. Most of them are based on the 
early work of Oja's one-unit algorithm [23, 25]. We 
discuss here only one of them as a representative. 

Rubner's PCA network. The PCA network pro- 
posed by Rubner et al. [37,38] consists of an input 
layer with p nodes and an output layer with q nodes. 
The two layers are completely interconnected. Let the 
connection weight between input node i and output 
node j be denoted by W/i. All the output nodes are hier- 
archically organized in such a way that the output node 
i is connected to the output node j with connection 
strength ui/if  and only i f j  < i. The set of weights con- 
necting an output node j to all input nodes forms the 
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weight vector w j, the transpose of which is the j th row 
of the weight matrix W. Let {xk = (Xkl,Xk2 . . . . .  xkp) r, 
k = 1 . . . . .  n} be the set of n input vectors with zero- 
mean and {Yk = (ykl, yk2 . . . . .  ykq) T, k = 1 . . . . .  n} be 
their corresponding output vectors produced by the 
network, as computed by 

yk/= (wj, xk) + Z (Uj, x Ykl). (8) 
l<j 

The weights between the two layers are adjusted upon 
presentation of an input pattern Xk according to the 
Hebbian rule, 

wj(t + 1) = wj(t) + qxkykj ( j  = 1 . . . . .  q). (9) 

The lateral weights adapt themselves according to the 
anti-Hebbian rule, 

Ujl(t + 1 ) = u j l ( t )  -- ~YkjYkl ( l< j ) ,  (10) 

where q and # are positive learning coefficients. Note 
that (9) updates a complete weight vector, while (10) 
updates only one weight. 

Often a momentum term is added to each of (9) 
and (10) to expedite the learning. Rubner and Tavan 
[38] proved that if the learning parameters r/and # are 
chosen according to 

~ / ( ) . 1  - -  ,~p) 2 
21(1 + r/2p) < # <  ~ (11) 

then this learning rule forces the lateral weights to 
vanish and the activities of the output cells to be- 
come uncorrelated. Correspondingly, the weight vec- 
tors Wj converge to the eigenvectors of the covariance 
matrix S. Although in practice, it is difficult to deter- 
mine the values of r/and # according to the inequality 
in (11 ), without computing the eigenvalues, (11 ) does 
provide a range for the values of r/and/~ if 21 and 2p 
can somehow be estimated. 

The PCA network has the same level generaliza- 
tion abilities as that of W computed with the eigen- 
vectors of S and hence is able to project new data 
as expected when the original data have linear rela- 
tionship. However, PCA networks and learning al- 
gorithms have some limitations that diminish their 
attractiveness: (i) Standard PCA networks are able 
to realize only linear input-output mappings. (ii) The 
PCA networks cannot usually separate independent 
subsignals from their linear mixture. 

To overcome these drawbacks PCA networks con- 
taining nonlinear units are gaining attention [18, 24]. 
Also Independent Component Analysis (ICH) has 
been introduced as an interesting extension of PCA 
in context with the signal separation problem [6]. 

(b) Neural net for Sammon' s nonlinear projection. 
Sammon's method: Sammon's [40] nonlinear pro- 

jection algorithm (SM) attempts to preserve the struc- 
ture by finding n points in q-space such that their 
inter-point distances approximate the corresponding 
inter-point distances in p-space. 

Let X =  {xk I xk = ( X k l , X k 2  . . . . .  Xkp) T, k = 1,2 . . . . .  
n} be the set o fn  input vectors and let Y=  {Yk lYk = 
(Ykl,Yk2 . . . . .  ykq) z, k =  1,2 . . . . .  n} be the unknown 
vectors to be found. Let d~=d(x i ,  xj),xi,  x j E X  
and dij =d(yi ,Yj) ,  Yi,Yj E Y, where d(xi, xj)  be the 
Euclidean distance between xi and xj. Sammon sug- 
gested looking for Y minimizing 

1 (d;j - d,j)2 
E -  E l < j a b  i<j d--i;j " (12) 

Sammon used the method of steepest descent for (ap- 
proximate) minimization of E. Let yi(t) be the esti- 
mate of Yi at the tth iteration Vi. Then yi(t + 1) is 
given by 

[ / O2E(t) ] 
Yij(t + 1)=Yij( t )  - ~ [ O Y i j ( t ) / [ ~  _ ' (13) 

where the non-negative scalar constant ~ is the step 
size for gradient search. 

With this method we cannot get an explicit map- 
pin9 function governing the relationship between 
patterns in p-space and corresponding patterns in 
q-space. Therefore, it cannot project new points. It 
also involves a large amount o f  computation, as ev- 
ery step within an iteration requires the computation 
of  ½n(n-  1) distances. The algorithm becomes im- 
practical for  large n. Finally, the algorithm usually 
gets stuck in a local minimum. 

Connectionist implementation o f  Sammon' s 
method: Jain and Mao [16,21] used the multilayer 
perceptron network with an error function defined 
in a different manner for Sammon's projection. The 
number of input and output nodes are set to p and 
q, respectively. An MLP needs an error function to 
drive the backpropagation algorithm. As such for 
Sammon's method the target value is not known. To 
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realize the Sammon's error, the net is given a pair 
of  data points, say xi, xj E ~P one after another as 
input. Let the corresponding outputs of the net be 
yi,yj E ~q. Once Yi,Yj are known, d(*/ and dij and 
consequently 

Ei/ - . 
dq 

(14) 

can be defined. Jain and Mao used gradient descent on 
Eii with a view to minimizing Sammon's error func- 
tion. The process is repeated with randomly selected 
pairs till convergence of the net. 

It was shown experimentally that the number of  
nodes required in the hidden layer is to be around nq to 
get good results. This method requires a lot of  space 
and training time to get good solutions. 

In [21], a different approach was followed for train- 
ing so as to take advantage of the nonlinearity of  the 
above network. Initially a PCA network is used to 
project data and then standard backpropagation algo- 
rithm is used to approximate principal components. 
The weights of this trained MLP are then used to ini- 
tialize the weights of  the Sammon's net. 

