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ABSTRACT

A genetic algorithmic methodology, termed a genetic algorithm with chromosome
differentiation (GACD), is described which incorporates chromosome differentiation
for evolutionary process. Chromosomes are distinguished into two categories of popula-
tion over the generations based on the value contained in the two class bits. These are
initially generated based on maximum hamming distance between them. Crossover
(mating) is allowed only between individuals belonging to these categories. Theoretical
analysis shows that the basic tenet of genetic algorithms holds for GACD as well; above
average, short, low order schema will receive increasing number of trials in subsequent
generations. It is also shown that in certain situations, the lower bound of the number
of instances of a schema sampled by GACD is greater than or equal to that of the
conventional genetic algorithm. Experimental results on a large number of function
optimization and pattern classification problems demonstrate the significantly better
performance of GACD over the conventional ones. © Elsevier Science Inc. 1998

1. INTRODUCTION

Genetic algorithms (GAs) [1, 2] belong to a class of evolutionary search
and optimization techniques and are modeled on the principles of natural
genetics. These algorithms are randomized in nature, using probabilistic
transition rules to change from one state to another. GAs incorporate
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domain specific knowledge while performing a search to yield near optimal
solutions in highly complex, large and multimodal search spaces. The
utility of GAs in areas as diverse as image processing [3], function
optimization [4], pattern classification [5], neural network design, and
optimization [6], job shop scheduling [7], classifier systems [8] etc. was
studied extensively.

The power of GAs lies in their ability to encode complex information
and parameters of the search space in simple structures called chromo-
somes or genotypes, which are usually of a fixed length. An objective
function is associated with each string which provides a mapping from the
chromosomal space to the solution space. GA starts from a collection of
chromosomes (called population), which is initially created randomly.
Various biologically inspired operators like selection, crossover, and muta-
tion, based on the Darwinian principles of survival of the fittest and
evolution are applied on these strings over a number of generations to
yield the solution of the problem. Figure 1 depicts the different steps of
GA. Details can be found in [1, 2, 9].

Since in GAs the chromosomes are treated as individuals of the same
type, unrestricted mating is allowed during crossover. However, nature
generally differentiates the individuals of a species into more than one
type or class (typical example being sexual differentiation). Cross breeding
is preferred to inbreeding because of the various advantages it offers, e.g.,
healthier offspring, introduction of greater variety, etc. The widespread
existence of this sort of differentiation and breeding styles in almost all
living beings indicates the need for investigating a corresponding concept

Begin
t=0
initialize population P(t)
compute fitness P(t)
repeat
t = t+1
select P(t) from P(t-1)
crossover P(t)
mutate P(t)
compute fitness P(t)
until termination criterion is achieved
End

Fig. 1. Different steps of GA.
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in artificial GAs. Motivated by this, an attempt is made in this article to
differentiate the chromosomes into two distinct classes, M and F, respec-
tively. The details of the methodology, subsequently referred to as GACD
(GA with chromosome differentiation), are described in Section 2.2.

In addition to developing the methodology of GACD, a modified
schema theorem is also presented here. It shows that the basic tenet of
GAs holds for GACD also; short, low order, above average schemata will
receive increasing number of trials in subsequent generations. Extensive
empirical investigation was also made for a variety of function optimization
and pattern classification problems. These show an overall better perfor-
mance of GACD both in terms of the best value obtained and the number
of generations required to attain this value.

2. GENETIC ALGORITHM WITH CHROMOSOME
DIFFERENTIATION: INCORPORATING DIFFERENTIATION
IN GENETIC ALGORITHM

2.1. CRITERION

Previously mentioned, nature generally differentiates the individuals of
a species into more than one class. Sexual differentiation is a typical
example, where the individuals of a species generally belong to either male
or female class. The prevalence of this form of differentiation indicates an
associated advantage which appears to be in terms of cooperation between
two dissimilar individuals, who can at the same time specialize in their own
fields. This cooperation and specialization should give rise to healthier and
more fit offspring [1]. The appendix provides an analysis in this regard.

These observations led to the investigation into the effects of differenti-
ating the chromosomes of a population into two different classes, namely
M and F, respectively, thereby giving rise to two separate populations.
Since, in addition, we would like to make the two populations most
dissimilar, (this requirement is artificially imposed), these are initially
generated in such a way that the hamming distance between them is
maximized. Crossover is allowed between individuals belonging to the two
distinct populations only. Note that the concept of restricted mating
through hamming distance was also used in {10, 11]. The other genetic
operators are applied classically.

As crossover is allowed between these two dissimilar groups only, a
greater degree of diversity is introduced in the population leading to
greater exploration in the search. At the same time conventional selection
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is performed over the entire population which serves to exploit the
information gained so far. Thus it appears that GACD attains a greater
balance between exploration and exploitation which is crucial for any
adaptive system; thereby making GACD superior to conventional GA
(CGA).

