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Abstract

A methodology based on the concept of a variable string length GA (VGA) is developed for determining auto-

matically the number of hyperplanes for modeling the class boundaries in a GA-classi®er. The genetic operators and

®tness function are de®ned to take care of the variability in chromosome length. It is proved that the method is able to

arrive at the optimal number of misclassi®cations after a su�ciently large number of iterations, and will need a minimal

number of hyperplanes for this purpose. Experimental results on di�erent arti®cial and real life data sets demonstrate

that the classi®er, using the concept of a variable length chromosome, can automatically determine an appropriate value

of the number of hyperplanes, and also provide performance better than that of the ®xed length version. Its comparison

with another approach using a VGA is provided. Ó 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Genetic Algorithms (GAs) (Goldberg, 1989)
are randomized search and optimization tech-
niques guided by the principles of evolution and
natural genetics. They are e�cient, adaptive and
robust search processes, producing near optimal
solutions and have a large amount of implicit
parallelism. The application of GAs to various
pattern recognition problems is described in (Pal
and Wang, 1996; Gelsema, 1995). One such ap-
plication for designing a classi®er is provided in
(Bandyopadhyay et al., 1995), where the searching
capability of GAs is exploited for the placement of

a number of hyperplanes, say H, for approxi-
mating the decision boundaries. The method in-
volves encoding the parameters of the hyperplanes
in binary strings called chromosomes, in the fea-
ture space that yields minimum misclassi®cation.
It was demonstrated in (Bandyopadhyay et al.,
1995) that the GA based classi®er, subsequently
referred to as the GA-classi®er, can be well applied
to a variety of data sets having both non-over-
lapping, non-convex, and overlapping classes. Its
recognition scores were found to be comparable
to, sometimes better than, those of the k-NN rule
(for di�erent values of k), the Bayes maximum
likelihood classi®er and a multilayer perceptron
based classi®er.

Note that the estimation of a proper value of H
is crucial for a good performance of the algorithm.
Since this is di�cult to achieve, one may
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frequently use a conservative value of H while
designing the classi®er. This ®rst of all leads to the
problem of an overdependence of the algorithm on
the training data, especially for small sample size.
In other words, since a large number of hyper-
planes can readily and closely ®t the classes, this
may provide good performance during training
but poor generalization capability. Secondly, a
large value of H unnecessarily increases the com-
putational load, and may lead to the presence of
redundant hyperplanes in the ®nal decision
boundary. (A hyperplane is termed redundant if its
removal has no e�ect on the classi®cation capa-
bility of the GA-classi®er.)

In order to overcome these limitations, a
method is described here to automatically deter-
mine the value of H as a parameter of the problem.
For this purpose, the concept of variable length
strings in GAs has been adopted. Unlike the con-
ventional GA, here the length of a string is not
®xed. Crossover and mutation operators are ac-
cordingly de®ned. A factor has been incorporated
into the ®tness function that rewards a string with
a smaller number of misclassi®ed samples as well
as a smaller number of hyperplanes. Let the clas-
si®er so designed utilizing the concept of variable
string lengths be called a VGA-classi®er. Issues of
minimum misclassi®cation error and minimum
number of required hyperplanes are theoretically
analyzed under limiting conditions.

One may note the di�erence between the pro-
posed classi®cation method and the one described
in (Srikanth et al., 1995), also using a similar
concept of variable length strings. In the latter
method, the decision boundary was modeled by a
variable number of ellipsoids which have a higher
degree of complexity than hyperplanes. The ®tness
function of the string was determined from the
number of misclassi®ed samples only. Thus there
was no incentive for reducing the number of el-
lipsoids, although a factor favoring more compact
ellipsoids was introduced.

Experimental results on speech data, Iris data
and two arti®cially generated data sets show that
the proposed classi®er is able to reduce the number
of hyperplanes signi®cantly, while retaining the
classi®cation performance of the previous ®xed
length GA-classi®er. A comparison with the clas-

si®er implemented using the operators of Srikanth
et al. (1995) is also provided.

2. Genetic algorithm with variable string length and

the classi®cation criteria

The concept of variable string lengths in genetic
algorithms has been used earlier in (Smith, 1980)
to encode sets of ®xed length rules. Messy genetic
algorithms (Goldberg et al., 1989) also use the
concept of variable string lengths for constructing
the chromosomes which may be under- or over-
speci®ed. Use of GAs with variable string length
has been made in (Harp and Samad, 1992) for
encoding a variable number of ®xed length blocks
in order to construct layers of a neural network,
and in (Maniezzo, 1994) for the genetic evolution
of the topology and weight distribution of neural
networks.

