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Abstract 

A method is described for finding decision boundaries, approximated by piecewise 
linear segments, for classifying patterns in ~N,N >~ 2, using Simulated Annealing 
(SA). It involves generation and placement of a set of hyperplanes (represented by 
strings) in the feature space that yields minimum misclassification. Theoretical analysis 
shows that as the size of the training data set approaches infinity, the boundary provid- 
ed by the SA based classifier will approach the Bayes boundary. The effectiveness of the 
classification methodology, along with the generalization ability of the decision boun- 
dary, is demonstrated for both artificial data and real life data sets having non-linear/ 
overlapping class boundaries. Results are compared extensively with those of the Bayes 
classifier, k-NN rule and multilayer perceptron, and Genetic Algorithms, another pop- 
ular evolutionary technique. Empirical verification of the theoretical claim is also pro- 
vided. © 1998 Elsevier Science Inc. All rights reserved. 
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1. Introduction 

Simulated Annealing (SA) [1-4] belongs to a class of local search algorithm. 
It utilizes the principles of statistical mechanics, regarding the behaviour of a 
large number of atoms at low temperature, for finding minimal cost solutions 
to large optimization problems by minimizing the associated energy. Let 
E(q, T) be the energy at temperature T when the system is in the state q. Let 
a new state s be generated. Then state s is accepted in favour of state q with 
a probability 

1 
Pqs = 

1 + exp/--\~E(q'T)~TE(S'T)! ) " 

In statistical mechanics investigating the ground states or low energy states 
of matter is of fundamental importance. These states are achieved at very low 
temperature. However, it is not sufficient to lower the temperature alone since 
this results in unstable states. In the annealing process, the temperature is first 
raised, then decreased gradually to a very low value (Tmin), while ensuring that 
one spends sufficient time at each temperature value. This process yields stable 
low energy states. 

Pattern classification can be viewed as a problem of search and placement of 
a number, H, of hyperplanes (fixed a priori) which can model the decision 
boundary of the given data set appropriately. The criterion to be minimized 
is the number of samples of the given training data that are misclassified for 
a particular arrangement of the H hyperplanes. The arrangement of hyper- 
planes that minimizes the number of misclassified data points is considered 
to provide the decision boundary of the given training data set. 

The present article describes a methodology demonstrating the searching 
ability of SA for finding an appropriate arrangement of H hyperplanes that 
minimizes the number of misclassified points. The effectiveness of the classifier 
has been adequately established for several artificial and real life data sets with 
both overlapping and non-overlapping class boundaries. The results are also 
compared with a similar approach [5] based on genetic algorithms (GA) 
[4,6], Bayes maximum likelihood classifier, k-NN rule [7] and multilayered per- 
ceptron (MLP) [8]. 

Besides, a theoretical analysis alongwith an empirical verification is present- 
ed which shows that for the size of the training data set going to infinity, the SA 
based classifier (or SA classifier) will provide an error rate of the training data 
which is less than or equal to the Bayes error probability. (In this regard it may 
be mentioned here that Bayes maximum likelihood classifier [7] is one of the 
most widely used statistical pattern classifiers which provides optimal perfor- 
mance from the standpoint of error probabilities in a statistical framework. 
It is known to be the best classifier when the class distributions and the a priori 
probabilities are known. Consequently, the desirable property of any classifier 
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is that it should approximate or approach the Bayes classifier under limiting 
conditions.) 

A brief discussion on the principles of SA is first presented in Section 2. This 
is followed by a detailed description of the SA classifier. The theoretical analysis 
is provided in Section 4 followed by the implementation results in Section 5. Fi- 
nally, the discussion and conclusions are presented the last section. 

2. Simulated annealing: Basic principles 

In the recent past, application of techniques having physical or natural cor- 
respondence for solving difficult optimization problems has received wide- 
spread attention. It has been found that these techniques consistently 
outperform classical methods like gradient descent search when the search 
space is large, complex and multimodal. SA is one such paradigm having its 
foundation in statistical mechanics, which studies the behaviour of a very large 
system of interacting components in thermal equilibrium. 

In statistical mechanics, if the system is in thermal equilibrium, the probabil- 
ity gv(s) that the system is in state s, s E S, S being the state space, at temper- 
ature T, is given by 

nr(s) = Ewes e-E(wl/*r ' (1) 

where k is the Boltzmann's constant and E(s) is the energy of the system in 
state s. 