We offer the following remarks about this imple- 
mentation: (i) training time is high, (ii) memory us- 
age is high, (iii) to try a different (new) architecture, 
an M L P  with the same new architecture should again 
be trained to approximate principal components for 
weight initialization i.e., we cannot directly add any 
extra hidden layer even i f  it is demanded; in fact we 
cannot even add an extra node and (iv) the main 
purpose o f  this network is to handle nonlinear data, 
as, linear data is very well projected by the PCA 
network, but, even this may not be achieved by the 
proposed implementation, as shall be seen from the 
results. 

Another new connectionist scheme: Sammon's al- 
gorithm and some of its derivatives work very well 
for small data sets [10,40]. As mentioned earlier 
Sammon's method cannot project new data points 
and is computationally prohibitive for large data sets. 
These problems can be eliminated, if  we can get 
a mapping function governing the relationship be- 
tween patterns in p-space and patterns in q-space, by 
projecting a small representative subset of  the data. 

We proposed a very simple method [30], which 
performs better (at least on the examples we tried) 

than methods given in [16,21] in terms of time, 
space and quality o f  the projected map. This method 
combines the advantages of  Sammon's method for 
projecting small data sets and capabilities of  MLP 
for function approximation. We call this method 
SAPRONN - Sammon's projection with neural net- 
works. 

When we talk about projection of unknown data 
based on a mapping (explicit or implicit) estimated 
from a given data set, we implicitly assume that the 
given data have some structure which future data 
points are expected to follow. In other words, we can 
assume that the data points are generated from some 
time invariant (unknown) probability distribution. 
Therefore, if we can extract a small but adequate 
representative sample of  the given data set and then 
estimate the mapping function based on these we can 
expect to have a good generalization. 

In fact, although not explained or stated, this was 
also the philosophy behind the Jain and Mao's method. 
It then raises two issues: How to get an adequate but 
small sample and what do we do with that! 

We propose to select a small subset X (s) of repre- 
sentative data points using SRSWOR (simple random 
sampling without replacement) scheme so that statis- 
tical characteristics of X are retained by X ~s) based on 
~2 or divergence statistic [43]. Our computational ex- 
ercise shows that 30% data points are usually enough. 
Now we run Sammon's algorithm on X (s) to generate 
y(S) C ~q. Then we use (X (s), y(S)) to train an MLP. 
Note that such a trained MLP will capture the struc- 
ture present in X (s) c ~P. Jain and Mao used 50% of 
the data points first to train a PCA network and used 
that net to initialize Sammon's network. Unlike Jain 
and Mao, in our scheme the relation is captured by the 
pair (X  (s), y(S)) and an MLP simply learns it. In this 
scheme it is easy to try different NN architectures. 

Next we provide a schematic description of the 
algorithm: 

A l g o r i t h m  S A P R O N N  ( ) 
{ 

Input X = (X i c'~P: i=  1,2 . . . . .  n}; 

Normalize xi to get xl x), i=  1,2 . . . . .  n}; 
L e t Y  (x) = {xlN}: i =  1,2 . . . . .  n}; 
Select a random sample x(S),  of size n~ by 
SRSWOR-scheme from X ( x ) 
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using ){2 or divergence or like Jain & Mao a 
random sample of  size ns = n/2; 

Run Sammon_projection with X (s) to get 
y ( S )  = { y l S )  E ~ q :  i= 1,2 . . . . .  (ns)} 

where yl s) corresponds to xlS); 
Normalize yl s) to get yl u), i = 1,2 . . . . .  (ns)}; 
Let y(N)= {ylN): i= 1,2 . . . . .  (ns)}; 
Train an MLP with X (s) and y(N), 
yl u) is the target corresponding to xlS); 

Use this trained MLP to project the complete data 
set X (N) and any new data points. 
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2.1.3. Feature ranking & selection 
When an MLP is reasonably trained we can ex- 

amine the sensitivity of  the net's output with respect 
to input for finding important features. Based on this 
philosophy we discuss two methods. 

Saliency based feature ranking (SAFER): Ruck 
et al. [39] possibly were the first to propose use of  
sensitivity of  output of the network to its input for 
ranking of input features. The expression for feature 
saliency measure as proposed by them is 

dok(x, w )  
Z Z Z  0xj ' 

A j =  
x E , ~  k x i E D j  

(15) 

where D/ is  the set of  values for the j th feature that will 
be sampled and oh is the output of the kth output node. 
6 ~ is the training set. The matrix W is an array of all 
connection weights in the network arranged in some 
suitable form. They used sum of the absolute values 
of  the derivative as an indicator of  the sensitivity of  
the output of  the network with respect to the input 
feature. Therefore, Aj > Ai is assumed to indicate that 
the importance of the j th feature is more than that of 
the ith feature. 

For evaluating ~ok(x, W)/Oxj in (15) the chain 
rule can be used as discussed for the backpropagation 
algorithm. 

To reduce the computational load, Ruck et al. 
suggested to sample the data at the most important 
points. The points of  greatest importance in the input 
space are those for which training data exist; hence, 
the training vectors are used as starting points to 
sample the input space. For every training vector, 

Fig.  2. T h e  sca t t e rp lo t  o f  a 2 - d i m e n s i o n a l  da t a  set. 

each feature is sampled over its range to compute the 
saliency. 

Note that the method of sampling data points in 
[39] sometimes may mislead the scheme. Let us take 
a pattern set in two dimension as in Fig. 2. 

Fig. 2 has two classes viz. class 1 (left) and class 
2 (right). Consider a pattern vector x in the training 
set from class 1. If  the value of feature 1 (Fl)  is kept 
fixed and that of  F2 is varied over its range, some of 
the points may be generated outside of  both classes 
1 and 2. The network is neither trained with these 
pattern points nor do these points belong to any of the 
two classes. Therefore, incorporation of these points 
in calculating the feature saliency may mislead the 
process of  ranking. Further details in this regard can 
be found in [8]. 

