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I'rerace. The main result in ihis paper relaiing sufficieney and nvarianee
was originally found by Charles Stein before 1950 but was not published and
uob widely known. It has sinee been rediscovered independenily by Burkholder
in 1965 [reported in (710, by Hall in 1850 ([18], {190, and by Ghosh in 1960 [16];
the best theovermna of this kind have since been developed by Wijsman, This
result 1s closely related to a theorem of I K. Cox {9, published in 1932 and
widely wsed in seoquenlial pualves (ege [E], [IT], [22], 23] though Cox made
no explicit wse of invarlance concepls. The result, logether wilh exlensions {due
to Wijsman), telated rosults on transitivity (duc to Ghosh), and sequential
applicalions (due lo Hall and Ghosh}, 13 now finally published as o joint oon-
tribution, with the pormission of Bten and Burkholder,

This paper & presenled in bwo parta, Porl I larpely written by 1Tall and
(rhosh, discusses the boplicationsg of the main resuli sand skelches a proof. T
also diseusscs a result o transitincy and the application of it and the man
reault, Lo sequential analysis, Beveral normal theory expmples amnd g sequentisd
rank test are treated in some dotail, Part 11 largely written by Wijsman, pre-
#enls the peneral theory o Lhe sublield mode, indduding related resulis on condi-
tional independenee and transivivity, and additional ezamples.

The suibors wish o thank H. K. Nandi for (be research puidancs given to
one of them, 13, L. Burkholder for helpiul discussions, and E. L. Lelunsnn, J. .
1Todges, Jr. uml W, IKruslol for maldng this joind endesvor possible.

Part I BXDPOSTTION AND SEQUENTIAL APLICATIONS

T e B L s e B e B B T D R S e A v i 6
1.2, Invariantly sufficient statisties. .. ... ... .. ... ... .. ... .. ... ... ........... BV
1.3, Bome examples, . e Y i -
I.4. Tnvariant Buﬂic:cnc;‘ :Lmd tr1115|t11.r1t1.-' A i ieio..... BEZ
T.5, Application to sequential tests of composite ht']:rothcscs - rulcﬁ S DEG
T4, Serquential F, £, and T teata.. e R n e e s DR
1. Alter:m.ﬁﬁ@aequ.ent.ialfe::ts:sruleH...................... TR RRATI /| |
I&. MNomparsmetrie sequential applicstiona. oo oo o 0o oo L. OHE

Eeecived 29 Ootober 1964,

1 Reaearch was supported in part by the Air Foree Office of Scientific Rescarch, the Oflice
nf Wawal Tesesreh, sl the National Tnstitutes of Mealth under Grant GM-10897, Hepro-
fugtion 1 permilted for any purposes of the Tnived States Government.

5 Rescarch wag aupported by the National Seisnee FPoundalion wndsr CGrants O-11 382
and 21,507,

* Research was supported by a junior research training zeholarship grant of the Gowvern-
ment of Tndia. Present address: Tniversity of Tllinoda,

a7a



avh W. J. ITALL, H. A. WLIAWAY AND J. K. GHORH

Fart IT. GENTIRAL THISOMRY

II.0. Bummary. . I
II.1. IandueLmn e B
I1.2, Preliminarics on tranbﬁ:armuhu:m }i.lld mndmuual mdf\]::mudx\nm 597
II.3, Bufficiency and invariance in che oensequential ense, Assumption ..!'L G
ITA4, 3ufficiency, nvarisnce and ransidvicy in the sequential ense. ..o 02
TL.5 Thscoasion nf Assamplion A e RS . fid
TLA. Asswunption B: invariant cum‘lltwnﬂ prc:}mh:ht.} rimfr]hlmrm ................ G0l
1107, Assuwmption C: invariant conditional densily . oo oo L (M

TATYT I: EXTORITION AND SEOQUENTIAL ATTLICATIONS

L1. Introduction. We inwestigate in whal sense sulliciency properties arc
preserved under the invarance prineiple and thereby obtain an interpretalion
of the sufliciency of & stalistic in the presence of nuisanes paramelers — an inier-
pretaiion which facilitaios the derivalion ol some sequential tosts of composite
hypotheoses,

Sulliciency and invarianee are reduciion préseiples  pringiples for condeonzing
or redueing the data = o a lew statistios which cun then be used Tor purposes of
drawing iuferences concerning the protuabilily model of uhe data. Loosely speak-
ing a sufficicney teduetion replacing & by & = s(&) discands information whick is
ot rolevant Lo Lhe parameter ¢ of the model; an invarianes reduclion (for an
cxplanalion of the invarianee principle, see [30]} replacing x by © — uiz) dis-
cards information whout 8 which does not pertain solely t0 o puramelric luncliow
v = {4} ol apecial interest; the Lwo reductions applied in tandem, replacing
by v = vl whers v(r) - sfe(a)) or wlulz)), retain only relevani informsa-
(on perlaining solely to 4. 14 i Lhe inferpreiaiion of ihis latter statement that
pOnCeTNS UE hire.

More specilically, suppose we consider u [amily of distribuiions indexed by ¢
and 2ome group of transformations on lhe sample space (e.g, changes n sign,
location, scale or order} which leaves the family of distribulions unchanged,
Them decision procedures will not be sffeeled by the iranslormations if vhey are
baged an invariant funetions on e gample space; sueh invariant funetions have
distributions depending ooly on some funetion, say -+, of #. We shall show Lhat,
lonsely speaking, if a statistic s contalns all relevant information about # then a
wretmad tneoriant funetion of ¢ containg all the relevunt informution wboul v Lhal
is available in any invardanl funetion, ¥We rall such lunclions deeeriendy sufolent;
ihey are sullicient for the fumily of distribulions of & maximal invarviant funetion

- or in a scnae to be explained, of any invariant function—om the sainple space,
This msull is a congequence of the Btein Theoren presented in this paper, 1t may
be Musteated by the following diagran, in which vervical arvows indicale maximal
invarignees reductions and horizontal arrows sufliciensy redilelions:

B No— S

L4 s
v —
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Ilere X3 may be thoughl of a8 the probability model for the dala o, with dis-
wibution depending on #; 5 as the protubilily wodel for a sufficiont statistic s,
whose distribution also depends on #; 7, as the probability medel for a madinal
invariant function w, wilth distribution depending only on v; and ¥, as the prob-
ability model [or an invariantly sufhelent slalisiic @, obiained by either toute
in the diagram—as a sufliciency reduction on & (definition of invariant sulli-
clency ) or as o mwaximal invarance reduetion on & - In applications it is usually
the sulliciency redurtion on T7, Lhal @ wanied, while it i= the maximal inveriaoce
reduction om & whal is the cagior to perform. That these two routes arc equal
wnder ceriain conditions is the conlenl of the Bicin Thearem.

These reaults seem o be nplicitly assumed by olher awlhors, Thus Lehmann
[a0 derives most of the commen significance lests about normal models us uni-
formly most powerful invarian Lests based on these stalislics oblained via the
upper toute (Xo —= Sa - » V.0, In these normal theory problems, sufficicney and
invarisnee [requenily msluce the dala o & gingle numerical-valued slalistic
the sample mean or s magnitude (see 13), the sample variance (1.3, the
f-statistie (L3), the F-ratio (1400, TTolelling's T atatistic (163, the (nliiple}
correlalion cocfficient {I1.7), and oihers (130], [ 123], [1]). In Lelunann’s treatment
of rank tosts 1300, sullicieney and invarisnee reduslions are applicd in altermading
order. Tor example, when tesking whether fwo random sainples come [mom the
same population with a continuous distribution funclion against the aliemative
that one wariable i3 stochastically larger Lhan the other, sufficioney and invariance
reductions reduce the fwo saauples Lo the ranks {in the eombined sample] as-
socigted with one sample (L8, Without the Siein Theorem the justificution and
inkerpretation of these reducilons is not clear,

The silualion 1s gimilar as regands sequeniial analysis, Bahadur [1] has shown
thul reduction by the sufliciency prineiple is also possible in sequeniial analysia
i the sequenee of sullivient statisties, for the dala up lo slage n,n — 1,2, -~ s
frangitive (us delined by him), By interpreting the 3lein Thoorerm s u theorem
on conditional independenes, i can be shown that the truneitivily of a sullicent
sequence ie preserved under an invariance reduetion. Hence, In this ease also, one
may vither reduce [irst by invarianes und then by sufficicney or follow Lhe reverse
procedure, and the laller is usually eager,

loreover, the sulliciency agsertion in the Slein Theorem may be used to con-
strued, seyuenidal tests for cerluin kinds of composite hypotheses. The wethod
eesentially comsigts of applying & Wald 3PPRT for siinple hypotheses about
{or any other sequential test based on likelihood ratios) to what we shall eull an
imwarierndly suficient sequence of sialistics, ihe succcssive values of o This wethod
has been deseribed by Cox |9 who gave conditions under which the joint density
of » terms o this scquence factors conveniently, Application of the Siein Theorem
vlarilies the motivation of these lests, reinterpreting them through the principle
of invariance, and also constitutes u simplificalion and extension of Cox's faelord.
zalion vheorom. Moreover, il should be noted that Cox’s resull s impreciscly
atated, some vilal assumptions having heen ouifled (see LB,
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In these sequeniinl applications, and also in many nonsequential conlexis,
invoking invariance can be considered as a way of handling nuisanee parameters.
{ Praser [12] hus considered a seneralized sufficicney definition in the prosence of
nuisanee parameters, ditforing from (s appoach throngh invarianee, Ti s showm
in [16] that Fraser sufliciency snd invardant swliclency sometimes, though
rarely, coineide, See alzo the end of L7.) Bometimes we are nol concerned with
# 13 a whole bui ouly some function {(say ) of il—the remaining variability in
the parameter space boing ascribed Lo nuisanee parameiers. Tor example, o
narmal distribullon with mean # and mown vasianes muy be considered a8 a two-
parameter distribution, one parameler being the magnitude ol ihe mesn (v = |¢ )
and the other its sign. By invoking invarance under changes in sign, one ob-
luing the magnitude of the sample mean 28 an invarianily sufficient statistic a
dlatislic whick eontaing all the infornalion sbout 8] that is available in wny
invuriant stalisiic, Lhe sign of # being 8 nwsance parameter (see 13), Similardy,
with normul mean and variasce unknown and # = (g, 03, the sauple varignes
is invarianily suflicient for the population variance 4 = ¢ under changes in
location, and the {fstaustle s invarianily sufficient under changes in seale
iy = w/e); in [uel, the t-statistic 18 invarianlly sulficient in a wider conlexi (e
11, Example 7.3}, Unlorlunuiely, however, invariance iheory is not always ap-
plicable in problerms with nuissace parameters—seldom is it applicable in diserete
modelsy,

Involing invariance in nference or docision problems usures Lhat the error
probabilities or risk funetions will be independent of the nuisance paramelers.
IToweever, it may be possible Lo reduee the crror probabililies or Lhe risk functions
by uging uon-invariant deeision procedures, and in fuet as shown by Blein (see
pp. 338-530 n 130]) there are exnmples where all invasdanl procedures are in-
admissible. On the other hand the {extended ) TTunt-Sicin Theorerm showes Hual. in
a mumber of bopociank eases minimag solullons may be invariaot 130], and o-
varianee theory may Lhen provide u nseful means of deriving or charactorizing
minimsx procedores,

L2, Invariantly sufficient statistics. We ropresent s probability  model
{space) by Xu = (%, &, I} where O i5 8 sample space of points z, @& i3 2 given
o-lield of subsite of &, and 2 19 a probability measure on @, For shuplicity, one
might: like to Lhink of Xa 4z a notation for a random sumple from s populaiion
with dengity or mass fuociion ps . We ropresent a class of probubility models
indexed by # by X = [ Xe:8 ¢ 0] where # is sonne index set,

Any {measucable} funelion £ on & indudes a new probubility model which we
denote by 1 — (3, @', £ willi anulogous notations lor other funetions. Here
£ i the indueed probability measure on @' = (@) and 5 = §(%) is the sample
apucc of £ {that is, the densily or mass funetion g’ of { is oblained by rransforma-
Lion from gy

Wi congider a group F with elements g of one-to-one {meseurable) trunsforma-
Liomus from 0 onto deelf, and assume, as in [30], that esch g induees o ansfore-
tion § from & onto isell defmed by Palge e dd = Prize Al Ae®, 62 b
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Henee, the transtormed model is among those congidered originally. We represent
Fhose azmunpiions symbolicglly g8 gXe = N, und suy the class of models {3 in-
vardont wnder (7, 7 will denoie Che group wich elemenis 7.

The groun ¢ partitions & into couivalence classes or osbiia, A [unelion ¢ on
o, which is constant on gn orbit, is freoriend, Morve specifically, s called dn-
pariomed ot X wnder 10 L) - $geed Tov all g and 2. I an lwvariand Tunelion «
on X pssumes o different value on egeh orbit, it 12 & mazied doeariont. In other
words, w18 & mrsmeal foariond on O whder G110 w (e = wlga) lor all g amwd = and
if »u.f_;{:'j = wiz} implics the existenes of o g o &7 for which 2 = g:t'r. Maximal in-
varisuld always exial, and they have the properly thai all invariant funeilons
are functions of the maximal mvariant; also, if § 15 tnvariant under &7 then ts dis-
tribulion depends only on a maximal Invariant function, say v, on © under
[30]. We denote the probability model corresponding to an invarianl slalisiic
£ by

T, =5 P, yo = (9]

Aset A o0 ix an fevariurd wel I 2o A loplies gre d for every g2 (L Any in-
variant set 1o of the form fe:wie) & A" where » 15 o maximal invariant.

A {measurpble) funetion s on @ s said to be a sficient sfatistic for Xa if for
every 4 e o and g £ 8§ there is a version of the conditional probabilily Pel 4 |s) =
Paliwe A | 2ie} — &) which docs not depend on g,

It ¢ is any slakistic for which /(gz)} = gz} whenever {{z) = t{z'}, wo say
Lhal 6 dnduces & group G. of ronsformativng g: on 3. Here g, is dofined by g4 =
g ) fort o3 and 2 satisfying (027 = ¢, Clewrly, if 4, i3 invarignt on 3 under
£, then 4 = i =ilf(z]]) iz invariant on 9 under ¢, Herealter, we deop the
braclels moouwr nedalion for composilion of (unclioms, wreiting 201 = 240 )
for g,y -1

Finally, we ghall azsume that any sufficiont statistic & which we consider is
gueh that ¢ aetually induces a proup 6 of Lrensfomnutions on the spmple space
5 of & Alihough ihis sssumption holds in all inlevesting examples koown Lo us,
conntercramples ean casily be congtrueted ; but without this assumption the in-
tarignes reduction on Sy lndicaled i 1he diagram cannol even be delined,

I swnmary then, our basic assumpiions arc that we arc conzidering a class of
probahbility models Xg |, s group & of one-lo-one transformations on the sample
gpace % which leaves the class of models Invarianl (pXa = Xo), and a suflicient
slailislic # on 9 which has the property that & induees o group &, of translorms.
tions om the sample spuee of 2 .

