KERNEL OF LOCALLY NILPOTENT R-DERIVATIONS OF R[X,Y]

M. BHATWADEKAR AND AMARTYA K. DUTTA

ARSTRACT. In this paper we study the kernel of a non-zero locally nilpotent R-derivation of the polynomial ring R[X,Y] over a noetherian integral domain R containing a field of characteristic zero. We show that if R is normal then the kernel has a graded R-algebra structure isomorphic to the symbolic Rees algebra of an unmixed ideal of height one in R, and, conversely, the symbolic Rees algebra of any unmixed height one ideal in R can be embedded in R[X,Y] as the kernel of a locally nilpotent R-derivation of R[X,Y]. We also give a necessary and sufficient criterion for the kernel to be a polynomial ring in general.

1. Introduction

Locally nilpotent R-derivations of the polynomial ring R[X,Y], where R is a U.F.D. containing a field of characteristic zero, have been studied recently by Daigle-Freudenburg in ([D-F]). In this situation the kernel of a non-zero locally nilpotent R-derivation of R[X,Y] is a polynomial ring in one variable over R ([D-F], 2.1). In our paper we first investigate locally nilpotent R-derivations of R[X,Y] over a noetherian normal domain R containing a field of characteristic zero. We first describe the structure of the kernel of such derivations as a graded R-algebra. We prove:

Theorem 3.5. Let R be a noetherian normal domain containing a field of characteristic zero and let D be a non-zero locally nilpotent R-derivation of the polynomial ring R[X,Y] with kernel A. Then A has the structure of a graded ring $\bigoplus_{n \in A_n} A_n$ with

 $A_0 = R$ and A_n a finite reflexive R-module of rank one for every n. In fact, when R is not a field, there exists an ideal I in R of unmixed height one such that A is isomorphic to the symbolic Rees algebra $\bigoplus_{n\geq 0} I^{(n)}T^n$ as a graded R-algebra. Conversely, let R be as above and let I be any ideal of unmixed height one in R.

Conversely, let R be as above and let I be any ideal of unmixed height one in R. Then there exists a non-zero locally nilpotent R-derivation of R[X,Y] whose kernel is isomorphic to the symbolic Rees algebra $\bigoplus_{n\geq 0} I^{(n)}T^n$ as a graded R-algebra.

In fact we show (Proposition 3.3) that when R is a noetherian normal domain, any inert subring of R[X,Y] of transcendence degree one over R has the graded

R-algebra structure described above. The crucial step in the proof of this result is a patching lemma (3.1).

The converse part of Theorem 3.5 would show (see 3.6) that the kernel of a locally nilpotent R-derivation of R[X,Y] need not be finitely generated over R even when R is normal. We discuss the question of finite generation of the kernel and its connection with the class group of R (3.7 and 3.8). We also give an example (3.11) to show that Theorem 3.5 is not valid if R is not normal.

In ([Rn]), Rentschler had shown that over a field K of characteristic zero the kernel of a non-zero locally nilpotent K-derivation of K[X,Y] is a polynomial ring K[F] where F is a variable in K[X,Y]. As mentioned earlier, in ([D-F]), Daigle and Freudenburg have investigated locally nilpotent R-derivations of R[X,Y], where R is a U.F.D. containing a field of characteristic zero. They proved that the kernel of a non-zero locally nilpotent R-derivation of R[X,Y] is a polynomial ring R[F] ([D-F], 2.1) and gave a necessary and sufficient condition for F to be a variable in R[X,Y] ([D-F], 2.5). In general, when R is not a U.F.D., the kernel need not be a polynomial ring over R (in fact it need not be finitely generated over R), even when R is normal, as Theorem 3.5 (quoted above) shows.

In Section 4 of our paper we generalise the result ([D-F], 2.1) in another direction—we give a necessary and sufficient condition for the kernel to be a polynomial ring in one variable over R where R is any noetherian domain containing a field of characteristic zero. We prove:

Theorem 4.7. Let R be a noetherian domain containing a field of characteristic zero and let D be a non-zero irreducible locally nilpotent R-derivation of the polynomial ring R[X,Y]. Then the kernel A of D is a polynomial ring in one variable over R if and only if DX and DY either form a regular R[X,Y]-sequence or are comaximal in R[X,Y]. Moreover if DX and DY are comaximal in R[X,Y], then R[X,Y] is a polynomial ring in one variable over A.

A crucial step in the proof of Theorem 4.7 is Proposition 4.5, which gives a necessary and sufficient condition for a singly generated R-subalgebra of R[X,Y] to be an inert subring of R[X,Y].

We also show (Proposition 4.11) that in the situation of Theorem 3.5 all locally nilpotent A-derivations of R[X,Y] has a graded A-module structure.

In Section 2 we set up notations and quote the results which we use. In Section 3 we investigate in detail the case of noetherian normal domains and in Section 4 we discuss results over general noetherian domains.

2. Preliminaries

In this section we first set up the notations, define some of the terms used in the paper and recall their well-known properties. Finally we quote the results which will be used in the paper.

Notations. Throughout the paper we will assume our rings to be commutative. For a ring R, R^* will denote the multiplicative group of units of R. For a prime ideal P of R, k(P) denotes the field R_P/PR_P . The notation $A=R^{[n]}$ will mean that A is a polynomial ring in n variables over R. For an element $F \in R[X_1, \dots, X_n] (=R^{[n]})$, F_{X_k} denotes the partial derivative of F with respect to X_k .

Definitions. Let R be an integral domain with quotient field K. An element $F \in R[X_1, \dots, X_n]$ is said to be a generic variable if $K[X_1, \dots, X_n] = K[F]^{[n-1]}$ and a

residual variable if for every prime ideal P of R, $k(P)[X_1, \cdots, X_n] = k(P)[\overline{F_P}]^{[n-1]}$, where $\overline{F_P}$ denotes the image of F in $k(P)[X_1, \dots, X_n]$.

Let B be an integral domain. A derivation D of B is said to be locally nilpotent if for each $b \in B$, there exists a positive integer n (n may depend on b) such that $D^n(b) = 0$. The derivation D on B is said to be *irreducible* if the only principal ideal of B containing D(B) is B, or, equivalently, D = bD' (with $b \in B$ and D' a derivation on B) implies that $b \in B^*$.

A subring A of a domain B is said to be an *inert* subring of B if for any pair of non-zero elements $x, y \in B$, the product $xy \in A$ if and only if both $x, y \in A$.

A routine verification shows that an inert subring of a U.F.D. is a U.F.D. If A is an inert subring of B, then A is algebraically closed in B; further if S is a multiplicatively closed subset in A then $S^{-1}A$ is an inert subring of $S^{-1}B$.

Let B be an integral domain containing a field of characteristic zero. It is wellknown ([D-F], 1.1(1)) that the kernel A of a locally nilpotent derivation D on B is an inert subring of B. Also it is easy to see that for any multiplicatively closed subset S of $A \setminus \{0\}$, D extends to a locally nilpotent derivation of $S^{-1}B$ with kernel $S^{-1}A$ and $B \cap S^{-1}A = A$. Moreover if D is non-zero, then the transcendence degree of B over A is one ([D-F], 1.1(4)).

For an ideal I in a noetherian domain R_r let Ass_R $(R/I) = \{P_1, \dots, P_r\}$ and $S = R \setminus (\bigcup_{1 \le i \le r} P_i)$. Then the *n-th symbolic power* $I^{(n)}$ of I is defined to be the ideal $I^{(n)} = R \cap I^n(S^{-1}R)$.