Metropolis et al. [9] developed a technique to simulate the behaviour of the 
system in thermal equilibrium at temperature T as follows: Let the system be in 
state q at time t. Then the probability p that it will be in state s at time t + 1 is 
given by the equation 

If the energy of the system in state s is less than that in state q, then p > 1 and 
the state s is automatically accepted. Otherwise it is accepted with probability 
p. Thus it is also possible to attain states with higher energy values. It can be 
shown that for t ~ ~ ,  the probability that the system is in state s is given by 
rot(s) irrespective of the starting configuration [10]. 

When dealing with a system of particles, it is important to investigate very 
low energy states, which predominate at extremely low temperatures. To 
achieve such states, it is not sufficient to lower the temperature. An annealing 
schedule is used, where the temperature is first increased and then decreased 
gradually, spending enough time at each temperature in order to reach 
thermal equilibrium, 
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In this article we have used the annealing process of the Boltzmann machine, 
which is a variant of the Metropolis algorithm. Here, at a given temperature T, 
the new state is chosen with a probability 

1 
Pqs = + exp /  T, '~(_E(q,I#_E(s,T)))' 1 

The parameters of the search space is encoded in the form of a bit string of a 
fixed length. The objective value associated with the string is computed and 
mapped to its energy. The string with the minimum energy value provides 
the solution to the problem. The initial string (say q) of 0s and 1 s is generated 
randomly and its energy value is computed. Keeping the initial temperature 
high (say T = Tmax), a neighbour of the string (say s) is generated by randomly 
flipping one bit. The energy of the new string is computed and it is accepted in 
favour of q with a probability Pus mentioned earlier. This process is repeated a 
number of times (say k) keeping the temperature constant. Then the tempera- 
ture is decreased using the equation T = rT,  where 0 < r < 1, and the k loops, 
as earlier, are executed. This process is continued till a minimum temperature 
(say Train) is attained. The simulated annealing steps are shown in Fig. 1. 

3. Description of  the SA classifier 

The correspondence between the physical aspect of SA and an optimization 
problem is as follows: the parameters of the search space (in this case the H 

Begin 

generate the initial string randomly = q 

T=Tm~x 
Let E(q,T) be the associated energy 

while (T _> Tmin) 

for i = I to k 

Mutate (flip) a random position in q to yield s 

Let E(s,T) be the associated energy 

Set q +-- s with probability I I+e--(E(q,T)--E(s,T))/T 

end for 

T= r T  

end while 

Decode the string q to provide the solution of the problem. 

End 

Fig. 1. Steps of simulated annealing. 
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hyperplanes), are encoded in strings (usually binary) and these represent the 
different states; low energy states correspond to near optimal solutions (or 
an arrangement of the hyperplanes that provide minimum misclassification); 
the energy corresponds to objective function (or the number of misclassified 
samples), and temperature is a controlling parameter of the system. The impor- 
tant tasks here are to establish a way of representing and generating different 
configurations (or states) of the problem and an annealing schedule. These 
are now discussed in details. 

3.1. State/hyperplane representation 

In this article, binary string of length l is used to encode the parameters of 
the H hyperplanes. From elementary geometry, the equation of a hyperplane in 
N-dimensional space (Xl - X 2  . . . . .  XN) is given by 

XN COS au-I + ¢/X I sin aN-1 = d, (3) 

where /~N-I ~-- XN-1 COS aN_ 2 Jl- /~N-2 sin O~N__2, 

tiN-: = XN-2 COS aN-3 + flU-3 sin aN-3, 

fil = xl COS a0 + fl0 sin a0. 

The various parameters are as follows: X~ is the ith feature of the training 
points; (Xl,X2,... ,XN) a point on the hyperplane; CtX_~ the angle that the unit 
normal to the hyperplane makes with the XN axis; au-2 the angle that the pro- 
jection of the normal in the (Xl -)(2 . . . . .  XN-I)  space makes with the Xu-I  
axis; and so on, al the angle that the projection of the normal in the 0(1 - X2) 
plane makes with the X2 axis; a0 the angle that the projection of the normal in 
the (X0 plane makes with theX1 axis =0 .  Hence, fl0 sin a0 =0;  and d the per- 
pendicular distance of the hyperplane from the origin. Thus the N tuple 
(al, a2 , . . . ,  aN-l, d) specifies a hyperplane in N-dimensional space. 