We now deline seerdond sufliedency, which describes the lower roule in the
diagram:

Ve ermony. A luneiion » on 0 is wnvardantly sullicient for KXo under 7 if

(1) » iz invarant under 4, and

(i} the condilional probabilily of any invariand sel A given ¢ is pueammetor-
[ree for ¢ £ @ (for suitable determination of the conditional probability ),

By {11 we muy wrile v = v, where v, 18 & Ffuneiion oo W and o s 2 maximal
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lnvarianl on o0 Then a stalewenl sgquivalent 1o {1} iz

{ii' vy is aufticient for Ur,
ginee Pomiusd” o, = w) s the some as Pylula) e 4% ) elz) = w). T4 s
tempting 1o think of (i} as stating that ¢ is sufficient for the disteibulions of any
invariant ¢ but this wonld require an extended defmition of sufficieney which did
nol requive » Lo be expressible as o, (Wilh such a delinilion, namely thal ihe
probability that &(x) lice in any f-2c¢t given » 18 known, the sullicicnt statistic v
may well comtain more inforngtion whout the pyraometer than does ¢, bt cortainly
nol less. ) We ean say, however, thal » {or raller o, where ¢ = za) is sullicient
for ihe distributions of w — {, £) where ¢ is any invariant funetion, It is with
these varions Interpretalions in mind thad we state looszely that » containg all the
information aboat v that i3 avaldable in any nvariant Tunction.

We are now propared to give an informsl statement of the main theoremn

SrEin THEOREM. Lnder cerlaine assuirepiions, o s @ suflictend for Xo and o, 0 @
rawrimal trvariant on 8 under (5, then v — e {5 dnvariontly suficient for Xa
under .

In the vase of diserete distributions {actually, only ¢ need be discrete}, the
Sleln Theorem can be proved without any additional assomptions. The proof is
elementary and i3 given here in lwo parls:

1.7 Tor any 0 and & for which Pels(x) —= &) > 0, any g, and any invariant set
Afie, g4 — jgroxcdAl = A), we hwve Po(d |s) = Polee d, s{x) = &)/
Pilsix) = 5) = Puleegd, slz) = g /Ppola(s) = gany) = Poplgd | puse) =
FPrld gy, Bince s i3 a sufficicnt statiztic, the extreme members are param-
eler-frec so that P{A4 | &) = P4 ).

2" Tat 4 be an invariant set and lel Pols | g) denote Pels(z) = ¢ wla) = w);
then Pold | ) = ¥ Pels ) PLA | 3) where the summation is over alls-values
for which w.(s) = m . Bloee w, s a maximel invaciant, all those s-values are of the
form go, with & fixed, g, e 6. Therotore, Pold |m) = 2 Polgesn [ m) X
FP{A | g}, where the summation is over all g, - Bul P4 | g} = P{A [w) by
17 go that it faelors oul of (he summalion, leaving a sum which is anity, We have
thus proved that Ps(d | s) = P{d | &), troe of #, which concludes the proof.

Purl 2% of the proof cagily generalizes to the general (instend of diserele} case,
by noting [rom the conclusion of part 1° that £{A | 4} depends on s only through
1,8 = o, and writing PaiA |w) — EiFlA |5) [m) = P4 | &), which is
parameter-free,

Fart 17 is not g0 immediately eeneralized. In the dizerete case, it shows that
the comditional probability of an iovariant =ct, mven s, i= invariant. Maors
renerally, the question posed s; Is there a version of the conditional probahbility
which is both paramelerdees and invariani? It is only known generally that the
ponditional probmbility Is almesst freardiont { Lemma 3.1, Part 1), Therctore, in
ovder to assure lhe Invarianes of P4 | 2}, and with it the Blein Theorem, another
agaurnption has Lo be made. The choive of the most convenient such asaumption
depends an the Lype of problem sl hand, and so in Part 1] threc possibilitics nre
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heing offored : Asgsumplions A, T and C. We indicate helow specialised vorsions
ol each of these which will enable us tw apply (he Blein Theorem Lo a variely
of cxamples; the sutficieney of these assumptions is verified in Part IL

Assnimption A is satisfed if cvery almost tnvariont function on § is equivalent to
iy trariant funelion. {We really refer Lo Assumption A {ii} of Parl IT sinee we
asume A (1) a3 part of our basic asswmptions in Part 1.) This i commeonly tre
in paramelric problems, a wseful soullicient condition being the exisience of an
invariant measure on ¢ {sce pp. 225228 and 335 in |30} and 11.3, I1.5). More-
over, i always holds for oile gronps, such as sien changes or permolsiions
{sea 133,

Assumption T iz, cssentially, 1hal there exisls sn invariant conditiona] prob-
ability distribution, P(d &) = Plgd | g.&), from which the theorem readily
follows, and thiz assymption i= casily venticd in some important nonparametric
applicutions, In fael, as a wseful special case, suppose 1he sullicient sializlic =
hias ihe property that any #-set A may be partitioned into =et= &, By, -+, in
auch a way that the zed of r-vulues mapping indo I may be parlilioned into 7
subrels of equal probability (for all 8} on which ¢ 1a one-to-one; hence, there ave
o finite number of r-vales, ull “egually likely™, which map into any s-value,
Bupposs {7 35 any wroup which induees a group on & Then P4 | &) may be
taken as the proportion of the x-valies mapping into s which are in A. That this
P4 |2} is invariant is immediate; that it s a version of the condilional prota.-
bility is alraightforward lo verify. An example 19 provided by & being Lhe onder
gtatistic(a) corvesponding to samples from one or more populations and g
s obtained [rom 2 by applying an order-presecving (ransformation W each
ohaervation (sce 1.8 and Fxample 11.6.1). Another example may be provided
by a sullivieney reduclion which is simply the deopping of signs In dala wilh a
gymmetrie distribution.

Assomption O coneems regular comtinnous eases, and the Stein Theorom under
this yseumplion may be cousidered a riporous verdion of 1he Cox theorem. The
condilions are that @ has a multivariate (non-singular) continuvous distribaiion,
the region of pogitive densily not varying wilth 8, sed the fueiorization of the
joinl density of @ may be wiltten ge{s(x)iA(e} where the transformaiions
g in {7, the sufficient statistic 3, and the factor A satisty cortain regularity con-
ditioms, numely: for all r-values excepl those lying in an invariant gel s hwving
probability zero and satisfying the condition that a{x) = s{x"y i &, but not ',
igin Aq, we have {a) each g 15 continuously differentisble sndd both the Jacobian
sl Aiged Rir) depend only on sz}, and (b} » s continuously dilTerenliable
wilh mattiz of partial derTvatives of maximal vank. Most normal theory examples
gatisfy these comditions (see 1.3 and I1.77}.

Tinally, il 1= irivial (o show that complefeness of a family of distributions s
preserved under invarianee reduetions. However, in the absenee of completoness,
mininalily of sullielency is nol, in peneral, preserved {see 11.3). Henee, il is
posgible for masdmal reductions made by the upper ronte in the diggram in 1.1
to lead oo lesser reduclion Lthan maximal reduelions made by (he lower roule.
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L3, Some examples. As a simple illustrative example congider the following:
& = {&1, #) where the x.’s arve independent and normal with mnenns § ﬂ.u:l unit
varianees, 8@ = {6: |#) < a (finite or iujinite}i and f = 4gr gr_] where ¢Tu = &
and g — —w = (—x;, —ra). Thon & is found to he !§", 71 where 750 = 49
so that the class of models is invarianl under . Moreover, e:[_.r]l r + rais
sullicient for Xa , and € induecs the group & = {g.7 g0 |, where g% — ¢, on g
so that the basie assumptions are salisfied. Moveover, Assnmption A holds =inge
7 iz [inite.

The maximal invariants are found Lo be: v{8) = |83 % = (w, ¥, w2 whers
w(z) = [ml, welz) = |z, and wzt = 1 f e > 0 and = ﬂnthermse and
W, = 8| orelr) = ut,,ﬁ{.r} |2y + . W'i* prove it for » unlv {1y ulgz) =
wizl: Ul Tala) = erz "t impliea 2, — 4 with the same slgn ford = 1, 2, that is,

= gz or x = g 2. Thus the musgnitude of each coordinate z, , together with
the knowledge of whieh pair of diagonally opposite quadrants conlaing (o),
form a maximal invarignt « {a diagram may be helpful),

The theorem stales thal any conditional probability stalement aboul woy
invariant funetion {—that i, any funetion for which {{x) = #{—zi—given
it free of f-dependence; Le., among invarinnt functions, |x, + x| eontains all the
available information about |6, For example, any staterment aboutl |, or about
(g, |asl), gven |o + 2 i free of dependenee on 9], This example 1= readily
exlended Lo samples of sixe 1 > 2

For a sceond example, supposex = (@, - - -, 2.} Where the 2,5 are independent
and normal with # = (p, 3, @ iz the upper half-plane, and 6 is the mroup of seals
changes, an element of which multiphes cach x; by a specifie positive constant
¢ (uee pp. 9599 in [13]). The sample mean and slandan] deviation together
econatitute a sufficiont statistie, and the bagic azsumptions arc readily verificd
{the indueed groups & and 7, again being gronps of seale changes ). Assumption A
ig #alisfied since the absolutely continuous measure with derivalive 1/r i an
invariant measure on the Borel scts of the positive reals [o, and ecorrespondingly
on {7, .-"Ll'tcrnu.t.iﬂ*.ly, Avgumption C may be verifisd, the set 4 being the line on
which iy = @y = = g, (see II, Example 7.1 and 7.3,

The maximal invarianis wre fourwd fo be (8 = pie; wiz) = (mie,, ---
Fnr/ 0y, B0 2, ) and ¢ s Btadent’s §siatistic. The thenwm thus stales Lhal the
i-atatistie 13 sufficient for the elass of distributions of w, this elass being indexed
by . If £ is any invariunt statistic—e x. the sample mean divided by the sample
range—Chen (he Lelatistic is sullicient for the distributions of ¢ in the sense that
any probability statement about t'(x) given o(z) is parameter-froe,

Eimilarly, the mugnitude {or square’ of the fstatistio 12 inaranily suflicient
for the dzlribulions of the maximal invariant wiz) = (&iee, 0, Taa/in)
under changes m sign and =eale, the distributions heing indexed by 4"

Tniform and exponeniial localion-seale parameter examples may be treated
analogoualy,

L4, Invariant sufficlency and transitivity. In this seclion we discuss suf.
ficiency and invaranee [or a sequential experiment. The experiment may be
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terminaled at any atage, but performanes of stage # implies previoua performance
of stages 1,2, -+ ,m — 1. '

We must distinguish three kinds of probability models:

(1} the component or marginal models Xop = (%o, @, Prs) for the stage »
duta r, (n = 1,4, -},

{ii) the jeint (n-fold) models Xms = (%o, Gog » Poe) o7 the accumulated
dats i = (31, -+, Tn) though slage o, and

(i} the sequendicl model X = {2, @, P} for the whole sequence of daia

= (21, %, "}
TMere, Wiy and F are the producl (#-lold and inlinile, respeciively ) sample spaces
wilh eommponents 9, Ma, + 0, X, - -+, 80 Gy and @ are the reapective product
r-fields of cvonts [32]). Tor each 8 & &, Ty is a probahbilily meazore on (90, @)
and Ppage and P are the corresponding joint and marginal probability measures
derived thetefrom; thus, for 4 £ @y, Pl d) s the probalality according 1o
Py 1hatl the w-luple @, , oblained by trunealing the sequence r, lies in 4, and
similarly lor P .

Wi shall largely be concerned wilth the seguence of joint models § X0l The
eoncepls of sulliciency and transitivity are defined (below) in terms of ihis
sequence, Invariance, howeser, 15 inore suitably defined inoterms of the sequential
mwnlel Xy, although, by giving up justification for invariance reduetions, we eould
avold the sequential model altogether.

If, for ench n, &, i3 sufficient for the class X0 0f joinl models {8 £ €0, then
&= (&, &, ) 1z called a8 sufficient sequence for Xa ; 8, Is a function of the
first % ohservations,

Tor each n, suppose £, is a flunetion of wh, . I Tor all # and each n, the oon-
ditional distribution of ;1 @ven & 18 identical with the conditional diatribu-
tiom of feo given £, then ¢ = (&, &, - - -} iz said 1o be & orsitis sequence for
Xq . This definition j9 adeqguate for the diserete and continuous case examples
treated here) a goneral definition appears in IT.4 and [4]. "Uhe idea is that all the
informalion aboul Ly contained in cp, 8 cacried by ¢, = Ll b

In sequential infercnec problems about 8, Bahadur [4] has shown that atlen-
tion may be oonfined to sequential decikion eules, here called s-eules, which
depend at each stage # only on &, , provided & = (&, &, -+ -} 8 & sodlicient ol
trangitive soquence for Xe |

We now inleoduee an nvariance airmeture on Xe o Suppose 7 s a group of
transformations g on the sequential sample space 4 for which gXe = Xa with
maximal invarianl v on @ We shall luriher gasume that each g induees o trans-
formation g, on the n-fold sample space %, , that is, il ¢, is the nih component’
of 2’ = gv thon :{:Em = Puadeg - 1618 cagily scon that gog X e = Xaoe , that is,
the joinl models are also invariand (bul see 1he nexl paragraph}. In partioular,
this further assumption holds if ¢ acts component-wisc: g = (g, guee, - 1,
and thix comenonly occurs in applications (zee also [268]). Typloally, the stages
in the sequential experiment are mutually independent copies in which case
g must aet component-wise with identical comporemts g.—for example, cach
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A, 18 a Fuclidean plane and each g. iz a rotalion, g, rolating each of the #
eotnpoienl planes the same gmount,

ey apeakiog, all identical joinl (and margingl ) models—which need not
b distinet for all 8 ¢ & even though the sequential models are—should be given
ihe sume index value, by introducing o reduccd parameter index 8, = w.{8) £ B
gay; lhe maximal invariand on ©, may also vary with w, beingr o funciion of
however, For example, suppose the x's arc mutually independent N (g, w. b,
B o= f gy, o hand d, o= {00 pndy & vew paeamneter being introdoced af
ench stage: let g et component-wise with guts = Gutw! . > 00, and the maximal
invariants under (7 and €7, are 4 = {zun u,! amd the first ® components thercof,
respectively. We choose to aveid this nolational complexily, leeling ihe im-
precision should cpuse no res] diffienlty )

Mow lei u, denole a maximal invarianl on %, under 7., - Binee, as s clear,
i induees G for m <, 4, considered as 8 funetion of 2. (depending on the
[irgd e cooedinales)} i invariand and hence a luncltion of w, ; that 33, from mowl-
edge of the value of one term in the sequence w = (w4, - -1, all prior terms
muy be evaluntod. Tlowever, u itzelf i3 not necessarly a maximal invariant
under ; bul it i3 this sequence of maximal invarianls (under ;5 thal is
redosvant in the =equentisl dosision problom sinec o maximal invariant under &
would depend on Lhe whole sequence @ = (a1, 3, -+ -} which 15 not availahle
to the decision-maker.

