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ABSTRACT

Oprimal block designs for a corbain fype of triatle] eross experiments are
investigated, Mosted balaneed hlock designs are introduced and it is showno
how these designs give rise to optimal designs for frialiel crosacs. Several
series of nested balanced block deaigns, leading to aptimal designs for triallel

CLOgss e l'l'.‘-|J13'|".1’.‘-".:|.-

1 INTRODUCTION

Triallel crosses are a tvpe of mating design used to study the genetic prop-
eriies of a sel of inbred {pure] lines in plant breeding. Suppose there are p

whred lines sud il is desiced to perform a triallel cross involving some or all
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of n. = p{p — L){p — 21/3 posaible crossea of Lhe type {§ x 7 = {), { < j <
Ioigd = 1,2 ... p Lot oo denote the total number of crosses (experimental
units] involved in a triallel cross experiment. It s desired o compare the
lines with respecl Lo their general combining abilitics, 1he specilic combin-
ing abilitics being not jucladed in fhe model, Trialle] crosses are disenssed
by Hirzelmann (1963), Arora and Aggacwal {1954, 198%), Ceranka et. al
(289907 and Ponnuswarny aund Srinivasan (1080, Customarily, triallel crosses
Liave: been conducted using a eompletely randomized design or a randomised
completa bloclk design javolving =, treatments. However, with increasze in
the nurnber of lines g, the nunber of crosses, 7, 10 the experiment increascs
rapidly. 'Thusz, if p is large adoption of an unblocked design or a complete
Dlock design is nod appropriate unless the experimental units aro exteemely
homogcreons, Following the approach of Gupra and Kageyama (19947, and
Dyl Ml loa (1006, w stant witle p, the number of lines, rackor than .,
toe tatzl number of distinet crosses in the experiment. Thiz approach yields
optimal designs involving n experimental units where n < n..

The purpose of this commuonication s to bvestigate the problen of ob-
toining optimal designs for triallel crosses. The optimality eritesion chosen
ig the universal optimality criterion of Kiefer (1975 which, In particular,
includes ihe minimization of the average variance of the besl linear unbiasad
eslitnat ors of all clowentary coinparisons belween the peneral cornbining abil-
ity effects of the lines involwed, Tn Section 2, a class of designs, called Lhe
class ol nesled balanced block designs is shown to be useful for the construc-
Lo el optitnal designs [or (riallel crosses in incomplele blacks. In Section

3, several families of such designs are reported.

2 OPTIMALITY TOOLS

Let d be a block design for a triallel cross experiment involving p inbred tines,

b blocks each of size k. This means that there are & crosses in each of the
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blocks of d. Further, let ry; denole the number of {imes Lhe 1th cross appears
ind, i=1,2,... 0(p~1}p—2)/3, and similarly, let sy denote the number
of times the fth line occurs in crosses in the whole desipn d, 7= 1,2,...,p.
Then, T2 raj = bk and 37 5y = 30k Also, n = bk is the number of observations
generaled by o, For the data obtained from the design d, we postulate the
mioded

V=pl,+ Mg+ AT 4 e, (2.1)

where Y is the 1 x 1 vector of ohserved responses, g is a general mean effect,
I. denotes an n—component colemn vector of all ones, g and 3 are vectors
of p general combining ability effects and & block effects respectively, &g, &y
are the corresponding design matrices, that is, the (o, Fith olernent of &,
{respectively, of &,) is 1 if the ath observation pertains to the Hth line (re-
spectively, lo the Sth block), and is zero otherwise; € is the vector of random
ertar components, these components being distributed with inean fero and
constant variance #%. In (2.1}, we have nol included the specific combining
abilily effects. Under the model (2.1}, it can be shown that the coefficient
matrix of the reduced normal equations for estimating finear [unvtiony of

general combining ability effects, using a design 4, is
Ca=Gy— NgNijk {2.2)

where Gy = (gaw), Na = (R4 goi = 520, and for § # 7', g is the number
of crosses in o in which ¢ and i appear tegether; nay is the number of times
the line 1 cocurs in block 7 of d,

A design d will be called connected if and enly if Renk{{y) = p — 1,
or equivalently, if and anly if all elementary comparisons among general
combining ability effects are estimable using d. We denote by TNp,b, k) the
class of all such connected block designs {d} with p lines, b blocks each of
size k. We need the following well known lemima.