Sensitivity based feature ranking ( SEFER ). After 
an MLP successfully learns a data set, the weights 
of  the links are expected to be so adjusted that the 
value of a redundant (less importance) feature will 
not influence the output vector much. Lesser the 
importance of a feature in discriminating between 
classes, lower would be the influence of its value on 
the output of  the network. SEFER is banked on this 
concept [8]. 

Using the trained MLP, for every feature q we 
compute a feature quality index, FQIq and then rank 
the features according to FQlq. To compute FQIq we 
proceed as follows: For each training data point xi, 
i = 1 ,2 , . . . ,n  we set Xiq to zero. Let this modified 
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data point be denoted by ~1”; i.e., .x;) =xij ‘dj # q 

and .Iq) = 0. Setting the 9th component to zero is 
equivaent to delinking the 9th input node and hence 
delinking all connections associated directly with the 

9th input node. Thus, the impact of the 9th feature 

will not reach any node of the network. Let the output 
vectors obtained for xi and x:‘) be oi and ojq), respec- 
tively. Note that oi is not the target output correspond- 
ing to xi, but the actual output that is obtained for xi 

from the trained net. For a less important feature, the 
output vectors 0; and 0:“’ are not expected to differ 

much. Any function of Oi and 01’) that can measure 

this variation between the two can be used as an in- 

dex for feature ranking. A very simple choice would 

be to define 

I7 

IO,/ - oyy . (16) 

Here t > 1 and c is the number of classes. After com- 

puting FQ$s for all p features, they can be ranked 

according to their importance as ql, 92,. . . , qD when 
FQI;, > FQI;, 3 ... >FQ$ & 

Another interesting choice could be to use the sym- 

metric divergence function of Kullback FQIo, 

FQID = c (ov - 0:‘) log (oi,io$‘). (17) 
,=I 

Note that, FQID cannot be called entropy as oijs are 

not probability and it is not a metric also. 

If the problem is to select k (k<p) best fea- 
tures (feature selection), best from the point of 
view of discrimination between classes, the feature 

set {ql,q2,.... qk} may not be the optimal set. But 
ql ,q2,. . . , qk will definitely represent a good subset 

of features. However, the best set of k features can 
be obtained by evaluating FQI setting every possible 

subset of k features to zero. 
In SEFER we find the output of the net after remov- 

ing a feature and then measuring the deviation of this 
output from the learnt output but not from the target 

output. We have not considered the target output 

because the network might not have been able to learn 

the target output to a desirable level. It is more logi- 
cal to consider the sensitivity with respect to what has 

been learnt by the network. Moreover, setting a fea- 
ture value to zero is equivalent to assuming absence 

of that feature. Thus, it is a conservative approach. 
SAFER ranks individual features but cannot select the 

best subset of k < IZ features. But SEFER can rank the 
features individually as well as select the best subset 

of k <n features. 

An attenuator basedfeature selection (AFES). In 

a standard multilayer perceptron network, the effect 
of some features (inputs) can be eliminated by multi- 

plying them with zero and the rest with unity before 

they propagate into the network. They can be made 

effective again by changing these “multipliers” or 
“feature attenuators” from zero to unity. The binary 

version of these “attenuators” can be further general- 

ized into continuous “attenuation functions”, whose 
range is [0, 11. In AFES the inputs are attenuated 
by their corresponding “attenuation functions” be- 

fore they pass into the network. Parameters of the 

attenuation functions are also trained by the gradient 

descent method along with the connection weights 
[28]. At the end of the training input features with a 

high attenuation can be eliminated. 

In addition to the symbols introduced earlier, we 

use the following: 
Let F be the attenuation function, F,! be the deriva- 

tive of the attenuation function associated with the 

ith input node, Mi be the argument of the attenuation 
function associated with the ith input node, p be the 
learning rate of the attenuator, and Ai be the attenua- 

tion of the ith feature = 1 - F(Mi). 
In the forward pass corresponding to an input vector 

x we get the attenuated vector X’ after the attenuation 

has occurred for each input feature (x, ) as, 

x( = F(M;)x;. (18) 

To realize ( 18) we may assume that the ith node in the 
input layer has an activation function x!(x) = xF(Mi), 
with tunable Mi, i = 1,2,. . . , p. Thus, the output 0; 
for the first hidden layer becomes, 

(19) 
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Propagating the signal further into the network we 
have, 

O~i = f Oj. k-1 Wi j , (20) 

where k = 2 . . . . .  n + 1. The final output, as before, is 
given by O n+l . 

In the backward pass, weights and parameters of  the 
attenuation functions are adapted with a view to mini- 
mizing ~ e using the gradient descent on e generated 
for each input vector in the data set. 

As before, 

1 
13 = ~ Z (El)2" (21) 

i 

The weights of  the network are adjusted exactly in the 
same manner as described earlier except for the minor 
changes given below. 

a -- .a) 4 -- x/X( Mj ). (22) 

The learning rule for the attenuators (/14.) can be 
shown [28] to be 

0 1 = ]Axifi' Z ( Wji (~J)" (23) 
J 

Here the attenuation for the ith feature is given by, 
Ai = 1.0 - F(Mi) .  

I fAi is close to 1.0 i.e., when F(M/) is close to zero, 
xiF(Mi)  will have values close to zero. Under such a 
situation the feature will not pass into the network. On 
the other hand, when Ai is close to 0.0 (F(Mi) nearly 
equal to 1.0), x iF(mi)  will have values close to xi, and 
hence, the feature passes almost unattenuated into the 
network. The training starts with all attenuation func- 
tions set to almost zero value, i.e., Ai-- 100%. Thus, 
at the beginning of the training, practically none of the 
features is allowed to pass into the network. As the 
network trains, it selectively allows only some impor- 
tant features to be active by increasing their attenuator 
values as dictated by the gradient descent. The train- 
ing can be stopped when the network has classified 
satisfactorily, i.e., the number of mis-classifieations 
has gone down to a tolerable value and/or the error is 
low. Features with high attenuation may be eliminated 
from the feature set. 