2.2. DESCRIPTION OF GENETIC ALGORITHM WITH
CHROMOSOME DIFFERENTIATION

The basic steps of GA as shown in Figure 1 are followed in GACD as
well. However, the individual processes are modified. These are now
discussed in detail.

Population Initialization: The structure of a chromosome of GACD is
shown in Figure 2. Here the ! bits, termed data bits encode the parameters
of the problem. The initial two bits, termed the class bits indicate the class
(M or F) of the chromosome.

Two separate populations, one containing the M chromosomes (M
population) and the other containing the F chromosomes (F population),
are maintained over the generations. The sizes of these two populations,
Pn and pg, respectively, may vary. Let p, +p,=p, where p is fixed
(equivalent to the population size of CGA). Initially p,, =p,=p/2. The
data bits for each M chromosome are first generated randomly. One of the
two class bits, chosen randomly, is initialized to 0 and the other to 1. The
data bits of the F chromosomes are initially generated in such a way that
the hamming distance between the two populations (in terms of the data
bits) is maximum. The hamming distance between two chromosomes c,
and c,, ¢;,c, €%, denoted by h(c,,c,), is defined as the number of bit
positions in which the two chromosomes differ. Hamming distance be-
tween two populations, P, and P,, denoted by A(P, P,), is defined as
follows,

(P, P)=) Y h(ci,c;), V¢, €P,Yc¢,€P,.
i

2 l

-~
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class data bits
bits

00 - F class bits
01, 10 - M class bits

Fig. 2. Structure of a chromosome in GACD.
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A method of generating p, number of F chromosomes such that the
previously mentioned restriction is satisfied, while allowing a certain
amount of randomness, is developed whose pseudo code is shown in
Figure 3. Here M(i,j) and F(i, ) indicate the jth bit of the ith M and F
chromosomes in the populations, respectively. check(i,j) is an auxiliary
data structure used to keep track of the bits of the M chromosomes that
were chosen for complementation. The class bits of each F chromosome
are initialized to Os.

Fitness Computation: Only the | data bits are used to compute the
fitness for the chromosomes in a problem specific manner.

Selection: Selection is performed over all the p(=p, +p,) chromo-
somes, (i.e., disregarding the class information) using their fitness values.
In other words, all the chromosomes compete with one another for
survival. The selected chromosomes are placed in the mating pool.

Crossover: Crossover is applied with probability u, between an M and
an F parent chromosome. Each parent contributes one class bit to the
offspring. Since the F parent can only contribute a 0 (its class bits being
00), the class of the child is primarily determined by the M parent which
can contribute a 1 (yielding an M child) or a 0 (yielding an F child)

Begin
=0 to pn,
j=0 to I -1
check(i,j) = 0 /* Initialization */
1=0 to py
j=0 to -1
repeat
k = random(p,,) /* returns an integer in
~ the range of 0 to pn —1 */
until (check(k,j)=0) /* M(k,j) not chosen
before */
check(k,j)=t /* M(k,j) now chosen.
Not to be chosen again */
F(1,7)= complement(M(k,j))
end

Fig. 3. Algorithm for initializing the F population from the initial M population in
GACD.



298 S. BANDYOPADHYAY ET AL.

depending upon the bit position (among the two class bits) of the M parent
chosen. This process is performed for both the offspring whereby either
two M or two F or one M and one F offspring will be generated.

Crossover is carried on until (a) there are no chromosomes in the
mating pool, or (b) there are no M (or F) chromosomes in the mating pool.
In the former case the crossover process terminates. In the latter case, the
remaining F (or M) chromosomes are mated with the best M (or F)
chromosome. Note that if at the start of the crossover process, it is found
that the mating pool contains chromosomes of only one class, then the
crossover process is discontinued.

Mutarion: Bit by bit mutation is performed over the data bits only with
probability u,,. The class bits are not mutated.

Note: Elitism is incorporated by preserving the best chromosome, among
both the M and F chromosomes, seen until the current generation, in a
location outside the population.

3. SCHEMA THEOREM FOR GENETIC ALGORITHM WITH
CHROMOSOME DIFFERENTIATION

In this section the schema theorem [1] is modified appropriately to
incorporate the ideas of the GACD algorithm. Some definitions related to
schema are first provided which is followed by an enumeration of the
different terms and terminologies used. In general the M and F parame-
ters are denoted by subscripts m and f, respectively, while parameters
with no subscript denote that these are applicable over both the M and F
populations. Finally an analysis of GACD with respect to schema sampling
is presented where it is shown that in most situations the lower bound of
the number of instances of a schema sampled by GACD is better than that
of CGA.

3.1. DEFINITIONS

In this article binary strings over the alphabet {0,1} are considered. A
schema h over a string of length / is defined to be a string composed of 0,1
or the # (do not care) symbols. For e.g., # 1 # 1 # # 0# # # is a schema of
length 10. This schema will be subsequently referred to as A’. A schema
indicates the set of all strings that match the schema in the positions
where it has either a O or a 1.