£
Lemma 2.1 For given pesitive integers & and £, the minimum of 3 a,°

=1
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L
subject to 3 ny = ¢, where n,'s are non-negative integers, s obtained when
i=1
{ — s[t}s] of the n’s arc equal to [t/s]+ 1 and s — ¢+ s[t/s] are equal to [t/ 3],
where [z] denotes the largest integer not exceeding =, The corresponding

rainirnm of i n? is 128 £ 10— s[tS T 8l 4 10,
1=
We then have
Theorem 2.1 Tor any design d £ D{p, b, &},
triCs) < KT'B{3k(k -1 — 2z} + priz + i},

where & = [3k/p! and [or a square matrix A, {r(A) stands for vhe trace.

Proof, For any d € Dip, b, k), we have

¥ F _¢_|
() = Fsa— k30N ng?
i=1 i=sl =1
Pt
= 3hk— R_IZZ_ th,‘_,‘j.
i=1 j=1

MNow, since T0_, },:.;.__1 Tg = 3hk, using Lemma 2.1,

L

Yo% nwi? = M3k + 1) — pr{x 4+ 11}, where x = [3k/p].

i—1 3=
Hunce,

{0 = 30k — BT B{3R(22 4 1) — pri{z + 1)}
k7o{3k(k = 1 - 22} 4 pr{z + 1)}

By Lemma 2.1, equality above is attained if and only il nyy; = 2 or 2+ 1,
forv=32,...,mi=L2... 5L
Corollary 2.1 Tor any design d € D{p. b k), if 3%/p > 1iie, == 1)

then
tr{C) = KT {8k(k — 1 — 22) + pa{z 4 1)} < $hk(p — 3)/p < 3b(k - 1),

Also, if 3kfp < 1 (Le, £ =0} then ¢r(Cy) < 3b(k — 1.
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Corollary 2.2 Let By = F~U{3k(k—1 2004 pria+ 11}, Bs = 30E(p—3)/p
and Hy = 34(k —1). Then for any d € Dip. b k) with 3k = p, ir{l) < By <
By < By and the following hold:

{8) #r(Cy) altains Lhe value B i ngj =2 or 241, ¥V 1,7

{b} #~{(7) attaina the value By if ng, = 3k/p ¥ i,7. In such a situation,
By = B; and x == [3%/p] = 3k/p.

{cy triCy) attains the vatue By ifng; =0 or 1 ¥ i,  ny; = 1 for all
1,7, then By = Hy = By and = = 8&/p=1.

Kiefer {1973) showed that a design is universally optimal in a celevant
class of compeling designs if (i) the information matrix (the C-matrix) of
the design is completely symmetric in the sepse that ¢ hae all its diagonal
elements equal and all its off-diagonal elements equal, and {ii) the matrix C
has maximum trace over all designs in the class of competing designs. Recall
that a universally optimal design s in particalar, also A4 —optimal, that is,
such & desjign minimizes the average varjance of the best linear nnbiased
estimators of all elementary contrasts among the paraineters of interest {the
general combining ability effects, in our context), Making an appeal to this

result of Kiefer (1973) and to Theorem 2.1, we have the following result,

Theorem 2.2 Let d* € Dip b k) be a block design for triallel crosses,
sarisfying

(i) tr{Ce ) = E7'8{3k(k — 1 — 22} + pz{z + 1}}, and (1) Ca iz completely
syramnetric, Then d7 iz aniversally optineal in D{p.b, &), and In particular
minimizes the average variance of the test linear unhiased cstimators of all

elementary conlrasts among the peneral combining ahility eflects.