2.2. Fuzzy sets for  feature analysis 

There are not many attempts to feature anal- 
ysis using fuzzy logic. We just illustrate here 
a few such approaches for feature ranking. Let 
X = {xl,x2 . . . . .  xn} C R be the universe of discourse 
and a fuzzy set ~¢ = {p~,,(xi)/xi [xi EX;  i = 1, 2 . . . . .  n; 
#,u E [0, 1]} be defined on X where #s¢(xi) denotes 
the membership of xi to ~¢. A measure of  fuzziness 
for ~¢ can be defined as [27] 

// 

H ( J )  = k Z f(#.~e(xi)), 
i-I 

(24) 

where k is a constant and the function f ( . )  can be de- 
fined in various ways [27]. One can obtain the fuzzi- 
ness measure suggested by Deluea-Termini using 

f ( p.~ (xi)) = - #.~¢ (xi) In (#~:¢ (x i ) ) 

- (1 - ]Aj(xi) ) In (1 - #d (x i ) )  (25) 

in Eq. (24) .  H ( d )  with ( 2 5 )  is also called entropy of 
the fuzzy set. Thus, the entropy becomes, 

H ( ~ ' )  - n In 2 { - #'~ (xi) In ( K4 (Xi)) 
i=1 

- (1  - # , ~ ( x i ) )  In (1 - # , ~ ' ( x i ) ) } ,  (26) 

where k = 1/n In 2 is the normalization factor. Pal and 
Chakraborty used Eq. (26) for feature ranking [32]. 
H ( d )  attains the maximum value when ~¢ is most 
fuzzy, i.e., when p.4(xi)=0.5 Vi and it attains the 
minimum value when #.,e(xi)=0 or 1 Vi. Pal and 
Chakraborty used S-type and n-type [32] membership 
functions for modeling of #. Let us consider only the 
standard S-function, defined as 

I 0, xi<~a, 

[ 12 2 x i - a  , a<~xi<~b ' 
L c - a j  ]~o~¢(Xi" ~ a, b, c) = 2 

fxi - c ]  , b<~xi <~c, 
1 - 2 L c _ a j  

1, X i ~C 

(27) 

in the interval [a, c] with b = (a + c)/2. The para- 
meter b is known as the crossover point for which 
#,.~¢(x; a, b, c) = 0.5. 
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Let X = {xl ,X2 . . . . .  Xn} C R p, be the given data set 
where each x~ is from one of the c classes, i.e., each 
xz has a class label (dj which it comes from. 

Let av, max and min be the average, maximum and 
the minimum value Of Xqj, respectively, of  the j th fea- 
ture for class k. 

Define [32] 

b = (xq/)~, (28) 

c = b + max{ I(xqj)a~ - (Xqj)max], 

I(Xqj )av --  (Xqj)min I}, 

and 

(29) 

a = 2b - c. (30) 

Compute H (in (26)) of  the class ~. for the qth 
feature using (28)-(30) .  Now for the qth feature of  
class k if  each Xqj is equal to b, H will be maximum 
and equal to 1; H tends to zero as Xqj moves away 
from b towards either c or a. The higher the value of 
H,  the greater would be the number of  samples having 
#(x) ~ 0.5 and hence greater would be the tendency of 
the samples to cluster around its mean value, resulting 
in less (internal) scatter within the class. If  we pool 
together the classes ~ and cgk and compute the mean, 
maximum and minimum values of  the qth feature over 
all (nj + nk ) samples where n~ (r = j ,  k) is the number 
of samples in class Cgr, H for the pooled sample would 
decrease as the goodness of  feature increases. This is 
because, for a good feature, the samples from both 
classes should be away from the overall mean, i.e., 
most of the points will have #(x) ~ 0 or 1. The feature 
evaluation index for feature q, (FEIq), can thus be 
defined as [32] 

Hqjk ( 3 1 )  
FEIq - Hqj + Hqk' 

where Hqj,¢ is the value of the entropy for feature q 
after pooling the classes ~ and cd k; Hqj, Hqk are those 
for the feature q computed for ~. and cdk, respectively. 
The lower the value of FEIq, the better is, therefore, 
the quality of  the qth feature in characterizing and dis- 
criminating classes ~ and cdk. Instead of using only 
one feature q, FEI can be calculated even for a set 
of  features [31 ]. In this case, we need to use a multi- 
dimensional membership function [34]. Note that, in- 

stead of H in (26) any measure of  fuzziness [27] can 
be used. 

This method can be used to assess features for a 
pair of  classes only. It may happen that a feature p 
is good in discriminating ~ and ~ ,  while feature q 
may be a better discriminator for classes cgk and ~ .  
Further, it may happen that some other feature r is, on 
an average, a better discriminator for all the classes %, 
~., C~k and ZI taken together. Thus, with FEI it may 
be difficult to assess the goodness of  a feature keeping 
in view all classes taken together. 

To get around this problem, Pal [31 ] extended his 
earlier work to define the average importance of a set 
of  features 5g as 

(FEI)a~ = Z Z WjW~(FEI)!Jk)' (32) 
i k 

where Wj=nj/nt, Wk=n~/nt, n t = ~ j n j ,  j , k =  
1,2 . . . . .  c; k e j ,  are weight factors. 

Here the weights are nothing but the a priori prob- 
abilities of  different classes. Hence, (FEI) av depends 
on the number of points in a class and this may not be 
desirable. Preferably, (FEI) av should depend only on 
the structure of  the classes but not on the number of 
points in a class. Suppose nj + nk = ~b (a constant) for 
two different pairs of classes. Here Wj Wk attains the 
maximum value when nj = nk = ~p/2. Thus, (FEI) a~ 
is biased towards equiprobable classes but this is not 
desirable. With a view to relaxing this bias a new in- 
dex, called overall feature evaluation index or OFEI 
is defined in [8]. 