We therefore interpret the principle of fmserignce in the sequentinl caze as
glipulating thai atieniion be confined io w-rales—thal is, Lo decigion procedures
thusd depered wt stage n only on the waloe of w, o (This is consistent with the
definition in [26] where g acts componeni-wise, Application of the Invarance
principle in the sequential decigion problem presumes a eost function which s
invariant 1mder both € and (7, for example, constant cost per observation.)
In cffeet, wo replace the original sequence of joind probabilily models [ X .00
with the sequence [I7.F where I7 15 the model for 4, . A component-wisze
sufliciency reduciion on w leads o a sequence ¢ = {w, 5, -+ which muy be
called an sneariently sufficient sequence for Na under &, each v, being invarianuly
sullicient for X under (74, . Hence, when involing invariagnee, restrietion to
prules is justified =0 long as ¢ is transilive for the sequence of models 17, .

The Stein Theorem provides: wn altomative means of reduetion from the
sequence x L0 the sequence v, assuming £, Induces & proup of trunsformations
on the sample space of 8. . The theorem asserts {under cerlain assumplions)
that a maximal invavance reduetion applied component-wise to & leads to an
invariantly sullicient: sequence v. (The diapran of 1.1 s relewvant only if we
append subseripts (n} o X and 7 and subseripls o lo 8 and T

Omne problem then remaing--that of verifying the Lransitivity of v Fortunately,
aa shown in IL4, it 1s sullicient to verily the transitivity of & so thai the upper
route iz ecompletely justified; that iz, we may make a sullicieney reduction from
Fry 10 &, verify the transitivity of 2 and then make a maxiwmal invariance
reduction from &, to &, and we will obtain an invariantly sullicieni and transi-
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tive sequenee ». The reason this 1a permdssible in that, in proving the #3lein
Theorew: in IParl 1L, a stronger tosult 1= setially obtained: this rosult reay he
roughly deseribod as aseerting Lhe condilions] independence of «, and w, wiven
t—i.cr, tay the fueioringe of the conditional jolut disteibution of 2, and w, nio
ihe couditional distribution of s and the conditional disiribuizon of w,—and
this Tesult can be nsed do show that lransiuvily of « ioplies lrapsilivily of s

Tiually then, a problem of interest in applying the Stein Theorem to obtain
e-rubes iz the verifieation of the dransilivily of ihe sulliclent sequence s The
folliwing resull {sec Theorom 4.3 i 11) i3 quite usctul for this purpose. Supposn
Lhe orginal random vuripgbles with values » = {2y, 29, - -+ ) ave mglually in-
depenident; then s s a lransidve sequence i #,, a tunction of 2., -
(i, Tagr ), 18 & function of sul®m) and zea only, Le if sop depends on 24,
only through s, . This eondiiion is easily werilied for exponential elass laws,
wrhiere g, 18 0f the form &, + e 1), and for nonparvametric problems where sots
of ordered obsorvations constitule the saflicient sinlislie al any slage, In par-
ticular, this condilion holds in all examples discussed o this paper (L3 8).

L.5. Application to sequential tests of composite hypotheses: w-rules. Cox
9] has propoacd that sequentind tosts of simple hypolheses aboul a pasnctric
[netion 4, which see composite by polheses aboul 4, may be obtained by applyiog
a FPRT—or any generolized sepuential probabifiy rotio tesf (CHRPRIY [27] lox
that maiter—to s sequenee of statislio: whose disleibulions depend ooly on 4.
i Tt shonhl be noied thal Wald (43 and Barnard (3] have proposed alvernative
appioaches to deriving sennentind lests of such hypolheses; see also [23], £14],
[38].7 Tn ihe [mmmewok of the previous zection, an invariantly sufficions and
Leansitive soquenee » is sueh aosequence, sl resleiciion oo rales Is slinply g,
conscouenee of wveking the Invarance principle; reatriction to BPET's applied
tow, e, o, which turn out to be p-rules, is on the other hand largely & macter
of eonvenicnes.

Sinee 1, 13 sufliclent for the disteibailons o any osardsnl funeiion of which
ty 15 s [unction (see remarks attor definition of invariant sufficieney in 1L2),
to 18 aufficient for the diztributions of vy = (o, o0, 7,00 Therelore, Che joinl
density (will respecl o & suitable dominating meagure] of ¢, factors accord-
lug Lo the Figher-Moyman factorization theorem for suflicien] stalistics. The
rutio of donsiiies of vy, al lved values of v, say v and oo which any GRT'RT
is baged  ihus reduces to the vatio of densitios of o, at 4 und &g 2 henee s GEPERT
bazed on o depends only oo v, ool gy, al slage n, and 15 thus a ¢orule. The
{joini) density ol # need not be konown sinee only the {marginal) density
ol #, i3 requived. Thiz fuctorizavion s Lhe sssence of Cox’s heoras,

Actually, Cox'’s theovern 4 incompleiely atated ([9], [22], [14]). The invariance
assumplion gXe = Xe i not cxplicitly assumed by Coex, bt usod in the proof
{10 petublish the lasl Une on pe 201 of hig paper). Thal the iheovem s bovalid
wilhoul this assumption s demonstrated by the following eounterczampls
{Clow’s notation ) (e, w, ol ave ndependently normal with unil varianees
wnd eans {6, 80 + &, 006 =&, b= &, w = 2+ 25, and the iranstorina-
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Lions take (ar oy i) nlo (2 2 + 0,22 - e Then § and ware independent. so
that their joint donsity factors, but (he sceond factor, the &6 4 &, 2) densiiy
of 1, involves 8 1o chis example the model s not invwriand undere the trpnsform-
Linng, and The eonelusion of Cox's theorent s nvalid sliboogh his condilions (as
wo imdmstand them) ar satisfied.

Uhar bl sasuinpiions and Assuiaplion O provide a corvecled vension of Clox's
conditiong; howower, it 12 ngnully gimpler to vority Assumplion A than Agsump-
Lion O, and, eouweh Assionplion B an exiendlon Ly sore nonpacamesieie applics.
tions is also mude possible, Moreover, the jnstificalion for confining attention to
w-rules v onade precise and 1his enables Daelher invesligalion of 1he properlies
ol scoueriiad procedures based thereon. Thus our approach corrects, simplifics,
exlends wned maorivales Che application of Cox®s echoigue.

Sinee the o,'s ave ol Independent and identically distributed, SIPRT = applicd
to them do nol, in general, have any known opltimum proporey (ol soe the ond
of T.71.

We lisi under four headings below the propertics shat aro known:

(11 strangtfe: Tor wsls of simple hypoileses uboul 5, wse of Wald’s boundwries
O = 51 - a)and 4 - {1 - §)fe provides approximate upper bounda
(g, 1 on the true crror probabilities, whalewer the wploes of the nuizanes
pararneters. [T i fregquently sugeesled {eg, (9], [10] and pp. 98 and 250 10 |307)
that in order to w2e Wald'a boundarics for a S1°RT one must prove tormination
with corrpinty. lowever, it s caely verified (hat Lhe requiremenis on Lhe omveor
probabiliiied are [ullilled sa approsdioste upper bounds, rather than approximaie
coualitics, wherher or not feeminglion i3 cerlaing (The word “appeosimsle™
belore “upper bounds™ s really only justiticd 1 the crror probabilitics are small,
but may in fael be delersd Ahronghonl if Walds conservilive bounduries i = 3
aml A = 170 swe used )]

{111 fevignation: Many sueh proecdures, ineluding those in which g, has a
momotone {ielifood rafie (MTR), may be shown o lemninale with eerrginty
{for all 8 or even move generally ). Tor dowe specilic examples, lerminsiion wilh
probability one has been known for some time {e.g. [10]); more roeently, rather
generul  Lermninwlion vesolls wore oblained by Wirjosudiedjo [17], Ifram [21]
and Berk |G, Oone or morve of these relercoecd provides proof ol termination [or
all examples in this papor (thongh only under Ay amd A 10 Lhe rand tegl oxvnmple),
When leeminelion nnder T and JF) is assoeed, the appeoxiioale houmds in {1
becorme approximsie coualities,

(11} OC-funcation: The operating chovacteristic Junctions of these nsis—or
i any GEPRT of wy va o applisd lo p—depend on 0 ondy ilwoueh v, and, if
t has u AILT [ v in T, the OC-funetions arc monotanc in v (real) (1.3]; this
aeents it most normul theory wrd exponenlind olass exaroples. Thos, sssoming
¥ <, lhese Lesls are elleciively Lesis of the hypotheses v = wova. v & 1.
But approximations to the OC-funetions are nob generally available. (Yald
[43] has given o onolonieily theorern bul his proof i2 ineornplete. In the prob-
lern considered by him, he claima thar it iz sufficient to prows that the dongity
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rdio al  and 4y 16 monotone inoey, bul he did not verify this clisdn, Also, the
proal of & @milar monetonicily theorern in [26] iz invalid [oe tests based on a
soguence of dependent variables, such as v A walid wonotonicity theorem for
the mse of wdependent varighles, such as ihe z-rales of LT, appears in [29] and
130]. Valid thoorems for the dependent case appear in [15] and |16] and, implisitly,
in [47].]

(1% ABN funetiore: Taidle s known about the arernge scmply fumber Funotions
for these lesis except tor some heurstic approximations suppored by empirical
invesiizgations (sce [23], [331 121 1221}, The reaults of Ifsun [21] may be nsed to
abtain slternalive approximations.

We now eongider the examples inleoduesd L3, Firsl, suppose ihe observa-
tions are independeni. K{0, 11 and we wish to iesl 8] = e against she two-sided
allernaiive 8 = v {=v = 0} The clags of probability models Is Invardant
under the group of sign changes for every », a8 wre Lhe hypotheses, In L3 we
found s, = |3 4+ - + .| to he Invarianily sullicient for the joint wmodels of
ihe [isl 5 observations, snd v = (i, #2, - - -} 15 then found 1o be an nvarisotly
autficient und transilive gequencs; restriction Lo r-rules is then justified nnder the
privviple of invariane:,

A BPRT of ye vs. 1, hased on v depends at stage = only on the ratio of densitios
of 2, {using the sulliclency lactorization]), amd this i readily found Lo Le

exp |—ni(w’ — v 17/2] vosh (eayi)/cosh ().

Hampling iz continned as long ag the ratio remaing belween Wald's boundarios 2
and 4 {or By and A, for s GEPRT). Since g, may bae vorified fo have a M LR in
v = 0], the OCfuneiion  -which depends only on v is wonotone in 4, und the
tegt terminales with certwinty for all v [21] (and oven more genecally [6]). The
Lrue ervor probabifitics are approximately equal to the prescribed ooes,

Thiz example has wpplicalion in the seouential fesiing lor the signifiranes of
the difference belween two menns againsl lwo-sided alternatives when Lhe obaer-
valinns are normal with equal and Lnown variances, & difference being obsorved
at each stage of sampling, The Bobel-Wuld [13], Aruilage [3], snd Sehneiderian-
Avmiiwge [4)] sequential tost procedives are alternative to the one above, and
nol baged on invarisnes Theory, but the symmetrie verslon ol each iz still o s-rule,
and in faet a GREIIT based on 2,

Cousideration of the seeond example of 1.3 would lead o the WAGR one-sided
seoqueniial Lleat of pir = oy ve wie = oy with #p equal Lo the batalistle {or a
monnione Dunclion thercof) based on the [wst ® observutions ([10], [36] and p.
250 of [30]1; ils propertics are anulogous Lo those above (13—(iv). We ol further
congideraiion of il, but consider the lwo-sided casc—the variance unknown
analog of the first example above—in Lhe next section; see ulso LY. That these
[tesls have o broader applicabilily way be sern from Exumple 7.3 in 11,7,

Seruential testa about one or Lwo normal varianess wnd sequential tosts about
novmal eorrelation cocfficierts may be derived snalogmsly.
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1.6. Sequential F, ', and T tests. Sequeniia] F-tests and T tesis appear 1o
have been introduced by Sieln |44]. Hequential F-lests were also considered by
Nandi [23]. Johnson | 23] involed Cox's methaod and Hoel [20] employed the weighn
function method of Wald [45] Lo juslily sequenlin] Foiesia: TToe] wlso pointed oul
invariance properiles of them. F-tests are also weated in [35], [38), and [14].
{ox’s method has been recontly applied ro seaquentind iests (and ¥"-resls) by
Tackson and Bradley [22]. The lwo-sided f-iest, or F-lesi, is ireated here as a
special caze of the #tost {or the 7% test) : it wppears in [34] and [37]. Some eom-
parisons with aliernative £ tesis appear In [41], Sequeniial lests [or components
of variance problems {|24], [14]7 may also boe derived through sufficieney and
inyariance conziderarions ol will nol be eonsidered here. Our purpose heve iz o
show in oulline how ihese lesla {or alizght extensions thereof) can be derived
from sufficieney and invarianee considerarions; wre thus provide a rigorous basis
for justilving and inlerpreling then. Allernailive ledls may be consimeled by the
methods of 1.7,

Totead jor fiwed-effects wodel: We consider a sequential experiment in which
cach siage congiste ol a veplication of a fixed-cffects lincar model exporiment,
W aszume thar the defua from cuch slame are separaiely redueed Lo canonicul
form as described n Sevlion 7.1 of [30] a0 that atace n vields dats o, ==
(ers » 0y ey, whare the zads are independent normal r}lem"vuﬁrmfs with oom-
mon {unknown i yarianee & und wilh meansdy, -« 8,0, - (1= p). The
hvpoLthﬁ in bu; tl;‘ﬂ.'&‘l ale Iy o = wove. I oy = ﬂm'-r; ::- ,,m = 0 where

DE 6 k2 0 o is laken to be soro the il hypolhesis may be
deacubed asdh — -+ = = 0; however, since guch 2 hvpothesiz i3 usually known
o be false a p’.r'?im".f il iy be more ressonable Looassign o type T ercor bhound Lo a
larger parameter set, amd a y-inlerval iz 8 mathematically convenient chaiee.

The sequential F-teet for this prablom will now be briefly deseribed and
justitied . Many of the prguments sketehed bolow ean be verilied o analory wilh
reaulta n [30].

We define a group & of transformarions g which act eomponent-wize in un
ideniieal way o ihe canonical lovms of ihe respeclive slages of Lhe experiment.
Lach transformation is defined by an srbitrary positive number b, an arlatrary
orthogonal mutrix ) und § — & arhitrary numbers aey, - oo, o, and ansforms
he slage w dala as Tollows:

[T TR WS I /Y PRSI P B
i g e Lo T T 1 1y
{npa1y = g i) — Delibginn + g, y Twl G,
(TR si'w;.-:' Pl (Zagor, s;t'ﬂj‘ﬁ:"

This group leaves the model for the data tlwough atage s invariant, with
{defmed abowve) s a musdma] invariand on the purumeler space.

The gample means a1, -, Fo of the first { components of the observations
through singe w ogether with the conventional error mewn square 72, (used on
w = it — 11 4 wip — 1) degeees of [reedom) consillule a stage n sufficient
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slalislic, sy &, and ¢ = {&, @, «-) Iz & sulllcdent and transitive sequenece.
The lollowing Lrusformadion iz induced on the sawple space of &, :

I:fnl P ']_"1&\-' = b"{:.fﬂ R | 'LFR):}'”
(s, o0 Bug) > 0o (B & Gepny o0y Ear + @)
E, —bE,.

