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Abstract

Three new methods of selection of mating pairs for Genetic Alzorithms (0As) arc
imtraduced where the paribers arc chosen based on either their genotypic similarity
pealled genovyc assortative mating) or cheir phenotypic similaricy (called phenotypic
assereative macomgh. These methods not ondy help in exploiting the current search space
properly before explonng the now one but slso enabls cne to mitnic inbreeding of nut-
ural genetics. A comparative sludy in cnns of disruption of schemma due to crossover is
made between these methods and conventional genetie algorithm (CGA), The superior-
ity ol this new methodology over the COrA and (he ineest prevention algorithm is cstab-
lishad on soms problems of oplimizing complex funetiens and sclecting optimal newral
nctwork paramcters.

Kevwords: Schemy distupuon: Inbrecding; Oplimisacon; Nearal networks

1. Muotivation

Crenetic Algomithms (GAs) [1—4] are adapiive and robust computational pro-
cedures modeled on the mechames of natural genetic sysiems. GAs el i blo-
logrical melaphor and try to emulate some of the processes observed in ngtural
evolution, They are viewed as randomized vet structured search and optimiza-
tion techniques, GaAs iteratively perform the following cvcle of operaiions on a
set of eoded solutions. called a popedation. until some termination condition 18
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achieved: sefection {ncluding evaluation of cach solution), repraduerion (in-
cluding cromsover wnd mutation), and reductionireplacentaine of the old popula-
tion with 4 new one.

One of the main aspects of any search technique is 1o exploil properly the
present. scarch space hefore explaring inte the pew tegons, In CiAs, besides se-
lection, crossover plays a significant role to perform exploitation. {(Mutation,
on the other hund, can be viewed us an exploralion oporator) A key property
of crossover operation should, thereforz. be not to lose any important charac-
teristic feature of the pavent chromosomes. In GA terminclogy, the term ‘un-
portant information’ is related to sehema | 1], Therefore, 1o carry this imporant
information from one gensration to the next, the distuption of schema should
nol be detrimental in nature. The disruption of a scherna {due 1o crossover) de-
pends on the siructure of the chromosome pair undetpoing crossover operalion
(maling pair) to some extent, Hence, to make crassover more effective (wich re-
spect 1o exploitation of search regions) there should be some eriteria o choosg
the mating pairs, instead of choosing them randomly.

In this article we propose some methads to choose, in a controlled manner,
parent chromosome pairs undersoing crossover operation. These restricied
mating strategics sun be viewed to emubate some of the processes of natural ge-
netics. In natural genetics. most individuals tend to mate with others similar
(closer) to it; maring between the members of u population s not tinedom. Fur-
ther, if Lthe populalion sizz becomss restricted, mating between  relatives
(known as irbreeding) may ocour [5.6]. Thus natural phenomena are also con-
sidered bere e make GAs more ¢loser to natural genctics, The propozed tech-
nigques will also try to exploit the current search space before exploting other
regions. A comparative study is made between these new stratepies and the
conventional Ga in erms of schema disruption due (o ong-point crossover,
The performanee of these methods is compared with that of the conventional
(A dand the incest prevention algorithm [7] on some prahtems of complex fune-
tion oplirnization, selection of optimal sel of weighls 4 mullilayer perceptron
(ML) [3], and evalving Hopficld tvpe optimum network architectures for ob-
ject extraction [9]. Since mcest provenbion is 4 well known restricled mating
strategy where Humming distance between chromosomes is used Lo select mat-
ing pairs, a companson with this is also made,

2. Selection of chromusomes for mating

The main purpose of crossover 1s to exchange information between twa par-
enl ciiromosornes with the aim of not losing any important information (-
tmum  disruption of the coadapiled sews of alleles which aygment the
pertermance of the carresponding phenotype signilicantly). 1o nature we notice
that mating partners usually bave similar charactenstios {with respect Lo some
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featnres). This metivates ws o adopt the lollowing stralegies for selecting par.
ent chromaosomes for mating, In naturzl genetics, when matings occur prefer-
enlially between related individuals, the parents are sorted based on either their
genolypic similacily (known as generyvpic assortgiive maesing [3.0]) or phenolypic
sinularity (called as phenofypic assorfgiive mating [2.6]), This, in effect, may
produce berter rare individusls inoa preater number with the help of sefeetion.
As a consequence, inbreeding has wide application for both natural and artifi-
clal selection. In this section we describe thres methods for choosing mating
pairs. In each case it is gssumed that the chromosomes n the mating poaol
are sorted (in descendmy order] according to their fitness values. Moreover,
each chromosome 1% sclected (tor mating} only once. The notation that we will
be 1sing to describe the methods is given below.