The objective of OFEI is to account for some 
of the issues just discussed. Feature q will be good 
if it can discriminate every pair of  the c classes. 
Therefore, the goodness of  a feature q increases as 
Hqjk ( j , k = l , 2  . . . . .  c and j ¢ k )  decreases and Hq/ 
( j = l , 2  . . . . .  c) increases; i.e., ~-~.k=lj#kHqjk de- 

c creases and Y'~j=l Hqj increases. Thus, the overall 
feature evaluation index for feature q (OFEIq) can be 
defined as 

C 

OFEIq = ~j" k=,.l,j#k Hqjk (33) 
~ j = l  Hqj 

I f  OFEI is low, we can expect the associated fea- 
ture to be better. It may happen that Hqij < Hr~j but 
nqkl > I-Irkl, i.e., feature q is more important to discrim- 
inate classes i and j than feature r but the converse is 
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true for classes k and l. Since Eq. (33) considers all 
possible pairs of classes, OFEIq will reflect the overall 
(average) discriminating power of  the feature q. Note 
that, OFEIq does not directly depend on the size of a 
class. 

2.3. Genetic algorithms for feature analysis 

There have been a few attempts to solve the feature 
selection problem using GA. Siedlecki and Sklansky 
[42] used k-NN rule to find a small subset of fea- 
tures for which the classifier's performance does not 
deteriorate below a specified level. They did this by 
constructing a GA chromosome consisting of a binary 
string whose length equaled the number of features. If 
a bit is "1", that feature is selected for evaluating the 
performance of the classifier. 

Kelly and Davis [19] and Punch et al. [35] solved 
the same feature selection problem using GA. Unlike 
Siedlecki and Sklansky they multiplied each feature 
by a real-valued weight and then used that weighted 
feature for computing distances required for imple- 
mentation of k-NN classifier. GAs have been used to 
learn these weights. Features with high values for the 
learned weights are considered important features and 
vice-versa. 

These methods cannot be used to select a fixed 
(given) number of good features i.e., say q, good fea- 
tures. The algorithm may terminate at a point where 
the total number of l 's  in the solution string may not be 
equal to q in [42]; while for other two methods [19,35] 
those q features having highest weights can be se- 
lected. But this can create another problem. Suppose, 
there is a feature which is more or less constant for 
all classes. For this feature whatever be the weight the 
classifier performance will not change. Since GAs are 
probabilistic search techniques, the algorithm might 
terminate at a point with high weight for this indiffer- 
ent feature and thereby indicating a false importance. 

In order to maintain a fixed number of l 's  in a 
chromosome, yet keeping the evolutionary character- 
istic of GA, Pal et al. [29] proposed a new crossover 
operator, named self-crossover. Unlike conventional 
crossover, self-crossover alters the genetic informa- 
tion within a single potential string selected randomly 
from the mating pool to produce an offspring. This is 
done in such a manner that the stochastic and evolu- 
tionary characteristics of GAs are preserved. 

Let 

S = 00010010011001011011 (34) 

be a string of length 20 selected from the mating 
pool. For self-crossover, first we select a random posi- 
tion p (0 < p <L)  and generate two substrings Sl and 
s2: sl = bits 1 through p of S and s2 = bits p + 1 
through L of S. Now we select two random positions 
Pt, 0~<pl ~<p and P2, 0~<p2~<(L - P). Then four 
substrings are generated as follows: 

sll =bits  1 through p -  pl of Sl, 

s12 = bits (p  - pl + 1) through p of sl, 

s21 = bits 1 through L - p - p2 of s2, 

s22 = bits (L - p2 + 1 ) through L of s2. 

Using operations similar to crossover we gener- 
ate S 1 =Sl l  [s22 and S2=s21 [sj2. Finally, the self- 
crossovered offspring of S is generated as $1 = S l [ S 2. 
It is easy to see that number of 1 's in S and SI is the 
same. Let us now explain it with the example string 
S in (34). 

A random position, p = 9, is selected for splitting 
the string into two substrings (st, s2) as follows: 

s l -000100100  and s2=llO01011011. 

Now two random positions, Pt = 4 and P2 = 7, are 
selected for sl and s2, respectively. After splitting sl 
and s2 at 4th and 7th position, respectively, we get, 

Sit = 00010; St2 = 0 1 0 0 ;  $21 = 1100; 

and 

s22 = 1011011. 

Now two new substrings S t and S 2 are then obtained 
as 

S l=000101011011 and S 2=11000100. 

Finally, the offspring (St) is generated by concatenat- 
ing S 1 and S 2 as 

$1 = 000101011011 11000100. 

Thus, self-crossover exchanges substrings st2 and s22. 
If  the parent string consists of all O's or all l 's, the 
offspring generated through self-crossover will resem- 
ble its parent because of the underlying constraint on 
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the total number of  l ' s  in the string. If  we do not start 
GA with a all "1" or all "0" string, GA with self- 
crossover technique, will never generate such strings 
as offsprings. Self-crossover evolves to new offsprings 
as iterations go on. 

It can be easily shown that self-crossover (without 
mutation) can generate any target string [29]. How- 
ever, the result does not  say that there is no need 
for mutation in GA with self-crossover technique. It 
simply says that for problems like TSP, use of  self- 
crossover without mutation can generate all possible 
valid solution strings. For problems like feature se- 
lection, data editing for NN classifier where we want 
to select a good subset of  features or data points of  a 
prefixed cardinality, self-crossover without mutation 
is sufficient. Conventional mutation for such problems 
may produce invalid solutions, i.e., it may generate a 
substring of arbitrary cardinality, not equal to the pre- 
fixed cardinality. 

At the first sight, it might appear that self-crossover 
is a parallel random search, but this is not the case 
for two reasons. Self-crossover is done only on a ran- 
domly selected subset of  strings and self-crossover 
does not alter the substring sll. It exchanges, only s22 
and s12. Consequently, through selection & crossover 
the evolutionary characteristics of GA are preserved. 
The similarity between the parents and offsprings will 
be more if we take p l = p 2  = p '  ( say )=  a random 
number selected between 1 and Min(p, L - p); i.e., 
0 < P l = P2 = P' < Min(p, L -  p). In this case, the bits 
in positions 0 through p '  and bits from p + 1 through 
L - pl will remain unaltered. Consequently, the evo- 
lutionary pressure will be more. 