We now quote the results to be used.

Lemma 2.1. For a non-zero element a in a noetherian domain R and a multiplicatively closed subset T of R the n-th symbolic power of the ideal $I = R \cap aT^{-1}R$ is given by $I^{(n)} = R \cap a^n T^{-1} R$.

Proof. We may assume I is a proper ideal of R. Let $aR = (N_1 \cap \cdots \cap N_r) \cap P_r$ $(N_{i+1} \cap \cdots \cap N_i)$ be a primary decomposition, with N_i being P_i -primary, such that $P_i \cap T = \emptyset$ precisely for $1 \le i \le r$. Then $I = (N_1 \cap \cdots N_r)$ and $aT^{-1}R = IT^{-1}R$. Moreover, $T \subseteq S$, where $S = R \setminus (\bigcup P_i)$. Therefore

$$R\cap a^nT^{-1}R=R\cap I^nT^{-1}R\subseteq R\cap I^nS^{-1}R=I^{(n)}.$$

Conversely let $x \in I^{(n)}$. Then there exists $s \in S$ such that $sx \in I^n \subseteq R \cap a^n T^{-1}R$. Since Ass_R $(R/a^nR) = Ass_R$ (R/aR), we have

$$Ass_{T^{-1}R}\left(T^{-1}R/a^{n}T^{-1}R\right)=Ass_{T^{-1}R}\left(T^{-1}R/aT^{-1}R\right)=\{T^{-1}P_{1},\cdots,T^{-1}P_{r}\}.$$

Now let $a^{r_i}T^{-1}R = Q_1 \cap \cdots \cap Q_r$ be a primary decomposition with Q_i being $T^{-1}P_{i-1}$ primary. Now $sx \in Q_i \ \forall i \ \text{but} \ s \notin T^{-1}P_i \ \text{for any} \ 1 \leq i \leq r$. Therefore $x \in Q_i \ \text{for}$ every $1 \le i \le r$, and hence $x \in R \cap a^n T^{-1} R$. Hence the result.

Lemma 2.2. Let R be a noetherian local ring such that depth $R \geq 2$ and I an ideal in R such that depth $(R/I) \ge 1$. Then depth_R $I \ge 2$.

Proof. Let k be the residue field of R. By our assumptions Hom(k,R), $Ext^{1}(k,R)$ and Hom(k, R/I) are all zero modules. Hence from the exact sequence

$$0 \rightarrow Hom(k,I) \rightarrow Hom(k,R) \rightarrow Hom(k,R/I) \rightarrow Ext^{1}(k,I) \rightarrow Ext^{1}(k,R)$$

it follows that $Hom\ (k,I)$ and $Ext^1\ (k,I)$ are both zero and therefore $depth\ I\geq 2.$

We now state a standard result ([B-H], 1.4.1, pg.19) which gives a criterion for a module to be reflexive.

Proposition 2.3. Let R be a noetherian ring and M a finite R-module. Then M is reflexive if and only if

- M_P is reflexive for all P ∈ Spec R with depth R_P ≤ 1, and
- (ii) depth M_P ≥ 2 for all P ∈ Spec R with depth R_P ≥ 2.

The following result on finite generation is due to Onoda ([O], 2.14, 2.20).

Theorem 2.4. Let R be a noetherian domain and A an overdomain of R such that A[1/x] is finitely generated over R for some $x(\neq 0) \in A$. Then the following statements hold:

- (i) If S is a multiplicatively closed subset of R such that S⁻¹A is finitely generated over S⁻¹R, then there exists s ∈ S such that A[1/s] is finitely generated over R.
- (ii) A is finitely generated over R if and only if A_M is finitely generated over R_M for all maximal ideals M in R.

As a consequence by ([G], 2.1) we have

Corollary 2.5. Let R be a noetherian domain and A an R-subalgebra of a finitely generated overdomain of R. Then the statements (i) and (ii) in Theorem (2.4) hold.

We now quote a relevant portion of a result of Rentschler ([Rn]). An alternative proof is also given in ([D-F], 1.2).

Theorem 2.6. If K is a field of characteristic zero and D a non-zero, locally nilpotent K-derivation of K[X,Y], then there exist F,G such that K[X,Y] = K[F,G] and ker D = K[F]. Moreover there exists $\alpha \in K[F]$ such that $D = \alpha \Delta_F$, where Δ_F is the derivation defined by $\Delta_F(X) = F_Y$ and $\Delta_F(Y) = F_X$.

The following result has been proved by Abhyankar-Eakin-Heinzer ([A-E-H], 4.1) and Russell-Sathaye ([R-S], 3.4).

Theorem 2.7. If $R \hookrightarrow A \hookrightarrow R^{[m]}$ are U.F.D.s such that the transcendence degree of A over R is one, then $A = R^{[1]}$.

Corollary 2.8. Let R be a U.F.D. and A an R-algebra which is an inert subring of $R[X_1, \dots, X_m]$ (= $R^{[m]}$) of transcendence degree one over R. Then $A = R^{[1]}$.

The next theorem is due to Bass-Connell-Wright ([B-C-W], 4.4).

Theorem 2.9. Let A be a finitely presented R-algebra. Suppose that for all maximal ideals P of R, the R_P -algebra A_P is R_P -isomorphic to the symmetric algebra of some R_P -module. Then A is R-isomorphic to the symmetric algebra Sym_R (M) of a finitely presented R-module M.

Corollary 2.10. Let R be a locally factorial noetherian domain and A an R-algebra which is an inert subring of $R[X_1, \dots, X_m]$ (= $R^{[m]}$) of transcendence degree one over R. Then A is R-isomorphic to the symmetric algebra of an invertible ideal of R.

Proof. For every maximal ideal P of R, $A_P = R_P^{[1]}$ by (2.8). Now by (2.5), A is finitely generated over R and hence, applying 2.9, $A \cong Sym_R(M)$, where M is obviously a finitely generated projective R-module of rank one and hence isomorphic to an invertible ideal of R.

The following criterion of Russell-Sathaye follows from ([R-S], 2.3.1).

Theorem 2.11. Let R be an integral domain and A a finitely generated overdomain of R. Suppose that there exists an element π in R which is prime in A such that $\pi A \cap R = \pi R$, $A_n = R_n^{[1]}$ and the image of $R/\pi R$ is algebraically closed in $A/\pi A$. Then $A = R^{[1]}$.

The following result occurs in ([B-D], 3.2).

Theorem 2.12. Let R be a noetherian domain such that either R contains a field of characteristic zero or R is seminormal. Then an element F in R[X,Y] (= $R^{[2]}$) is a variable if and only if it is a residual variable.

3. LOCALLY NILPOTENT DERIVATIONS OVER NORMAL NOETHERIAN DOMAINS

In this section we investigate in detail the kernel of locally nilpotent R-derivations of R[X,Y] where R is a noetherian normal domain containing a field of characteristic zero. The main result is Theorem 3.5, where we give a precise description of the structure of the kernel of such derivations.

We first prove a patching lemma.

Lemma 3.1. Let R be a noetherian domain and A an overdomain of R such that $JA \cap R = J$ for every ideal J of R. Suppose that there exist non-zero elements $x, y \in R$ satisfying the conditions:

- (i) x and y form an R-sequence.
- (ii) $A_x = R_x^{[1]}$.
- (iii) $A_y = R_y^{[1]}$.
- (iv) $A = A_x \cap A_y$.