The defining position of a schema is a position in the schema which has
either a 1 or a 0. Defining length of a schema h, denoted by 8(h), is defined
as the distance between the last defining position and the first defining
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position of the schema and is obtained by subtracting the first defining
position from the last defining position. For the schema A’ given previ-
ously, the first defining position (counting from the left) is 2 and the last
defining position is 7. Hence 8(h')=7—2=5. The order of a schema #,
denoted by O(h), is the number of defining positions in the schema. For
the schema &', O(h') =3.

A schema A, is said to be contained in another schema 4, if for each
defining position in A,, the position is defined in h,, the defining bit being
the same. For example, let h; =#111010+# # #, then h, is contained
in h'. Note that if A, is contained in h,, then m(h,,t)>m(h,,t)
where m(h, t) represents the number of instances of £ in the population at
time ¢.

3.2. TERMINOLOGY

p: the total population size which is assumed to be constant. p,(t): the
M population size at time ¢. p,(¢): the F population size at time ¢. f: the
average fitness of the entire population. h: a schema. f;: the average
fitness of instances of schema h over the entire population. f, : the
average fitness of the M population. f: the average fitness of the F
population. [: the length of a string. m(h,t): no. of instances of schema 4
in the population at time ¢. m,(h,t): no. of instances of schema # in the
M population at time ¢. m(h,t): no. of instances of schema # in the F

population at time ¢. 8(k): the defining length of the schema h. O(h): the
order of the schema A. u_: the probability of crossover. n,,: the probability
of mutation.

Superscripts s and ¢ with any of the previously mentioned symbols
indicate the corresponding values after selection and crossover, respec-
tively. It is noted that the following equalities will hold for GACD for any
value of ¢,

p=pn(1) +pi(1), (1)
f-=7—n:*pmp+7;*pf, (2)
m(h,ty=m,(h,t) +m.(h,t). (3)

3.3. ANALYSIS OF GENETIC ALGORITHM WITH
CHROMOSOME DIFFERENTIATION

Let us consider the effects of each operation, selection, crossover, and
mutation separately.
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Selection: Proportional selection is performed over the entire popula-
tion. Hence, similar to the treatment provided in [1], the number of
instances of the schema % after selection will be given by

ms(h,t+1)=m(h,t)*£'.'. (4)

f

The number of instances of the schema 4 that will be present in the M
and F populations, respectively, must obviously be proportional to the
fraction present in the two populations before selection takes place. In
other words,

m,(h,t)

mi (ot 1) =me(h, e+ 1) » DA )
Similarly,
) . mf(h,t)
mf(h,t+1)=m (h,t+1)*m—. (6)

Crossover: To analyze the effect of crossover (assuming single point
crossover) on the instances of the schema 4, its probability of disruption is
first calculated. Instances of the schema that are members of the M
population are considered first. The analysis for the F population is
analogous. For the present, let us assume that an instance of the schema
from the M population, if not disrupted by crossover, is placed in the male
population again.

Schema & will most likely be disrupted due to crossover if all the
following conditions hold.

1. Crossover occurs (with probability u. ).

2. Crossover site falls within the first and the last defining positions
(with probability §(4)/(I —1)).

3. Crossover occurs with an instance of some schema A* in the female
population such that A* is not contained in 4 [with probability 1 — (m(h,¢
+1)/(pj(z + D)L

(Note that if A* is contained in h, then crossover can never disrupt 4, i.e.,
schema # will survive in both the offspring. Schema 4*, on the other hand,
may not survive crossover at all.)

Taking the previously mentioned three conditions into account, the
probability of disruption of % in one instance of the schema may be written
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as

M * T-1 p;(t+ 1) (7)

5(h) (1_ mj(h,t+1) )

Hence the probability of survival of one instance of the schema in the M
population is given by

5(h) *( _mj(h,t+1) )

p;(t+1) ia

Consequently, considering m$ (h,t+ 1) instances (after selection), after
crossover we get
). ©)

The greater than sign comes because even after disruptive crossover, the
schema # may survive. For example, let & and 4™ be as

8(h) . mi(h,t+1)

mé(h,t+ 1) >mi(h,t+1)[1—p, = T—1 [1_ pi(t+1)

h=#1#1# | #0###,
h*=#0#0# | 00###.

Let the crossover site be as shown. Then after crossover the offspring are

child L=#1#1#00# # #,
child 2=#0#0##0# ##.

Here child 1 is an instance of A, ie., h survives possibly disruptive
crossover. Other than this, the schema s may be generated due to
crossover between two other strings.

Similarly the number of instances of 4 that will survive crossover in the
F population is given by the relation,

ms(h,t+1) zmi(h,t+1)

). (10)

8(h) |, mu(h,t+1)
1‘“c*—"1—1*[ )
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It was previously assumed that if an instance of 4 is present in the M (or
F) population, and if / is not disrupted due to crossover, then it survives in
the M (or F) population. In reality the situation may not be so. Let P, be
the probability that / survives in the M population, when it is originally
present in the M population. Hence (1 — P,) is the probability that & goes
to the F population after crossover. Similarly let P, and (1—P,) be the
probabilities that A survives in the M and F populations, respectively,
when it is originally present in the F population.
Thus the modified equation for schema survival due to crossover is

my (h,t+1) =Py Xmp(h,t+1) + P, Xm§(h,t+1).