Let us denote the p features as FI,F2 . . . . .  Fp. We 
have to select a set o fq  features, say {FiI,Fi2 . . . . .  Fiq} 
C {F1, F2 . . . . .  Fp } such that the selected feature sub- 
set can do different pattern recognition jobs well. 
To use GA for feature selection we need an objec- 
tive (fitness) function to guide the feature selection 
process. The fitness function should reflect the per- 
formance of the reduced data set for different pattem 
recognition tasks. For an unlabeled (where class 
information is not available) data set the fitness 
function may reflect the performance of a clustering 
algorithm; while for labeled data (where class in- 
formation is available) the fitness function may be 
defined to measure the performance of a classifier. 
Here we consider the latter case and the fitness func- 

tion is defined to be the performance of the nearest 
prototype (NP) classifier. Thus the fitness function f 
is given by f ( F i l ,  F i 2 , . . . ,  Fiq, Yq, V) = No. of correct 
classification, where Yq = {Yl ,Y2,... ,Y,}, Yi E R q and 
the kth component o f y i ,  i.e., Yik is equal to some lth 
component xil o f  xi  E R p ; V = {vj, v2 . . . . .  v~,}, vi E R'I 
is the set of q dimensional prototypes defined by 

1 
vi = T ~  ~"~ yk, (35) 

I l ~ k c c L  i 

where c is the number of classes and ~. denotes the 
ith class. Note that the prototypes may be generated 
in many other ways. 

A feature subset is now represented by a binary 
string of length p. A set of  M binary strings of length 
p and cardinality k is taken as the initial population 
where the cardinality of  a binary string is defined as the 
total number of 1 's in the string. If  the ith position of 
the string contains a "1" then the ith feature is selected 
for the chosen subset. Thus, a string of cardinality k 
denotes a feature subset of size k. Now the iterations 
of  GA are continued with self-crossover, evaluation 
and selection with probability proportional to fitness. 
The entire process is repeated for a desired number 
of  times or till we find no improvement in the fitness 
value for several generations. 

3. Results 

We present our results summarized into two sub- 
sections, one for feature ranking and selection, and the 
other for dimensionality reduction. For feature selec- 
tion and ranking we have implemented the algorithms 
discussed on several data sets including both synthetic 
as well as real data sets, but we report here only re- 
suits on two of them, Crude-oil  and M a n g o - l e a f  for 
the feature selection algorithms and to show the effec- 
tiveness of  the feature extraction algorithm we con- 
sider a synthetic data set, Sphere -She l l  and the well 
known I R I S  data. 

Crude-oil [17] has five features and 56 data points 
and Mango-leaf [4] has eighteen features and 166 
data points. Both have three classes. The Sphere-Shell 
[22], on the other hand, consists of 1000 points in 3- 
space. 500 points are selected randomly within a hemi- 
sphere of  radius r l  and rest 500 from a shell defined 
by two hemispheres of  radius r2 and r3, such that 
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Table 1 
Results with SAFER, SEFER, (FEI) av and OFEI on Crude-oil 

Feature no./ SAFER 
Feature 
made0 Run 1 Run2 Run 3 

Table 2 
Results with AFES for Crude-oil for 6000 iterations 

SEFER (FEI) av OFEI Features M/ Ai.100 

1 1 1 1 1 5 5 
2 5 5 5 5 3 3 
3 4 3 2 4 4 4 
4 2 4 4 2 2 2 
5 3 2 3 3 1 1 

1 *5.82 *0.29 
2 5.52 99.60 
3 "6.12 *0.22 
4 *4.90 *0.74 
5 *6.62 "0.13 
Misclassification 2 
Error 0.023 

r l  < r 2 < r 3 .  IRIS [1,17] is a four dimensional data 
with 150 points in three classes. 

3.1. Results on feature rankin9 and selection 

In our implementation all features are normal- 
ized to the same scale by  a transformation. For  each 
feature x ~ the transformed value x is obtained as 
x (x' k l ) / ( k  k l ) ,  where k l  ' " ' . . . .  mlnimmj{xij } 
and k = maximaxj{x~.}. Note that this transformation 
does not change the structure o f  the classes as it is 
only a change o f  scale and origin o f  the entire data. 

For  the MLP based algorithms we used the stan- 
dard sigmoid for both attenuator and activation func- 
tions. "On-line" method was employed for training. 
One complete pass through the data was considered 
to be one epoch or iteration. The initial values o f  the 
"attenuation functions" should be ideally zero, this 
was practically achieved by  setting Mi to - 5 . 0  which 
corresponds to F(Mi) = 0.006699, i.e., an attenuation 
o f  99.33%. A feature is considered important i f  its at- 
tenuation is low. 

We compared our results with Ruck et al . ' s  scheme 
for which we provided rankings for three typical  runs. 
The network architectures, learning rates and the num- 
ber o f  iterations were kept the same for all schemes. 
We authenticated our results by running the conven- 
tional MLP with different feature subsets. 

3.1.1. Results for  Crude-oil 
For Crude-oil  [17] an architecture with six nodes in 

a single hidden layer is found to be adequate for an 
MLP. 