pl first parent

£ second parent

d hammeng distances of all ather chromoeseomes tram pl

ol fvund flag vanable representing whether fron a given string any string
with o — 015 found or not

idfonnd flag variuble representing whether any string identical to a given

string {d = 0} 15 found o not.

In each method the initial and termina) conditions are as fliows:
Tioneds the best fit siring of the population is considered to be the first parent
of the first mating pair.
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Ferminatiom: the algorithm werminates when all the chromosomes i a pop-
ulation are selected for mating.

Method 1. The best it chromosome is considered to be the 1deal parent.
Compatitality of chromosomes o be partners Tor crossover 13 deteemined
based on their Hamiming distances from this best it string. A schematic dia-
gram of the basic structure of Method 1 s shown o Fig. 1

Rlock X7 Fxaminc saring array from the begiuning, First string, not yet se-
lected for mating. is 1aken as pl of nexl mating pair.

Method 2. The compatibility of two chromosomes W be pariners for eross-
over is determined Based on the Hamming distance bebween them, Two strings,
whose Hammung distance 15 mintmum (bat not zero) wath respect to all other
chromosames of the population, are chosen for mating. This selection of mait-
ing pair is performead in the following manner {Fig. 23

Bloch Y. Compute Marmning distances (d's) of all other retnaining strings
tom this p2. Seleel the string with mim, @ a4 pl of next mating pair.

Methad 3 Two nen-identical chromosomes (and not selected for crossover
before) whose fitness vulues are better than the remainimg chromosomes of the
populatiom dre chasen for crossover operation. In other words, two parents are
selected lor mating whose fitness values are the lighest and Lhe second highesi
i the casting pepulation {(i.c., two parents are having phenotyHe simikarity).
Aoschematic diagram of the basic structure of this method is shown in Fig. 3.

Biuck - Exarmne string arcay (tom the beginning. Lird string, nol yet sg-
lecred fur mating. s taken as gl of nest mating pair,

Some Renrarks, Note that, the first pair 1o be picked up Tor mating 15 iden-
tical for all the methods. Moreover in Method 1, fwo chromosomes with cquoal
Huamming distanee From the best chromasems may not necessarily be identical,
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Fie. 3. Basie steps of Method 2

It i% b be menlioned here that m fircese prevendion [7] Eshelman seleeted che
mating pairs in a way such that they are sufficiently diverse (diffeved by at least
Lo bils); 1wo parents were chosen For mating only if their Hamming disiance
was whove 3 threshold, Initally, thes threshold is s o g high vialae [0in o gen-
eration, no pair can e chosen with this threshold. the value is decreased. On the
other hand, in our methoeds ol selectian of mating pairs, the pairs are selected ina
maanner 5o that they are similar in nature with respect 1o some lealyres. In Meth-
ods | and 2 this resemblances is considered at the genotypic level by measurmg
Hamming distance between the chromosomes, wheresas in Method 3. the sirmilar-
ity s vonsidered a0 the phenotypic level with the help of the fitness valoe of the
chramasames, More that, in bath the cases two chramosomss with identical bil
pattern (e, Zero blamming distancs) are no way sllowed 1o maie. Henee, our
methods nat only produce new offspring, but also mimic imbreeding {mutings be-
tween related individuals) [3,6]. Since crossover can be viewed as an exploitation
operalor. our lechnigues try to cxplodl the currenl seareh region properly before
gxploming new ancs, On the other hand, by selecting sulMiciently diverse chromo-
somcs, incest prevention algorithm tnies 1o bring maximum diversiny into the
population; thereby reduces the exploiling power ol crossover aperalor.