The second term is introduced on considering the instances of h that are
present in the F population, which survive crossover but are placed in the
M population. Similarly,

mi(h,t+1)=(1-P,) Xmi(h,t +1) +(1—P)) xm{ (h,t+1).

Therefore the number of instances of 4 present in the entire population
after crossover is

m(h,t+1)
=P Xmy(h,t+1) + P, Xmi(h,t+1) +(1—P,) Xm§(h,t+1)
+(1-P)) xXmi(h,t+1)

=my(h,t+1) +ms(h,t+1). -

Otherwise,

S(h mi(h,t+1
mC(h,t+1)>m:,,(h,t+1){1—“cl_(l)[1— i )

|

p;(t+1)
+m;(h,t+1){1—”;8_(1h) 1—'"2‘;(};’:)1) } (11)
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Using (5) and (6), the right-hand side (r.hss.) of inequality (11) may be
written as

% {mm(h,t) +mf(h,t) _ M?S_(lh)

m(h,t+1) m(h 141
x mm(h”)(l‘,ﬁ;u—m *"’f("”)(l‘% }
— () [ [ma(htymi(h,1+1)
=m*(h,t+1)|1 (-1 { pi(t+1)ym(h,t)

my(h,t)ymy (h,t+1)
po(t+1ym(h,t) }

Let us denote the term in the curly brackets by «. Thus we may write

mg,ACD(h,tH)>mS(h,t+1)(1—,Lc%[1—a]). (12)

In this context a slight modification of the schema theorem [1] is called for,
which provides a better lower bound of the number of instances of 4 that
survive after selection and crossover. An instance of schema h may be
disrupted due to crossover iff it is crossed with an instance of another
schema A* such that 2* is not contained in # and the other conditions for
disruptive crossover hold. Accounting for this detail, the disruption proba-
bility should be recalculated as

uc‘?(_hl) (1— ms(hl’f“) )

Hence after selection and crossover,

ma(hyt+ 1) >m? (h,t+ 1){1—,Lc o(h) [1 - ’"s(hl’f* D) ]} (13)
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Let us denote the term (m*(h,t+1))/p by B. Thus,
moga(ht+1) =m*(h,t+ 1){1—,@6%[1—3]}.

Mutation: Since the conventional bit by bit mutation is applied on the
strings with a probability u,,, the probability of disruption of one bit of the
schema is u,,. Probability of its survival is 1 — u,,. Hence the probability of
survival of the schema is (1 — u,, )°®. Thus the number of instances of the
schema A that are present in the population at time ¢ + 1 (after selection,
crossover, and mutation) is given by

mGACD(h’t+1)>mS(h’t+1){ ’ZCI (f)) (1- a)}{( #m)O(h)}'

Approximating the r.h.s., the inequality may be written as

—— t+1)>ms(ht+1){1~— #e8(h )(1 @) - p,,,O(h)} (14)

Similarly, the equation for CGA is given by

mCGA(h,t+1)>m‘(h,t+1){ ”“ (h)(l B) - ;L,,,O(h)} (15)

In order to compare mg,cp(h,t+1) and mega(h,t+1), we have to
consider the following cases.

CASEi. Let m,(h,t)=m¢(h,t)=m,. In that case m; (h,t+1)=mj(h,t+
1)=m,. Note ‘that m(h,t)=2m;, m*(h,t+1)= 2m2, and B=2m,/p.
Then,

1 mm, + mym,
=3 pi(t+1) " pi(t+1)

=%(p;(t+1)’};(,+1))

_p p
[4p;(t+ Dp(t+1)

2
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The minimum value of the term in square brackets is 1 when p;(t+1)=
pf(t+1). Hence a > B. This in turn indicates that lower_bound(mgacp(h,
t+ 1)) = lower_bound(m g z(h,t + 1)), i.e., the lower bound of the number
of instances of some schema 4 sampled by GACD is better than that of
CGA.

CASE ii. Let m,(h,t)#my(h,0). Let m,(h,t)=ym(h,t) where y+1.
Then m;(h,t+1)=ymy(h,t+1). Note that m(h,t)=m(h,tX1+7),
m*(h,t+ 1) =mj(h,t+1X1+ ), and B=(mj(h,t+1X1+ y))/p. Thus, we
may write

o 1 ymg(h,t)mi(h,t+1) +mf(h,t)ym}(h,t+l)
m (h,1)(1+7) piCt+1) pa(t+ 1)
_ my(h,t+ 1)7( p
(1+y) \p(t+Dp(t+1)
=m}(h,t+1)(1+y) v p?
p (1+7)* pr(t+1)p(t+1)
Y p*

B(1+y)2 pi(t+ 1) p,(t+1)°

Now, in this case a> 8 if the following holds

Y p’

5 5 =1.
(1+7)* pi(t+1)po(t+1)

Otherwise,

p 1+y
SO (16)

Since the previously mentioned condition (inequality 16) cannot be always
ensured, we cannot conclude that lower_bound(mgacp(h,t+1) >
lower_bound(m g s(h,t+1)). (Note also that both the functions (1+

y)/y and p/‘/p;(t+ 1) p:(¢+1) have minimum value 2.)