Then A has a graded ring structure $\bigoplus_{n\geq 0} A_n$ with $A_0=R$ and A_n a finite type

reflexive R-module for all n. In fact Λ is isomorphic as a graded R-algebra to the symbolic Rees algebra $\bigoplus_{n\geq 0} I^{(n)}T^n$ of a reflexive ideal I in R of height one.

Remark 3.2. Let $R \subseteq A \subseteq B$ be integral domains such that B is faithfully flat over R. Then $JA \cap R = J$ for every ideal J of R.

Proof of 3.1. Let $A_x=R_x[U]$ and $A_y=R_y[V]$ where $U,V\in A$. Since $A_{xy}=R_{xy}[U]=R_{xy}[V]$, it is easy to see that

$$V=(aU+c)/x^m \text{ for some } c\in R,\ a\in R\cap R_{xy}{}^*,\ m\in \mathbf{Z}^+.$$

Now $c=x^mV-aU\in (x^m,a)A\cap R=(x^m,a)R$, i.e., $c=x^mv-au$ for some $u,v\in R$. Let F=U-u and G=V-v. Then

$$A_x = R_x[F], A_y = R_y[G]$$
 with $G = \lambda F$ where $\lambda = a/x^m \in R_{xy}^*$.

Now

$$A_x = \bigoplus_{n \ge 0} R_x F^n \text{ and } A_y = \bigoplus_{n \ge 0} R_y G^n.$$

Since

$$A_{xy} = \bigoplus_{n \ge 0} (R_x F^n)_y = \bigoplus_{n \ge 0} (R_y G^n)_x$$

where

$$(R_x F^n)_y = R_{xy} F^n = R_{xy} G^n = (R_y G^n)_x,$$

it follows that

$$A = A_x \cap A_y = \bigoplus_{n \geq 0} A_n$$
 where $A_n = R_x F^n \cap R_y G^n$.

Thus A is a graded R-algebra with $A_0 = R_x \cap R_y - R$ by (i).

We will now show that A_1 is R-isomorphic to an ideal I of R such that $A_n \cong I^{(n)}$ as R-modules for every n, which will show in particular that each A_n is a finite R-module.

If $a \in R_y^{-*}$, then putting $H = G/a = F/x^m$, it is easy to see that $A = A_x \cap A_y = R[H]$ (= $R^{[1]}$), and we are through. So we may assume that aR_y is a proper ideal and let

$$I = R \cap aR_{\nu}$$
.

Then $I_y = aR_y$, and hence I is an ideal of height one.

We now show that for every $n,\ A_n=I^{(n)}\cdot (G^n/a^n)$ as R-modules. Let $f\in A_n.$ Then

$$f = bG^n = (ba^n/x^{mn})F^n = cF^n/x^{mn} = c(G^n/a^n)$$

where

$$b \in R_y$$
 and $c = a^n b \in a^n R_y \cap R_x = a^n R_y \cap R = I^{(n)}$

by (2.1). Conversely if $c \in I^{(n)}$, then by (2.1), $c = a^n b$ for some $b \in R_y$. Thus $c(G^n/a^n) = bG^n \in R_yG^n$; on the other hand $c(G^n/a^n) = (c/x^{mn})k^m \in R_xF^n$, so that $cG^n/a^n \in R_yG^n \cap R_xF^n = A_n$. Thus $A_n = I^{(n)} \cdot (G^n/a^n)$ and the map $\phi_n : c(G^n/a^n) \to c$ gives an R-isomorphism of A_n onto $I^{(n)}$.

Using the above isomorphism we now check that A_n is a reflexive R-module for every n. Since $A_0 = R$ is obviously reflexive we assume that $n \ge 1$. Let $P \in Spec R$.

If at least one of the elements x, y does not belong to P then by condition (ii) or (iii) it follows easily that A_{nP} is a free R_P -module; in particular, A_{nP} is reflexive and depth $A_{nP} = depth R_P$.

If both $x, y \in P$, then by hypothesis, they form an R-sequence so that $depth | R_P \ge 2$. It follows that in this situation PR_P cannot be an associated prime ideal of R_P/a^nR_P and hence $PR_P \notin Ass_{R_P} (R_P/I^{(n)}_P)$, which shows that $depth (R_P/I^{(n)}_P) \ge 1$. Now since $A_n \cong I^{(n)}$, by (2.2), it follows that $depth | A_{nP} \ge 2$.

Thus we see that $depth | A_{nP} \ge 2$ whenever $depth | R_P \ge 2$ (irrespective of whether $x,y \in P$ or not). On the other hand if $depth | R_P \le 1$, then at least one of x,y does not belong to P, and in this case A_{nP} is seen to be reflexive. Therefore by (2.3), A_n is reflexive.

Now consider the injective map $A_y(=R_y[G]) \hookrightarrow R_y[T](=R_y^{[1]})$ defined by $G \to aT$. Then since $A_n = I^{(n)} \cdot (G^n/a^n)$, the image of $A(=A_x \cap A_y = \bigoplus_{n \in S} A_n)$ in

$$R_y[T]$$
 is precisely the symbolic Rees algebra $\bigoplus I^{(n)}T^n \ (\hookrightarrow R[T])$.

As a consequence of Lemma 3.1, we now give a description of the graded R-algebra structure of an inert subring of the polynomial ring $R[X_1, \dots, X_m]$ of transcendence degree one over R, when R is a noetherian normal domain.

Proposition 3.3. Let R be a noetherian normal domain and A an R-algebra which is an inert subring of $R[X_1, \dots, X_m]$ $(= R^{[m]})$ of transcendence degree one over R. Then A has the structure of a graded ring $\bigoplus_{n\geq 0} A_n$ with $A_0 = R$ and A_n a finite

reflexive R-module of rank one for every n. In fact, when R is not a field, there exists an ideal I of unmixed height one in R such that A is isomorphic to the symbolic Rees algebra $\bigoplus I^{(n)}T^n$ as a graded R-algebra.

Proof. If R is a field or a Dedekind domain then the result follows immediately from (2.8) or (2.10) respectively.

So we assume $\dim R \geq 2$. Since $A \subseteq R[X_1, \dots, X_m]$, $JA \cap R = J$ for every ideal J of R. Therefore by (3.1), it is enough to show that there exist elements $x, y \in R$ which form an R-sequence such that $A_x = R_x^{[1]}$, $A_y = R_y^{[1]}$ and $A = A_x \cap A_y$.

Let $T = R \setminus \{0\}$ and let K denote the quotient field of R. Then clearly $T^{-1}A$ is an inert subring of $K[X_1, \dots, X_m]$ of transcendence degree one over K, and hence by (2.8), $T^{-1}A = K^{[1]}$. Now since $A \subseteq R[X_1, \dots, X_m]$, by (2.5), there exists an element $t \in T$ such that A[1/t] is finitely generated. From this and the fact that $T^{-1}A = K^{[1]}$ it follows easily that there exists $x \in T$ such that

$$A_x = R_x^{[1]}.$$

If $x \in R^*$, then clearly $A = R^{[1]}$ and all the statements in the theorem follow trivially. So hence onward we assume that xR is a proper ideal in R. Let $Ass_R(R/xR) = \{P_1, \dots, P_r\}$. Since R is a noetherian normal domain, $ht(P_i) = 1$ for all $1 \le i \le r$. Let $S = R \setminus (\bigcup_{1 \le i \le r} P_i)$. Then clearly $S^{-1}R$ is a P.I.D. and

 $S^{-1}A$ is an inert subring of $(S^{-1}R)[X_1,\cdots,X_m]$ of transcendence degree one over $S^{-1}R$. Therefore, by (2.8), $S^{-1}A=(S^{-1}R)^{[1]}$. By (2.5) there exists $s\in S$ such that A[1/s] is finitely generated over R. Hence from the above equation it follows easily that there exists $y\in S$ such that

$$A_{y} = R_{y}^{[1]}.$$

By construction the pair x,y form a regular sequence in R. We now show that $A=A_x\cap A_y$. Let

$$c=a/x^j=b/y^\ell\in A_x\cap A_y;\ a,b\in A;\ j,\ell\in {\bf Z}^+.$$

As x,y form a regular sequence in R and hence in $R[X_1,\cdots,X_m]$, the equation $y^ia=x^jb$ yields that $a\in x^jR[X_1,\cdots,X_m]$. Now since A is an inert subring of $R[X_1,\cdots,X_m]$, it follows that $A\cap x^jR[X_1,\cdots,X_m]=x^jA$. Therefore $c=a/x^j\in A$, showing that

$$A = A_x \cap A_y$$
.