A maximad invariant under this induced gronp 1= the Fatatistie F, {with & and
v, degrees of [veedom) conventionally used o lest the hypothesiz= 4 = 0 (or
¥ £ o) based on ofl (he dala availuble throngh stage n) thus Fy s the eatio of
the nen squames duc to hypothesis and ervor based on the fivss 7 replicatioos.

Blace every alinosl invarisnt funetion of 2, 18 known o be equivalent 1o an
invariant function, Assumpiion A holds, and the Ptein Theoron leads to Lhe con-
clusion Lhal F o= (#), F, -0 is an invardandy sullicent (and transitive)
scquence; hence, F, s aullivient for the distributions of any invardand lunclion of
which it is & funetion, speeifieally for the disleilbulions of (&, --- | F.). (Appli-
callon of the Biein Theorem eould also be validated by verilving Assumption O,
in anglopy with Cox's theorem, bt the verificalion is hoth todious and unneces-
sary. The likelthood ruiio for (£ -+, K at p and v then reduess to $he likedi-
hood ratio for F. at 7oand o, Chat s, the ratio of two non-central Fdensilios
Thiz ratio may b conveniently expressed as B, = k. (v /A v) where

'F'I'MI:T} = OX (_n'ﬁ"f‘lgl"fl{?ﬂ + k':l;'llir ;-_.-'EE*- {n’.l".-".lz. 'zn.-"ll{i + zll'l-:ljl

M-, -1 -7 is Lhe confluent hypergeometric function and o, = F.k e, | the ratio of
gums of squares duc e bypothesis and error [38]. A BPRY basod on the ratios
[R.i has properiies (13--(iv) listed in 1.5 since the non-cenlral F slulistic has a
MILR.

Referenees to available tables for the conflueni hy permeometric funeiion may
be found 1o [42]; asymeplotic expansions given there may also be wsed to develop
approximate procedures. See also [35], [36)], [38], [39] in these regards.

Nole Lhal we do not reduee the data available thoough stage » to canonical
form, ut only the data of esch slage scpararely, I'hig 9 essential in our formmula-
tiom o permnit , eonsistont component-wise yroup strneture, Actually the sucees-
slve slaves need nol be perfect replications of one basic experimenl. g0 long aa the
canowweal forms are perfeel replicalions; in fuet, we can permit any munber of the
luet ¢ — & components, or all ol the lret & eomponents, of the data in eanonioul
form Lo be misging ab wny shage by making only minor alleeations shove, Indeed,
pand the number {{ - &) of nuisance parameters may be infinite, provided only
thal sach row in the desimm matrix have a Inite munber of non-zero cntries, Thus,
new nuizance paramelers may be inlrodieed at cach stage to adjust for suspeetod
stuge-lo-slage etfects, (We call the stages replicalions, but ther include any 11me
ellects. ] Home accounling for such effeets, oven stage-wise varailion i &%, is
wlso possitde by using an alternative provedure, namely an SPRT based on o
sequence of independenl. Foslalistios, one computed from each stage (assuming
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I <2 9. Buch procedures are eonsidersd in L7 (specifieally in the contexy of
[tests rather than F-lesta),

Finally, the sequential F-test may be shown to be valid in any aituation in
which the nonsequential Fo-tesi, based on the aceumulated data throngh stage 5,
hak a power [unetion depending on v only. In ihis cage, one can iranslorm o new
obseTvations @, | whnm;r:f,,] i funetion of 2.5 , and in tormes of the new obaerva-
tions the st b components ave replicaied equally, or nod at all, al each stape 20
that the precoding anulys=is is applicuble for the primed data,

Two-sided (esl: The above F-iesi reduces 1o a Lwo-sided {-lesl, or fiesl,
when & = 1 we turther assume belowthatp =1 = L (Theease b = L,p =1 =2
it dizevssed in [17]0 Thus, based on a single sequence of observialions ey o, -2«
from a normal population with nnknown mean p and unknown variance o, we
wish to tost &y ¢ {u/e)® = 850 =) aguinst 77 2 (/e = 67 =) (The trans-
formmalions take each ¢, into <=l and Lthus constitute changes In algn and scale;
zee 1.3.) The likelihood ratio sftor o ohsorvations is as given ahove for the #-teat
with v, = n — 1, & = L and F, the sgnave o Boudent’s &-atatistie based onn — 1
degrees of freadom ; more converiently, 2o/ (1 4+ 2.} = ( Dot @) 2t 2 = Py
gwy. When d; = 0, the SPRT reduces to the commoen WAGTR twosided #-vesr
treated in [34] and |37 The resfricfed | 3] and wedge [41] procedures are allernalive
GEPR1s based on the same invariantly sufficient sequence of F-statistics. Sec
ulso LY. {XNofe: Using Wald’s weighl lunclion one can obtain o similar tesn with
ihe modifieation of reducing by unity the fivst argument of the confluent hyper-
meomettic funetion. owever, even for &' = 0, 1he wse considersd by Walld, wo
Lnow ol no rigorous praof of Wald’s mequalitics on the two crror probabilities; log
the kind of arguments vequived, see 7],

Tables [34] are available for carrving ous the SPRT when 8 = 00 Otherwise,
tahles of the confluent hyporgeometric funetion wre requited {(see sbovae ), Alicra-
tively, one o approximale Lhe conflluend hyperseowelric Mnetion to obdain o
simpler form of the test. Following Rushuon |36, one obtains (he Tollowing ap-
proximate sumpling procedure, using his simplest wpproximation: continue
suanpling only il a, < v, <0 D, where o, = #f[1 - 23 4 (np) (a_.-'"u}'l; R
and a = log 4, v = (8 + &)/2, p = (§ — &)/72, and similarly for b, wilh a re
placed by b = log B Beller approximalions or the exacl formules could be nsed
whenever v, lies close to a eritical value g, or by, .

1* test: T'he zame approach asz for the F-test above eould be carried through
for muliivariate linear models, as in Sectlon 7.9 of [$0], but a single {numerioal)
maximal invariant on the space of the sufficlent staiistie or on the paramefer
gpaec 15 usually not available; instoad, the vootz of cortain determinantal coua-
tions play these roles, Sequential tests of simple hypotheses about these para-
metrie roots could be curried outd, but 2uch hypothezes would seem to be of ittle
practionl interest; there is no available sequentiol anulog of the maximom root,
tewee, or likelihood rabio weals for Lhis problem (bol see L7}, However, whenevor,
there is a single non-zer rood, Uhe problem reduces (o that of a sequential T5-test,
an imporkant special case of which we oulline below. (Bee [A0] anld [1].)
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Consider 1wo @ variate mullinormal populations wilth equal {and unknown)
nom-gingular dizpersion malrives = and unknown mean vectors ¢ and & . At cuch
sbage of Lhe experiment an obscrvalion from esch population iz drawn nde-
pendently, sy o and x,p {p-voctors). We wish o tesi the hypothescs v = 0 va.
v Z v > w2 0) where v = (f — #) 27 (0 — ). Wilh v = 0, this is the
problemn of wequenlislly tosting equaliiy of bwo mewn vootors,

Let g be & component-wise Lennsformation with identical components taldng
e ke (g 4+ 6} -L0d = 1, 2} where @ Is an arbilrury voetor of constants and
{: 15 an arbitrary non-singular matrix. These transformations leave the problom
invurinnt, and « iz & mazimal invariant ou (he parameter space, The 1wo veclows
of aample meauws, Zn and Tz, and the pooled sample dispersion mutrix A, form a
suffigient statistic based on the daia throngh stage #; the scquenve of suffivient,
sballsiics s cramaiive, and o transformation i induced on the sutficdent statistie
taking Fu: ino {Ee - @) Lid = 1, 2) and D, into L' 0,L; movenver, Assunption A
holds. A maximal invatiant is 7.7, the nou zero oot of the determinantal equa
tion A0, — M| = Owhere 4, = (T — Fou) (Far — Fou). (T, iz wn arbitrary
eomstant forn = (p 4 1172 Henee, T = (17, 7Y, -- -} is an invarianily suffi-
cient and lransidve segquenee and may be used Lo eonstruet seouontial Lests
about the parameler funclion .

Sinee T, is » Hotelling T-statistie {with 2{r — 1) dogrees of frecdomn ), iw
disiributio i essenlially that of non-central F; hence, the stape n likelihood ratio
iz of the same form ag in the Foiest, wilh ik = p, 2o = 2{n ~ 1} — 3 + 1, und
o = T.72(n — 1), When p = |, this reduces o the iwo-sample £-tosi [17].

Similarly, an invariantly sufficienl sand transitive sequenee of Towelling
Tatatislies (with » — 1 degrees of froedom) may be conslrueted for testing
hypotheses about v — 6= when satnpling from a single p-variale normal
populalion with mean vector ¢ and dispemsion malrix 2; the transformalions
then are of 1the [ovm oy — 20

If 2 iz assumed koown in these problems, one may oblain analowonsly se-
quentiol  -lests [22].

L7, Alternative sequential tests; z-rules. An allernalive approsch to ihe
construetion of sequentlial tesis aboud a parameter v, when the sucesssive stages of
the seguential experiment are mutlually independent, iz as follows: ot 1, be o
stalisile based on the slage » duta (2 funetion on 22,0 whose disiribution depends
only on +, and let 2, be a lunclion of tm = (&, -+, &} which s sullvient for
Lhe disteibutions of fm . Then a GEIPRT of simple hypotheses whout + can be
baged on Lhe faequence, or equivalently (by sufficiency ) on the z-sequenes, We
eall such fosts -rides, decislons al stawe s depending only on the value of =,
Ap advanlage of z-rules i3 that the £'3 are muiually independent and possibly
identically distribuled a3 well, in which caze Wald’s ABN and OO approximy.-
tons and his lermination proofs are applicable; Lehmann’s [30] monotonieily
theorem for the OO funclion may alwo be applicable, However, unless such pro-
cedures ave also v-rules (zee below), they wasle perlinent information about v and
&0 arc presumably less eflicien| that e-rules; in faci, they may perform no hetter,
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ag far as the ABN is comeerned, than nonzequential tests of equal strongth (zce
(2413

T dlerive z-rules from sufhicieney and invariance considerations, we [irst nole
that, in the framework of T4, & induces a group &, on 90, with elements g, . Lel,
1, be invarianily sufficient for the component models X,e under &, - Tor z-rules,
invarianie reductions (to w,) arc made separately siage wisze, and then anflvieney
reductions yield the zsequence; for s-rules, invariance reduclioms {to w,) are
wiade om the accumulated data, and then sulliciency reductions yield the p-se-
QUELEE,

Now it may bo neccssary 0 group Lhe suecessive stumes of the experiment in
order that the w-senuence does not degenerate into a sequence of comstants. As
an example, consider a one-gided {-leal sitogtion (sec L3 and 130 in which ob-
aorvarions are taken in suecssive groups of size & (>1) fnom o normal popula
thon, Mudent's fatalistlc calenlated from the stage » dada (& — 1 degroes of
freedom) iz invariantly sufficient under scale chanwes on the stape # dala and
4 = pia. Thut w is a sequence of independent -statisties. An #PRT of 4 vs. »
based on w iz easlly construeled; this s a z-rule (we can lot 2 = w0, ). After o
total of nk observations thiz z-tule would wtilize # fstallsties with a tolal of
ik — 1) degrees of [reedom; in eontrast, the WAGR #-test, which is a s-ruls,
wollld utilize one {-statistic with nk — 1 deprees of freedom, Henee, the z-rle
wastes n — 1 degrees of frecdom (the betwoon stages degrees of freedom ) ; alao,
it only permils Lerminalion afier multiples of & observationa, On the olher hand,
approximations to its OC and AEN functions are avallable.

A comprormize belween Lhese two approsches sould retain some of the ad-
vantages of each; specifically, obscrvations may be talken one ab w time and, afler
wk - e observalions {1 < m = kb on =, 1, -- -}, decisions based on the prob-
ability ratio of the mutually independent & statislivs &, fa, -, ta, 5;“ . eavh of
the first # t,’s being bused on & — 1 dogrees of freedom and f,.; being hased on
m — 1 degrees of [reedom (lermingtion ig nok pormitted when m = 11,

Examples of z-rulcs in the literalure include a range Lest for normal variances
introduced by Cox [8], some sequential tests for varianes components introdueed
by Johnson [24], and two sequential runl Lesls for the two-sample prohlom
proposcd by Wileoxon, Rhodes and Bradley [46] (see 183 Othor possibilities ave
abindunt; for exampls, 8 gronp sequential test for the mullivariste lincar hy-
poihesis could be comstrucied based on & sequence of independent mwaxiourm root
statiztics, trace statistics, or lkelihood raiio statisiics.

Wow it sy bappen, though not in any of the exampleg considered so far in
Lhis paper, that a srule 2 in fack a wrale. This ceours whonever wy, =
i, + v, e 12 A maximal invarfant under o, |, that i, wa = e . This s so in
particuiar it 7y, is momerphic to 5 % O 3 - -« X G0, An example of 1his =
provided by a meodification of the {esl example ahove, Suppose the & observa-
tionz in stage # arc independent ¥ (ye, , o1 ; thusg the mean und standard devia-
tions (all unknown) may now vary from siape o slage but the ratio remains
eongtant. Let g = {gv, g, - - -} where g, applies a scale chunge to the stage «
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dala, and g, may now vary with n. Then ., above is easily seen to be lovadanily
sufficient under @y and wy under &5 . Thus, under these conditions, an SPRT
buszod on the sequence of Independend fslalisiios s boik a 2 rule and o e-rule. The
gerpiential F-teat and other normal theory examplea conld be modified analo-
gonsly.

When wy,, does coinelde with i, , STPRTs constyucied from the wesequence (as
in the t-tost cxample above) are casily secn to have 8 Wald-type optimality
amowny all lnvariant procedures, that iz, 1the ASN s minimized for all 8 such thar
vi0) = 4 or 4 among all invariant procedurce with the same or amaller error
probuhilities. We conclude (his seclion wilth a second example; a thivd cxample
will be given in the next scetion. (If the w’s are Frasor-sufficient as well as in-
varisntly sufficient, sz in the example below, then the restriction to invariagnt pro-
cedures in this oplimality may be removed; ace [16] and [12].)

Hupposc stage ® of the cxperiment viclds two independent normal observations
with unil varlanees and neknown mweans p, + v and g, vespeelively. Suppose 7
ls the group of transformations which adds an arbitrary eonstant a. to both ob.
servations from stage n{ =1, 2, -« -} Then w, may be talen as the differones be-
lwesn 1he stage n observations, and i, = (W, -+, W) 18 & maximal invariand
under ey 83 i3 + undoer the induced mroup on the parpmetor space, {The same
gtatements hold if g, and e, are eonstants g and o) Then 2z, = ¢, = Z?—i ;.
An BTPRT of simple hypotheses about v hased on the w-sequence has the Wald
optimal propoerty,

I.8. Nonparametric sequential applications. Tn u sequential test (ut Tepst inog
STTYTY, the two hypothezes and two Kinds of error are treated in o simdlar fash.-
wm. o most nonparamedoe tests, however, the allernative hypothesos are
Lypically rather vague or all-encompassing. Thus, to obtain a sequential non-
parametric togt from available thoory, one must eonsider rather spocifie alterna-
tives—aulliciendly apecific so that the probability disteibution of some test
stalistic (perhaps nvarianily sufficient) s completely specified by ibe allerns-
tive hypothosis, ps it is by the null hypothesiz, The proctieality of sach a speci-
fieslion 1s perhaps rare.