In order to experimentally compare the values of m g, and mg,cp, an
optimization problem is considered. Let f(x)=x* be the function to be
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optimized. A population size of 30 (initially 15 male and female strings are
considered for GACD) and string length of 10 is taken. . =0.8 and
M, =0.01. The variation of the number of instances of four schemata with
different characteristics is presented over the first five generations in
Figures 4a—d. It is found that the growth rates for schemata with high
fitness values are greater for GACD as compared to CGA (see Figs. 4a—c).
At the same time the decay rate for schema with low fitness value is also
greater for GACD (see Fig. 4d).

30 30 —
. Schema 1#HEHH#HHE Schema 1 1#HEEERH

25 225
8 0-GACD 8 0-GACD
829 +-coa 320 +-coa
% 16 ;.g 15
£10 $10}
§ g
£ 5;¢ €5

0 0
1 2 3 4 5 1 2 3 4 5
generations generations
(a) (b)
30 30 —
Schema 1##1#HRHE Schema CitHEHI##
225 225
2 o - GACD e o-GACD
3200 +-cea §200 +-coa
£ £
w15 w15
210 210
3 5
2s c 5
0 —— — 0
1 2 3 4 5 1 2 3 4 5
generations generations

© @

Fig. 4. (a) Variation of number of instances of schema 1# # # # # # # # # with
generations for the function f(x)=x2. (b) Variation of number of instances of schema
11# # # # # # # # with generations for the function f(x)=x>. (c) Variation of number
of instances of schema 1# # 1 # # # # # # with generations for the function f(x)=x2
(d) Variation of number of instances of schema O # # # # # # # # # with generations
for the function f(x)=x2
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4, EXPERIMENTAL RESULTS

An extensive comparison of the performance of the proposed method
GACD with that of CGA is carried out for a variety of different function
optimization and pattern classification problems. Functions of 1, 2, and 3
variables having varying degrees of complexity were chosen.

4.1. GENETIC OPERATORS

Fitness computation is done in the usual problem specific manner such
that the fitness of every individual is positive. Roulette wheel strategy is
used to implement proportional selection [1). Single point crossover is
applied on the chromosomes with a fixed probability, where the mates are
chosen from classes M and F, respectively. Conventional mutation is
applied on a bit by bit basis over the data bits with probability u,,. The
class bits are not mutated. The cycle of selection, crossover and mutation
is repeated a number of times until one of the following occurs:

1. The average fitness value of a population becomes more or less
constant over a specified number of generations.

2. A desired objective function value is attzained by at least one string in
the population.

3. The number of generations is greater than some threshold.

Elitism is incorporated in the algorithm by preserving the best string of
the generation (among both male and female chromosomes) in a location
outside the population. The best string seen up to the last generation is the
solution to the problem.

4.2. FUNCTION OPTIMIZATION PROBLEMS

The experimental parameters chosen for the function optimization
problems are as follows,

Population size =40 (CGA),
Initial male and female population sizes =20 (GACD),
e = 0.7,

[T =0.01,

Max. no. of generations = 100,

No. of simulations = 50.
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In order to bring CGA and GACD logically closer for more effective
comparison, a modified version of the CGA called CGAP (CGA with a
different mode of population initialization) is also developed. CGAP
differs from CGA only in the construction of the initial population. In
CGAP, half of the initial population is generated randomly while the other
half is generated in such a way that its hamming distance from the first
half is maximized. The algorithm similar to the one described in Figure 3 is
used for generating the second half of the population in CGAP. The
function descriptions, results and associated discussions are now presented
in details.

Function 1: Sparse One Max. This function is similar to the One Max
function except that some fake bits are included in the string which do not
contribute anything towards the objective function. Strings of length 60 are
chosen, where the initial and the final 10 bits are fake. The objective
function to be maximized is the number of 1s in bits 11 through 50.
Maximum value of the objective function is therefore 40.

Function 2: Two Max. This function has one local and one global
maxima [12]. The function is of the form,

f(x) =181 -8,

where 7 is the number of 1s in the / bit string representing x. There is one
global maxima with value 10/ (when x is composed of all 1s i.e., n=1), and
one local maxima with value 8/ (when x is composed of all Os i.e., n=0).
The boundary between the two peaks occurs at 3/. Any n > 3/ leads to the
global maxima while n < 3/ leads to the local maxima. For /= 30 the global
maxima has value 300 while the local maxima has value 240.