It is elear rom Figs 13 that Method 1 reguires mare ume than dethod 2,
and Method 3 takes the loast fime. Moreover, a1l these methods are computa-
tionally cxpensive than the CGA. [n incest prevention, the time complexicy de-
petids on the threshold value and the structures of (e chromaosomes in the
population. Generally, 4t the starting of exgeulion of g (3A, the chromosomes
are diverse and the algorithin takes less tme to crass this threshold cvenal it is
set ta a high value, Whereas, at the end of the run of the GA | it may happen
that no pair can cross the threshold; thereby the value 3s decremented in steps
and all the chromosemes need to be cheeked al every step until at least a pair is
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selected; and thes the time required wabl be high. Hence, it is olear thal the ex-
cewtion time of ineest prevention algorithm is varuable whercas in the CG A and
in the proposed restricted mating strategies it is fixed.

2L Amdvsis of schema disrupion dwe to crosaver

The Schema Theorem [ 1] estimates the lower bound of the number of instances
of different sehemata present in a population gt any point ol bme, According to
ihis theorem, a short-iength, low-order. above- average schema will receive sxpo-
nentilly incteasimy instances in subsequent penerations 1l the expense of below
averape ones. Tn this section we analyge the Schemu Theorsm for the proposed
methods. Wealsoonake a comparison with that of the conventional penetic algo-
rithrn {CC A Y Vhe natalions that we will be uging for this purpose jiee as follows.

i an above averape schema

mife) mstanees of 4 schemit A in s popalation al seneeation ¢ {oe the CGA
Ahl the defining length ol schema A

i) ordar uf schema #

£ leapeth of a chromaosome

A wverdge liness value of schema A

Fi average fitness value of the papulaiion

3 probammiity of crossover

o probability of mutation

The expected number of nstances of achetma & at the (r + 11th generation. 1e..
mih 4100

mih e — 1) z=mih 1) x‘% # 4l —powx’ — o L i1

where x' and . represent the probabality of distuption of the schema due o
crossover and mutittion, respoctivaly.

Tor analyze disruption of schemu due to one-point crossover operation of a GA
ane should consider the chramosome sepment botween the first and ehe last Axed
positions of the schema (0001 consisting of ol&) number of laed bits. Let the Flam-
ming distanoe between two urent chromosomes and thid walbun the above men-
tioned segment be & and &, The probabilivy that the cross-site lies within this
segment s &AL — 1) and then depending on the stucture of the vao parent
chromosomes the bits are discupted. Let £ be s randorn vadable which denotes Lhe
number of bits discupted. Then the probalbility of distuption of ¢ bits () &5 gven by

aih] (ci[ff:} —oih]
' i |'I|.'.| i § L [2'-

i S (ﬁ[m
)




S D eraf C ol of Infremasione Sooeeey MF TSN 206 224 15

where  f= min{ofhl k). Again, (0 and (A4 —elR) = O sa
dxomaxihoofkY k — SR,

The probability of distribution delined by Eq. (23 is koown as Hypergeomet-
i disirifnetion. 10 may be noted ha (g = 0and () S p=Li=0.1,., .
min{elk1 k) i =0 represents the case of no disruption. The expected value
of ¢, Te (K40 s [10)

DT " .
L[Jf, —mxﬂ'.h__l_. .3]

which represents the average number of hirs disrupted.

2.2 Analpsis of disruptivn of sehema due (o proposed prting strategies

Genalppic assoriative prariqg (Methods | and 23 Let the Hamming distance
between two parent chromosomes and that wathin the definme length of the
schema for the CGA e &7 and &, respectively and the corresponding values
for Methods 1 and 2 be &7 and &7, Now_ 10 4] = &Y then from g, (33 1 ds seen
that the gverape number of bits disropted mothe O0A will be greater than that
for Methods | andfor 2, Note that, £ = & does not necessarily mean that &)
will alaiys be greater than &7

In Method 1, let £ and &: (1 < 440 be the Hamming disiances of the chro-
musommes {with respect to the best one} chosen for mating. ™ow these /) bit po-
sitkonrs of 1he {irst parent may be fully overlapped with the &3 bt posilions of
the secand ome, or rotally exclusive with the Az, In the first case. the Hamming
distance of one siring with cespect 1o the other one 15 [y — ] and in the sec-
ond case it s () — Aa), Henee aller crossover, both the offspring may T o
minntm of Thy - f ) 1o maximum of (B - A:) Hamining distance apart from
the best siring of the previous gencralion.