As mentioned in Section 1, the GA-classi®er
(Bandyopadhyay et al., 1995) with ®xed H , and
consequently ®xed string length is rigid, and
therefore has several limitations like over®tting of
the training data and the presence of redundant
hyperplanes in the decision boundary when a
conservative value of H is used. To overcome these
limitations, the use of variable length strings rep-
resenting a variable number of hyperplanes for
optimally modeling the decision boundary there-
fore seems natural and appropriate. This would
eliminate the need for ®xing the value of H ,
evolving it adaptively instead, thereby providing
an optimal value of H .

It is to be noted that in the process, if we aim at
reducing the number of misclassi®ed points only,
as was the case for ®xed length strings, then the
algorithm may try to ®t as many hyperplanes as
possible for this purpose. This, in turn, would
obviously be harmful with respect to the general-
ization capability of the classi®er. Thus, the ®tness
function should be de®ned in such a way, that
maximization ensures primarily the minimization
of the number of misclassi®ed samples and also the
required number of hyperplanes.

While incorporating the concept of variable
string lengths, one may note that it is necessary to
either modify the existing genetic operators or to
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introduce new ones. In order to utilize the existing
operators as much as possible, a new representa-
tion scheme involving the consideration of the
ternary alphabet set f0, 1, # g, where # represents
the don't care position, is used. For applying the
conventional crossover operator, the two strings,
which may now be of unequal lengths, can be
made of equal length by appropriately padding
one of them with #s. However, some extra pro-
cessing steps have to be de®ned in order to tackle
the presence of #s in the strings. Similarly, the
mutation operator needs to be suitably modi®ed
such that it has su�cient ¯exibility to change the
string length while retaining the ¯avor of the
conventional operator. (As will be evident in Sec-
tion 3.3, the genetic operators are de®ned in such a
way that the inclusion of # in the strings does not
a�ect their binary characteristics for encoding and
decoding purposes.) The classi®er thus formed
using a variable string length GA (or VGA) is
referred to as the VGA-classi®er.

Therefore, the objective of the VGA-classi®er is
to place an appropriate number of hyperplanes in
the feature space such that it, ®rst of all, minimizes
the number of misclassi®ed samples and then at-
tempts to reduce the number of hyperplanes.
Using variable length strings enables one to check
automatically and e�ciently, various decision
boundaries consisting of di�erent numbers of
hyperplanes in order to attain the optimal solu-
tion. The description of such a classi®er is given in
Section 3.

3. Description of VGA-classi®er

As is evident from the previous section, al-
though the sequence of the di�erent operations for
GAs (as shown in Fig. 1) is applicable to VGAs
too, the operators themselves are newly de®ned for
VGA. They are described here.

3.1. Chromosome representation and population
initialization

The chromosomes are represented by strings of
1, 0 and # (don't care), encoding the parameters of
a variable number of hyperplanes. In RN , N pa-

rameters are required for representing one hyper-
plane. These are N ÿ 1 angle variables,
anglei

1; . . . ; anglei
Nÿ1, indicating the orientation of

hyperplane i (i � 1; 2; . . . ;H when H hyperplanes
are encoded in the chromosome), and one per-
pendicular distance variable, pi indicating its per-
pendicular distance from the origin. Let Hmax

represent the maximum number of hyperplanes
that may be required to model the decision
boundary of a given data set. It is speci®ed a pri-
ori. Let the angle and perpendicular distance
variables be represented by b1 and b2 bits, respec-
tively. Then lH , the number of bits required to
represent a hyperplane and lmax, the maximum
length that a string can have are

lH � �N ÿ 1� � b1 � b2; �1�
lmax � Hmax � lH ; �2�
respectively.

Let string i represent Hi hyperplanes. Then its
length li is

li � Hi � lH :

An initial population is created in such a way that
the ®rst and the second strings encode the param-
eters of Hmax and 1 hyperplanes, respectively, to
ensure su�cient diversity in the population. For
the remaining strings, the number of hyperplanes,
Hi, is generated randomly in the range [1, Hmax],
and the li bits are initialized randomly to 1s and 0s.