Function 3: Trap. This function with one global and one local maxima
deals with a situation where the collecting area of the local maxima is
much larger than the collecting area of the global maxima. The function
[12] is defined as follows:

Let z=|31].
Then,

f(x)=%(z-n) forn<z

101
(I-2)

(n—z) forn>z.
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This function has a global maxima with value 10/ when x is composed of
all 1s and a local maxima with value 8/ when x is composed of all 0s. For
=30, the global and local maximas have values 300 and 240, respectively.

Function 4: Plateau. This function contains large plateau regions which
are areas in the solution space with same objective function value provid-
ing no uphill direction {12]. The function is described as follows: The / bits
are divided into four equal sized groups. Each group provides a score of
2.51 if it contains all 1s or 0.5/ if it contains at least one 0. The objective
function for a chromosome is the sum of the scores of the four groups.
Note that the only possible values of the objective function are 21/, 41, 61,
81, and 10!. For this function [ is 20.

Function 5: Exp function. The function is of the form,

f(x)=2+exp* 19 cos(10~x) x<10.0
=2+ exp?"® cos( x — 10) x>10.0,
/=22 and x is allowed to vary in the range [0,20]. Global maxima exists at
x =10.0 where f(x)=3.0.

Function 6: Sine square function. This is a function of two variables,
(x4, x,), [13] of the following form,

(sin\/xf +x3 )2 -0.5

[1+0.001(x? +x2)]"

f(x1,%3) =05—

Each variable is encoded using 22 bits (! =44) and is allowed to vary in the
range [—100,100]. Global maxima with value 1 occurs when x; =x,=0.0.

Function 7: DelJong 1 function. This is a minimization problem of three
variables [1], where the function to be minimized is

3
f(x1,%5,%3) = lez
i=1

The range for each variable is [ —5.12,5.12] and 22 bits are used to encode
each variable. Hence /= 66. The minimum value is 0.0 when x, =x,=x;=
0.0.

Table 1 presents the comparative results of the best values obtained
after 100 iterations for GACD, CGA, and CGAP. The optimal values for
the corresponding functions are also included in the table. It is seen from
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TABLE 1
Comparative Results for the Best Value Obtained after 100 Iterations

Best value obtained

Function Optimal value GACD CGA CGAP
1 40 37.89 3742 37.60
2 300 298.80 274.08 274.08
3 300 240.00 220.15 22211
4 200 178.00 182.99 175.00
5 3.0 2.999997 2.987733 2.987977
6 1.0 0.970266 0.911959 0.914001
7 0.0 0.000118 0.208958 0.224651

the table that GACD outperforms both CGA and CGAP for almost all the
functions. Only for Function 4, the result for GACD is inferior to that of
CGA. For Function 3, it is found that none of the algorithms can attain
values near the global optima. GACD attains the local maxima in all the
50 simulations. CGA and CGAP fail to attain even this value consistently.
In fact, results presented later show that all the three algorithms get stuck
at the local maxima for this function. Graphical demonstration of the
variation of the average and best objective values are shown in Figures 5a,
b, 6a, b, and 7a, b for Functions 3, 4, and 6, respectively. For Function 4,
although GACD attains an objective function value that is lower than that
of CGA (Fig. 6b), the variation of average value is superior (Fig. 6a).
Functions 3 and 6 show a marked superior performance of GACD (Figs.
5a, b and 7a, b, respectively). Results for the remaining six functions are
similar to that of Function 6 and are omitted.

The ability of the algorithms in attaining a user specified objective
function value thresh is shown in Table 2. It shows the average number of
generations required by GACD, CGA, and CGAP to attain thresh as well
as the number of times (of a total of 50) in which this is possible. A
maximum of 2000 generations are executed.

In most of the cases, it is found that GACD far outperforms both CGA
and CGAP in terms of the average number of generations required to
attain thresh and the number of times that rhresh is attained. The value of
thresh is chosen sufficiently close to the global optimum value (since the
coding of the parameters itself, i.e., the number of bits used to code the
variables, may eliminate the attainment of the exact global optimum
value). Note that the average number of generations is computed for only
those simulations in which thresh is attained.
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Fig. 5. (a) Variation of average value of objective function with generations for
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150 e
o &
=2
S 100 -
(]
g
5 SOt b
Z * - GACD, +-CGA, o - CGAP

i. 1 1 ) - 1 1 1

0 1 1
0 10 20 30 40 50 60 70 80 90 100
Generation number

(a)

n
8
.
1
J
.
J

Best value
g 8
T T
1 1

*-GACD, +-CGA, o0-CGAP

! 1 L

1 1 11
20 30 40 50 60 70 80 90 100
Generation number

)

3
L

(=)
-
(=]

Fig. 6. (a) Variation of average value of objective function with generations for
function 4 (Plateau function). (b) Variation of best value of objective function with
generations for function 4 (Plateau function).