Phenatvpic assorfarive mating {Methed 3 To analyse the distuption of sche-
md chue W Methed 3] let ws gssumne that the chosen mauing pairs are the m-
siances of schema A and schomi b, respectively and the number ol bit
poations 1o be considered for cach string (say, z) — bil values common o both
frpand Aa— fixed positons ol &) (oot carrving the bit values of 42 al those po-
sitboms] - fAxed positions of Ay (nof carrying 1he bil valees of Jy 4t those posl-
tions} MNow. the string s dividad mto (24 1) number of sepments where cach
segrnent skarts al any of the above mentioned it position and ends just before
the position ol (he next [xed bit. The disruplion involves the position ol eross-
sifg jn these scaments and the bit valugs of the corresponding witings, and
ore needs 0 COMGENtrake on A single segment where the ¢ross-site lies, Tt can
be shown that depending on the position of the cross-sile and the bit vabues
of the carresponding slrings, i some cases schema ko andfor schema o cen
SUrVIYL.
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Note: Une of the key fealures of any crossover technigue is thae two low
order schemata thaving below average {liness values) can alse combine and
form & high order sehemis with above averape fitness value.

3. Implementation

The cflectivensss of the proposed concegpt has been demonstraled on some
problems of opthinising complex functions and seleciing neoaral network pa-
ramei2rs.

AL Function aptimizalion

Table 1 shows the functions 1, £2, and 3 which have varving degrees of
complexity. The first one is univariate, the second one is 1 bivarate [2], and
the third function is having P variabes (n iz an odd integer) [11]. The complex
behavior of the functions is depicted in graphical form in Figs, 4 6 11 has 10
maxima with global maximum at v = 0. 72 is 4 rapidly varving multimoedal
function with several close oscillating hills and valleys with a global muximuom
at x =y — 0 The unclion £3 has one global oprimum and M local oplima.
Here we have considercd M =5 and n = 5.

To optimize these functions, the following steps are adopled. Bitury coding
is wsed for chromesomes, Substring lengih for cach parameicr (variable) is ta-
ken as 22 Population size 1= kept fixed at 20. The initial population s chosen
randomly. {renergtional replacemuent technigue is wsed.

The objective funclion is the identilty function. Thevefore. the higher the
functonal value, the betwer is the chromosome. Bolh the chitist mole) |2 (hy
copying the best membuer of previouws peneration inta the present one to replace
the lowwest fitled steing, iF the hiness value of the best member of the previous
peneration cxeveeds the filness vilue of the best member of the present genera-
tion} wnd ihe stundardd GA (Le., non-glitist model) are implemented,

Linear normalization selection procedure (which works better in a close
competitive eovitonment) i adopled. The difference between suceessive fitness

Table L

Functions uzed fxr oprioiZatuon

;'unL:lim‘l - . [Munctional form Damain o
A bl T ) (6. 209

e G {=:"%:“'W_L [~100. 100]

VE 25l | [-03. 0.5]
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values and the minimum fitness valug wre taken as 1. Number of copies pro-
duced by the dth mdividual (chromosome) wich nomialized fitness value £ oin
a population of v s 15 taken as round {0, whers

s g i [

+ e W
Crossover probability is taken as 0.8 and two bitwise muotalion probatalities
arc considered, namely, D008 and 0,05 Multi-point crossover operalion is
parformed where or each substring {each parameter encoded as o part of
the chromosome) the crossover operadon 1w one-point. Tlenee, the number of
croms-sites is taken (0 be cgual o the number of parumelers encoded in o chros
mosome. These cross-siles are chasen randomly. The alpotithm hys bean ron
tor 1000 generations in each simulation. The nital population is taken 1o be
the same for all the methods. In inesst preventiorn, the threshold valoe is mitial-
Iy sit to zm fwhere, 2 denosles the size of the population).
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32 Selection of MELE paramaters for an YOR problem

