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Abstract

In this article, a mathematical relationship between the gradient descent technique and
contractive maps is examined. This relationship is based upon the observation that
the convergence of the gradient descent technique can be proved using results in fractal
theory - more specifically, results concerning contractive maps - as opposed to results
based on Taylor’s series. This proof, involving the eigenvalues of the Hessian matrix of
the gradient descent technique’s objective function, is presented. A simple example is
given in which steps from the aforementioned proof are used to find conditions under
which a specific multilayer perceptron is guaranteed to converge. Since the gradient
descent technique is used in multilayer perceptrons, and contractive maps give rise to
fractals, a theoretical relationship is thus established between multilayer perceptrons
and fractals.
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1 Introduction

Multilayer Perceptrons (MLPs) have been used in numerous applications, many of
which have involved either classification of given observations or approximation of the
observations’ generating function [1]. To arrive at a suitable solution for such problems,
MLPs use both back propagation of error [2] and the gradient descent technique to
optimize an objective function.

It has been postulated whether the optimization process of MLPs and the generation
of fractals are related. Fractals are self-similar mathematical objects which are usually
generated by contractive maps [3]. A group of contractive maps, applied repeatedly to
any collection of nonempty compact sets, will ultimately force these sets to converge
to a single set, called the attractor. The attractor is considered fractal.

The proof of convergence of the gradient descent technique to a local optimum is
usually given in terms of results on Taylor’s series [6]. However, an examination of the
recent literature on fractals and contractive maps raised questions regarding whether
this proof could be restated in terms of fractal theory, thus establishing a relationship
between MLPs and fractals.

The present article establishes such a relationship by using characteristics of fractal
convergence to rewrite the proof of convergence of the gradient descent technique. This
entails stating conditions under which the function representing the gradient descent
process is a contractive map. Section 2 provides some basic results on fractals which
are relevant from the point of view of MLPs. Section 3 provides the relationship be-
tween contractive maps and the gradient descent technique. Section 4 describes the
connection between contractive maps and MLPs. Section 5 presents some experimental
results, and Section 6 contains a final discussion. This work should encourage inter-
action between researchers in neural networks and those in fractal theory, hopefully
leading to positive developments in both fields.

2 Mathematical Preliminaries

We shall describe below some of the basic results concerning fractals. The theory
behind fractal generation is based on contractive maps; hence we will initially discuss
such maps. Although the following results regarding contractive maps hold for any
complete metric space, we will state them with respect to N-dimensional Euclidean
space. Most of the results stated here can be found in Barnsley [3].

Let R denote the real line. Let R" denote the N-dimensional Euclidean plane and
let A denote the set of all non-empty compact subsets of R". p(x,y) will denote the
euclidean distance between two points z and y in R".

Definition 2.1 A function f defined from R" to R" is said to be contractive if there
exists s, 0 < s < 1 such that



p(f(x), f(y) < s-plz,y) V z,y € R,

s is said to be a contractivity factor of f. #

A contractive function (map) f will shrink any nonempty compact subset of RY. If
there does not exist any s < 1 for which the above holds then f is not contractive.

Result 2.1 Let f be a contractive map from RY to RY. Then there exists a unique
zo € RY such that

1. f(zo) = mo

and
2. limy, o f*(z) =29 V = € RY where

o fi(z)=f(2)
o fM(z)=f""f"(z)) Vn>1 and V =

xo is said to be the ]&xed point of f. Repeated applications of f on any nonempty
compact subset of R" will make it go towards a set containing only xy.

We shall extend Result 2.1 to sets by using a metric between sets, namely, the Hausdorff
metric.

Definition 2.2 Let p(z, A) = infyc4 p(z,y). The Hausdorff distance between two sets
A and B in A is defined as

D(4, B) = max [sup p(z, B), sup p(y, A)]. &
y€e

€A

It can be easily shown that the above D is a metric in A.

Definition 2.3 Let f be a function from A to itself. Then f is said to be contractive if
there exists s, 0 < s < 1, such that

D(f(z), f(y)) < s-D(=z,y) V z,y €A

s is said to be a contractivity factor of f. &

Result 2.2 Let f be a contractive map from A to A. Then there exists a unique
o € A such that



1. f(x()) = X
2. lim, o f"(z) =29 ¥V x € A where
. fi@) = S@)
o fM(z)=f"1fYz)) Vn>1 and Vz € A.

Here the metric under consideration is the Hausdorff metric D. &

Result 2.3 Let f1, fo, -+, fu be M contractive maps defined from A to itself
Let s1, s9, -+, sy be their respective contractivity factors. For any C' C A, let

Foi1(C)=U; il FR(C)) YV n>0 where F(C)=C V CC A.
Then there exists A C A such that

2. lim,_ o FR(C)=A Y C C A.