We recall the definition of a balanced block design (. Kiefer {1458}, Das
and Dey (19849,

Definition 2.1 Let d be a block design wilh v = 3 treatments

aud b blocks, each of size & > 2 and suppose N; = {n‘n'ij} is



1772 Das AND GUPTA

the incidence mafrix of 4. Then o iz called a balanced block de-
sign If (1) Thyfaiem; = A for i # m im = 1,2,...,v and
(1) |ra, —kfel <1, ¥ 1,35

For a balanced block desipn cach ireatment 12 replicaled r = k/y times
and the parancters ol the design are v, b ek, AL A balanced block design with
kv is a balanced lncomplese block [BIB) design. Based on the above, we
now have the following definition which is a generalization of acsted BIR

desipns of Preccel 186T).

Definition 2.2 Lei d e a balaneced block design with v treatments and
by biocks each of size by = 4. Further, let it be possible to partition cach
block of d into sebh-hlocks, eack of size & = 2, If these sub-blocks, =ay iy
in number, also form a balanced block design, then o will be calted a nestod
balanced block design with parameters o, by, b, By, kgl

A nested balanced block design design with &y < » iy a nesied BIB design,

Consider now a nested balanced block design o, with parameters v =
pohbg, by e = 30 I we now identify the treatments of o) as lues of 2
triallel experiment and perform crosses among the lines appearing in the
same sub-block of o, we get o block design @ for a triailel experiment
Involving p lines with n = b crosses, arranged in b = by blocks, each of siae

k= 1k /3 Sucl wdesign o* € D{p, b k) and
g = {p 17T — L — 2x) 4 pa{e + DL —-p '), (29)

where ® = [3k/pi, I is an ddentity matrix of order p and J; 15 2 p = p
matrix of all ones. Furthermore, using 47, all elemontary contrasis among
general combining ability eflects are estimated with a varlance 25-Hp —

L}fcﬁzf{ﬂkfﬁ: =L = 22} 4 pzfx 4+ 173.

From {2.3) and Theoremn 2.2, we thus gei Lhe foliowing result.
Theorem 2.3 Let & € Dip,b, k) be a design constructed using a nested
balanced block desigy with paramelers v = p, by = b, by = bk, by = 3k, &y =
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2. Then 4° is universally optimal in D{p, b, k) and thus minimizes the average
variance ol the best linear unbiaszed estimators of all clementary conteasts

among Ll general eombining ability elfects.

3 CLASSES OF OPTIMAL DESIGNS

In this section, we present severa) classes of universally optimal mating de-
signs for triallel crosses. Throughout this section, we consider nested bal-
anced block designs wilh sub-blucks of size three each, e, kg — 3, and
hence present the parameters of the nested balanced block design in terins
of p,b, ki, where p denotes the number of treaiments, b denoles the munher
of Baocks in Lthe design, and &y is the zize of the block, Familics 2 4 make
use of the nested BIB designs given by Dey, el. al {1986).
Family 1. Let p = ¢+ 3, wheret > 1 is an integer. There exizts an optimal
mating design with parameters p = 61+ 3,0 = (204+1)(3t--1), 6 =3t -1,k =
41
A particular class of BIB designs is the Resolvable Steiner’s triple systems

with paramelers v = Gf+3, b = (341324 L r = H4 1,k = 3,4 = L have
been piven by Raychawdhorl and Wilson {1968), Taking sach replicalion as
ane biock with 24 + 1 sub-blocks of this Steiner’s triple systemn which form
the replicate, we et a nested balanced block design Jeading to an optimal
mating design of the above family
Example 3.1 Tet £ = 1. Ther a resolvable Steiner's triple system with
parameters w = $.b = 12, r = 4,k = 4,4 = 1 provides a Family 1 mating
dlesign as shown below:

{1,2,3), (4,5.8), (7,89}

{(1,4,7), (2,58), (3.6,9));

{(1,6,8), (2,49}, 35,7k

101,5,9), {2,6,7), (3,4,81h
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The design has 12 erosses in 4 blocks each of size 3, by making crosses
Letween the lines within each sub-block, Tfor instance, the st Lleck of the

design for trialicl crosses will have the following crosses:
L=2=3, dxbwf, Tx8x0]

Family 2. 'The existence of a BIB design [ with paramelers p, b, r by =
Gt4-3, A, where ! > 1is an integer, implies Lhe existence of an oplimal mating
desizn with paramclers pon = W2 + 1HH + 10 =0{3 + 1),k =20+ 1.
Construct a Family 1 mating design nsing ihe symbols in the ith block of
Dyi=12, 0 A Family 2 design is obtained by taking together all the

biocks shtained i £his manner.