To determine an optimal set of connection weights and thresholds i an
MIF tor classtficaliom problem the overall error 1o e minimized 14 defined

as [8]

l oL
Error = =38 g, - 1) (5]
X T

where 5 und out represent. respecrively the number of training samples and the
number of neurons in the oulpol layer. &, and K, denows te targel and ob-
tnined output For the fh neuron (i, the setivation of fh ouiput neuron’ re-
spectvely, corresponding w the sth orraming  pattern. The weights and
Lhresholds are modified {using CiAg) 5o thal Error 15 mimmized. Bach neuron
Jin the output and hidden layers is associated with a set ol p' Input values £,
1sii< g a threshold valoe £, a set of interconnection weights w,, an activa-
tion function (which is wken ds sigmoidal), and an oupun value

1

i P P N S O
o1 - eapidowg — ]

(6]
loput vitlues are in binary form. Tolal number ol patierns o the daca set s 145,
Thesc putlerns are gengraled by replicating 1the four inpul-output palteros ol
two-input XOR function 32 times. The size of the training set is considered
Loy b TR nnd 3075 of the dwia sel and 1these samples are 1zken randomly. In
this prablem, there iare bwo ngurons in fhe hidden layer. Since the problem s
a two-class one number of neurons in the output layer is 2. Hence, total nom-
ber of parameters of the problem {including threshold values of the newrons of
hidden laver and output layer} = 12, Note thal the nomber of parameters to be
deicrmined here 15 more than that of the function optimization problem
{Tale 13 Henee due te space mitabons. cach parameter (wi,. #,] 15 encoded
uzing 10 bits only, Yalue of these parameters Hein 25, 125, Fach string, thus
represents, a ser of thresholds and weights of a complete nerwork. The objec-
Lwve funclion L3 be nunimeeed s the ercor value, The lower this valoe s, the
higher 15 the Atness. As inthe case of Tunetion gppimization prohlem, other pa-
rameters such as the population size, crossover and mutation prababilities, se-
levtron eriteria ele. remain the same The algorithm s run for 1K penecations
with a single inftial population scr,

3.3 Seleeetonr of Hopfield rype netvork arcititeciore for object extraetion

For the problem of determining the aptimum architecture of Hopfield type
venral nerwork for object excruction, we considersd a noisy Image as nput
This noisy version is generated by adding A0, a7 noise to cach pixel of the
synlhetic binary (lwo-lone} image shown in Fig 7. The size ol the image is
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4t 40 For an ml 2 k] image, cach prxel (neorom) being conneeled 1o at mosi
kL af s neighhors. the lengih of a chitomosome is m] = gl = b, If 4 neuran is
connectzd ta any of its acighbors, the corresponding hit af the chraomasarme 15
set e 1, elee 00 Hlence for an image of stze 0 = 440, a binary siting of length
48 w48 = A {here we consider eighl neighbors for a pixel) lias been used for
chromosome representation. Lach siring repeesents a possible network acchi-
Leeture for obesl extrgetion. Since the number of parameters 1o be determingd
here is very laree, we cansidered population size of 30 wlhich 1s larger than that
used 10 the previouws two prohlems, Pieness of o chromosome is taken as a fune-
tion ol the enerpy value (Appendiz A of the (vonvergedy network. The lower
the encrey value, the betier i3 the chromasome, Unlike the previously men-
tioned two experimants, mutation probability is chosen as 0,002 {lower than
the above two cuses) Crossover probabilicy and selecnon procedure wre the
SAIIE H% I Previons cxperimeants,

4. Analvsis of results

The mean (avergoed over 20 sinnlutions) fitngss vilyes of the best chromo-
sotmes at the last generation using the CGA (denoted as Methed M, proposed
methods (Methods 1, 20 and 33, and incest prevenuon {denoted as Method 4)
fur the functions 1. £2, and £3 (Table 17 are showe in Tables 2 and 3 corre-
sponding te mutaluem probabilities 04008 wnd 005 (NI and P denole, respec-
tively. 1he nop-glitist model and the glitist model) which prosidies a
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comparative study among different methods based on the performance atsined
at the end of evoluttonary process. Table 4 illustrates the relative mernit of dif-
terent methods bazed on the performance in lerms of averagze Atness value of
thi: population) at every generation using non-2litism for the functions £1. 72,
and 3. The meuning of cach symbel, used in this able, is given below:

A — 8 Performances of Schemes A and B gre the sume far every generatan,

A == B Either performance of Scheme A is better than Scheme B al every
generation {Fig. 8), ov performance of Scheme A is wliimately beter than
Scheme B irrespective of ity performance ar earlior generations (Fig. ).