Each angle aj, j = 1 ,2 , . . . ,  N - 1 is allowed to vary in the range of [0, 2n]. If  
bl bits are used to represent an angle, then the possible values of aj are 

0,6 2n, 26 2n, 33 2 n , . . . , ( 2  b' - 1)5 2n, 

where 5 = 1/2 bl . Consequently, if the bl bits contain a binary string having the 
decimal value vl, then the angle is given by vl 6 2n. 

Once the angles are fixed, the orientation of the hyperplane becomes fixed. 
Now only d must be specified in order to specify the hyperplane. For this purpose 
the hyper rectangle enclosing the training points is considered. Let (x mm, x max) be 
the minimum and maximum values of feature X,. as obtained from the training 
points. Then the vertices of the enclosing hyperrectangle are given by 

chl oh2 chN] 
X I ~X 2 ~ ' ' ' ~ X  N 1~ 
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where each chi, i = 1 ,2 , . . . ,  N can be either max or min. (Note that there will be 
2 N vertices.) Let diag be the length of the diagonal of this hyperrectangle given by 

diag = V / ( x ]  nax - x ~ i n )  2 + (X~ nax - -  x~nin) 2 -'~- • • • -[- ( X ~  ax - -  x~rin)  2. 

A hyperplane is designated as the base hyperplane with respect to a given ori- 
entation (i.e., for some ~1, ~2, . . . ,  ~s-l) if: 

(i) it has the same orientation, 
(ii) it passes through one of the vertices of the enclosing rectangle, 
(iii) its perpendicular distance from the origin is minimum (among the 

hyperplanes passing through the other vertices). Let this distance be drain .  

If  b2 bits are used to represent d, then a value of v2 in these bits represents a 
hyperplane with the given orientation and for which d is given by 
dmin  q - ( d i a g / 2  b2) v2. Thus a string is of a fixed length of l = H ( ( N -  1) 
b l  q-- b2), where H -- the number of hyperplanes. The initial string is generated 

randomly. Note that we have used this recursive form of representation over 
the classical one viz. l lX l  "-~ 12x 2 -~- ' ' '  -~- lNx  N ~ d ,  where l l , . . . ,  ls are known 
as the direction cosines. The latter representation involves a constraint equa- 
tion, l~ + I~ + .-- + l 2 -- 1. This, in turn, leads to the complicated issue of get- 
ting invalid or unacceptable solutions when the constraint equation is violated. 
However, the representation that we have chosen avoids this problem by being 
unconstrained in nature. 

3.2. Energy~objective value computation 

A string encodes the parameters of H hyperplanes as described earlier. 
Using these parameters, the region in which each training pattern point lies 
is determined from Eq. (3). A region is said to provide the demarcation for 
class i, if maximum number of points that lie in this region belong to class i. 
Other points that lie in this region are considered to be misclassified. The mis- 
classifications associated with all the regions (for these H hyperplanes) are 
summed up to provide the total misclassification, miss, for the string, which 
represents its energy. 

3.3. New state generation process and annealing schedule 

For generating a new configuration, one (or more) random position(s) in the 
bit string is chosen and flipped. This provides a new string, whose energy is 
computed in the above mentioned manner. 

As already mentioned, the crucial task over here is the attainment of low en- 
ergy states, obtained at very low temperatures. If  the temperature is decreased 
quickly, then the low energy states tend to be unstable. In order to reach stable 
states, the temperature must be initially increased, and then decreased gradual- 
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q ~-- initial randomly 
generated string 

Compute miss(q, T) 

I I 

s ~-- muta te  random position in q 

Compute miss(s, T) 

q *- s with prob. 
1 

--( m{ss( q,T)--m~ss( a,T) ) 
l + e  T 

I 

Fig. 2. Steps of the SA classifier. 

T = r * T  

Yes 

Decode the parameters 
encoded in the final 
string q 

ly allowing sufficient time at each temperature. This process is known as an- 
nealing. In order to simulate this method, initially the temperature is kept high 
( = Tmax). A parameter  k is used to control the time spent at each temperature 
value. The temperature is decreased according to the formula T = rT, where 
0 < r < 1. Higher value of r indicates a more gradual annealing schedule. 
The different steps of  the SA classifier are shown in Fig. 2. The process contin- 
ues until either a string with no misclassified points is obtained (miss = 0) or an 
user specified minimum temperature value ( = Tmin) is attained. The final string 
q at termination provides the solution to the problem. 