This completes the proof.

Remark 3.4. Let I be an ideal of unmixed height one in a noetherian normal domain R. Then I has a primary decomposition of the form $I = P_1^{(n_1)} \cap \cdots \cap P_r^{(n_r)}$. Let

[I] denote the element $\sum_{1 \le i \le r} n_i[P_i]$ in Cl(R). Now a routine verification shows that

for any two unmixed ideals I and J of height one in R, the following statements are equivalent.

- (i) $I \cong J$ as R-modules.
- (ii) $\bigoplus_{n\geq 0} I^{(n)}T^n\cong \bigoplus_{n\geq 0} J^{(n)}T^n$ as graded R-algebras.
- (iii) $[\bar{I}] = [J]$ in $Cl(\bar{R})$.

Thus in Proposition 3.3, given any inert subring A, the choice of I is unique up to its image in the class group (in the above sense). Since for a U.F.D., Cl(R) = 0, the above observation gives another way of explaining the result (2.8) and hence the result ([D-F], 2.1).

We now prove our main theorem on the structure of the kernel of a non-zero locally nilpotent R-derivation of R[X,Y] over a normal domain R containing a field of characteristic zero.

Theorem 3.5. Let R be a noetherian normal domain containing a field of characteristic zero and let D be a non-zero locally nilpotent R-derivation of the polynomial ring R[X,Y] with kernel A. Then A has the structure of a graded ring $\bigoplus A_n$ with

 $A_0 = R$ and A_n a finite reflexive R-module of rank one for every n. In fact, when R is not a field, there exists an ideal I of unmixed height one in R such that A is isomorphic to the symbolic Rees algebra $\bigoplus I^{(n)}T^n$ as a graded R-algebra.

Conversely let R be as above and let I be an unmixed ideal of height one in R. Let B be the symbolic Rees algebra $\bigoplus_{n\geq 0} I^{(n)}T^n$. Then there exists a locally nilpotent

R-derivation D of R[X,Y] whose kernel is isomorphic to B as a graded R-algebra. In particular B can be embedded as an inert subring of R[X,Y].

Proof. Since the kernel A is an inert subring of R[X,Y] of transcendence degree one over R, the first part of the theorem follows from Proposition 3.3.

We now prove the converse statement. Let Ass_R $(R/I) = \{P_1, \dots, P_r\}$ and $S = R \setminus (\bigcup_{1 \le i \le r} P_i)$. Then $S^{-1}R$ is a P.I.D. and hence $IS^{-1}R$ is principal. Therefore

we can choose an element $y \in S$ such that IR_g is principal, say, $IR_g = aR_y$ for some $a \in I$. By (2.1) it would follow that $I^{(n)}R_y = a^nR_y \ \forall n \geq 0$. Therefore $B_y = R_y[g]$, where g = aT. If $y \in R^*$, then I is principal, so that $B = R^{[1]}$ and we are through (for instance we may consider the R-derivation D defined by DX = Y and DY = 0). So we assume $y \notin R^*$.

Let Ass_R $(R/yR) = \{Q_1, \dots, Q_\ell\}$. Since $ht \ Q_j = 1 \ \forall 1 \leq j \leq \ell$ and $y \notin P_i$ for any $i, P_i \not\subseteq Q_j$ for any i, j and hence $I \not\subseteq (\bigcup_{1 \leq j \leq \ell} Q_j)$. Choose $x \in I \setminus (\bigcup_{1 \leq j \leq \ell} Q_j)$. By

construction x and y form an R-sequence, and since $IR_x = R_x = xR_x$, $R_x = R_x[f]$ where f = xT. Clearly g = (a/x)f and $a \in R_{xy}^*$. Moreover, since $x \in I$ and $I_y = aR_y$, we have

$$x = (u/y^m)a$$
 for some $u \in R \cap (R_{xy})^*$, $m \in \mathbf{Z}^+$.

We now show that $B = B_x \cap B_y$. Let $b = x^pc = y^qd \in x^pB \cap y^qB$, where $p, q \in \mathbf{Z}^+$ and $c, d \in B$. Let $c = \sum_j c_jT^j$ and $d = \sum_j d_jT^j$, where $c_j, d_j \in I^{(j)} \ \forall j \geq 0$. Then $x^pc_j = y^qd_j \ \forall j$. Since x,y form a regular sequence in R and y is a non-zero divisor in R/I, it follows that $c_j \in y^qR \cap I^{(j)} = y^qI^{(j)} \ \forall j$, showing that $b \in x^py^qB$. Thus $x^pB \cap y^qB = x^py^qB$ and hence $B = B_x \cap B_y$.

Now define an R-derivation D on R[X,Y] by

$$DX = -u$$
, $DY = x$.

Then $D^2X = 0 = D^2Y$, so that D is locally nilpotent. Let A = Ker(D). We shall show that the graded R-algebras B and A are isomorphic, which will complete the proof.

Note that D induces locally nilpotent derivations D_x (resp. D_y) on $R_x[X,Y]$ (resp. $R_y[X,Y]$) with kernels A_x (resp. A_y). Now let

$$F = xX - uY$$
, $G = aX + y^mY$.

Then $F, G \in A$ and G = aF/x (since $xy^m = au$). Since

$$R_x[F] \subseteq A_x \subseteq R_x[X,Y] \ (= R_x[F]^{[1]})$$

and the transcendence degree of $R_x[X,Y]$ over A_x is one, it follows that $A_x = R_x[F]$. Similarly $A_y = R_y[G]$. Also note that since x,y form a regular R-sequence and A is an inert subring of R[X,Y], we have (as in the proof of Proposition 3.3) $A = A_x \cap A_y$.

Now let $\phi: B_x(=R_x[f]) \xrightarrow{\simeq} A_x(=R_x[F])$ be the R_x -isomorphism defined by $f \to F$ and $\psi: B_y(=R_y[g]) \xrightarrow{\simeq} A_y(=R_y[G])$ be the R_y -isomorphism defined by $g \to G$. In A_{xy} , we have $\phi(g) = \phi(af/x) = aF/x = G = \psi(g)$. Thus both ϕ and ψ induce the same isomorphism $B_{xy} \xrightarrow{\simeq} A_{xy}$. Hence their restrictions induce an isomorphism $B(=B_x \cap B_y) \xrightarrow{\sim} A(=A_x \cap A_y)$. Hence the result.