312 S. BANDYOPADHYAY ET AL.

T T T

9 “-GACD, +-CGA, 0-CGAP ' '
=08
>
207t
g
Sos} | ‘

0.5 1 e 1 i i

0 10 20 30 40 50 60 70 80 90 100
Generation number

(@)

Best value

*-GACD, +-CGA, o0-CGAP

] 1 'l 1

1 1
0 10 20 30 40 50 60 70 80 90 100
Generation number

)

Fig. 7. (a) Variation of average value of objective function with generations for
function 6 (Sine square function). (b) Variation of best value of objective function with
generations for function 6 (Sine square function).

Interestingly, maximizing Function 1 appears to be difficult to solve for
both CGA and CGAP. However, GACD provides the optimal result in all
the 50 simulations in a reasonably small number of generations. Function
3 presents an interesting finding. None of the three algorithms could attain
the global maxima in even one of the 50 simulations, thereby indicating

TABLE 2

Comparative Results for the Average Number of Generations Required to Attain an
Objective Function Value thresh

No. of times thresh attained Avg. no. of generations

Function thresh GACD CGA CGAP GACD CGA CGAP
1 40 50 0 0 81.66 — —

2 300 49 49 47 39.16 610.04 591.72
3 300 0 0 0 — — —

4 200 50 50 50 81.5 108.42 97.96

5 2.9999 50 45 45 31.84 665.99 75531

6 0.999 18 7 12 218.78 898.29  986.67

7 0.003 50 16 11 4222 110842 811.00
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that like CGA, GACD, and CGAP get stuck at a local optima when the
region from which the global optima can be reached is comparatively quite
small. The results for the remaining functions show a markedly superior
performance of GACD. Note that the comparative results for CGA and
CGAP are not very conclusive since neither one consistently outperforms
the other for the cases considered.

4.3. PATTERN CLASSIFICATION PROBLEM

Let us consider the GA based pattern classifier (or GA-classifier)
described in [5, 14]. The supervised classification problem in R" can be
viewed as a task of generating appropriate decision boundary in the
feature space such that the misclassification of the training data points is
minimized. If the decision boundaries can be modeled by a fixed number
(say H) of hyperplanes, then the classification problem can be treated as
search and placement of a fixed number of hyperplanes in the feature
space such that the number of correctly classified samples is maximized.

The parameters of the H (fixed a priori) hyperplanes are encoded in the
chromosomes. The hyperplanes divide the feature space into several
regions. The class associated with each region is determined by the
maximum number of points that belong to this class and lie in this region.
Only these points are considered to be correctly classified. In this manner,
the correctly classified samples in each region are summed up to provide
the value of the objective function corresponding to the chromosome. The
operations of selection, crossover and mutation are as described before.
Elitism [1] is incorporated in GA by replacing the worst string of the
current generation by the best string seen up to the last generation.
Population size of 20 is chosen for this problem. The crossover probability
is fixed at 0.8 while the mutation probability is varied in the range
[0.01,0.333] over every 100 generations for a maximum of 1500 genera-
tions. Initially u,, has a high value, thereby ensuring sufficient diversity in
the population. Subsequently, it is decreased gradually to the minimum
value, when the algorithm is allowed to make a detailed search in the
solution space. The mutation probability is again increased indicating an
increase in the randomness of the search. In case the optimal string was
already obtained, elitism ensures that it is not lost.

The results for two artificial data, speech data and iris data [15] are
presented in Table 3 for GACD and CGA. The two-dimensional artificial
data sets, ADS 1 (Fig. 8) and ADS 2 (Fig. 9), consist of 557 and 417 points,
respectively, belonging to two classes. The real life speech data, Vowel data
[16], consists of three feature values (corresponding to the three formant
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TABLE 3
Comparative Results for the Pattern Classification Problems
Training Testing
Avg. no. of generations (avg. miss) (avg. recog. score)
Data set H GACD CGA GACD CGA GACD CGA
ADS 1 5 573.2 854.3 0 0.7 92.23 91.89
ADS 2 5 620.5 911.5 0 03 90.53 86.65
iris 5 50.8 49.9 0 0 93.41 89.99
Vowel 5 1500 1500 7.4 9.4 75.98 71.32
Vowel 6 1500 1500 6.5 7.8 70.51 71.34

frequencies) and six classes {8, 4,i,u, e, 0}. Figure 10 shows the data set in
the first and second formant frequency plane. Iris data comprises 150
samples having four features and belonging to three classes with 50 points
in each class. The superior performance of GA-classifier using CGA, with
respect to Bayes classifier, k-NN rule and multilayered perceptron was
already demonstrated in [14] for these data sets.
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Fig. 8. Artificial data set ADS 1.
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Fig. 9. Artificial data set ADS 2.
REMARKS.

i. The results shown are the average values obtained over 10 simula-
tions of GACD and CGA. Ten percent of the training data set is used for
training. The remaining 90% sample points are used for testing. miss
represents the number of points misclassified by GA-classifier. recog. score
denotes the percentage of correctly classified test data.

ii. For this problem, it is obvious that the performance during training
is of greater importance for comparison between GACD and CGA. The
results for the test case are included for the sake of parity.