4. Relationship with Bayes error probability 

In this section we study the theoretical relationship between the SA classifier 
and Bayes classifier in terms of  the error probabilities. The mathematical  nota- 
tions and preliminary definitions are described first. This is followed by the 
claim that for n -~ ~ the performance of the SA classifier will no way be worse 
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than that of Bayes classifier. Finally some critical comments about the proof 
are mentioned. 

Let there be k classes C1, C2, . . . ,  Ck with a priori probabilities P1,P2,... ,Pk 
and class conditional densities pl (x), pz (x) , . . . ,  pk (x). Let the mixture density be 

k 

p(x) = ZPiPi (X) .  (4) 
i=l 

Let X~,X2, . . . ,X , , . . .  be independent and identically distributed (i.i.d) N-di- 
mensional random vectors with density p(x). This indicates that there is a prob- 
ability space (f2, o~, Q), where ~ is a a field of subsets of f2, Q is a probability 
measure on ~ ,  and 

X/: ( f2 ,~ ,Q)  --~ (I~N,B(RN),P) Vi = 1 ,2 , . . .  

such that 

g 
P(A) Q(X~-I(A)) - - / p ( x )  dx 

A 
VA C B([~ N) a n d  '7'i = 1 , 2 , . . .  H e r e  B ( ~  N) is the  Bore l  a field o f  ~N. 

Let 

= {E: E = (S,, $2, . . . ,  Sk), Si C ~U, St . • 0 
k 

v i :  1 , . . .  ,~,[_Jsi : ~ N , s ~ A s j  : 0,vi  ~ j } .  
i=1 

g provides the set of all partitions of ~N into k sets as well as their permuta- 
tions, i.e., 

E1 = (S I ,&,S3 . . .  ,S~) ~ e,  

E2 = (&,S l ,S3 , . . .  ,Sk) ~ e, 

then El ¢ E2. Note that E = (S~, Si~,..., Sty) implies that each S~j, 1 ~< j ~< k, is 
the region corresponding to class Cj. 

Let E0 = (S01,S02,...,S0k) 6 g be such that each Soi is the region corre- 
sponding to the class Ci in ~N and these are obtained by using Bayes decision 
rule. Then 

s~ s~ 

(5) 

VEz = (Sll ,  812 , . . .  , Slk) E ~. Here a is the error probability obtained using the 
Bayes decision rule. 

It is known from the literature that such an E0 exists and it belongs to ~ be- 
cause Bayes decision rule provides an optimal partition of ~U and for every 
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such E1 = ( S I 1 ,  S 1 2 , . . . ,  Slk) E g, ~ = l  P i  f s  c pi(x)dx provides the error proba- 
-- li • 

bility for El E o ~. Note that E0 need not be umque. 

Assumptions 1. Let Ho be a positive integer and let there exist Ho hyperplanes in 
NN which can provide the regions Sol, S02,.. . ,  Sok. Let Ho be known a priori. 
Let the algorithm for generation of  class boundaries using Ho hyperplanes be 
allowed to be executed for a sufficiently large number of iterations in each 
temperature value and for sufficiently low temperatures. Let the number of 
strings be t with misclassification values missl ,miss2, . . . ,misst  where 
0 ~< missl ~< miss2 ~< • • • ~< misst. Let ~'i.j ~1) denote the probability of  going 
from string i to string j in nl steps with the temperature value T. It is known in 
the literature that for the adopted SA algorithm 

:__ _(~]) 
hm/~i4 (T) = p , j ( r ) ,  

n l ~ o O  

where pi/(T) = e-mis~jr/~tk= l e -mi~/r. It follows that 

lim p~j(T) = 1 f o r j  = 1, 
T ~ 0  + 

= 0  f o r j ¢  1. 

Thus it is known that using SA technique of(i)  making n] ~ c¢ and (ii) making 
T --+ 0 ÷, one can get the optimal string and its value. 

Let d = {sO: d is a set consisting of  H0 hyperplanes in ~N}. Let Ao E s¢ 
be such that it provides the regions Sol,S02,... ,S0k in EN i.e., Ao provides 
the regions which are also obtained using the Bayer decision rule. Note that 
each A E d generates several elements of  g. Let o~ _c g denote all possible 
E = (SI, $2 , . . . ,  Sk) E d ~ that can be generated from A. 