Fig. 1. Basic steps in GA.
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3.2. Fitness computation

As mentioned in Section 2, the ®tness function
(which is maximized) is de®ned in such a way that
1. a string with a smaller number of misclassi®ca-

tions is considered to be ®tter than a string with
a larger number, irrespective of the number of
hyperplanes, i.e., it ®rst of all minimizes the
number of misclassi®ed points, and then

2. among two strings providing the same number
of misclassi®cations, the one with the smaller
number of hyperplanes is considered to be ®t-
ter.

The number of misclassi®ed points for a string i
encoding Hi hyperplanes is found as follows. Let
the Hi hyperplanes provide Mi distinct regions
which contain at least one training data point.
(Note that although Mi6 2Hi , in reality it is upper
bounded by the size of the training data set.) For
each such region and from the training data points
that lie in this region, the class of the majority is
determined, and the region is considered to rep-
resent (or be labeled by) this class. Points of other
classes that lie in this region are considered to be
misclassi®ed. The sum of the misclassi®cations for
all the Mi regions constitutes the total misclassi®-
cation missi associated with the string. Accord-
ingly, the ®tness of string i may be de®ned as

fiti � �nÿmissi� ÿ aHi; 16Hi6Hmax; �3�

fiti � 0; otherwise; �4�
where n is the size of the training data set and
a � 1=Hmax.

Let us now explain how the ®rst criterion is
satis®ed. Let two strings i and j have a number of
misclassi®cations missi and missj, respectively, and
let the number of hyperplanes encoded in them be
Hi and Hj, respectively. Let missi < missj and
Hi > Hj. (Note that since the number of misclas-
si®ed points can only be integers,
missj P missi � 1.) Then

fiti � �nÿmissi� ÿ aHi;

fitj � �nÿmissj� ÿ aHj:

The aim now is to prove that fiti > fitj, or that
fiti ÿ fitj > 0. From the above equations,

fiti ÿ fitj � missj ÿmissi ÿ a�Hi ÿ Hj�:
If Hj � 0, then fitj � 0 (from Eq. (4)) and there-
fore fiti > fitj. When 16Hj6Hmax, we have
a�Hi ÿ Hj� < 1 since �Hi ÿ Hj� < Hmax. Obviously,
missj ÿmissi P 1. Therefore fiti ÿ fitj > 0, or,
fiti > fitj.

The second criterion is also ful®lled since
fiti < fitj when missi � missj and Hi > Hj.

3.3. Genetic operators

Among the operations of selection, crossover
and mutation, the selection operation used here
may be one of those used in conventional GAs,
while crossover and mutation need to be newly
de®ned for VGA. These are now described in de-
tail.

Crossover. Two strings, i and j, having lengths li

and lj, respectively, are selected from the mating
pool. Let li6 lj. Then string i is padded with #s so
as to make the two lengths equal. Conventional
crossover like single point crossover, or two point
crossover (Goldberg, 1989) is now performed over
these two strings with probability lc. The follow-
ing two cases may now arise:
· All the hyperplanes in the o�spring are com-

plete. (A hyperplane in a string is called com-
plete if all the bits corresponding to it are
either de®ned (i.e., 0s and 1s) or #s. Otherwise
it is incomplete.)

· Some hyperplanes are incomplete.
In the second case let u be the number of de®ned
bits (either 0 or 1) and t be the total number of bits
per hyperplane��N ÿ 1� � b1 � b2 (from Eq. (1)).
Then, for each incomplete hyperplane, all the #s
are set to de®ned bits (either 0 or 1 randomly) with
probability u=t. In case this is not permitted, all the
de®ned bits are set to #. Thus, each hyperplane in
the string becomes complete. Subsequently, the
string is rearranged so that all the #s are pushed to
the end, or in other words all the hyperplanes are
transposed to the beginning of the strings. The
information about the number of hyperplanes in
the strings is updated accordingly.

Mutation. In order to introduce greater ¯exi-
bility in the method, the mutation operator is de-
®ned in such a way that it can both increase and
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decrease the string length. For this, the strings are
padded with #s such that the resultant length be-
comes equal to lmax. Now for each de®ned bit
position, it is determined whether conventional
mutation (Goldberg, 1989) can be applied or not
with probability lm. Otherwise, the position is set
to # with probability lm1

. Each unde®ned position
is set to a de®ned bit (randomly chosen) according
to another mutation probability lm2

. These are
described in Fig. 2.