For the two artificial data sets it is seen from Table 3 that GACD
performs much better than CGA both for the training and test data. A
point to be mentioned here is that CGA could attain zero misclassification
in 7 and 8 simulations for ADS 1 and ADS 2, respectively, (out of 10)
while GACD attained this in all the 10 simulations. For iris data the
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Fig. 10. Real life speech data, Vowel data, in the first and second formant frequency
planes.

performance of GACD and CGA is comparable in terms of the average
number of generations required to attain zero misclassification (which
both could attain). Incidentally, the recognition score of test data is better
for GACD.

It is known that Vowel data has considerable amount of overlap [16].
Therefore it is not surprising that both GACD and CGA fail to attain zero
misclassification in all the simulations. As expected, the average miss
decreases when H is increased from 5 to 6 for both the algorithms. GACD
is seen to perform better, in terms of miss, for this data set in both the
cases. Interestingly, for H=6, the recognition score for the test data is
found to be marginally better for CGA, although the performance during
training is seen to be poorer. However, for H=5, GACD performs
significantly better both during training and testing.

5. DISCUSSION AND CONCLUSIONS

The effect of differentiating the chromosomes into two distinct classes
in GAs is studied in this article. A new methodology called GACD is
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formulated in which two separate populations are maintained and crossover
is allowed only between individuals belonging to these two different
classes.

GACD is shown to satisfy the schema theorem. It is proved that in
many cases the lower bound of the number of instances of a schema A
sampled by GACD is greater than or equal to that of CGA. Because of
this, GACD is better able to exploit the information gained so far. Again,
initializing the M and F populations in such a way so as to maximize the
hamming distance between them, and allowing mating between individuals
from these two dissimilar populations, enhances the exploration capability
of GACD. Therefore, GACD appears to strike a better balance between
exploration and exploitation, which is crucial for any adaptive optimization
technique, thereby giving it an edge over the conventional GA.

Experimental evidence for a simple function optimization problem is
provided to show that the growth and decay rate for above and below
average schemata, respectively, are greater for GACD as compared to
CGA. The superiority of GACD over CGA and CGAP (both in terms of
the best value obtained and the average number of iterations required in
finding this value) is extensively established through a series of function
optimization and pattern classification problems. Although the results
demonstrated here assume elitist model, experiments were also conducted
for the nonelitist version, and the conclusion as mentioned previously still
holds.

Two bits are utilized for differentiating the chromosomes into two
classes (keeping analogy with the X,Y chromosomes of human beings).
Obviously, this is not the unique choice. An alternative could have been to
use one bit. However, since we want the class of the offspring to be
determined by both the parents, one bit proves to be insufficient. Again,
more than two bits could have been used for this purpose; but this would
lead to increased computational complexity. Note also that in the present
method we have incorporated differentiation into two categories. Similar
differentiation into more than two classes can be formulated within the
same framework in case nature demands so.

It was proved in [17] that any elitist model of GAs will definitely
converge to the optimal string as the number of iterations tends to infinity
provided the probability of going from any population to the one contain-
ing the optimal string is greater than zero. Note that the conventional
mutation operation alone ensures that this probability is greater than zero.
Since GACD utilizes the conventional mutation operation and incorpo-
rates elitism, the previously mentioned criteria are fulfilled. Thus GACD is
also guaranteed to provide the optimal string as the number of iterations
goes to infinity.
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APPENDIX: MERITS OF COOPERATION
AND SPECIALIZATION

Let an individual spend the available time in two different activities, say
nurturing and hunting. If the proportion of the time spent on nurturing
and hunting are n and A, respectively, then the survival probability of the
offspring, s(n,h), is postulated to be equal to n* h. If the loss of time
available for either activity is proportional to the product of the activity
proportions, which is termed jack-of-all-trade loss, then the constraint
equation obtained is

n+h+anh=1, (17)

where a is the loss coefficient. Elementary analysis shows that s(n,h)
attains the maximum value of 0.25 when n=h=0.5 and a=0.

On the contrary, if two individuals cooperate to act as one unit, then the
survival probability (given by s=3(n,+n,Xh,+h,)) immediately in-
creases to 0.5 for a=0. In this case n, +n,=1 and h,; +h,=1, where n,,
n,, h,, and h, are defined analogously for the two individuals. The
constraint (17) holds as follows,

n,+h;+anh;=1, i=1,2.

Hence the individuals must cooperate but need not specialize. For the case
when a #0, the maximum survival probability is obtained when either
(ny,n,)=(1,0) or (0,1) while (h,,h,)=(0,1) or (1,0). This indicates full
specialization and cooperation within the unit. In either case, the survival
probability is larger compared to the uncooperative individual [1].

This work was carried out when Sanghamitra Bandyopadhyay held a fellowship awarded
by the Department of Atomic Energy, Gout. of India.
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