COme sueh cxample, however, iz the aign fest for which one reduces nonparametric
meggurement, dats to bloominl dala by clessilying suceessive independent ob-
servallond (or pais of observailions) shuply as “successes” or “lailures” (see pp.
147-1449 in [30]}, Beguential binomial tests of whether the suceess probability is
lorge or small ean Lhen be performed. Bomelimes such date reductions mey hoe
justified by invarianee considerations, e.g., In patred comporisons (p. 220 n [30])
o> when tosting for symeetry (p, 242 in [30]): 200 also the crample below, Here,
the lower roule is the eonvenient one— reducing by invarianee aod Lhen by suffi-
clency— &0 that the Btein Theovem ia not requited. However, when testing two-
gided hypotheses which are symooelvie shoul & in the sueosse probahility p, in-
yariance may agan be applicd after sulficiency to reduee the data further to the
magnitude of the deviation of the proportion of suceess from 3 here 5 = |p — 4]
Then the two-gided sequential binomial lest may be derlved, using the meihods
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ol 1.5, Bolh of thess sequentind zign leste huve propertioe (-(1v) deseribed
in L5,

Fome examples from the theory of most powerful rank order tests [28] ean also
be handled. In Lhis theory (nomscequential ), one doss speeify a partieular type
of alternative against which maximumm power is desired, for a lesi of level & A
gerpuentin] tost of speeified strongth (e, @) can, at least in prineiple, be baged oo
a sequence of mosl powerlul lesl slalistics, valvulated slage-wize or from the
scenmulated datoe. When invarianee eonsiderations aic applicable, the Siein
Theovern may [acilitale such lests. We exernplify Lhiz with s two-sample se-
rquential mank tost; an analogous onc-sample rank tost of aymmetry aboul the
origin may wlso be developed.

supposc at each atage of experimentation an observation is taken independenily
from each of two populations with (ungpecified} continuons distribution fune-

tions F and F', respectively, and one wishes to weat I F' = F apsinst
My« #° = F* {scc (28] or [13]). This is a particular easc of the “one variable is
Alovhasiically Inrwer Lhan the olher” allernalive. Yeiting v, v, - - -, 7y be the

ordered ranks (inereasing order) of the obsorvations from the second populalion
from a combined ranking of all the dats wvailable through stage n, we find that
Be = {1, =+, 7)) 18 lwvariantly sullielent (and (ranaitive) under ihe group (7, an
element of which applics an identical monotone continuous transformation to each
observation (zee remgrks on Assumption Bin L2} Teing the Stein Theorem and
[28], the probabilily raiio al stage n id found lo be

D%l + 1 R = DA% L2420 - (B,

and w FPRT 13 repdily performed by comparing this ralio at esch stage with
Wald'a boundarics A and B, Similar results are avallable when the allernative is
Fo=Fik= 1 or# = hi#) for specificd k(- 3(F = F):also, sampling in pairs
i nol essenlial (aee Aoal paragraph ). Nothing is lkknown aboot the propertios of
these tests other than that specilied bounds {approximate equalities ) on ihe error
probabilitics are met (1), and formination oecurs with eortainty if cither of the
iwo hypoibeses s true (1) the laller follows lvom a theorem of Wirjosudindjo
(471, but whether termination is certain under other hypotheses ia not known, How-
ever, under the insmrisnes prineiple, any good test must be g s-rale, and these
tests ave v-rules. An allernalive group sequential procedure, a z-rule, will be given
in the last paragraph below,

Wow lel ug consider s vuristion on the shove example. We veplace F and ¥ hy
F, and F', in the assumptions and hypotheses, and no longer require the compo-
nentsg. of g = (g1, gz, - - - &0 boidentieal; that 1s, the pair of obsorvations from
stape n, having disiribuidons F, and F', | are both iransformed by the same
monotone continnous transformation, but the transformations and distributions
may vary with o, The vequived invarignes sssumptions still hold, Letting an, = |
or 0 aceording as the aign of the dilferance between the stage n obaervalions is
poasitive or negative, we find that w15 8 maximal invariant under 7, and
e = (ign, -+, ) 16 8 maximal invariant under G, . A sequential binomial test
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orsign test (ol p = § = Plw, = 1| Hy) against p — § = Plu, — 1 'IN)) s
then g erale and & z-rule and hes the Wald optimal property among invariant
procedurves.

Tinally, suppose &, uml £, independent observations are Lo bo taken al slage
n, if stage » ia porformed, from populstions with distribution lunetions £, and
F', , vespealively. (The sequences ol munbers k. and k', n = 1,2, -+, are non-
negative integers, arbilrarily determined but not dependent on the observations.)
Thns, the distributions may vary {rom alage Lo slage but not within st The
group F had a parallel sirueture: the component g, of ¢ iranslonns cach observas
tion from stage # by the same monolone continuous transformetion but the
pod may vary wilth n. Lotting w, donote the ordered ranks from the second
{primed ) population [1om & combined tunldng of only the stage n duia, a SPRT
bused on the w-sequense is both a e-rule and a = rule and has the Wald oplimnsl
properly among nvarant procedures. (At stage # the probabilily rtio 15 given
by the produet of the stage-wise probalbilily wiios, and vach of them is of the
form 2 mire 4+ 1) - (e +F — DR+ B+ D0k - & 42 - (4 2870)
Howoever, i the hypotheses (and translormations) do not perroit varislion from
stage lo sluge (F, = F, F', = F and the somponents of g are identical), then
this procedure iz 4till a valid z-rule but not s e-role: it tormisales wich FRTRATN Y
umd hug o known ASN (approxdmate), bul presumably 15 loss cfficient than the
e-rude which would re-rank all the available data at each stape rather than raok
only within stages. Thiz z.rule, and wn analogous zomle based oo the rank sum
2 r; {there is no rank sum z-rule sinee the rank sum is nol invariantly sullicient.’),
have been proposed by Wilvoxon, Rhodes and Bradloy [46), and designated the
ecrefigural renk fest,

TART II: CENTRAL THEORY

ILO. Summary. & s o family of distributions on a o-feld & of subeets of
I, @y iz o sufficient subleld of &, € is u group of Invariance translormalions g on
o, (1, iz the e-field of invariant members of &, and Ger is Lhe interscetion of ¢, und
i#; . The main vesull eslablishes, under eortain conditions, thal 6. iz sufficlent
for i, . This iz implicd by the slipghtly stronger conelusion that @ aml @&, arc
comlitionally Independont given G . Both conclusions huve beon cotablished
under any one of thres assumpiions. Assumption A is that gits = @ for cach g,
and that every Ge-measurable and alwost invarisnt funetion 12 equivalent Lo an
Har-measurable funetion. Assumption B ig that there exisls w conditional prob-
ability distribution @ sl thal Qlgd, gz) = Q(A, @) forall A s, r o, g2 (7.
Assumnption C iz that & 8 o family of denailies on nspace of the form piz) =
gal ez ) Wil ), the fupetlons gy and A heing positive, and thal on some @, sel ol
probability | cach transformation g is differentiable with Jacobian depending
ooly on s(x), s(x) = s(z") implice s(ge) — (g, ¢ s differentiable with ils
matrix of partial derivatives of maximal rank, and &{ga)/h{a) depends only on
elr). A vounder example shows that @y, need wot be minimul suffieiont for & if
(e 1z minimal sufficient for & Oo uhe ovher hand, rompleteness of ® on @s i3
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inheriled by Gap . Bome theorems coneerning lransiiivity in the sequendial casoe
are glven, Theorern 1.1 slales Lhal {%.! being trassitive for [m,] i equivalent
i T and e, n bring conditionally independent given i@, for cach «. Theorem
4.2 stales thal if, for cach #, G C G C e, B © G, O Chy, and Gy and o,
are conditionally independenl miven ¢y, , thon 6] wansilive for {6,) implies
{rtend tranzitive for { e . This implies {under Assnmption A, Bor ) thal §6.,)
Is lransitive [or [otnt i (.0 is transitive for {@.0. Theorem 1.3 statos that if
By, Mg, --- #re ndependent sublields, &€, = o v --- v @, for each n, and
ol any seruence duch Lhat g © @ and Gop e C e ¥ Wy, then (G} s
transitive for § ..

IL.1, Introduction. The question wilh which this paper is concerned s phrased
in Part T essendially ss follows: If a sufficiency reduclion sod ano invarianee
reduetion of & problemw are pedformed in smeeession, is the resuli independent of
the order in which these two reductions ave carried out? The purpose of Tari 11
is Lo pregent a treatmenl of this question and e various solulions entively in
the language of subficlds.

Led o b a apace, 8w o-ficld of subsets of 20, & a family of disiributionz on @,
and &, a sufficient sablicld of @ Lel 7 be o group of invariance transfocmslions
g of A amta itsel {procise detinitions are given in Seciions 2 and 8%, Lot @, be the
o lield of nvaran! members of G, The intersection Gs n @ will be denoted by Gy, .

Buppose that G, iz indueed by a suwliciend siatistio (8, @7, &), where & i3 & fune-
Lion from 5 onto % and 67 iz a s-field of subsets of § such thal ¢, = 37(G"). The
notion of a sufficieney reduction followed by wn invarianes reduetion cannot be
[ormulaled very well unless every ¢ induees a translormation in %, e, &ie) =
sliey implics a{gi) — #lgre). In the subfield language this means thai g frans-
forms any member of 65 into o member of @&s . We shall assume throughout that
every y ¢ ¢ has this properiy (Assumption A (100, It 12 clear thal The inverso
images under & of the invariant sels of &7 conztitute the subfield Gar .

An invariance reduction applied after & sulliciency veduction leads to 8 masd-
mal invariant usclion on %, say w (where o 15 supposed to be G weasurabled,
Finee w nduees the o-ficld of invarant sels in o, the fimetion wdel ) on T
indusces g . The question stated in Part 1 s whether & maximad invarisnt tune-
tion on & iz fneariently sufliciend, Le. sufficient for @ restricted to 1he nvariand
st 'I'ranslated into the sublicld language 1his question beeomes: fo @ar sl
eaend Joi (&,

It 72 not known whether the answer (o the question in the preceding senlenaee
i# yes, in peneral, i only Assurmplion A (1) i@ wade, OO 8. Stein, in an unpub-
lizhed manuseripl (see Prefuce}, was the fret 1o recoenize the proble, aml to
give suffivient eonditions under which a maximal invarisgnt funetion on & s in-
varanlly sulliclent. To the present paper we shall prove the desired result under
various other zets of conditions, different [rom those of 3tein, More specifieally, we
ahall propose theee different sots of conditions, called Assurnptions A, T, and O In
applications it 19 convenient o bave severs]l possibilitics 1o choose row, for, 1o
v an exwmple, conditiona that are casy to check in siluations involving normal
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digtribastions may be hard to verify in nonparamettic gituations, and vice versa,
Ti Lwrns ol that Assurapions A and O are wsually easier to spply In paramctric
problems, B in nonparametrie problems,

The sufficiency of g for & furng out to be 8 econscguence of the following
interesting relationship hetween the sublields #q, op and iy @ 8, and @, are
corditionally fdependent giver Gy, . This conditional independence obiains under
any ome of Lhe Assumplions &, T3 or C. The formulation in torms of conditional
independence of aubficlds has the advantage of being synumetide o og and G,
and in simplifying proods, e, o Seetlon 4.

Sequential aspests are treated in Bcetion 4. At each sampling slage n we huve
the gubficlds G, G, s, Cere - Whether or nol Gy, is sufficlent for &, dependa
only on the three sublields &a. , G, aod Ger., bol on the whole seguenee, How-
ever, an additional notion entors that does depond on the whole sequence, namely
the notion of tranailivity, inwoduced by Babsdur 4], Questions of transitivity
are angwersd In Section 4, relving heavily on the notion of eonditiona] mde-
pendenece of subficlds.

In Beetion 3, Assumption A is discassed. In the langnape of slatistics Assump-
Lion A (11} mesns that an ahmost invariant function on 8 13 coquivalent (o an in-
variant function on & Theve are problems where Assumplion A {11 eannot be
cheeloed, sloce the only known theorcm that eovers Asswenpilon A (1) assumes
a verlain property of the structure of € and, in addition can be applied only if »
ig a dominated fumily. This excludes applicaiion 1o nonparametrie problems.
Theorem 6.1, in Hection G, avoids those handicaps by using Assumption B, which
i# the cxistenes of an invavlant eomdilional probabilily distribution, Bueh a dis
tributiog is usually casily exhibited in cases where the conditional probability
distribution s discrele, such as in certain nonparamelrie problems, Frample 6.1
illuslrales thiz ease, On the other hand, in a large class of problems involving a
[amily of dengitics with respeet Lo Lebosgue messure, Asswmption B may be
ditHeult to verdy direcily. In order W cope with such eases, Theorem 7.1 1o
Spction 7 gives sufficient conditions (called Assumpiion C) for Assmmption B
lo be wvalid if ® is o family of densitics on aspace of the form pie) =
gel sz} dhix), where the varlous lunetions, go, 4, R, and cach transformation g
sakisfy ceriain vegularity eonditions, This theorem could perhaps be reganded as a
rigorized vorsion of Cox’s theorem [H]. Tta sdvantage over Assumption A iz thal
its econditions can be checked in a #tradvhiforward way. To particadar, it does not
involve the topological structurs of &, The use of Theorem 7.1 is Musicated in
examples 7.1, 7.2 nmul 7.3

I1.2. Preliminariez on transformations and conditiomal independence. Letb
o be w space of polals x, @ & o-field of subsets of ¢, I' a probability messure on
¢, II &, < @ and &1z a o-eld, we shall simply denote this by & < &, and we
ghall, for shorl, call &; a sublield of &, or simply & subfield. T &) wnd G arctwo
sulilields, their intorsection &) n @ is wlso o subficld, With the union & o 8. this
is mot usually the caze. We shall denole by & v @ the smallesi subficld contain-
ing boih @ asd & . Al funetions will be undersiood 1o be G measuwcable real-
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valued funeilons on 9, and 1f vequired in Lhe conlex), Polnteprable IF (wo fune-
tions fy and f. are equal except on & get of P-measure 0, Le. i = fy a2 P, wo shall
denote this by £ ~ fi, and somoetimes form this ©f) i= cquivalent to f 77 1 6y < i
and f iz tg-measurable, we shall sometimmes lern this “an ¢y funclion 7 The
conditional expectation of [ given Ga, written E([ &), iz defined as anv @
function whose intogral over uny Ay e 6y equuls the integral of f over 4y {this
follows Lodve's definition [32]; Dool |11} rvelaxes the definition somewhat by
ineluding wll funeliems: that are squivalent o an & funclion with the above
mentioned properiy ). The conditional expectation of f given @y is defined up to
an equivalenes within the 6y funetions, and we shall somelimes speal of the
varionz “versions” of ithis comdiiional expectalion. The condilional probability
of o sct A, PLA | @), 18 the conditional cxpectation of the indicator of 4.