Note that if R is a locally factorial domain (for instance if R is regular) containing a field of characteristic zero, then by (2.10), the kernel A of a locally nilpotent R-derivation of R[X,Y] is finitely generated over R. However, from Theorem 3.5 it follows that in general the kernel need not be finitely generated (even when R is normal), as the following example illustrates.

Example 3.6. Let C be a non-singular elliptic curve in $\mathbf{P}_{\mathbf{C}}^2$ defined by a homogeneous irreducible polynomial F in $\mathbf{C}[X,Y,Z]$ (for instance, take $F'=(Y^2Z-X^3+XZ^2)$). Let $R=\mathbf{C}[X,Y,Z]_{(X,Y,Z)}/(F)$. Then R is a two-dimensional normal local domain whose class group is not torsion. Therefore there exists a prime ideal P in R of height one such that $P^{(n)}$ is not a principal ideal (for each $n \geq 1$). Hence the symbolic Rees algebra $B=\bigoplus_{n\geq 0}P^{(n)}T^n$ is not finitely generated

over R (for the proof see [R] or [C]). Now by Theorem 3.5 there exists a locally nilpotent R-derivation of $R^{[2]}$ whose kernel is isomorphic to B and hence is not finitely generated over R.

However, in the situation of Theorem 3.5, if the group Cl(R)/Pic(R) is torsion, then for any unmixed height one ideal I of R, $I^{(\ell)}$ would be an invertible ideal for some ℓ . Then it is easy to see that $I^{(t\ell)} = (I^{(\ell)})^t$ and hence $I^{(m+t\ell)} = I^{(m)}(I^{(\ell)})^t \,\,\forall\,\, 0 \leq m \leq l-1$. Thus $\bigoplus I^{(n)}$ is finitely generated. Therefore by

Corollary 3.7. Let R be a noetherian normal domain containing a field of characteristic zero such that the group Cl(R)/Pic(R) is torsion. Then the kernel of any locally nilpotent R-derivation of R[X,Y] is finitely generated over R.

Using Theorem 3.5, we give below an example to show that the above condition is not necessary for the kernel of every locally nilpotent R-derivation of R[X,Y] to be finitely generated over R.

Example 3.8. Let $R = \mathbb{C}[X,Y,Z,W]/(XY-ZW), \ P = (\overline{X},\overline{Z})R$ and $Q = (\overline{X},\overline{W})R$. Then it is well known that Pic(R) = 0 and $Cl(R) = \mathbf{Z}$ and is generated by |P|(=-|Q|).

Let B be the associated graded ring $\bigoplus_{n\geq 0}$ (P^n/P^{n+1}) . Consider the $\mathbf{C}[Y,W]$ -

algebra epimorphism $\phi: \mathbf{C}[Y,W][U,V]/(YU-WV) \to B$ defined by $U \to X \pmod{P^2}$ and $V \to Z \pmod{P^2}$. We first prove that ϕ is an isomorphism, which will show in particular that B is an integral domain. Let J be the ideal $\bigoplus_{n\geq 1} (P^n/P^{n+1})$ in B and let S be the multiplicatively closed subset $R/P\setminus\{0\}$ in

B. Then it is easy to see that $S^{-1}B = \mathbf{C}(Y,W)^{[1]}$ with $S^{-1}J$ as a maximal ideal, showing that $ht\ J=1$. Now since $dim\ (R/P)=2$, it follows that $dim\ B=3$, and hence ϕ is an isomorphism.

Since B is an integral domain, a routine induction argument would show that P^n is P-primary, i.e., $P^{(n)} = P^n$. Similarly one can check that $Q^{(n)} = Q^n$. Thus P^n and Q^n are unmixed ideals of height one in R with $[P^n] = n[P]$ and $[Q^n] = n[Q]$ in Cl(R).

Now let I be an unmixed ideal of height one in R. Then [I] = n[P] or n[Q] for some non-negative integer n, say $[I] = n[P] (= [P^n])$. Therefore $I \cong P^n$. Hence there exists $f \in K^*$ such that $If = P^n$. Therefore $I^m f^m = P^{nm} = (P^n)^{(m)} = I^{(m)} f^m$, so that $I^m = I^{(m)} \forall m$. Thus by Theorem 3.5 the kernel of any non-zero locally nilpotent R-derivation of $R^{[2]}$ is R-isomorphic to the Rees algebra of an ideal I (of unmixed height one) in R, and hence is finitely generated over R.

Remark 3.9. Let R be a noetherian normal domain. The group Cl(R)/Pic(R) is torsion if and only if $Cl(R_M)$ is torsion for all maximal ideals M of R.

Remark 3.10. In the above example dim R = 3. However if R is a noetherian normal domain of dim 2, then by a result of Cowsik ([C]), Theorem 3.5 and 2.5 it would follow that the condition that Cl(R)/Pic(R) is torsion is indeed necessary for the kernel of every locally nilpotent R-derivation of R[X,Y] to be finitely generated.

We now give an example to show that Proposition 3.3 and Theorem 3.5 are not valid if R is not normal. Note that if R is a one-dimensional noetherian domain, then the symbolic power $I^{(n)}$ of a non-zero ideal I in R obviously coincides with I^n , and hence the symbolic Rees algebra $\bigoplus_{n\geq 0} I^{(n)}T^n$ is finitely generated over R.

However the following example shows that when R is a one-dimensional noetherian domain (containing \mathbf{Q}) then the kernel of a non-zero locally nilpotent R-derivation of R[X,Y] need not be finitely generated if R is not normal; in particular, it need not be of the form $\bigoplus I^{(n)}T^n$.

Example 3.11. Let $R = \mathbf{R} + (t)\mathbf{C}[[t]]$. R is a noetherian local domain with maximal ideal $M = (t)\mathbf{C}[[t]]$. Let \overline{R} be the normalisation $\mathbf{C}[[t]]$ of R. Define a locally nilpotent \overline{R} -derivation D of $\overline{R}[X,Y]$ by

$$\overline{D}(X) = it \text{ and } \overline{D}(Y) = -t.$$

It is easy to see that $ker(\overline{D}) = \overline{R}[X + iY]$. Now \overline{D} restricts to a locally nilpotent R-derivation D of R[X,Y] with kernel A, and it is easy to see that

$$A = \mathbf{R} + M\overline{R}[X + iY].$$

We now show that A is not even noetherian, and hence is not finitely generated over R. Since $\overline{R}[X+iY]/M\overline{R}[X+iY]$ (= $\mathbf{C}^{(1)}$) is not finitely generated as a module over $A/M\overline{R}[X+iY]$ (= \mathbf{R}), clearly $\overline{R}[X+iY]$ cannot be a finite A-module, and hence for any $f(\neq 0) \in M$, $f\overline{R}[X+iY]$ ($\subseteq A$) is not finitely generated as an ideal in A. Thus A is not noetherian.

In the next section we shall show (Proposition 4.11) that all locally nilpotent R-derivations of R[X,Y] over a normal domain R (containing a field of characteristic zero) with a fixed kernel A together with the zero derivation has a graded A-module structure.

4. LOCALLY NILPOTENT DERIVATIONS OVER GENERAL NOETHERIAN DOMAINS

In this section we shall give a necessary and sufficient condition for the kernel of an irreducible locally nilpotent R-derivation of the polynomial ring R[X,Y] to be $R^{[1]}$ (Theorem 4.7). The crucial step in the proof is Proposition 4.5. Before that we prove some lemmas.

To avoid the tedium of repetition we shall hence onwards assume that R denotes a noetherian domain containing a field of characteristic zero and K denotes the quotient field of R.