A = B Performance of Scheme A 1s better than Scheme B up Lo some gen-
erations, and wltimately they become equal (Fig. %)

Tahle 2
Rlaximuom Heness vaboe [averaged aver M1 simulations) with mutacien probabiliy (.01
buethod  Functiow £ Funwticn §72 Fuoction f3

MNE 1 ~NE [ ME -
L] LI6 = 10F 316 = L0 1.5956021 AT0H05 26454 2R071
I A4 = 10 134 10" 0.5827%3 Ih3E0223 26413 25642
2 LA w LR 334 1P (574520 k973191 26 LR M E9]
] 313 =107 15300 976824 ,UT580] 20,368 LTS
4 36 % 1P A6 WP 1974142 0963704 2RI 25071
Table *
Maximtum Gaess value (averaped mver 20 simulatioms) wicth nucacion probakiliey 0.03
Blethod  Funclion #1 Function f2 Function f3

NE £ NE E NE E
| A= A72 . 107 .6k 1 9G2E27 4.376 6145
] RS iy 372w 100 0. 92035 0992227 4 561 19.76%
2 70 107 572 % 10° Y6314 R R 4.43% 26170
3 L = [P EREIE (1574062 09547 4,469 19432
4 3T = 1P 372 107 (.81 8443 0492237 4.105 1% 3yg
Tahle 4

Connparison of different methods (for noo-elilising] Dased on average Jiness valoe of Uk merpulalion

flutacion prohabality Function §1 Funclion 772 Functinn 73
(1L.THIE Fal=lads=i [ 22340 Jaluldal=4
.03 2wl dad Tl llag T B i P
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4 7= 4 Performance of Schemes A and B ave very simular, But not dentical
{Fig. %)

1 iz seen fTom Tables 2—4 that the CGA (Method 03 performs the worst in
all the cases than our methods except three cases o Tuble 2 (ep. /3, NE,
Methods 1and 2 and 73, K, Method 13 and one eise in Table 4 (ep. with mo-
tafion probability = G008 in £3, Methed 1 Agpain, these methodalogies al-
wavs performed hetter than the incest prevention alyorithm (Method 1)
excepl one euse in Table 2 {ep 73 F. Method 1) and anocher case in Table 3
fe.z. f3, WE, Method 23,

For clarity of presentation, the variation of average fitness value with gen-
cralions using the non-elitise version of different methads for the function §73
with mutation probability 0L008 s shown i Figo 9 Tt is evident from the tables
and the fgwures that the proposed methodelogy for selecling mating pairs im-
proves the performande,

Table 5 shows the ecror values of the best chromosomes in the lust generation
using varieus methods For the problem ol selecting MLP pacameters. The race
of mutution is comnsidered 1o be 0.008, Resulis show that our methods pecfonn
beiter than the C'GA for all the cases. They are ulso better than the incest pre-
vertion merthod cxeem for <litism with Mcthod 1 (using 3094 gaining sanples).

A =B A =B

Fig &, Figares illustrating he notdiion: A = 84 =0 and 4 = B
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Fig. 9. ¥ariatior ol avarape lilness value wilh poperationy for the furedion f 35 ug the nag-chtis
naode] wich mucation probatilivg G008 for (1) the COrA and dethod 15 (b)) the COA and blerzod 2;
fed the COA and Method 3 0dp the COrA and Meathasd 4 [incesl preventioni.