Note that mutation may result in some incom-
plete hyperplanes, and these are handled in a
manner, as done for the crossover operation. For
example, the operation on the de®ned bits, i.e.,
when k6 li in Fig. 2, may result in a decrease in
the string length, while the operation on #s, i.e.,
when k > li in the ®gure, may result in an increase
in the string length. Also, mutation may yield
strings having all #s indicating that no hyper-
planes are encoded in it. Consequently, this string
will have ®tness� 0 and will be automatically
eliminated during selection.

Note that the operations de®ned here for de-
signing the VGA-classi®er are di�erent from those
used in (Smith, 1980; Goldberg et al., 1989; Harp
and Samad, 1992; Maniezzo, 1994; Srikanth et al.,
1995).

As in conventional GAs, the operations of se-
lection, crossover and mutation are performed
here over a number of generations till a user
speci®ed termination condition is attained. Elitism
is incorporated such that the best string seen up to
the current generation is preserved in the popula-
tion. The best string of the last generation, thus
obtained, along with its associated labeling of re-
gions provides the classi®cation boundary of the n
training samples. After the design is complete, the
task of the classi®er is to check, for an unknown
pattern, the region in which it lies, and to assign a
label accordingly.

4. Issues of minimum miss and H

In this section we prove that the above men-
tioned VGA-classi®er will provide the minimal
misclassi®cation error during training, for an in®-
nitely large number of iterations. At the same time
it will require a minimum number of hyperplanes
in doing so.

For proving this we use the result of (Bhandari
et al., 1996), where it has been established that for
an in®nitely large number of iterations, an elitist
model of GA will surely provide the optimal
string. In order to prove this convergence they
assumed that the probability of going from any
string to the optimal one is always greater than
zero, and the probability of going from a popu-
lation containing the optimal string to one not
containing the optimal one is zero. Since the mu-
tation operation and elitism of the proposed VGA
ensure that both these conditions are met, the re-
sult of (Bhandari et al., 1996) regarding the con-
vergence to the optimal string is valid for VGA as
well.

Let us now consider the ®tness function for
string i (Eq. (3)). Maximization of the ®tness
function means minimization of

missi � aHi;

where a � 1=Hmax. Let us call this the error func-
tion (erri).

Let for any size of the training data set (n), the
minimum value of the error function as obtained
by the VGA-classi®er beFig. 2. Mutation operation for string i.
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errmin � miss0 � aH 0

after it has been executed for an in®nitely large
number of iterations. Then according to Bhandari
et al. (1996), this corresponds to the optimal string.
Therefore we may write

miss0 � aH 06miss� aH ; 8miss; H : �5�

Theorem 1. For any value of H, 16H 6Hmax, the
minimal number of misclassi®ed points is miss0.

Proof. The proof is trivial and follows from the
de®nition of the ®tness function (Eq. (3)) and the
fact that miss0 � aH 06miss� aH ; 8miss; H
(Eq. (5)).

Theorem 2. H 0 is the minimal number of hyper-
planes required for providing miss0 misclassi®ed
points.

Proof. Let the converse be true, i.e., there exists
some H 0, H 0 < H 0, that provides miss0 misclassi-
®ed points. In that case, the corresponding ®tness
value would be miss0 � aH 0. Note that now
miss0 � aH 0 > miss0 � aH 0. This violates Eq. (5).
Hence H 0 ¥ H 0, and therefore H 0 is the minimal
number of hyperplanes required for providing
miss0 misclassi®ed points. �

From Theorems 1 and 2, it is proved that for
any value of n, the VGA-classi®er provides the
minimum number of misclassi®ed points for an
in®nitely large number of iterations, and it requires
a minimum number of hyperplanes in doing so.

5. Implementation and results

The experimental investigation presented in this
section has two parts. In the ®rst part, the e�ec-
tiveness of VGA in automatically determining the
value of H of the classi®er is demonstrated for two
sets of arti®cial data, a speech data set and the Iris
data. The recognition scores of the VGA-classi®er
are also compared with those of the ®xed length
GA-classi®er. Secondly, we compare our concept
of using variable string lengths in GA with another

similar approach (Srikanth et al., 1995). For this
purpose we have implemented their di�erent op-
erators in our classi®cation algorithm for the
above mentioned four data sets.