Let G = ~JAE,~' gA. Let 

1 if Xi(to) is misclassified when E is used as a decision 

Z,E(to) = rule where E E G, Vto E f2. 

0 otherwise. 
n Let f,e(to) = ( l /n)  ~i=1Zi~(to), when E ~ G is used as a decision rule. Let 

f,(to) = Inf{f,E(co): E E G}. 
It is to be noted that the pattern classification algorithm mentioned in 

Section 2 uses n x fnE(to), the total number of misclassified samples, as the 
objective function which it attempts to minimize. This is equivalent to 
searching for a suitable E E G such that the term fne(co) is minimized, i.e., for 
which fnE (to) = f ,  (to). As already mentioned, it is known that for infinitely many 
iterations the Elitist model of  GAs will certainly be able to obtain such an E. 

Theorem 2. For sufficiently large n, fn(to)~ a, (i.e., for sufficiently large n, fn(to) 
cannot be greater than a) almost everywhere. 
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if X,(co) is misclassified according to Bayes rule Vco E ~2. 

otherwise. 

., Y~,... are i.i.d random variables. Now 
k 

) = ~--]Prob(Y/, = l/X,. is in CflP(Xi is in C/) 
j=l  

k 

= ff-2P/Prob(co: )(/(co) E S~/given that co E C/) 
j=l  

k 

Hence the expectation of I6,., E(Y,) is given by 

E(Y,) = a Vi. 

Then by using Strong Law of Large Numbers [1 1], (1/n) ~i~l  Y~ ~ a almost 
everywhere, i.e., 

P co: - ~(co) -+ a = O. 
n i~l 

Let 

B--- co: Y~.(o))~a C_f2. 

Then Q(B) = 1. Note that f,(co) ~< ( l /n)  Z i n l  Yi((D), Vn and Vco, since the set of 
regions (S01, S0e . . . .  , SoD obtained by the Bayes decision rule is also provided by 
some A E d and consequently it will be included in G. Note that 0 ,,<f,(co) ~< 1, 
Vn and Vco. Let coEB. For every o) EB, U(o))= {fn(co);n---1,2,.. .} is a 
bounded, infinite set. Then by Bolzano-Weierstrass theorem [12], there exists 
an accumulation point of U(co). Let y = Sup{y0:y0 is an accumulation point 
of U(co)}. From elementary mathematical analysis we can conclude that y ~< a, 
since ( l /n)  ~i~l  Y/(co) ~ a almost everywhere and fn(co) ~< ( l /n)  ~ ,~t  Y,.(co). 
Thus it is proved that for sufficiently large n, f,(co) cannot be greater than a 
for co E B. [] 

It is to be mentioned that the theorem proved earlier indicates that as the 
size of the training data set is increased, the performance of the SA classifier 
will approach that of the Bayes classifier. The fact that f~ (co) < a is true for 
only a finite number of  sample points, since many distributions can generate 
these points. However, as the size of the data set goes to infinity, only one 
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distribution can possibly generate all the points [13]. Also, since we know that 
Bayes classifier is the optimal one in a statistical framework, and there can 
be no better classifier, the above mentioned claim (that fn(~o) ~< a) can only in- 
dicate that fn(to) = a; or in other words, the performance of the SA classifier 
will tend to that of the Bayes classifier in the limiting case. This, in turn indi- 
cates that under limiting conditions, the boundary provided by the SA classi- 
fier will approach the bayes boundary. This is experimentally demonstrated in 
Section 5.4. 

Note: The term 'sufficiently large' is borrowed from statistics books and in- 
dicates mathematical term ' 7  0o'. 

5. Implementation and results 

The three data sets used for demonstrating the effectiveness of the SA clas- 
sifier are the following. 

A D S  1: This two-dimensional artificial data set (Fig. 3) consists of 557 data 
points belonging to two classes. It is evident that the classes, which are separa- 
ble, have non-linear class boundary. 

Vowel data: This real life speech data consists of 871 Indian Telugu vowel 
sounds in six classes represented by {6, a, i, e, o, u} [14]. It has three features 
corresponding to the first, second and third formant frequencies. Fig. 4 shows 
the data set in the first and second formant frequency plane. 

Iris data: This four-dimensional data set for a specific category of irises has 
150 points in three classes [15]. The features correspond to the sepal width and 
length and petal width and length in centimeters. 