Table 1 reports the results obtained from three typ- 
ical runs o f  SAFER and also the ranks obtained by  
SEFER, FEI and OFEI. The second feature has con- 

Table 3 
Results of conventional MLP on Crude-oil 

Features Iteration Misclassifieations Error 

All 5000 3 0.0289 
1, 2, 3, 4 5000 4 0.0315 
1, 2, 3, 5 5000 2 0.0170 
1, 2, 4, 5 5000 2 0.0156 
* 1, 3, 4, 5 5000 0 0.0002 
2, 3, 4, 5 5000 1 0.0154 
1, 3, 5 5000 4 0.0411 
2, 3, 5 5000 9 0.0703 
3, 5 5000 12 0.1053 
2, 5 5000 7 0.0764 
4, 5 5000 7 0.0655 

sistently been ranked the last for all experiments that 
we conducted with SAFER and SEFER, thus indi- 
cating that it is the least important feature. Later we 
shall see that AFES conforms to this but the ranking 
of  other features does not agree with that o f  AFES. 
For  a few runs not reported in Table 1 both methods 
are found to rank feature 3 as the least important one; 
while both o f  the fuzzy indices produce significantly 
different ranking. 

Results o f  a typical run of  AFES on Crude-oil are 
given in Table 2. In Table 2 (and also in Table 3) 
asterisks (*)  are used to indicate features with low at- 
tenuation. Table 2 reveals that features 1, 3, 4 and 5 
are the important ones as their attenuations are very 
low at the end o f  the training. Several different initial- 
izations gave the same final result. For the run shown 
in Table 2 the initialization was such that feature 2 
was activated first, however, later it was eliminated 
which tells us that this feature is causing confusion 
and is a harmful one. These results were ratified by 
running the standard MLP on various feature subsets. 
We report this in Table 3. 
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From Table 3, we find that only the feature subset 
(1, 3, 4, 5) can result in zero misclassification just 
in 1000 iterations and it is the best subset of features 
of size four. Among the combinations involving four 
features, the one lacking feature 5 has a higher error 
than the rest, indicating the importance of this feature 
in comparison to the rest. This is also reflected by the 
lowest value of the attenuation factor for feature 5 in 
Table 2. 

Feature sets involving 4 and 5 have given a better 
performance than the rest, thereby indicating that fea- 
ture 5 is the most important one followed by feature 
4. The absence of feature 2 shows improvement in the 
performance of the classifier indicating its deleterious 
contribution. The column labeled Error in Table 3 rep- 
resents the average square error per class. 

3.1.2. Results on Mango-leaf 
This data set [4] has 18 features corresponding to 

three kinds of Indian mangoes. The results of SAFER, 
SEFER and (FQI) av and OFEI are presented in 
Table 4. Ranking produced by three runs of Ruck 
et al.'s method and that by others are different but are 
highly correlated. We shall see that these rankings 
are significantly different from the results suggested 
by AFES. 

Table 5 shows the results obtained by AFES which 
are found to be consistent over several initializations. 
Always features 2 and 3 had the minimum attenua- 
tions in comparison to the rest. Though feature 3 con- 
sistently gave a lower attenuation than that of feature 
2 for all runs, the difference in attenuations was small. 
Feature 6 and feature 9 were consistently close to each 
other and always next to features 2 and 3. Most of 
the times feature 6 was found to have a lower attenu- 
ation than that of feature 9. However, feature 9 gave 
lower values of attenuation than that of feature 6 for 
some initializations. Like other data sets for Mango- 
leaf also we ran the conventional MLP with different 
subsets of features and it is reported in Table 6. 

For most runs of SAFER the following four fea- 
tures 17, 6, 12 and 18 (listed in order) are found to be 
the most important. To authenticate this we ran con- 
ventional MLP (Table 6) with feature subsets (17), 
(17, 6), (17, 6, 12) and (17, 6, 12, 18). We found 
that the most important feature subset (2, 3) sug- 
gested by AFES is much better than (6, 17). Similarly, 

Table 4 
Results with SAFER, SEFER, (FEI) av and FQI on Mango-leaf 

Feature no./ SAFER 
Feature 
made0 Run 1 Run2 Run3 

SEFER (FEI) av FQI 

1 17 16 14 9 7 7 
2 11 11 12 5 l0 9 
3 13 12 16 6 16 16 
4 6 6 4 1 3 l 
5 9 9 10 13 1 2 
6 2 2 1 7 13 13 
7 16 18 17 17 6 5 
8 18 17 18 18 5 4 
9 8 8 2 2 9 t2 

10 14 t5 8 4 12 11 
11 7 7 7 8 18 17 
12 3 3 9 10 14 15 
13 5 5 13 11 17 18 
14 12 13 ll  15 4 6 
15 10 10 5 3 2 3 
16 15 14 15 16 11 10 
17 1 1 3 12 15 14 
18 4 4 6 14 8 8 

(2, 3, 6) is a rnuch better choice than (6, 12, 17). Sim- 
ilar experiments with the ranks suggested by others 
showed that AFES is the best among the three methods 
discussed. 

We also used GA with self-crossover for feature 
selection. When the cardinality of the chromosomes 
were fixed at 2, 3 and 4 the feature subsets selected by 
the scheme are {9, 14}, {9, 13, 14} and {9, 13, 14, 17}, 
respectively. These feature subsets are found to be 
quite good in terms of number of misclassifications 
produced by nearest prototype classifiers designed on 
them. 

3.2. Results on dimensionality reduction 

3.2.1. For Sphere-Shell and IRIS  
For feature extraction or structure preserving di- 

mensionality reduction algorithms, as mentioned ear- 
lier, we used two data sets: Sphere-Shell and IRIS. 