Lemma 4.1. For any $F \in K[X,Y] \setminus K$, $(F_X,F_Y)K[X,Y] \cap K[F] \neq (0)$.

Proof. Let $S=K[F]\setminus\{0\},\, L=S^{-1}K[F]\ (=K(F))$ and $C=S^{-1}K[X,Y].$ We have the exact sequence

$$\Omega_{L/K} \otimes_L C \stackrel{\sigma}{\to} \Omega_{C/K} \to \Omega_{C/L} \to 0.$$

Since L is a perfect field, C is smooth and hence $\Omega_{C/L}$ is a projective C-module of rank one {[A-K], pp. 159-162}. Hence the exact sequence

$$0 \rightarrow \text{ Im } (\sigma) \rightarrow \Omega_{C/K} \rightarrow \Omega_{C/L} \rightarrow 0$$

splits. Now as $\Omega_{C/K}$ is a free C-module of rank two with basis dX and dY and Im (σ) is generated by $F_X dX + F_Y dY$, the elements F_X and F_Y are comaximal in C and hence $(F_X, F_Y)K[X, Y] \cap K[F] \neq (0)$.

Lemma 4.2. For any $F \in K[X,Y] \setminus K$, if K[F] is an inert subring of K[X,Y], then the ideal $(F_X, F_Y)K[X,Y]$ is not contained in any proper principal ideal of K[X,Y].

Proof. If possible let $(F_X, F_Y)K[X, Y] \subseteq pK[X, Y]$ where p is a prime element of K[X, Y]. By (4.1), $pK[X, Y] \cap K[F] \neq (0)$ and hence it is generated by a non-zero irreducible element $\phi(F)$ of K[F]. The inertness condition and the irreducibility of $\phi(F)$ imply a relation $p = u\phi(F)$ for some $u \in K^*$. But that would imply that F_X

and F_V both belong to the ideal $\phi(F)K[X,Y]$, which is absurd by simple degree considerations. Hence the result.

Lemma 4.3. Let $F \in (X,Y)R[X,Y]$ and I be an ideal of R. Then $F \in IR[X,Y]$ if and only if both F_X and F_Y are in IR[X,Y].

Proof. Let $F = \sum_{i,j} a_{ij} X^i Y^j$, $a_{ij} \in R$. Note that $a_{00} = 0$. Since R contains \mathbf{Q} , F_X

 $(=\sum_i (\sum_j a_{ij}Y^j)iX^{i-1})$ is an element of IR[X,Y] if and only if $a_{ij} \in I$ for all

(i,j) for which i>0. Similarly $F_Y\in IR[X,Y]$ if and only if $a_{ij}\in I$ for all (i,j) for which j>0. Hence the result.

Proposition 4.4. Let F be a generic variable in R[X,Y]. Then $R[X,Y] = R[F]^{[1]}$ if F_X, F_Y are comaximal in R[X,Y].

Proof. By (2.12) it is enough to show that F is a residual variable in R[X,Y]. Let $P \in Spec\ R$ and \overline{F} the image of F in k(P)[X,Y]. Without loss of generality we may assume that R is local with maximal ideal P and residue field k (= R/P), and prove that $k[X,Y]=k[\overline{F}]^{[1]}$ by induction on k k (= k) k asy. If k = k, there is nothing to prove.

Let d=1. Now since R is a one-dimensional noetherian local domain, by the Krull-Akizuki theorem ([N], p.115) it is easy to see that there exists a discrete valuation ring (C,π) such that $R\subseteq C\subseteq K$ and the residue field $L=C/\pi$ is finite over k. We first show that F is a variable in C[X,Y]. Since F is a generic variable in C[X,Y], by (2.11) it is enough to show that L[F] is algebraically closed in L[X,Y]. But the algebraic closure of L[F] in L[X,Y] is clearly of the form L[G], and by the comaximality assumption of F_X , F_Y it follows easily that F is linear in G, showing that L[F] = L[G] is algebraically closed in L[X,Y]. Thus $C[X,Y] = C[F]^{[1]}$, and hence $L[X,Y] = L[F]^{[1]}$. Now L being finite separable over k, it follows that $k[X,Y] = k[F]^{[1]}$.

Now the case $d \geq 2$ follows by an easy induction argument.

Proposition 4.5. For an element F in $R[X,Y] \setminus R$, the following statements are equivalent:

- R[F] is an inert subring of R[X,Y].
- K[F] is an inert subring of K[X,Y] and the ideal (F_X, F_Y)R[X,Y] is either the unit ideal or has grade 2.

Proof. (i) \Rightarrow (ii). Suppose (i) holds. Then a routine verification shows that K[F] is an inert subring of K[X,Y].

Without loss of generality we may assume that $F \in (X,Y)R[X,Y]$. If $F_X \in R^*$, then we are through. If $F_X = 0$, then $F \in YR[X,Y]$, and hence by the inertness condition it follows easily that F = uY for some $u \in R^*$, i.e., $F_Y \in R^*$, and we are through. Thus we may assume that F_X is a non-zero non-unit element of R[X,Y] and show that F_Y is a non-zero divisor in $R[X,Y]/F_XR[X,Y]$. Let $Q \in Ass_{R[X,Y]}(R[X,Y]/F_XR[X,Y])$. Then $depth(R[X,Y]_Q) = 1$. It suffices to show that $F_Y \notin Q$.

Let $P = Q \cap R$. If P = (0), then $QK[X,Y] \in Ass_{K[X,Y]}(K[X,Y]/F_XK[X,Y])$, and hence is a prime ideal of height one and therefore a principal prime ideal. Hence by (4.2), $F_Y \notin QK[X,Y]$, and we are through.

Now suppose that $P \neq (0)$ and let a be a non-zero element of P. Since $depth^-(R[X,Y]_Q) = 1$, $Q \in Ass_{R[X,Y]}(R[X,Y]/aR[X,Y])$; and since $a \in R$, Q is extended from R. Thus $PR[X,Y] = Q \in Ass_{R[X,Y]}(R[X,Y]/aR[X,Y])$. Hence $P \in Ass_R(R/aR)$, i.e., there exists $b \in R \setminus aR$ such that $bP \subseteq aR$, and therefore

$$bQ\subseteq aR[X,Y],\ b\in R\setminus aR.$$

Now if $F \in Q$, then by the above relation it would follow that bF = aG for some $G \in R[X,Y]$. Since $bF \in R[F]$, condition (i) would imply that $G \in R[F]$ and hence G = cF for some $c \in R$. But this relation would imply $b(=ac) \in aR$, contradicting the choice of b. Thus $F \notin Q$, and hence by (4.3), $F_Y \notin Q$.

(ii) \Rightarrow (i) Assume (ii) holds. Since K[F] is an inert subring of K[X,Y], it is enough to prove that $R[X,Y] \cap K[F] = R[F]$, i.e., to show that $cR[X,Y] \cap R[F] = cR[F] \ \forall c \in R$. Thus the proof will be complete if we prove the following claim.

Claim. If $(F_X, F_Y)R[X, Y]$ is either the unit ideal or has grade 2, then $cR[X, Y] \cap R[F] = cR[F] \ \forall c \in R$.

Proof of the Claim. Let $G \in R[X,Y]$ and $\phi(F) = \sum_{0 \le i \le n} a_i F^i$, $a_i \in R$, be such that

 $cG = \phi(F)$. To prove the claim it is enough to show that $a_i \in cR \ \forall i$.