Data set 1: This two-dimensional data set, used for verifying the theoretical 
result in Section 4, is generated using a triangular distribution for the two 
classes, 1 and 2. The range for class 1 is [0, 2] × [0, 2] and that for class 2 is 
[1, 3] × [0, 2] with the corresponding peaks at (1,1) and (2,1). IfPl is the a priori 
probability of class 1, then using elementary mathematics, we can show that 
Bayes classifier will classify a point to class 1 if its X coordinate is less than 
1 ÷ P1. This indicates that the Bayes decision boundary is given by 

x = 1 + P~. (6) 

5.1. Performance o f  SA  classifier 

The parameters of SA are as follows: Tmax -- 100, Tmi n = 0.01, r = 0.9, k = 
100. 

Accordingly, the maximum number of iterations will be 8800. In order to 
generate a new string, one randomly chosen bit is flipped. The results shown 
are the average values of five different runs of the algorithm. 



176 S. Bandyopadhyay et al. / Journal of Information Sciences 109 (1998) 165-184 

825 

¥ 

300 

111111111111111111111111111111 
11111111111111111111111111111111 

1111111111111111111111111111111111 
111111111111111111111111111111111111 

11111111111 1111111111 
11111111111 1111111111 
11111111 11111111 
iiiiiii 2 22222222 iiiiiii 
1111111 22 22222222 iiiiii 
111111 2222 22222222 iiiii 
iiiii 222222 22222222 Iiiii 
iiiii 22222222 22222222 iiiii 
11111 222222 22222222 Iiiii 
11111 2222 22222222 11111 
111111 22 22222222 iiiii 
1111111 iiiiii 
1111111 111111 
11111111 1111111 
11111111111111111111111111111111111111 
111111111111111111111111111111111111 
1111111111111111111111111111111111 

- 11111111111111111111111111111111 

I I 
800 2750 

X 

Fig. 3. Artificial data set ADS 1. 

Table 1 shows the overall training performance of the SA classifier for data 
sets ADS I, Vowel and Iris using five values of H when I0% of  the data set 
is used for training. As expected, the training score generally improves to a 
maximum of  100% as the number of hyperplanes is increased, since more 
hyperplanes can readily fit the training data set to reduce the number of  
misclassified points. Note that because of  the considerable amount of  overlap, 
for the Vowel data, consideration of  even H = 8 could not provide 
zero misclassification. 

Tables 2 and 3 show the test results of the SA classifier for these three data 
sets, for five values of  H, when 10% and 30% of  the data set are used for train- 
ing while the remaining 90% and 70% data are used for testing, respectively. 
Unlike the training performance, the test recognition score improves initially 
as H is increased upto a specific value, beyond which the score decreases. 
For  example consider H = 6 and H = 8 of  Table 2 for ADS 1 where the score 
decreases during testing, although it remained constant (at I00%) during train- 
ing (Table 1). This indicates that H = 8 leads to overfitting of  the classes 
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Table 1 
Performance during training of SA classifier for different values of H using 10% training data 

Data set Recognition score 

H = 3  H = 4  H = 5  H = 6  H = 8  

ADS 1 94.54 98.18 100.0 100.0 100.0 
Vowel 52.94 74.71 95.29 96.65 95.29 
Iris 100.0 100.0 100.0 100.0 100.0 

Table 2 
Performance during testing of SA classifier for different values of H for 10% training and 90% test 
data 

Data set Recognition score 

H = 3  H = 4  H = 5  H = 6  H = 8  

ADS 1 91.63 92.23 93.02 93.02 88.64 
Vowel 63.35 65.60 76.84 74.55 70.73 
Iris 89.63 93.33 93.33 93.33 77.78 

Table 3 
Performance during testing of SA classifier for different values of H for 30% training and 70% test 
data 

Data set Recognition score 

H = 3  H = 4  H = 5  H = 6  H = 8  

ADS 1 91.28 96.92 98.72 96.41 96.20 
Vowel 65.60 67.48 75.98 75.00 79.90 
Iris 93.33 95.23 94.28 91.42 94.28 

dur ing  training,  thereby reducing the general izat ion capabil i ty of the classifier 
dur ing  testing. Similar is the case for H = 6 and  8 for A D S  1 in Table  3. As 
expected, the overall  recogni t ion capabi l i ty  of  the classifier increases when 
the size of  the t ra in ing  da ta  set is increased from 10% in Table  2 to 30% 

in Table  3. 