For the problem ol extracting obijeo reglons from noisy mnages wang Hop-
fleld tyvjpe neural nelworks, we have demensttated in Fir [ the variafion of
average fitness {energy) value of the netwark with generations wsng non-elit-
iwm for o — 200 Fig. Wja) provides the comparson only among those methods
¢Methods [, 2, 4) where the maling partners are sclected wsing Hamming
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imuge with ¢ = 20 for (2 Metnods L2, and 42 (k) the CUA and Metnod 3,

distanees hetween them. It is seen from vhis figure that both Methods 1 and 2
are betier than incest prevention. From Fig. 10(b), where the relative perfor-
mance af the CGA and Method 3 is depacted. it 15 also Tound that Method 3
15 better than the C0rAL

MNote that, although we have considered bhinary coded representation
of chromosomes, the proposed methods will remmeun valid for other types of codine,

5. Conclosions

Three skralegivs for selecling pating pairs of CGAs, instead of choosing them
randomlby, have been described which try 1o mimic inbreeding of nataral genet-
ics. The caterion of selecting mating paies 15 based either on their penotypic
similarity or on their phenatypic similarity, These sirategies onable one to ex-
ploii the current search reglon extensively before exploring new ones. An anal-
yais tor the disroption of schemy due to These new simategies is provided along
with a4 comparisen with the disruption of schema by the conventional genetic
algorithm (CGA)L The effectiveness of this methodelopy over the CGA and in-
coest provention is demonstraled experimentally on some problems of complex
function opumization and network parameter selection. It is found thal our
methods produce better result than the COA In most of the cases. While Melh-
od 11z seen, sometimes, 10 be inferior wineest prevention algorithim, Method 3
ahways comes out wr be 1he hoest,
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Appendix A. Hopfield type neoral network architecture for object cxiraction

To use a Hopfield {¥pe neural network for object background classification
[12], & peuran s assigned corresponding 1o cvery pixel Euaeh newron cun be
conngeled 1o il neighbors (over a window) ouly. The connection can be full
{a neuron is connected with all of its neighborsy or can be partial {a neuron
may nel be connevied with all of s neiphbocs) The network wpology for a
MMy connegted third order neighborhood is depicted in Fig. 11, Here the max-
imum number of connections of 1 nearon with s neighbors 1s 3. 1n practice, al]
these conneclions may not exist. Apain, differenl neurons may have different
conneclivity confipuration within its neighbors, The iuitial status and inpuot bi-
as of each neuron ace sel dependimg oo the gray value of the corresponding pix-
el. The status updating riles gre similar to those of Hopfield’s madel. The
objective function to be minimized for obrect extraction is similar 1o the expres-
sion of cnerpy of Lhe above mentioned network.

The energy function of this model has twer parts. Fhe Girst part is due o the
local field o1 local feedback and the second part corresponds to the input bias
of the neurons. In ferms of imagpes, the Arst pier. can be viewed gs the impact. of
the pray levels of the neighboring pixels, whereas the sccond part can be aterib-
wied to the gray value of the pixel under consideration. The tolal eneegy con-
tributed by all pixel pairs will be 35,5 W, 5i5,, where S, §; arc the status of

Fig, 11 Tapalaey ol the neweal network wich Mird order commaehsicy On the proposad svsteey all
CONNecilons may 106l st
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b and fh nevrons, respectively und W1 the connection strengell between
1.]1L‘.‘i.E B0y nayrons,

For every neuren §. the initial input bias 4; and the initial state &; are taken
1 be proporional W the actual gray level for the cornesponding pixel. 104 gray
level of # pixel is high (lew), the corresponding intansity value of the scene s
expecied to be high (low). The inpat bias value i luken in the ranse j—1 1] Un-
der this Framework an N {1 neuron corresponds to an object pixel and the
OFF - | one as background pixel. So the threshold between abject and back-
ground can be taken ws 0 Thus the amoont of energy contributed by the inpuet
bias vilues 15 - % L R.5 o the expression of encrgy for the object extraction
problem takes the form

Energy — —> 3 W55, - Y 85, . (7

Stable states of the perwork (the local mimma of the ererey function) are 25
sumned o correspend to 1he partitiening of o scenc into compact regions. So
from a given initinl stace. the stalus of 4 newvon 15 moditied teratively to atlain
d stable stale.
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