We first show that the first derivative $\phi'(F) \in cR[X,Y]$. Now

(*)
$$cG_X = \phi'(F)F_X \text{ and } cG_Y = \phi'(F)F_Y.$$

Let $cR[X,Y] = \bigcap N_j$ be a primary decomposition of cR[X,Y] and let P_j be the associated prime ideal of $R[X,Y]/N_j$. Now, $P_jR_{P_j}$ being the associated prime ideal of $R[X,Y]_{P_j}/cR[X,Y]_{P_j}$, depth $(R[X,Y]_{P_j}) = 1$. Hence from the given conditions on F_X and F_Y , at least one of them becomes unit in $R[X,Y]_{P_j}$, i.e., at least one of them does not belong to P_j . Hence by (*) we have $\phi'(F) \in N_j$. Since this would hold for every j, we have $\phi'(F) \in cR[X,Y]$.

The above argument shows, by induction, that the *m*-th derivative $\phi^{(m)}(F) \in cR[X,Y] \ \forall m, \ 1 \leq m \leq n$. In particular *c* divides $\phi^{(n)}(F)$ and as $\mathbf{Q} \hookrightarrow R$, it shows that $a_n \in cR$.

Let $\phi_r(F) = \sum_{0 \le i \le n-r} a_i F^i$. By an easy inductive argument as above it follows

that c divides a_r , the leading coefficient of ϕ_r for every r, $0 \le r \le n$. Hence the result.

Corollary 4.6. An inert subring A of R[X,Y] of transcendence degree one over R is isomorphic to $R^{[1]}$ if and only if there exists an element $F \in A$ such that F_X and F_Y either form a sequence or are comaximal in R[X,Y].

We now prove the main result of this section.

Theorem 4.7. Let D be a locally nilpotent R-derivation of R[X,Y] and let A denote the kernel of D. Then the following statements are equivalent:

- (i) D is irreducible and $A = R^{[1]}$.
- (ii) DX and DY either form an R[X, Y]-sequence or are comaximal in R[X, Y].
 Moreover if DX and DY are comaximal in R[X, Y], then R[X, Y] = A^[1].

Proof. (i) \Rightarrow (ii). Let A = R[F]. Since R[F] is an inert subring of R[X, Y], by (4.5), F_X and F_Y either form a sequence or are comaximal. Hence from the equation

$$F_X DX + F_Y DY = DF = 0$$

we conclude that

$$DX = uF_Y$$
 and $DY = -uF_X$ for some $u \in R[X, Y]$.

Since D is irreducible it follows that $u \in R^*$. Hence DX and DY either form a sequence or are comaximal (since F_X and F_Y have the same property).

(ii) ⇒ (i). The irreducibility of D is obvious.

Now D induces a non-zero locally nilpotent derivation on K[X,Y] with kernel $S^{-1}A$, where $S=R\setminus\{0\}$. By (2.6), $S^{-1}A=K[H]$, where H is a variable in K[X,Y]. We may choose the above H to be in the ideal (X,Y)R[X,Y]. From the equation

$$H_X DX + H_Y DY = DH = 0$$

and from condition (ii), it follows that

$$H_X = gDY$$
 and $H_Y = -gDX$ for some $g \in R[X, Y]$.

Since H is a variable in K[X,Y], it follows that

$$g \in K^* \cap R[X,Y] = R \setminus \{0\}.$$

Hence by (4.3), it is easy to see that

$$H=gF$$
, where $F \in A$ and $DX = -F_Y$, $DY = F_X$.

Thus K[F] (= K[H]) is an inert subring of K[X,Y] with the property that F_X and F_Y either form a sequence or are comaximal. Hence by (4.5), R[F] is an inert subring of R[X,Y]. Now since A is contained in the quotient field of R[F], it follows easily that A = R[F].

If DX, DY (and hence F_X, F_Y) are comaximal in R[X, Y], then since F is a generic variable, by (4.4) it follows that $R[X, Y] = R[F]^{[1]} = A^{[1]}$.

Remark 4.8. Note that when R is a U.F.D., any irreducible locally nilpotent R-derivation of R[X,Y] obviously satisfies condition (ii) in Theorem 4.7 and any locally nilpotent derivation is a multiple of an irreducible locally nilpotent derivation. Therefore when R is noetherian the result ([D-F], 2.1) follows from Theorem 4.7. The above theorem also shows that the result ([D-F], 2.5), which was proved for a U.F.D., is true when R is any noetherian domain (containing a field of characteristic zero).

Corollary 4.9. The following statements are equivalent.

- (i) D is a locally nilpotent derivation of R[X,Y] with kernel $R[F] (=R^{[1]})$.
- (ii) D = αΔ_F, where F is a generic variable in R[X,Y] such that F_X, F_Y either form a sequence or are comaximal in R[X,Y], α ∈ R[F] \ {0} and Δ_F is the derivation defined by Δ_F(X) = -F_Y and Δ_F(Y) = F_X.

The sum of two locally nilpotent derivations need not be locally nilpotent. For instance, define D_1, D_2 on R[X,Y] by $D_1(X) = 0, D_1(Y) = X$ and $D_2(X) = Y, D_2(Y) = 0$. Then $(D_1 + D_2)^n (X + Y) = X + Y \,\forall n$. However we can make the following observation.

Lemma 4.10. Let A be the kernel of a non-zero locally nilpotent R-derivation of R[X,Y]. Then any non-zero locally nilpotent A-derivation of R[X,Y] has kernel A. Moreover the set of all locally nilpotent A-derivations of R[X,Y] has an A-module structure.

Proof. Let M be the set of all locally nilpotent A-derivations of R[X,Y]. Let $D(\neq 0) \in M$. Now $A \subseteq \ker D \subseteq R[X,Y]$. Since R[X,Y] has the same transcendence degree over both $\ker D$ and A, $\ker D$ is algebraic over A. But A is algebraically closed in R[X,Y]. Hence $\ker D = A$.

Let $S = R \setminus \{0\}$. Now any non-zero $D \in M$ extends to a locally nilpotent K-derivation \tilde{D} of K[X,Y] with kernel $S^{-1}A$ and, by (2.6), $S^{-1}A = K[F]$ for some element F in R[X,Y]. Thus again by (2.6), $\tilde{D} = \alpha \Delta_F$ for some non-zero $\alpha \in K[F](-S^{-1}A)$. From this description it clearly follows that if $D_1, D_2 \in M$, then $D_1 + D_2$ is locally nilpotent and hence belongs to M. Also it is easy to see that if $D \in M$ and $a \in A$, then $aD \in M$. Thus M is an A-module. \square

If the kernel A of some non-zero locally nilpotent R-derivation of R[X,Y] is $R^{[1]}$ (for instance if R is a U.F.D.), then by (4.9) and (4.10), all locally nilpotent A-derivations of R[X,Y] has an A-module structure isomorphic to any principal ideal of A. We now give a description of the A-module structure of all locally nilpotent A-derivations of R[X,Y] when R is normal.

Proposition 4.11. Let R be a noetherian normal domain and let A be the kernel of a non-zero locally nilpotent R-derivation of R[X,Y]. Then A is a graded R-algebra $\bigoplus_{n\geq 0} A_n$ isomorphic to the symbolic Rees algebra of an unmixed height one

ideal of R. Let M be the set of all locally nilpotent A-derivations of R[X,Y]. Then M has a graded A-module structure. Moreover M is isomorphic to $\bigoplus_{n\geq 1} A_n$ as a

graded A-module.