Tel g be n 1-1 (ransformalion of € onlo a space Y of points . We wille
Y = g%, and ¥ = ga il yis the image of 2. The point transformation g induces in a
natural way a =ot transformation, which we shall alzo denote by g0 Thus, g4
ig the image of A & &. The eollection of all g4 is obviously a s-field of snbsets of
7, which we shall denote by gG. Furthermore, ¢ induces a probubility distriba-
tion, denled gF, on gt gPigd ) is delined as LA ). Tinally, lo each Tunelion
T on 9% corresponds a funetion on 9y, denoted g7 gf{ge) iz defined as flz). (This
definition of gf makes senze oven 1 f has o arbitrary range space. )

The iransformaiion g produces: an lsomorphism belween (%, &, P) and
(g, g, gF). Thus, if G = & then gy < gid, and if fis & P-integrable funetion
on 0 then gf s a gP-integrable function on g and a possible version of Bl | gt}
is gE{ [ @), 50 that

(2.1) Flgh | gtia) ~ gH{f | to)

{the equivilence ~ s here wilh vespect Lo gI" on gety).

The consideralions given so far will be applied in the case Y = X, ie g is a
1- 1 transformation of & onto itsclf, In that casc it makes sense to twlk about
the poazibilitios g& = o, ¢f = J, el

The rest of 1his section is devoted to propositions on conditional independence.
Lot @y, @z and @5 he three subficlls; then @ and 6y are defined in [32], p. 851,
by be eomdilinrelly tndependend givere 8 1 for any 4, & and A. & & we have
Py | @) ~ Py | @) Pids | @), Instead of giving the definition in torms
of eonditional probabilitics of sets, wo may, cquivalently, give 1 o termes of
conditional expectallons of nlegrable muﬂmus Since this 1s more convenient
in the zequel, we shall state

Durmrron 2.1, Subficlds & and G are conditionally independent piven iy
if for any & funcllon i and & funelion fi we have

(2.2) Eififs| Gs) ~ Elf| @E @),

The definition of unconditional independence of G and @& follows by taking
in {22 gy = {20, o} (Le. & s the lrivial sublield) and by replacing ~ by =
The following theovern iz proved in [32], p. 351.
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THEOREM 2.1. G and (i are conditionally dndependent grven G, if and only of
Tor every Gz funckion b,

(2.31 Eify iy v @) ~ E(fu| Gy

From Theorem 2.1 and Lhe fact that (G v @) v oy = 6, v @&, follows

Cororrany 21 @y and Gy are condilionally independent given &y of ond only
if G v Gy ol B e condilionadly independend given Gy .

Hy taking in Theorem 2.1 @y = 4, ) we have

COROLLARY 2.2, 4 and ¢y are independent & and only of for avary Gz fonclion
fawe have Eif @) ~ Efs.

If 47 and @ wre conditionally indepesdent given ¢y, if &, = @, and if f is
Gy-meazmrable, then 7 v also Gr-messurable =0 that {2.2) holds. We have thoro-
fore

Lrmma 2.1, IF & and 4 are eonditionally independend given Gy, and ) C G,
then @ and Oy are condiflonally ndependent giver &y |

By laking oty = o, ¢ in Lemma 2.1 we have

Conorrany 2.3, I Gy and &y are tedependent and Gy O Gy, then QO end oy are
indeperlent.

Lewmua 220 IF Gy and &Gy are independent and Gy < & ten & end &y are ron-
dittonally fmdependent given &, |

Proor, Lel & be d-messurable. Using Theorerm 2.1 and observing @) v
My = ¥, we have to show

2.4} Eifa] tf) ~ Kifs| ).

This s true beesuse both sides of (2.4) are ~&)% . Tor the Toft hand side (his
follows from Corollary 2.2, and [or ihe vight hand side by et applying Corollary
2.3 with @ = Gy .

The varlows propostlions on conditional indepesdence in this scetion have
their obvious analogues n lerms of rundom variables, For instance, Covollary
2.1 would read: X and ¥ are conditionally independent given Z 1 and only i
(X, Z) and ¥ are conditionally independent given Z. Lenuwnw 2.2 would read:
it X and ¥ are independend, i a function of X, then X and ¥ are comditionally
independent piven A X,

I. 3. Sufficiency and invarance in the nonsequential case, Assumption A.
Let o and & be as o Secilon 2, and let @ bea family of probabilily measoms 2.
I wi write fy ~ fi this will mean now that /5 = j2a.e. @, e, the sct on which 1he
equalily doss nol hold has Pomeasure O for every £ = o, All lunelions are ynder-
gtood t0 he P-integrable lor every P 2 @ whonewvor this s required in the contoxt.
The expectarion with respect to P owill now be writien .

II & and Gy ave any subfields of 6, with & C &), we say that Gy ix suffieient for
Gy & for every @ functlon fi teve ds an G fwrction o such that Epih | Gad ~ f2
Jor oll P e In parlicular, let e be sufficient for .

Lot & be a group of transformations g of % one—one onto tself, such that for
each g,
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ik} gF ¢ ® whenever F e,

A funeclion §is called dneardent [30] if of = J for each g 2 ¢/; f s called almost
invarigiet 1 gf ~ [ [or each g « @7 {where the cxceptional a-null set may depend
ar g ). A subeet of 268 ealled invasdant I s indiewtor is. The invaranl members
of @ form clearly a subliell. We shall denote il by @ . Tlenee, for each A & 6
we have g4 — A. The members of @& 1hal are in both @ and o constitute the
subficld &g = e n &, . Clewrly @4 15 a sublield hoil of 6, and of &, .

Concerning the relation between 7, te und &, we shall wake Lhe following
AeEUITI T

AgaumPTIoN A, (1) g®a = g for cach gofr; (00 8 Fs d8 Ge-mensurable ond
eelennsl tneariant, there evists an Qa function fop sueh that o, ~ .

Before staling Lhe main result in this section {conclusion of Theorem 3,17,
it 3= ronvenient 1o slate fivat the Lwo following leramas,

Lyames 3.1, Under Aszsumption A (1), i [ és fnvoriend then any version of B([ | )
B8 lrmogt frvareand,

Proor. In (2.1} onthe left hand side we have gf = f #inee £ 13 invarianl, and,
recplacing g by s, we have giie = . by Assumption A (D). Thus, (2.1 reads
Ff e~ pBE(f| Q). If fs i3 any version of Kif| @), we have 3 ~ ofs,
which iz the conglugion of the lomma.

Using Loemma 3.1, and Assumption A (i) we bave lormedialely

Lesmpia 0.2 Under dsswmplion A, F T s dnvaciont there exdels an Qe furalion
For suech that £ ~ KOF| G5

The [ollowing theoremn wae firel slated and proved by Stein (unpublished
under shightly differenl assumptions. The analogue in terms of statisties is
given in T'art 1, Beetion 2, The sialement and proof given here follow consisiently
the language of subficlds.

TurowEm 3.1 Thudes dzswmplion A, G 13 suffiedent for & .

Proor. We have Lo show that il [ is &; measurable, there existe an ey Dune-
tion fsr such that

(4.1 Eolf| Gard ~ far for all g ®,

To show thiz, let fs be any version of F{f| tts) . Sinee 6y, © G., we have by u
will-known property of itersted conditional capeciatinns ([11], p. 87

{32] Er‘{,” (f.@:j o EP[:.f-s | &3::'1 P

Trowm Lemuna 3.2 we know thal there Is an ey funetion fup such that far ~ 7.
Substituting fu, for fu on the right hand side in {3.2), and observing Bo(fe &)
et fezyowe have (A1), This concludes the prood,

There are a few additional properties ol a 2ublield of inlevest hesides sufficicnes.
Une is completeness, anonher is mindmal syflledensy, Are these proporlics inhorvited
by @y if valid for @y 2 Woe rceall (31] thal & on e I8 called complete if, for an
e fonetion f, A = O for all P e @ implics § ~ 0. It follows then mmediately
from the definition that if @ is complete on G, it i3 algo complede on any subfield
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of &z, Inpuridcular on Ggr. Hence, compleleness 1s Inherited by Ggr. The situa
tion s different [or minimal sufficieney. We reonl] that s subficld G, sufhcient,
for &y , is called mindmal sufficient [31] (or aecessary eud sificend in [1]) i every
gublield sufficient for & conlalng G, up to #-null setz. The lollowing counter
example shows that it @, is mindmal sufficient for @, 11 2 nof necessrily true that
(T, 1t minimal sufficient for & - Lel Xy, -+, X, be Independently novmal with
eornroon Inknown ziandard deviation o and commeon mean cos, where ¢ = ()
ig o known real number, Lot 7 congist of all brunsformations of the fiem 2 — g |
i=1, 1, where gisany posilive munber. Then G 18 induced by the maximal
invariant ( X/ X., - . X/ Xe, g0 Xa). Lot X and & be the sample mean
and stundard deviation, respectively; then e s indueed by the minimal suf-
ficient (but noi eomplele) alalislic (X, 8%, and G 19 indueed by the siatisiic
X/8. lowever, Gy i3 ot minimal sufficient for o, since the bivisl subficld
foar, b I3 containod in (s, , nol eguivalenl Lo L, and alzo aullicient for ¢, The
latier is true becawse the disiribution of the maximal invariant is free of 7, so
that any ¢; lunction has a fixed distribolion.

The relevance of the conclugion of Theovem 3.1 [or testing problems is thai
lor every invarisnl test function ¢; there existz an @u.-measurable tost funetion
gy with the same power funetion. If (s is complele, the property mendioned in
the preceding senfenee i3 possessed oot only by the Invariant iesis, bul by all
test functions ¢ whose power funetion is invariant, ineluding the ¢, as spocial
cuses. To see this wo apply fiest Tewnma 20 po 227, in [30] to Eie | @), then
Aganrnption A (1), and conelude that there 1= an invariant version ga, of Ele | @),
Under Lhese cirenmestances, if 4 tost enjoys & cortain oplimum properiy within
the class of Ga-mensurable lesis, 10 alto enjoys this property among all teats
whose power funcilon is invariant, (An analogovs statoment may be made in
the sequential case, replacing “power funclion®” by “joint distribuiion of deci-
sion and sample sise™.)

We eonclude Lhis section by an interprotasion of Theorem 3.1 in lhe langunge
of vonditional independence. The lailer nolion was defied in Beclion 2 in the
pase of one probabiliiy meagme £, In the remainder of this paper we shall call
¢, und oz conditionally independent given G if for every PP o@ [2.2) holds,
with E replaced by Kp.

Temwma 3.3, The following statements are equivalent:

(1) I fy da dnogricmet, there ertels on Oar funclion fer suck thal $a o~ E(f: | Gs).

(1) AF £y 4= drwerriand, then for every P e @,

ESEJ E'f:fr | &5} ~ Eelf |? 'ﬂ-ﬂ;jl.

(M) g aned G ave condiffonally fndependent given &a, .

Proor. (1} follows from (1) immediately by faking far 1o be any version of
Eolfr fhy,) for any P. Conversely, (ii) follows from (i} by writing the vight
hand side of {330 as Ea{E{f,| () | Gue). Then {33} lollows alier remarking
thai both sides are equivalent Lo Sz, using (1}, The equivalenee of {ii) and (iii}
follows immedisiely from Theorcm 2.0 by taking in this theorem ¢, = da,
tiyg = Or, fy = fur {SO that &, v s = @-a}, LirE = Jr!' 1 and l‘EPl&iill-l}_i E ]J,‘r' Er.
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We reeognise (i) of Lemma 3.3 as the conclusion of Temma 3.2, Using Lemmsa
4.3 {1 and (i} we see then that Lemma 3.2 Iz equivalent to

Turonesm 3.2, Lader dssumplion A, Gy and Oy are condiionally wdependent
ginern M .

Slnce Lhe conelusion of Theorem 3.1 [ollowed [vom the conelusion of Lemma
3.2, it follows thon also from the conclusion of Theorom 2.2, We could thevelove
interprel (he resulis as lollows: Assunpiion A 12 wsed to establish the ronditional
independence of Gy and G given Ge, and this in turn implies the suiliciency of
(tgr Tor Gy o (T4 was noticed by J. I Ghosh that if & on 6y s complete, then the
conelugions of Theorem 3.1 and 3.2 are cquivalent, )

COme of the advantages of Theorem 3.2 s thet it s symmetrie in Ge and G .
Therefore, any sialement implied by the conclugion of Theoremn 3.2 remalns
true if the subscripts 8 and [ arc inderchanged. For example, i we do thiz in
i(3.3) (ufler replacing on Lhe lell hand side & by Bp) we pel for every &g function
.|r$ and EVErYy P, 'rp{fs | '&.'J R EP[_f# | ﬁ-xr:'-

II.4, Sufficiency, invariance and {ransitivity in the zequential casze, [t
ld, , # = 1} be a sequence of subfields of &, and let, for cach # = 1, &ae, G
and Gue e anbfields of @, , defined] in the sume way as G, 6, and Ga were in
Seotion 3. Tor each n, Qg 18 swllicient lor &, . We ahall express thiz hy saying
ihai [Gu.) iz & suffcient sequence for {@.}. From Theorem 3.1 we know (hal il
Assumption A I yulid for ench n, then (G} i 8 sufficient sequence for { @b,
Beaides the notion of suflicieney there 1= in the sequential case an adiditional
notion, eulled ansdbivdly, wnd introduced by Babadue [4].

Dermrior 4.1, Let {&,, n = 1] and [, # = 1} be two sequences of
subficlls such that g, © &, for each n. The sequence {tig,) 12 andd to be a
transitive sequence for [®. if for every #, every Bupen Mnetion [ and every
P & we have

(4.1) Bp(f | Ga) ~ Eolf | Benl.

The fmporlance of |G being a sulficienl and iransilive sequence for {6}
hag been pointed out in {4]. A disenssion can alse be found in Pari I, Bection 4.
This seetion will be concernad mpinly with the quesiion of trunsitivity, 16 is of
goune lnlerest thai Delinilion 4.1 is equivalenl to a stalement in lerms of on-
diiional independenee of subficlds, as follows:

Theorem 4.1, {6} 8 a feansitme sequence fov [08,0 F and andy 3 for eqch
n = 1, and Gon are condiionally frdependent given G, |

Proor. ot 1 be ®ag ) -measurable. Apply Theorem 2,1 with & roplaced by
£y , 3 = W, e = Wy, (s = B {H’J thal & v iy —= K, :| and .'r:" = _fl. Then
Theovem 2.1 states that &, and @y are conditionally independend given
iRy if and only if for each F (4.1 holds.

Two questions will be investigated in the remainder of this scetion. The frdl
iz whother {6hey, ) s a trunaitive segquenee for {6, If {Ge b s a transitive sequence
[or Jet,}. This gueslion was answered by Ghosh [16], Theorem 2, Chapler 4,
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in the yiirmative imder slightly more restrictive conditions than we shall imnpoen
It Theorer 4.2, The second nuestion is woder what conditions Iyt iz o transilive
sugquence lor (@,i. This queslion was suggested by Ghosh’s theorsm guoted
shove, and ihe answor, as formulated in Theorem 4.3 below, is eseniially con-
tained in the proof of Theorem 11.5 in [1]. Our proof of Theorem 4.3 is entirely
in terme of eonditional independence of sublields. Note thal Theorems 4.2 and
4.3 are detuched o sufficiency and lnvarianee congiderations,

Timoruy 42 For cach w0 = 1, let Gu, G, Ooo ond G be sodfelds, with
ton &y, Gan © G artdd Ban © Goa 0 Ry, , such thaf G, and G, are coruditiorally
independent given G . Then f (G} 72 o fransilive sequence for 1@}, 6wl i a
traneitive sequence for {Go,].