The 2-dimensional arti®cial data sets, ADS 1
(Fig. 3) and ADS 2 (Fig. 4), consist of 557 and 417
points, respectively, belonging to two classes. The
real life speech data, Vowel (Pal and Majumdar,
1977), consists of 871 samples having three feature
values (corresponding to the three formant fre-

Fig. 3. ADS 1 along with VGA boundary for Hmax� 10 when

10% of the data set is used for training.

Fig. 4. ADS 2.
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quencies) and six classes fd; a; i; u; e; og. Fig. 5
shows the overlapping class structures in the ®rst
and second formant frequency plane. The Iris data
comprises 150 samples having four features and
three classes with 50 points in each class.

A ®xed population size of 20 is chosen. The
roulette wheel strategy (Goldberg, 1989) is used to
implement proportional selection. As in an earlier
investigation (Bandyopadhyay et al., 1995), single
point crossover is applied with a ®xed crossover
probability of 0.8. A variable value of the muta-

tion probability lm is selected from the range [0.01,
0.333]. Initially it assumes a high value, gradually
decreasing at ®rst, and then increasing again in the
later stages of the algorithm. 200 iterations are
performed with each mutation probability value.
The values of lm1

and lm2
mentioned in Section 3.3

are set to 0.1. The process is executed for a max-
imum of 3000 iterations. Elitism is incorporated by
replacing the worst string of the present generation
by the best string seen upto the previous genera-
tion.

5.1. Performance of the VGA-classi®er

Tables 1 and 2 show the number of hyperplanes
HVGA as determined automatically by the VGA-
classi®er for modeling the class boundaries of the
four data sets when the classi®er is trained with
10% and 50% samples, respectively. Two di�erent
values of Hmax are used for this purpose viz.,
Hmax� 6 and Hmax� 10. The overall recognition
scores obtained during testing of the VGA-classi-
®er along with those obtained for the ®xed length
version (i.e., GA-classi®er) with H � 6 and 10 are
also shown. (Note that H � 6 had been found to
provide, on an average, good recognition scores in

Fig. 5. Vowel data in the F1±F2 plane.

Table 1

HVGA and the overall recognition scores (%) during testing (when 10% of data set is used for training and the remaining 90% for testing)

Data set VGA-classi®er Hmax� 10 Score for GA-

classi®er

VGA-classi®er Hmax� 6 Score for GA-

classi®er

HVGA Score
H � 10

HVGA Score
H � 6

ADS 1 3 95.62 84.26 4 96.21 93.22

ADS 2 6 88.16 84.04 5 88.35 88.29

Vowel 6 73.66 69.21 6 71.19 71.99

Iris 2 95.56 76.29 2 95.81 93.33

Table 2

HVGA and the overall recognition scores (%) during testing (when 50% of the data set is used for training and the remaining 50% for

testing)

Data set VGA-classi®er Hmax� 10 Score for GA-

classi®er

VGA-classi®er Hmax� 6 Score for GA-

classi®er

HVGA Score
H � 10

HVGA Score
H � 6

ADS 1 4 96.41 95.92 4 96.83 96.05

ADS 2 5 95.22 94.56 3 96.26 96.17

Vowel 6 78.26 77.77 6 77.11 76.68

Iris 2 97.60 93.33 2 97.67 97.33
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earlier experiments (Bandyopadhyay et al., 1995)
with these data sets.) The scores provided are the
average values obtained over ®ve di�erent runs of
the algorithms.

The results demonstrate that in all the cases, the
VGA-classi®er is able to evolve an appropriate
value of HVGA from Hmax. In addition, its recog-
nition score on the test data set is found, on av-
erage, to be comparable to if not higher than that
of the GA-classi®er. There is only one exception to
this for the Vowel data when 10% of the samples is
used for training (Table 1). In this case, Hmax � 6
does not appear to be a high enough value for
modeling the decision boundaries of the Vowel
classes with the VGA-classi®er. This is re¯ected in
both the tables, where the scores for VGA-classi-
®er with Hmax � 6 are less than those with
Hmax � 10.

In all the cases where the number of hyper-
planes for modeling the class boundaries is less
than 6, the scores of the VGA-classi®er with
Hmax � 6 are found to be superior to those with
Hmax � 10. This is so because with Hmax � 10, the
search space is larger as compared to that for
Hmax � 6, which makes it di�cult for the classi®er
to arrive at the optimum arrangement quickly or
within the maximum number of iterations con-
sidered here. (Note that it may have been possible
to further improve the scores and also reduce the
number of hyperplanes, if more iterations of the
VGA were executed.)