Proof. The graded R-algebra structure of A has been deduced in (3.5). Also, by (4.10) M has an A-module structure and the kernel of any non-zero element of M is A.

Now as in the proof of (3.3) there exist elements $x, y \in R$ such that $A_x = R_x^{[1]}$, $A_y = R_y^{[1]}$ and $A = A_x \cap A_y$. Again as in the proof of (3.3) there exist an element $a \in R \cap R_{xy}^*$ and elements $F, G \in A$ such that $A_x = R_x[F]$, $A_y = R_y[G]$ and $G = \lambda F$, where $\lambda = a/x^m$ for some $m \in \mathbf{Z}^+$. As before, let $I = R \cap aR_y$.

Now let $D \in M$. Then D induces a locally nilpotent R_x -derivation D_x (resp. R_y -derivation D_y) on $R_x[X,Y]$ (resp. $R_y[X,Y]$) with kernel $A_x = R_x[F]$ (resp. $A_y = R_y[G]$). By (4.9), $D_x = \alpha \Delta_F$ and $D_y = \beta \Delta_G$ for some $\alpha \in A_x, \beta \in A_y$. Now on A_{xy} , the two patch up. Therefore $\alpha \Delta_F = \beta \Delta_G = (\beta a/x^m)\Delta_F$, and hence $\beta a = x^m \alpha \in A_x \cap A_y = A$.

Conversely it is easy to see that for any $\beta \in A_y$ such that $\beta a \in A$, $\beta \Delta_G \in M$. Hence $D \in M$ if and only if $D = \beta \Delta_G$ for some $\beta \in A_y$ satisfying $\beta a \in A$. Since G and a are fixed, we can therefore give an A-module isomorphism $M \to A \cap aA_y$ by $D(=\beta \Delta_G) \to a\beta$. Now by (3.3) the proof will be complete if we prove the following claim.

Claim.
$$A \cap aA_y \cong \bigoplus_{n \ge 1} I^{(n)}T^n$$
.

Proof of the Claim. Consider the inclusion $A_y(=R_y[G]) \hookrightarrow R_y[T]$, where T=G/a. As in the proof of (3.1), the image of A in $R_y[T]$ is $\bigoplus_{n \ge 0} I^{(n)}T^n$. On the other

hand, the image of aA_y is clearly $\bigoplus_{n\geq 0} a^{n+1}R_yT^n$. Now by (2.1) $I^{(n)}\cap a^{n+1}R_y=$

 $R\cap a^{n+1}R_y=I^{(n+1)}. \text{ Therefore the image of }A\cap aA_y \text{ in }R_y[T] \text{ is }\bigoplus_{n\geq 0}I^{(n+1)}T^n\cong$

$$\bigoplus_{n\geq 1} I^{(n)}T^n.$$

We now give an example to illustrate Proposition 4.11.

Example 4.12. Let $R = \mathbf{C}[X,Y,Z,W]/(XY-ZW)$. Let x,y,z,w denote the images of X,Y,Z,W respectively in R. Let P = (x,z). Let F,G be elements of $R[U,V] = R^{[2]}$ defined as follows:

$$F = xU + wV$$
, $G = zU + uV$.

Let Δ_F and Δ_C be two R-derivations of R[U,V] defined as follows:

$$\Delta_F(U) = w, \Delta_F(V) = -x, \Delta_G(U) = y, \Delta_G(V) = -z.$$

Then Δ_F and Δ_G are two irreducible locally nilpotent derivations such that $\ker \Delta_F = \ker \Delta_G$, which we denote by A. Moreover, $A_x = R_x[F]$ and $A_y = R_y[G]$. Since $P^{(n)} = P^n$ (see Example 3.8), it is easy to see that A = R[F, G] (the R-subalgebra of R[U, V] generated by F and G). Moreover, $A = \bigoplus_{n \geq 0} A_n$, where A_n

$$= \sum_{i+j=n} RF^i G^j.$$

Since $z\Delta_F = x\Delta_G$, again using the fact $P^{(n)} = P^n$ it is easy to see that the A-module M of all locally nilpotent A-derivations of R[U, V] is generated by Δ_F and Δ_G .

Let $I = \bigoplus_{n \ge 1} A_n$. Then I is an ideal of A generated by F and G. Since zF = xG,

for elements a, b in A, aF + bG = 0 if and only if xa + zb = 0. Since $\Delta_F(V) = -x$ and $\Delta_G(V) = -z$, $a\Delta_F + b\Delta_G = 0$ if and only if xa + zb = 0.

The above discussion shows that $F \mapsto \Delta_F$ and $G \mapsto \Delta_G$ is a well defined isomorphism of the A-modules I and M.

We conclude the paper with the following observation.

The triangulability criterion ([D-F], 2.8) formulated for U.F.D. is true in general in the following form:

Remark 4.13. Let D be an irreducible locally nilpotent R-derivation on R[X,Y] with kernel $A=R^{[1]}$. Then D is triangulable over R if and only if there exists a variable G in R[X,Y] such that $K[X,Y]=(A\otimes_R K)[G]$.

REFERENCES

- [A-E-H] S.S. Abhyankar, P. Eakin and W. Heinzer, On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310-342. MR 46:5300
- [A-K] A. Altman and S. Kleiman, Introduction to Grothendisck duality theory, Lecture Notes in Mathematics, No. 146, Springer-Verlag, 1970. MR 43:224
- [B-C-W] H. Bass, E.H. Connell and D.L. Wright, Locally polynomial algebras are symmetric algebras, Invent. Math. 38 (1977), 279-299. MR 55:5613
- [B-D] S.M. Bhatwadokar and A.K. Dutta, On residual variables and stably polynomial algebras, Comm. Algebra 21(2) (1993), 635-645. MR 93k:19028
- [B-H] W. Bruos and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, 1993. MR 95h:13i20

- [C] R.C. Cowsik, Symbolic powers and the number of defining equations, Algebra and its Applications, Lecture Notes in Pure and Applied Mathematics, No. 91, Marcel Dekker, New York, 1984, 13-14. MR 85g:00023
- [D-F] D. Daigle and G. Freudenburg, Locally nilpotent derivations over a UFD and an application to rank two locally nilpotent derivations of $k[X_1, \dots, X_n]$, Preprint.
- [G] J.M. Giral, Krull dimension, transcendence degree and subalgebras of finitely generated algebras, Arch. Math. 36 (1981), 305-312. MR 82h:13008
- [N] M. Nagata, Local rings, Interscience, 1962. MR 27:5790.
- N. Onoda, Subrings of finitely generated rings over a pseudogeometric ring, Japan J. Math. 10(1) (1984), 29-53. MR 88d:13024
- Rj D. Rees, On a problem of Zariski, Blimois J. Math. 2 (1958), 145-149. MR 20:2341
- [Rn] R. Rentschler, Opérations du groupe additif sur le plan affine, C.R. Aca. Sc. Paris Sér. A 267 (1968), 384-387. MR 38:1093
- [R-S] P. Russell and A. Sathaye, On finding and cancelling variables in k[X, Y, Z], J. Algebra 57 (1979), 151-166, MR 80j:14930

SCHOOL OF MATHEMATICS, TATA INSTITUTE OF FUNDAMENTAL RESEARCH, HOMI BHABHA ROAD, BOMBAY-400 005, INDIA

E-mail addyess: smb@tifrvax.tifr.res.in

STAT UNIT, INDIAN STATISTICAL INSTITUTE, 203, B.T. ROAD, CALCUTTA-700 035, INDIA

E-mail address: amartya@isical.ernet.in