Family 3. The existence of a BIE design {3} with parameters v = 2{ 4+
by vy &y A, where ! 2 1 is an inleger, implies the existence of an optimal
mating design wilh paramelers p = 81 +3,n = bk (M +1)0 = {31k =
K.

Lel Dy be & Fiondly 1 maling design, Construct a mating desien by
replacing the ith treatment of 74 by the ith block contents of the first block
of Dhd = 1,2,...,2t + L. Do this for each of the 3t 4+ 1 blocks of 5. The
rosulbing design helongs 1o Family 3.
iiixample 3.2 Tzake 725 as the mating design given in Example 3.1, and lat
Ih be the BIB design (1.2}, (L3, (2,3). Ther a Family 3 ma’rmg design is

ws slown below:

101,2,4) (4,560 {(1,2,3),(7.8 9} {(435,6),(7.8,9)}

[, A70h02,5, 8 {00,4,7), (46,9} {(2,5 803,69
13,5, 700
]

WW

H0.6,80, (24,9 ((1,6,5),3,5.7 {(2.4,9,(3,5,
{0,591 2,6,7) {(,5,0(3, 480k {(267),(3.4.8).

The design has 24 crosses in 12 blocks of size two.

(3, :
(

1
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In additicn to the resclvable Steiner’s lriple syslems, there may exist
ather resulvable BIB destgns with block size three, e.p., the HIE design with
paraineters v = 6,6 = 2,r = 10,k = 3, A = 4. Some further oplimal mating
designs can be obtained by using such resclvable BID designs in place of the

Steiner’s triple aystemsz in Lhe above throo familics,

Tamily 4. lat p = 6241 be a prime or a prime power and lat x be a

primitive element of GF(p). Then by developing the initial block mod{p):
{':']'5: _)_,-_1;1_ .:""'“:I._ |::??1I+t_-r1+2:1-mé+m:l}' B B i £

we get an optima! mating design with puramelers p = 80+ 1on = dp, b =

P& o= the lines heing coded a2 0,12, .., p-1.

Example 3.3 Lel ¢ = 1. Then ¢ = 3 is a primitive element of p = 7. The
following optimal design involving 14 erosses in blocks of size 2 belongs to
Fasmiiy 4
1,2,4), (36,51}
3.5, (4,0,61}
gy (51,00}
[i4,5.1), (62,0
{(5.6. 1} [%3.2)k
(L.4,3)h
{(0,1,3), (2.5,4)};

Somie optimel wmabing designs can be obtained using o-resnlvable Bl
designs. Far nstance, if each block of & BIB desipn 35 repeated s times than
trivially we can get a e-resolvable B1E design with o = r. Below we give an
example of 5 = 2. Such designs can be trivially constrocled bl they may
be useful 1u some practivel siiantions.

Example 3.4 By taking = = 2 replications of ihe BID design with param-

eters v =b=T,r ==k =324 =1wecap gel a Fresolvmbie BIH design with
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patammcters = T b= 14+ =G,k = 3,4 =2 Then we can construct the
following optimal mating design for p = 7, consisting of 14 crosses in two

blocks of size T each:

11,241, (2,3.5), (3,4.6), {4,5,7), {5,6,1), {6,7,2}, (7,.1,3)}:
{1,247, (2,3,58), (3,4,6), (4,5,7), (3,6,1}, (6,7,2), (7,1,3)].

Some optimal mating dezsigns can be obtained using nested balanced in-
complele block designs with sub-blocks of size 3 each listed by Presce {[967).
We provelede these maling desiges in the [ollowing table where the Reference

column gives the serial nnmbers of designy rom Table 3 of Preece (15967},

Table

Parameters of some optimal mating designs

] n b #  Reference
i 30 w3 A
13 a7 10 3 6

12 44 22

t
o
e
—
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