In general, the scores of the GA-classi®er (®xed
length version) with H � 10 are seen to be lower
than those with H � 6 because of two reasons;
over®tting of the training data and di�culty of
searching a larger space. The only exception is
with Vowel for training with 50% data, where the
score for H � 10 is larger than that for H � 6.
This is expected, in view of the overlapping classes
of the data set and the signi®cantly large size of the
training data. One must note in this context that
the detrimental e�ect of over®tting on the gener-
alization performance increases with a decrease in
the size of the training data.

As an illustration, the decision boundary ob-
tained by the VGA-classi®er for ADS 1 when 10%
of the data set is chosen for training is shown in
Fig. 3.

5.2. Comparison with the method in (Srikanth et al.,
1995)

In this section an investigation is made to
compare the performance of our concept of using
variable string length in GA with that of another
similar approach (Srikanth et al., 1995). For this
purpose the operators used in (Srikanth et al.,
1995) are implemented here for the same problem
of pattern classi®cation using hyperplanes, and the
resulting performance is compared to that of our
VGA-classi®er for the four data sets. Before pro-
viding the results, let us describe in brief the
method of incorporating variable string lengths in
GAs as proposed in (Srikanth et al., 1995).

The initial population is created randomly such
that each string encodes the parameters of only
one hyperplane. The ®tness of a string is charac-
terized by just the number of training points it
classi®es correctly, irrespective of the number of
hyperplanes encoded in it. Among the genetic
operators, traditional selection and mutation are
used. A new form of crossover, called modulo
crossover, is used which keeps the sum of the
lengths of the two chromosomes constant both
before and after crossover.

Two other operators are used in conjunction
with the modulo crossover for the purpose of
faster recombination and juxtaposition. These are
the insertion and deletion operators. During in-
sertion, a portion of the genetic material from one
chromosome is inserted at a random insert-loca-
tion in the other chromosome. Conversely, during
deletion, a portion of a chromosome is deleted to
result in a shorter chromosome.

Tables 3 and 4 show the comparative overall
recognition scores during both training and testing
of the VGA-classi®er for the above mentioned
four data sets when our approach of incorporating
variable string length is compared with that
adopted in (Srikanth et al., 1995) for 10% and 50%
training data, respectively. Other parameters are
kept the same as before. Results shown are the
average values taken over ®ve di�erent runs. For
keeping parity, the VGA of Srikanth et al. is im-
plemented such that no more than 10 hyperplanes
are used for modeling the decision boundary of the
data sets. The table also shows the number of
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hyperplanes, HVGA, generated by the two methods
for one particular run. Since the VGA of Srikanth
et al. does not take care of the minimization of the
number of hyperplanes while maximizing the ®t-
ness function, the HVGA is usually higher than that
of our method.

As is evident from the tables, the performance
of the classi®er during training is better for the
VGA of Srikanth et al. than the proposed one for
all the data sets. In fact, the former is found to
converge quickly to an arrangement of hyper-
planes that provides a high value of the classi®-
cation accuracy. The VGA-classi®er, on the other
hand, attempts to reduce both the number of
misclassi®ed points and the number of hyper-
planes. It therefore takes longer to attain a par-
ticular level of accuracy. In order to demonstrate
this let us consider the Vowel data as an example.
Fig. 6 shows the variation of the best recognition
scores with the number of generations obtained by
the two methods for Vowel with 10% training
data. As is obvious from the ®gure, except at the
initial stages of the algorithms, given any recog-
nition score, the method of Srikanth et al. attains it
earlier than our VGA-classi®er.

One may note that the method of Srikanth et al.,
in general, uses more hyperplanes (of which many

were found to be redundant on investigation),
which results in an increase in the execution time
for ®tness computation. This is evident from
Fig. 7, which shows the total time taken for ®tness
computation by the two methods as a function of
Hmax. Here too, we consider Vowel with 10%
training data, as an illustration.

Fig. 6. Variation of the best correct classi®cation during

training with the number of generations for Vowel when

Hmax � 10 and 10% of the data set is used for training.