5.2. Replacing simulated annealing with genetic algorithm 

Genet ic  Algor i thm (GA) [6] is ano ther  evolu t ionary  search paradigm,  based 
on  the principles of  na tu ra l  genetic systems and  survival o f  the fittest. Like SA, 
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GAs also generally work with a binary string encoding of the parameters of the 
search problem. Instead of dealing with a single string or chromosome, it oper- 
ates on a number of strings termed population. A fitness value, which is maxi- 
mized, is associated with each string which represents the degree of goodness 
associated with it. Several biologically inspired operators like selection, cross- 
over and mutation are applied iteratively over a number of generations to gen- 
erate potentially better solutions. Termination is achieved if either a maximum 
number of iterations has been executed or a user specified criterion is satisfied. 
Details of the method can be found in [4,6]. 

The fitness computation method is the same as the process of calculating 
the energy associated with a string (see Section 3.2). Roulette wheel selection 
strategy, single point crossover strategy with probability 0.8 and bit wise mu- 
tation with a variable mutation probability value in the range [0.015,0.333] 
[5] for a population size of 20 are chosen for the GA. The maximum number 
of iterations is fixed at 1500. The comparative performance (in terms of both 
the test score and number of iterations required for attaining zero misclassi- 
fication during training) of SA and GA for the classification problem is pre- 
sented in Table 4, when 10% data are considered for training and the 
remaining 90% for testing. An entry '-' in iter. field indicates that zero mis- 
classification could not be achieved even after the maximum number of iter- 
ations was executed. 

As is evident from Table 4, the test recognition scores of both GA and SA 
based classifiers are comparable. Although, the iterations required to attain 
zero misclassification for GA is less than that for SA, the number of string eval- 
uations is much more since one iteration of GA corresponds to a maximum of 
20 strings, which is the size of the population. On the other hand, exactly one 
new string is evaluated in each iteration of SA. On this count, GA requires at 
most 10 240 and 440 string evaluations for ADS 1 and Iris respectively, which 
is significantly more than that required in SA. However, one must note that of 
the 10 240 (or 440) strings evaluated by GA for ADS 1 (or Iris) there will be 
many replications. In fact, only a relatively small fraction of the strings will 
be unique. 

Table  4 

C o m p a r a t i v e  pe r fo rmance  of  SA and  G A  for classif icat ion for H = 6 

D a t a  set G A  SA 

iter. score iter. score 

A D S  1 512 93,22 5815 93.02 

Vowel  - 71.99 - 74.55 

Iris 22 93.33 97 93.33 
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5.3. Comparison with other classifiers 

The performance of  the SA classifier is compared to Bayes maximum likeli- 
hood classifier, Multilayered Perceptron (MLP) and k-NN rule. Both MLP 
(with hard delimiters) and k-NN rule are known to provide piecewise linear 
boundaries, which is the underlying philosophy of the SA classifier, k-NN al- 
gorithm is executed taking k equal to x/~, where n is the number of  training 
data points. It can be proved that for such a form of  k, the error probability 
of the k-NN rule approaches the Bayes error probability. For  the Bayes max- 
imum likelihood classifier, unequal dispersion matrices and unequal a priori 
probabilities ( = ni/n for ni patterns from class i), are considered. In each case, 
we assume a multivariate normal distribution of the samples. 

For  MLP, learning rate and momentum factor are 0.9 and 0.1, respectively. 
Online connection weight updation, i.e., updation after the presentation of  
each training data point, is performed. A maximum of  10 000 iterations are al- 
lowed. The network architectures for ADS 1, Vowel and Iris data sets are 2-5- 
2, 3-8-6 and 4-5-3 respectively, where the first and the last numbers represent 
the number of  nodes in the input and output layers, and the intermediate num- 
ber(s) represent the number of  nodes in the hidden layer(s). 

The results in Table 5 show that the SA classifier provides superior perfor- 
mance to all the other classifiers for both ADS 1 (where k-NN is known to per- 
form well) and Iris. For  the Vowel Data, the result of  the Bayes classifier is the 
best. In fact, the Bayes classifier is known to perform well for this data [14]. In 
this case also, the recognition score of  the SA classifier is found to be closer to 
the Bayes score as compared to MLP and k-NN. 