Prood. We have to show that if f is Gy -messurable, then for cach £

(4.2) Ep(f| g} o~ En([] thg).

Because [ 1s (- -meagurable, and (e © Qg , £ 5 8050 Green weasurable.
Sinee by assumplion |G} is a transilive sequence for [@,1, we have for each I,

(1.3] Eulf | @a) ~ Eplf| G1a),

We apply now Thearem 2.1, replacing n (2.3) F by #e, @ by Gy, & by G,
G bY @an, Jo by Fo{f | Gue). Then ¢y v 0y iz veplaced by o v @un -~ Gy, and
(2.7 roads

{1.4) Ep(Ep(f O} | Qan} ~ Ep(Ep(f| Gra) | Gaed.
We have now
Erif| o) ~ Kol Eoli| dad | o)
s BB ) | ) by (430
m~ Bel Bp( | Gaa) | o) by (4.4

s h:—'(fl ﬂ'ﬁn:‘

which iz (1.2},

We are cepecially interested in applying Theorem 4.2 Lo the ease Gy, =
{1, 1 Chg, . Tuking in Theorem 4.2 thy, = Qo , Gup = Chyp . O = Gagy , we have

CoroLLary L.1. Jf the conelusion of Theorem 3.2 dx valid for each v > 1, and
i il 2 0 suflicien! wnd iranaifive sequence Jor 1@, then [eisr.) 72 o suffliodend
urid tronsilive sequence for (Gt

Tumoruy 4.3 Suppose @ sequetce o, 85, - af dependent aubfields of
18 given; suppose (n — O V --- ¥ &y ; el (Gl be given such thal for each # Gy,
C e wnd (e © Goe ¥ B hen (G} 73 o transilive sequence for §,).

Proor. By the construction of @&, G and By are independent, We apply
Lemuna 22 with ) — @, @ = ey, G~ G and coneclude that o, and
ey are condilonally independent given @, . Applying Corollary 2.1 we have
thal ¢, and %oy v @ are conditionally independent. given G, . We apply now
Lemma 2.1 with ¢, = Bapl ¥ Gl , Gy = Cope--1y , G = iy, {1y — ﬂ.m, aml



(1) | W. J. HALL, R. A, WITSMAN AND J. K. €JHOEH

conelude that Gugen and &, are conditionally independent given Gy, . The
desited] resull now lollows [rom Theorem 4.1 wilh o replaced by o,

When sampling from an exponential family of distributions the asswuplions
of Theorern A3 wsually apply. Tor ioslance, if X7, X, - - are ndependent
anil ideniically disiribuied sceording o0 & normal distsdbulion with unknown
mean and known variunes, then 8, s indueed by X, @ b (X, -, X,
and G by Th = X1+ -+ + X, Henee tGuaen , which is indueed by ¥ + X0,
is o subfield of QG v Bey . Other examples of the wse of Theorsm 4.8 are given
in Part 1.

I1.5. Discussion of Assumption A. Asexpluinedin Beetdon 1, Assumption A {1}
ig o vory nafural one lo make, If @g 12 induced by a 2ullicient statistic & with
range &, then Assumption A (i} iz closcly related to the properiy that every
g £ {7 induces 8 1-1 iranglormalion of $ onlo beell. The following theorew is
due o CL M. Siein (unpublished } and gives conditions under which Assumption
A (1) holds.

Troeroney 5.1 (Blein). If & i mindmol swfficiend for o, ard 3f Ge confadne all
P-null wels, then Assumeption A (1) 45 vodid,

Proor. Forcach g o (F, due to the isomorphism deseribed in Boetion 2 helween
(%, @, £ and {gx, g, pl*), we have thal p@s is minimal sufficient for g on
gti. Bul g = @ and g@ = €, so that both & and gG. arc minimal sufficient for
o on &, Hneo they both condain all ¢-uull zeiz, they must be the same.,

It should be remarked that Assumption A {1} iz wenally easy o cherk dircetly,
and has been found to hold in all inleresting examples, wheroas it 12 often oot frae
that {u containg all & pull geis, 1n which case Thearem 5.1 1= not applicable.

Assumplion A ean be phrased in the following way, Noting ihai giie = 6y
by Assumption A (1), we can conzglder s as our basie g-field, ngtead of G, ie.
considor only fg-meazirable Mnetions, Assumplion & (i) then saysz that cvery
alinost invariant funetion is equivalent to an invariant funetion. In applications
fig 1s ofton induced by a stabistic », and 7 induess 2 gronp of transformations on
the range & ol . Considering then only measurable funciions on & , and invarianee
relaiive to the mduesd group of transformations on §, Assumption A (i) again
snys that every alwos! invarlani lunelion is equivalenl Lo an inyariant funetion,
Thiz assumption holds in a good muny cascs, ag Implicd by a theorem of Lelunsnn
[30], p. 225, However, Lelunann®s theorem eannot be gppliod unless & iz dom-
inated, which exeludes many interesting nonparamedric eascs. Futhermore,
Lehmann’s theorem requires the cxistones of a o-finitc measure on G possess-
ing a eertain invurinnes: propecly, o thal the applicability depends rather heaw-
ily on tho lopologieal strusture of G, In nonparametric scamples the group
(7 is usually of such a nuture that it i3 not knowm how to verify the cxdsience ol a
mensyre with the desired properlies.

In some problems & is finite, In that oase, and, more generally, when € 1=
countable, Assmoption A (11) iz anlomaiically fulfilled.

I0.6. Assumption B: mmvariant conditional probability distribution, The dis-



SUFFICTEYNOY AND INVARIAKCE G05

gugsion in Beetion 5 brings out ihe desivabilily of huving another assumpiion,
allerpabive o Awsumplion A, that also peormils ibe conclusions of Thoorems
4.1 and 3.2. The followlng Assmuption 15 achicves this aim, by nlrodicing a
function ¢, which wo ghall call an #woriond conditionel probability distrudion.
IF 6 salizles merely (3] and (i) of Assuomption B, il has been ealled a comditional
mrobability diswlbulion by Doob [11] {excopt that o [11] the measurabilicy
condition is slightly weaker), and a regular coudilional probability by Logve
[32]. {We nze here the aymbol € nsiead of the more customary £, sinee there i
only one conditional probability disuibutdon due lo the suffcieney of @y,
wherens there iz a whole [amily @ of disivibotions £.) The additional condilion
(i) gives € o cortain invariance properiy.

Acgomrrion T Theee i a et Ay 0 Gy of ®-measure 1, ond o read volued fune-
Gl € o @8 ¢ 00, with (A, 2} = Gfor ey A 0 G, 2 Ay, such

(i Ffovevery o A, Q0 2) & o prebalalily desledndion an o

(L) for ey d £ &, QA <) ds a version of PIA | @);

() forepery e o X, dedandge @ Qlpd, ge) = {4, )

The roason we have bo distingoish it Assumption B between % and A g7 s
Lhat 1t is not alwayva posgble in appliealtion: fo wisfy () for all &2 3, and at
the sammes time satisfy (i), Regarding condition (i), it i merely necessary to
vorily this for @ e dap ) sinee if 12 4, then wlso gz e AL ;8o that by delinition
Qips, puy — @A, 20 — 0.

Htrietly spealing, (1) and {101} of Assumption B would be salieient o obilain
ihe conclusions of Theorems 3.1 and 3.2, winee for wny invariant sot A (30 and
(i} sy that thore is an invariant wersion of 12041 &:) However, il is more
vaiural to make (i) also part of Assuraplion B sinee the purpose of this assump-
tion is o apply il to csses where s conditional probability distribution satisfying
(1) and (1) is veadily exhibiled, and where {iii) cun then subsequently be verilied.
It should also be romarked at this point thal sesiningly Assumpiion B docs not
contain or Imply Assumption A (1), cven though the lalier was announend in
Section 1 io be assimed theoughoul Chis paper, 1 iz true that Assumption A (1D
is not noeded for Theorcm 6. below, bul iv s equally teoe Lhal csserdinlly
Asmumnpilon A (1) 1 implied by Azssumpliom B, Ta soo this, consider the sublield
genetated by the totality of fueetions G(4, -}, lor 4 = &, This subficld can cagly
be cheeked Lo be sufficient, contained in G, dillering leom &z only in null seds,
und satlalying Assumption & (1). Thus, if Assumption A (1) is ool satislied Ly
tig, the lattcr can be replaced by aw equivalent subficld that docs satisfy it

Doob [11] has showm (g proof is alzo in [32]) that a posaible version of Fif| &)
i delined Ty

(6.1} Eif| Gsia)y = [ fl="00x, z).
If [ s invariant, and € satislies Asswaplion T3, then FBif| @) s defined by
(6.1 ean imedistely be cheelod to be Invarianl, Soee 7 @a 1o alao o,

measurable, it follows that the version of F{f| e miven by {610 1= an Gar
furnedion. This 1= preeisely (31 of Lemma 3.3, which i3 equivalent 1o {00 of the
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anme lenvna, Le the couclugion of Theorem 3.2, We have therefore proved

Turorexm 6.1, I Asswmpticn B holds, then the conclusions of Theorems 3.1
and 3.2 are wolid.

We shall now give a nowparnelric example of the use of Theorenn 6.1,

Bxsawene 6.1, Let X1, --- . X, be independent random variables with com-
mn unlknown distribution. Led the group & consizi of trensformations g defined
by g = (Ramd, ---, Rlx)), where b is gircily monolowie, continuous, and
maps the res] line onto dself. A sufficient statistie is the unordered sel [,

 Xo]. I 1 stands generieally for a permuiaiion of the coordinates of a poiot

#, then g can be degeribed asg the family of those sets A o & that have the prop-
eriv: e 4 = wmre d lor every o, For any o, led mdx) be the mumber of distinet
pointa of the form wzx (if the coordinates of ¢ are distinet, m{z} = n!l), Given
#and aoeet 4 e, let my(z) be the number of diskinet poinis sz thal are n .
Then define ({1, .,ﬂ' == il mle), One can verity mmmu:lmtrcl}r that } aatizgfics
Agzgumption 1, with Ag = o = n-gpace.

I.7. Assumption C: invariant conditional density. Assnption B ia less easy
to verfy if G-, #) i2 not u diserete probability distribution, Theoremn 7.1 in
Lhis seciion iz designed Lo cope wilth the conlinuous casge. More gpecilically, it
giveas aufticient conditions for Assumption B to hold. These conditions will he
eplled Azsumplion O Assumplion O is wsually very easy to verify, and Theorem
7.1 may therefore be used as an allerpaiive lo Theorems 3.1 and 3.2 in those
rases whoere the lutter al=o apply. Two such cascs will be illustrated in Examples
7.1 and 7.2, The normal theory examples in Parl T may alzo be lrealed wilh
Theorern 7.0, The res] advantamge of thiz theorem les in the fact that Assumption
(¢ docs not Involve ithe topological atruclure of Lhe group (7, so that the theorem
may be used in epses where we dont fmow how to verify Assumption A (),
ITxamnple 7.3 will Musirate such a case, in which the family of distribubions 13
nonparametris, and the conditional probability distiribuiion contivuos.

We shall precede Theorem 7.0 by

LEvma 7.1, Suppoese & is an open subsel of n-space, & o growp of frarsforima-
tiona af ¥ onto itself, 5 o differentiable function from F inte k-space {(k < n) with
range 5. Let D2 be the n 3 & matric whose @7 element 45 95,/ 3 evafuated at v o F.
We make the followsing assumptions:

{1} for each g o, the transformation r — gr & continuously differentiable;

(ii) for each geotf, #(x) = s(x") mplies a{ge) = sige’);

(1) B3x) ds continuous and of rank & for each z & F.

Then each g e G anduces o 1-1 and M-rondfnueisly diferentioble transformoation
g of & onto ftself, where for & £ 5 we define g8’ = sipa) for ony o such that 5 = 2(z).

Paoor, That the transformation g i= wcll—clciincd follows from (i1). Tht‘
transformation is 1-1 ginee if for some =, ', Fslz) = Fsiz’), 1.0 slge) = 2igz),
then s(z1 = sz, uging {ii} with ¢, The transformations § obviously form a
aroup 7, which is a homomorphism of €,

To show that 7 is bi-continuously differentiable {ie. §and §7 are continuonsly
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dilfercntiable], it 18 sufficient to show 1hal 7 is dilferentiable, sinee the same con-
clugion will then wpply to 77 Incidentally, this will show thal the Jucobian of
ithe bransforualion § is everywhere positive on 20F), 1o the lollowing, poinls
in Euelideas space will be dewoied by row vectors, wnd the same nolation will
be used for vector-valued funetions. Furthermore, g will be an arbitroy hut
[ixed elemenl of . Lei & be an arbifrary point in &, and let @ 2 F be auch ihai
glza) — an, 50 that & = a{gea}. I follows from (1} that there isan 2 X (n — &)
malrix £y such hal the n X » malbeix (D), £ iz nonsingular. Siuce D)
is continmous at xw, {z), E) ¢ ponsingular in a neighborhood Ny of 2.
Define ihe Funetion w from &) into (n — kl-space by w — efy, awd deline
tw = (8 wa}, 80 that & is dillerentiable, with malrix of partial derivatives
(£3{x), #a) nonsingular on Ny, By an implicit funetion theorern there ix then
a neighborhood &y of wa, Ny O NU;, anch thut on A&y the funetion s 1- 1 and
bi-continuously diffcrentiable. Let My — (N ; then o 1s a 1-1 bi-continuonsly
differentiable map of &y onlo My Bimilarly, there is a nelghborhood &5 of
fen , and a funetion wg on &y, sueh that i = (&, w) iv 8 1-1 b-continmously dif-
feremtinble map of Ny omto W, = #{¥,). Without loss of generalily we may
astiume N, — gNy. By (1) lhe franslormalion g mups &y continuonsly oif-
ferentiably onto %:. Let w be the composilion of the three functions w77, g
and ¢ then w maps My ondo A7 continuously differentiably {aviaally bi-
vouliomously dilferentiably ). Write wy for the first & commponents of w0, so that
wy maps W continuously differcotiahly onto s(&, ). By the consbruction of
any poink {Hj, al & Mo ls mapped by wn into 73, Henee g5 is a continuously dil-
forentiable funetion of {5, ¥). But we know thal g’ depends only on &' henee
g'r::’ iz a conlinuoualy dilfereniiable funciion of &', for 5 in a neighborhood of & .
Thiz soncludes the proof of the lormma,

Although nol needed here, we shall wive without proof an explicit expression
for the matriz of partial derivalives of ihe lransformadion g, ic. the matrix
Wil whose 4 element is a(gs’ /98, for & ¢ 5 Lel Gu(z) be the watrix
whose 44 elernent is d{ge ) 9z, lel D{xY, s snd 2 be az in Lewma 7.1, and
puat 2y = Bl 1 = Dige), G - Gula). Then Wils) = (DD ™0 Galdy .