Table 4

Comparative classi®cation performance of VGA-classi®er for Hmax� 10 using two types of variable string lengths (when 50% of the

data set is used for training and the remaining 50% for testing)

Data set Proposed VGA VGA (Srikanth et al.)

Training score (%) Test score (%) HVGA Training score (%) Test score (%) HVGA

ADS 1 98.18 96.41 4 100.00 96.01 9

ADS 2 97.21 95.22 5 100.00 94.85 7

Vowel 79.73 78.26 6 85.48 78.37 9

Iris 100 97.60 2 100.00 94.67 5

Table 3

Comparative classi®cation performance of VGA-classi®er for Hmax� 10 using two types of variable string lengths (when 10% of the

data set is used for training and the remaining 90% for testing)

Data set Proposed VGA VGA (Srikanth et al.)

Training score (%) Test score (%) HVGA Training score (%) Test score (%) HVGA

ADS 1 100 95.62 3 100 93.16 6

ADS 2 92.68 88.16 6 99.10 90.50 6

Vowel 80.00 73.66 6 97.36 70.22 9

Iris 100 95.56 2 100 94.98 2
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From the training performance, it appears that
the operators used by Srikanth et al., are better
able to recombine the subsolution blocks into
larger blocks. However this is seen, in general, to
result in comparatively poorer scores during test-
ing. To consider a typical example in one of the
cases for the Vowel data set when 10% data is used
for training, 10 hyperplanes were used to provide a
training recognition score of 97.47%, while the
recognition score during testing fell to 68.95%.

It is also found that with an increase in the size
of the training data, the number of hyperplanes for
modeling the class boundaries increase for the al-
gorithm of Srikanth et al. Furthermore, as ex-
pected, the performance of all the classi®ers is
improved with an increase in the size of the
training data from 10% to 50%.

6. Conclusions

The problem of ®xing the appropriate value of
H a priori of the GA-classi®er (Bandyopadhyay
et al., 1995) has been resolved by using the concept
of variable string lengths in genetic algorithms.
New genetic operators are de®ned to deal with the
concept of variable string lengths for formulating
the classi®er. The ®tness function has been de®ned
so that its maximization indicates minimization of

the number of misclassi®ed samples as well as of
the required number of hyperplanes. It is proved
that for an in®nitely large number of iterations, the
method is able to arrive at the optimal number of
misclassi®ed samples and will need an optimal
number of hyperplanes for this purpose.

Experimental evidence for di�erent percentages
of training and test data indicates that, given a
value of Hmax, the algorithm can not only auto-
matically evolve an appropriate value of H for a
given data set, but also retain the performance of
the GA-classi®er. In Tables 1 and 2 we considered
two typical values of H , namely, 6 and 10 to
demonstrate this fact. However, for proper com-
parison, one needs to run the GA-classi®er for
several values of H . This would, obviously, in-
crease the computational complexity of the GA-
classi®er manifold. Also, increasing the value of H
in the GA-classi®er will always provide improved
training performance, by closely ®tting the train-
ing data. This may result in decreased generaliza-
tion capability of the classi®er. Thus it becomes
di�cult to decide on the proper value of H for the
GA-classi®er based on its performance during
training. The VGA-classi®er, on the other hand,
attempts to balance both the training performance
and the generalization capability by reducing the
number of misclassi®ed points and the number of
hyperplanes at the same time.

The method of using variable string length in
the algorithm of Srikanth et al. is also imple-
mented in our VGA-classi®er for comparison. The
former method is found to attain any level of ac-
curacy faster than the latter during training, and at
the same time uses more hyperplanes for consti-
tuting the decision boundary. This results in better
training performance, mostly at the cost of re-
duced generalization capability. Additionally, the
execution time for ®tness computation is also
larger, since no explicit e�ort is made to decrease
the number of hyperplanes.

In this connection one may also note that the
genetic operators and processing steps of the
VGA described in this article entail very little
disruption of those in the conventional GA. On
the other hand this is not true for the method of
Srikanth et al. which introduces two new pro-
cessing steps viz., insertion and deletion, besides

Fig. 7. Variation of the time required for ®tness evaluation with

Hmax for Vowel when 10% of the data set is used for training.

1180 S. Bandyopadhyay et al. / Pattern Recognition Letters 19 (1998) 1171±1181



using a signi®cantly di�erent crossover operator.
Furthermore, the former method requires the
speci®cation of Hmax, whereas such a constraint is
not required for the latter one.
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