5.4. Empirical verification o f  the theoretical result 

As a consequence of  Theorem in Section 4, the boundary provided by the 
SA classifier approaches the Bayes boundary under limiting conditions. 
Fig. 5(a)-(c) demonstrates that this is indeed the case for the Data Set 1. 
The Bayes boundary is a straight line x - -  1.4. The SA line is marked with 
an arrow, Figs. 5(a)-(c) show the SA lines obtained for n = 100, 1000 and 
4000, respectively. Only 100 data points are plotted in the figures for clarity. 

Table 5 
Comparative test performance with 10% training data 

Data set SA classifier for H = 6 Bayes max. like. class. MLP k-NN k = v N 

ADS 1 93.02 85.65 82.47 90.23 
Vowel 74.55 77.73 60.30 70.35 
Iris 93.33 83.22 74.81 90.37 
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It is obvious from the figures that as n increases from 100 to 4000, the SA line 
also approaches the Bayes line, so much so, that for n --4000, they lie very 
close to each other. 

6. Discussion and conclusions 

A pattern classification methodology in ~N, using simulated annealing for 
search and placement of a number of hyperplanes in order to approximate 
the class boundaries of a given training data set, has been described. An exten- 
sive comparison of the methodology with other classifiers, namely the Bayes 
classifier (which is well known for discriminating overlapping classes), k-NN 
classifier and MLP (which are well known for discriminating non-overlapping, 
non-linear regions by generating piecewise linear boundaries) is also presented. 
The results of the proposed algorithm are seen to be comparable to, sometimes 
better than, them in discriminating both overlapping and non-overlapping, 
non-convex regions. 

A distinguishing feature of this approach is that the boundaries (approxi- 
mated by piecewise linear segments) need to be generated explicitly for making 
decisions. This is unlike the conventional methods or the MLP based ap- 
proaches, where the generation of boundaries is a consequence of the respective 
decision making processes. 

A theoretical analysis of the aforesaid classifier establishes that under limit- 
ing conditions of infinitely large training data sets, the error rate of the SA clas- 
sifier during training is less than or equal to that of the Bayes classifier. This, in 
turn, indicates that when the size of the training data set goes to infinity, the 
boundary provided by the SA classifier approaches the Bayes boundary. This 
finding is also experimentally verified for a data set, generated using triangular 
distribution, where the Bayes boundary is known exactly. 

A comparison of SA with GA for this classification problem shows that 
both perform comparably in terms of the test recognition scores. This is expect- 
ed, since both are stochastic optimization techniques, working on the same 
principle of approximating the class boundaries using a number of hyper- 
planes. In terms of string evaluations required to obtain the optimal perfor- 
mance, SA appears to score over GA. However, one must note that it is 
very difficult to obtain the actual number of distinct string evaluations in 
GA, since strings are often replicated. The actual number of distinct evalua- 
tions will, in fact, be a small fraction of the quantity (population size x number 
of iterations). 

Although SA is found to perform comparably to GA, there appear to be 
several factors contributing to the predominance of GAs in the literature. In 
SA, two main control parameters are to be selected appropriately in order to 
obtain good performance. These are the values of r (which controls the 
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sequence of T) and k (the number of iterations executed at each temperature). 
On the other hand, in GA, only the maximum number of iterations (or stop- 
ping time) must be appropriately selected. Other than this, both the methods 
need proper tuning of several other parameters, e.g., T~ax, Train in SA, probabil- 
ities for crossover, mutation in GA, etc. Additionally, in the advanced stages of 
the SA algorithm, the temperature values should be smaller than the smallest 
difference of the energy values in order to provide good performance. Since 
for the pattern classification problem, this value is 1 (minimum non-zero differ- 
ence of number of misclassified points) and Tmin = 0.01, this requirement is 
met. GA, with roulette wheel selection, is, on the other hand, immune to this 
difference. Finally, since SA is inherently sequential in nature, not much 
improvement can be derived in parallel computing platforms, while there is 
scope for such improvement in GA. One must note that very basic versions 
of both SA and GA are used here. Use of enhanced models and improved 
operators for both SA and GA may provide better performance. For example, 
in case of SA, other cooling schedules [16,17] may be used. Similarly, modified 
versions of GA, like genetic algorithm with chromosome differentiation, 
(GACD), may be applied which has been found to improve the classification 
performance [18]. 
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