In the following we shall write g instoad of §, in conformity with ihe notakion
in Hecilons 2 and 3.

Agguwrrioy O, X 45 en a-dimensional Borel sef, @ the Borel subsels of o

= [, 08 with & an orbitrory index set, ond with respeel fo n-démensional
Lebesgue measure Py faw o denadly

(7.1} pelay = golalx) h(a), @ e i,

B which « f o measwralle Sutclion from O fele E-apace (8 < ») with range 8,
ge aned h are posttive, recl-vafued measurable functlone on &, A, resprotively, and
# and b sabisfy the condilions belon, Led €F, (i, @, and Gy, be 08 v Seclion 3 and
suppase that there s an open 36t Aur & Gur of Poreusure 1, such Dt on Aap

{1} for each g« @ the bansformation x — gz 4 continuously differentiable, and
the Jacobian depends ondy on 2iz);

(i) for cack g e 6, s(x) = s(z’) implies slge) = s(gx’);
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(i} & ¢ comtinuously diffeventioble, and the salrdz D{x), whose & elemen!
i duy /02, 15 of rank &y

Piv) for el g 2 G, W(gz) Phi(z) deperuls only om 22},

MNote that Assumpiion C (8) implies Assumplion A (i)

TuEowEw 7.1, Assumplion O dmplies Assumption B ond therefore e con-
clusieie of Theovreme 3.1 and 3.2

Puoor, Asin the proof of Lomma 7.1, to each 2 £ Agr wo can assign a noighbor-
hood and a 1-1 bi-conlinuonsly differenliable Funclion on thiz neighborhood inteo
#-spuce whose fizet & components coingide with s Bince As; iz scparable, we can
cover iL with a countable subfamily of these nefpghborhoods, and from this
subfamily we may construct a family {Na, e = 1, 2, -- -1 of digjoint seis whose
union is A g (the N are not necessarly open, but each 8N, containg an opon =ct),
Un each &. we have then a funcijon @, inlo {n — E)-space, such ihai o, =
(2, we) maps N, 1-1 bi-continuously differentiably into napace. Let S be the
Jacoblan of 2, and define ihe real-valued Funciion A[V.] on (N, by

(7.2 Aleal (s, v} = Rlo, 7, ) Wale’y w), (6, w) e o (N,

Note that Alp.| > 0 for each «. In the following, the indicator of any set B will
be demoted by 18], and the probability with respeet to P of 8 by PaH, Hor any
Aedand s =% we pul

(7.3 KTAl s = 2. J IV N A N0, w hfual (6, u) du
and for K[}« we shall simply wrile E{« 3. Now we define, for 4 £ @, & dg °
(7.4) i, &) = KlAYN ) /KD, & sl

We shall ussume for the time being thut K (s is neither 0 nor =, and return to a
discusion of the possibilivies K{&') = Qor = later. Note that K[A](s") does not
chapnge 1f on any &, the function w. is changed to un’, auch that (&, .’} i again
a 1-1 H-contimyonusly differentiable function on N, . This remurlk wlso ean be
used Lo ghow thal K[4](:") does not depend on ike particular choice of the
family {No):if (Ne, @ = 1,2, -] iz another choiee, with 1-1 bi-continuously
differentinble funclion {5, we } oo Ny, then we may employ the family SN,
and on N, N5 we may lake either the Tunciion (s, wa) oF (s, ug o, giving Lhe
same contribution to the double scrics defining K[A1(2").

W shall showr now that @ defined in {7,410} salisfies (1, {11) and {303} of As=ump-
Lion I3, Thai ¢}, &} s a probability distribution for each & ¢ dsr Is lnmediale,
g0 that {1} 12 trae. To show (§) we first romark that cuch term on the right hand
gide in (7.2} Is a measurable function of 5, so thai {4, -} is Gemeasnrable,
Now let By ¢ dx, then

FPalBy = 2. PiNAB,
{7.3) = 2o | TN ABJ()po(s(2) }h(z) de
= 2o [eele ) ds’ | Hea Nad B (8, w)hlpal (8, w) du,
Ii is readily werificd that Flr.(N.dB)] = Flr(N.A)]0{e{Ba)]. Therefore, we
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obiain from (7.5):

(T PedBr = 2o [arep gels) ds’ [ Heal NaA D, wililea (s, w) du

= [ewen ge(s 1K [A](s") dd’
using (7.3). By taking in {V.6) A = % we got
(7.7 PaBy = o pls 1870 ds',
1t follors feonn (7.7 7 (hat the random variable s{ X7 has o density 9" with respect
Lo E-dimensional Lehesgue measure, given hy
(7.8} pi(s) = gols') K ()
We agtill have o show ihal the nlegral of @04, -} over By with respect Lo I
cquals Pud By . Wow, using (7.4), we may compule Lhis integral as
(7.9) Jotng BELALG )/ K V' (&) '

snd substiituiing (7.8) into (7.9) we obtain the right hand side of (7.6). Thiz con-
eludes the verifiealion of {1} of Assunpion B, Nest we shall verify (i),

From {7.4) we have {gd, gz} = Klgﬂl(gsr}.-fﬁfgxa}, and we hyve 1o show
ihal thiz couals @A, z). Pub N = gy, 8 = 1,2, -+, and let uy be a funetion
on ¥y into (n — Fl-space, defined by

{7.10) g () = g ), ve N,

{le. we = gita). Pusting w’= (3, rrﬁ!} and uging (i}, it can easily be checked
that »s" maps ¥ 1-1 bi-continuously dillerenliably into n-space. Sinee [N,
g = 1, 2, ---tis a fumily of disjoint scis, covering Ads , we have, for any
B Ay, B =UN/B, and the sels of this union are dizjoint. Applving this
B = N.g4 in the expression for Klgd){gs ), we have Tlu(Nagd ] = 2 Iva
(N, ¥ 4] s0 that

(7.113 KlgAlgs™s = 2 e | {lnadNs'Wagd ) |(gs’, wikle](gs’, u) du.

On N N we shall use now ¢ instead of 1, . By a previous remark 1his does not
change the conteibution o the af8lh Lerm on Lhe right hand side of (7,110, This:

(7.12) KlgATlgs' s = 2us [ Tley (NS NagA 1ige, wihlos1(gs', ) du.
By virlue of Lhe construciion of 5 nne can easily cheek
{7.14) Flag' (NN d e, ) = Flns Nadg " Wal )i, w).

Subadtuting (7.13) inte (7.12) and summing over o viehls
{7.14) Kigdl(gsy = 20 | It Nad 1){5", adhles ) (ge’, ) dae.

Using {iv) of Asswnplion C, let Age) izl = nis'), whore 8 — s{e), Using
(i) of Assmption C, let the Jacobian |30 gx) /82 be exl s’ ). Finally, nsing Lemma
7.1, lel the Jacobian '8s’/a{ge")i be e(s"). All three ¢'s are >0 on dg . 8o their
produrt ¢f5 ) = a5 tea(2eal 8] 1s also pogilive on A . With help of (7.2) one
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can verily then (Lt
(7.15} Blug [(ge', i) = elg Rlusl(e, ).

IT we subsiilde (7.15) into (7.14) and comnpare the resull with {7.8) we see
that

{7.16% Klgdligs = e{s 3 K[A[(sD
whore, az remarked before, efe') > 0. Applyviny (716} 1o 4 = X gives
(7.17) ' E{gs') = el 1 E(<).

Tuking the ratio of (716% and (7.17), and uging (7.4}, sives the desived resull
Qigd, g1 = Q{A, =1, domonatrating the validity of (i) of Assumption B.

We return now Lo the queslion whether K{&'), in the denominator of (7.4),
van be (or = 8inee g > 0 on §, we sce from (7.8) that the subaet A amof Adsron
which A{afzl) = 0 or oo i3 of F-measure (0 {actually one ean oasily show that
K (2"} cannol be 0 on s{ 4 5], but we shall not need this fact). Mareover, it [ollows
from (7.17) that A 15 an invuriand sot, The invanant conditional probability
distribution €, given by {7.4}, s well-delined on 4z — Agp, which is an &g sel
of w-ineasure 1, 20 that Theorera 7.1 can be applied with A — dpm nstead of
Az . This eoncludes the proof of the thoorem.

Fxawene 7.1, Let X, -, Xoin = 3) be independent and identically dis-
Leiluted according to 8 normal distribution with mean g, standard deviation o,
both unknown. Then we may lake 8 = {g, o), & = (&, &) withs{z) = > @,
szt = »oaf hiz) =1, and

aels) = ({200 Mexp [— (200 e 4 {ufe’ s — (ne'f267)).

Lot & be the totulily of ransfornnalions ¥ — er, ¢ > 0. The matrix Dix) of As-
sumpiion © s of rank 2 unlessz all componenis of & are equal, i.e. unless x is on
the eguiangular ine. The latter is of Lebosgue mepsure 0 and in Gy, , 5o that its
comploment can be laken as the sel 45 In Assumplion C. AN assumplions are
easily verified to hold, A2 & maximal invariant statistic based on # one can take
b — afg"njl;_. which i3 essentially Btudent’s - ratio, Theorem 7.1 implics then
that in o zequenlial [-lesl Lhe Lralio al the nlh slape 1= Invardanlly sulliclendt.

Txawrere 7.2 {muliiple correlation cocfiicient). let Xy, ---, X. bo inde-
pendent and identically distributod according to o p-varinte normal distribution
{p < w»), wilh unknown mean veclor and uonkonown nopsingular covariance
malrix, Let X = (X, -+, X.) 80 that X is 8 ¢ ¥ n matrix, and let ¥ be the
matrix obtained from X by deleting the finst row 2z of X, Define ¥ = > X,/
iin Lhis examaple o will always run from 1 tow) and 4 = A X " — nX X, s0 that
FXand A/ {n — 1) are the sample mean and sample covarianes mutriz, Similarly,
define ¥ = > Yo/nand B - YF — uTY"

Fuppoae inferenee i3 desired shont the populstion malple correlation eo-
efficient B between (he first and the remaining variates. The corresponding
sample multiple eorrclation cocthrient A° can he written az [1] B = 1 —
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‘Al {anBi), in which ag is the 11 cloment of A, Both £° and B are invariant
under the group (¥ compozed of 1he [ollowing {ransformtions:
iy e - KXo + b, & an arbittary p X 1 veslor;

{ii}) ¥ — OF, € an arbitrary nensingular {p — 17 X {p — 1) mairix;

(11} 2 —» g, ¢ arbilrary real and =0
If the density of X is written down, it is scen o0 he of the foem (7.1, with
T = prespace, and for s we may take Lhe veotor-valued funetion (X, 49, whose
enmponentis are the p components of X and the 32p{p + 1) elemenis a;; of 4, with
(may) ¢ = § {lor slmplicily of polalior oo distonelion 33 made here between
randaom variables and the values they may take on). All parts of Assumption C
ean b verified to hold. The only slep that s not immediate 1= checking that the
maleix Dix) in (17 of Assumplion C is of masximal ranl. TG furns ont that thia
eondition iz true on the sor on which A ig nonsingular, 1.0, an Gy sot ol & measurs
1. This can be shown by direcl computation (facililated by considering X and
A Inetions of new variables, obtained [rom the &y, by an orthogonal Leansformg-
tiomd, or by the following geometrie sargument : 1 the rows of X are projeeted on
the n — 1 dimensional orthogonal cornplemenl of the egidangidar line, there
results a mutrix X T such that A = XX The only nontrivial part of the proof is
tiy show Lhal the malrix of parlial derivalives of the mapping X — A i of full
rank. Now if the rows of X™ are linearly independent, then by the Gram Sehmids
orthogonalizution proess we can write X7 = U, whoere Fis p 3 p lower tri-
prgmnlar wilke positive diagonal elements, and I7 bas orthonormal rewrs. We have
then 4 = 7", and the nssertion follows trom the fact that X™* —» (T, L7 and
T — 4 are 1l 1 bi-conlinuonsly differentialile.

Congidering the transformations induced by f I the range of 2, wo can show
rewlily Lhal B is a maximal invarant slatistic based on s, s thal it induees the
o-lield @y . From the eonclusion of Theorem 7.1 we know then that B is in-
varantly sifficionl. We ean use this fucet for o sequential test of 8 hypoilesis
eoneerning 12, by baging ihe Lest on the sequenve of B° ai the suceessive stages
of sanapling, The above stated result implica then that B® at the wth siawe is in-
variantly seflicient.

The ordinary corrclation coclicient belween two variates can be treated moa
cornpletely analomons way,

Fxamme 7.3, Lel W be napace wilh the equisnpular line deleled, and the
[unetion & a3 'n Fxample 7.1, In contrast to the latter, lot pola) — galw(x)),
where {gs]l ocomsigte of all positive messurgble funetions on 8 such thal
| gelaf{z)) de — 1. Denolez — (1/#) are 1an [{s: — st ), s that 0 < 2 < 1,
Let 7 be the iotality of transformations & = eiz)y, where ¢ is any posilive
anulylic funetion on [0, 1] such thal «{0) = 1 (note thal 2 is w funetion of 2, and
that the transformation does not change the value of &), Tart {1} of Assumplion
Topn be verilied by direct eowputation; parts (1) and (19) wre the same a2 in
Ixample 7.1. The group f+ produces the same orbits ag in Bxample 7.1, henee the
spme Gy . Therefore, lhe same conelugion obdaing as in Hxample 7.1, 1, the
sequence of Buudent’s ratioz = an invardanidy sullicient sequence.
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3, Theorern 7.1 iz easily applied. On (he other hand, we cannot
apply Theorem 4.1 direcily, sinee we do ool kaow how to verifly Assumption
A (1Y in thiz ease duc to the more complicated strusture of & Care has been
taken i Hxample 7.8 that € does not contain an obvious subgronp that produces
Lhe suine orbils and for which Assompiion A () can be verilied (il there were
auech a subgroup, it could be used instead of €7 4o Field the desired conelusion .
Thix gronp of Txample 7.1 is nod o a subgroap of € in Bxarople 7.4 becanse & does
uol eonlain ooy rangformation & -+ ex with ¢ eonstant, cxeept when 2 = 1.
W pan ped w similar exsmple by replacing the group (under molliplicaiion ) ol
[unelions &z2) in Example 7.3 by Lhe group of functions ¢(2} defined by In ¢{z) =
[ {oxp ayiaidyy, where o rims through the addivive group of signed weasures on
the meal line sueh Lhal «f [0} ) = 0 and f {exp y)ei dy)| < =. The restriction
al|0]) = 0 provenls the group of Fxample 7.1 from boing a subgronp of 7

The cezentinl difforence belwesn Aszumplions A and G, as far au thelr verilia-
bilily is concerned, is thai in Assumption A (i) the structure of the group 7
colned hta play, whereps in Assumption O conditions have io be veriled ooly
for each g sepamlely. Example 7.3, even though admitiedly ariificial, shows that
even when the family of distributions 15 dominated thers miay be eases whers (7
18 a0 complicaled LThat the verilieation of Assumplion A {ii} s either mposasible
ar pore diflien]l than the verification of Assumption C.

in Fxumple 7.3
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