Table 7 shows that for IRIS original Sammon's 
method requires much less time than either of Jain 
and Mao's method and SAPRONN, with SAPRONN 
requiring about half time of Jain and Mao's method. 
In fact, for any small data set Sammon's method 
is expected to perform better than the neural 
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Table 5 
Results of the multiplier 
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based method on Mango-leaf 

Iterations 
Features 

1000 2000 3000 5000 

Mi Ai.100 Mi Ai. IO0 Mi Ai. IO0 Mi Ai. IO0 

1 "1.75 "14.75 *4.03 "1.74 
2 *4.52 "1.08 "5.21 *0.54 
3 *3.37 *3.32 *5.44 *0.43 
4 -4.76 99.15 -2.47 92.24 
5 -4.98 99.32 -4.63 99.03 
6 -4.97 99.31 -3.59 97.31 
7 -4.99 99.33 -4.99 99.33 
8 -4.99 99.33 -5.0  99.32 
9 *3.03 *4.62 "6.51 "0.15 

10 -4.77 99.16 -4.80 99.18 
11 -4.97 99.31 *1.00 *26.86 
12 -4.96 99.31 -4.08 98.34 
13 -4.97 99.31 -4.61 99.01 
14 -4.99 99.32 -4.84 99.22 
15 -4.89 99.25 -3.83 97.87 
16 -4.99 99.33 -4.98 99.32 
17 -4.98 99.32 -2.52 92.58 
18 -4.99 99.33 -4.86 99.23 
Misclassific~ions 24 21 
Error 0.162 0.114 

*4.22 "1.45 *5.06 *0.63 
*5.84 *0.29 *6.70 '0.12 
*6.06 *0.23 *6.83 *0.11 
-2.94 94.96 -3.70 97.58 
-3.44 96.89 *4.76 *0.84 
"5.19 *0.56 *6.65 "0.13 

-4.99 99.33 -4.99 99.33 
-5.00 99.33 -4.99 99.33 
*6.70 "0.12 *6.68 "0.13 

-1.95 87.50 -3.62 97.40 
*3.48 *3.00 "4.61 *0.98 
*4.36 "1.27 *6.05 *0.24 

-3.20 96.1 *5.55 *0.39 
-4.62 99.02 -3.87 97.96 
-2.21 90.13 -3.41 96.79 
-4.97 99.31 -4.93 99.28 
*4.57 "1.03 "6.10 *0.22 

-4.56 98.97 *3.25 *3.72 
15 l l  

0.096 0.078 

Table 6 
Results of conventional MLP on Mango-leaf 

Features taken Iterations Misclassifications Error 

All 5000 13 0.1301 
2,3 5000 25 0.1301 
3,9 5000 34 0.1476 
3,6 5000 35 0.1697 
2,3,6 5000 18 0.1047 
2,3,9 5000 20 0.1134 
2, 3, 6, 9 5000 19 0.0609 
2, 3, 6, 9, 12 5000 19 0.1007 
2,3,6,9, 17 5000 19 0.1025 
2, 3, 6, 9, 12, 17 5000 19 0.1023 
2, 3,6, 9, 12, 13, 17 5000 15 0.0893 
7,8 5000 48 0.1998 
7,8,2 5000 47 0.1868 
2,3,9,17 5000 19 0.1091 
17 5000 48 0.5953 
6,17 5000 48 0.5669 
6,12,17 5000 28 0.4219 
6,12,17,18 5000 31 0.4130 

i m p l e m e n t a t i o n  in  t e rms  o f  b o t h  C P U  t ime  a n d  

S a m m o n ' s  error.  For  IRIS  the  sca t te rp lo t  o f  the  two  

d i m e n s i o n a l  p ro j ec t i ons  are s imi la r  and  h e n c e  no t  

Table 7 
CPU time (seconds) for various methods 

Data Sammon's Jain and Mao's SAPRONN 
method method 

IRIS 205.6 1288.5 589.0 
Sphere-Shell 8995.8 7611.3 5508.6 

Table 8 
Values of Sammon's error for various methods 

Data Sammon's Jain and Mao's SAPRONN 
method method 

IRIS 0.00659 0.01252 0.06173 
Sphere-Shell 0.00089 0.09 0.03 

d i sp l ayed  here.  Fo r  Sphe re -She l l  S A P R O N N  requ i red  

m u c h  less C P U  t ime  than  b o t h  S a m m o n ' s  m e t h o d  

and  Ja in  and  M a o ' s  scheme ,  and  the  p e r f o r m a n c e  

( in  t e r m s  o f  S a m m o n ' s  e r ro r )  o f  S A P R O N N  is 

qui te  c o m p a r a b l e  to tha t  o f  J a i n ' s  m e t h o d  ( T a b l e  8). 

For  Sphe re -She l l  S A P R O N N  works  be t te r  than  the  

m e t h o d  o f  Ja in  and  Mao.  This  is also r evea led  b y  

Fig. 3. In J a i n ' s  m e t h o d  some  o f  the  p ro jec ted  po in t s  
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Fig. 3. Sphere-Shell by SAPRONN. 
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Fig. 4. Sphere-Shell by Sammon's algorithm. 

corresponding to the outer shell got mixed up with 
projected points corresponding to central hemisphere 
(circle represents points from the shell while dot (.) 
indicates points in the hemisphere). 

4. Conclusions and discussion 

We discussed the main ingredients of soft com- 
puting and explained how they can help in the 
design of effective pattem recognition systems. We 
presented several methods based on soft comput- 
ing for feature analysis. In particular, we discussed 
how GA, fuzzy logic and NN can be used for fea- 
ture ranking and selection. Of the various feature 
selection/ranking schemes, AFES is found to be 
the best. To avoid the computational overhead of 
Sammon's method and to realize a dimensionality 
reduction system with predictability, SAPRONN in- 
tegrates the tools of statistics, Sammon's function 
and neural networks in a novel manner. We also pre- 
sented a few other methods for neural realization of 
Sammon's scheme. Most of the methods have been 
illustrated with synthetic as well as real data. 

An interesting area where further investigation 
could be done for feature extraction (particularly for 
dimensionality reduction) would be the use of neuro- 
fuzzy approaches. As is well known, MLP picks up 
one of many possible generalizations (equivalently 
settles to one of several local minima) which may 
not be the desirable one. Consequently, even when 
Jain and Mao's method or SAPRONN works well 
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for the data used to train the net, it can seriously fail 
for new data points. This chance of very bad general- 
izations can possibly be reduced drastically with the 
help of multi-layered neuro-fuzzy architectures. If the 
neuro-fuzzy system, maintains the logical reasoning 
structure of a fuzzy reasoning system yet exploits the 
features of connectionist models, the chance of very 
bad generalization is reduced significantly. 
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