(A: fi, fa, ---, fur)is said to be an iterated function system and A is said to be the
attractor of the iterated function system. &

The word fractal is defined by various authors in various ways. Barnsley considers a
fractal to be a set in A; we will also consider fractals as such. Fractals are usually
generated by iterated function systems.

A definition and preliminary result from matrix algebra are stated below. These will
be used in developing the relationship between the gradient descent technique and
contractive maps.

Definition 2.4 For a real matrix B of order Nx N, the norm of B, denoted by ||B||,
is defined as

IB]| = sup ||Bx||/||z|.
@[] # 0)

where ||z]| = /22 + ...+ 2% if = (z1,...,2N)-

Result 2.4 If B is a real symmetric positive definite matrix of order N x N
then its norm is max[ay, 9, -+, ay]| where the o;'s are the eigenvalues of the matrix B.

Note : If B is a real symmetric matrix then the norm of B is the maximum of the
modulus of the eigenvalues of B.

This completes the mathematical preliminaries. We shall now discuss the relationship
between contractive maps and the gradient descent technique.



3 Gradient Descent Technique and Contractive Maps

Gradient descent is a technique used to find the minimum of a given function. It
is commonly used in neural network applications to find the minimum of the given
objective function [6]. We describe the gradient descent technique below.

3.1 Gradient Descent Technique

Let g be a continuous, twice differentiable function from RY to R. Let 0g(y)/0z;

denote the partial derivative with respect to z; of the function g at the point y in RY
where 1 =1,2,---, N.

Let
Vy(y) = (09(y)/0z1, 8g(y)/0xs,---, dg(y)/0zN)"

where ¢ denotes the transpose. Vg(y) is the gradient of ¢g(y).

Let f, a function from R to itself, be such that

fly) =y —nVy(y) (1)

where n > 0 is a constant. Equation 1 represents the process of the gradient descent
technique. In other words, let

Y y) = f(y) and f(y) = f*'(f*(y)) for all n > 1 and for all y € R".

The limit of f"(y) as n goes to infinity is taken to be the solution for the minimization
of g.&

In terms of neural networks, g(y) is usually the error function, i.e., 3 (0bs — exp)?,
viewed as a function of the network weights. The objective is to find the choice of
weights which minimizes ¢g(y). Note, however, that the result of the gradient descent
technique depends on the choices of 1 and the initial weight vector.

We shall find the relationship between the gradient descent technique and the contrac-
tive maps below. Initially, we shall assume that N = 1 and later the results will be
generalized to any .

Let N =1. Then g : R — R and Equation 1 can be written as

fy) Zy—nd‘z—;‘y) (2)

Theorem 3.1 Let g be a twice differentiable function with x4 as a local minimum. Let
h(z) = d?g(z)/dz? be a continuous functionwhere h(z) > 0 at x = x.
Let v, be an open interval containing z, such that dg(z)/dx # 0 for all z # x; and



x € vy. Then there exists a closed interval v around z, such that the function f,
defined in Equation 2, is a contractive map on v and its fixed point in v is zg.

Proof : Note that h is continuous and h(xy) > 0. Then there exists an open
interval v; around x4 such that h(z) > 0 for all z € vy. Let y;,y2 be in v; such
that y; # yo. Now

|fyr) = fw2)| = [yr — yo — n(dg(y1) /dy — dg(y2)/dy)|
= |y1 — Y2 — U((dg(yl)/dy - dg(y2)/dy)/(y1 - y2))(2‘/1 - y2)|
= |y1 — 2|1 — nh(ys)|.

(Here y3 is a convex combination of y; and ys. This step follows from the
Mean Value theorem [4].)

Let v be a closed interval such that (1) v is contained in v; and ve, (2) v
contains zy, and (3) v is bounded. Note that A is bounded on .

Let a = inf,e, (1/h(z)).
Let

O<n<a (3)
Then note that 0 < |1 —nh(y)| <1 for all y in v. Then

|f(y1) = f(w2)] = |y1 — w2l[1 = nh(ys)| < ly1 — 2

Thus f is a contractive map on v. Its fixed point is the point y in v such
that f(y) = y. Now

fly)=y
&y —ndg(y)/dy =y
& ndg(y)/dy=0
& dg(y)/dy =0 (since n > 0)

Note that the only point in v for which dg(y)/dy = 0 is x¢ since v has
been chosen in that way. &

Generally, the proof for the gradient descent technique is derived using the results on
Taylor’s series. The above proof, however, is based on the theory of contractive maps.

Remarks

1. The above theorem indicates that f is a contractive map in the compact interval
v and if f is iterated in v, it will eventually produce the local minimum x,.
The bound for 7 may also be noted in this regard. If n does not satisfy the
Equation 3, then the function f may take values outside v for some z’s in v.
Also, the selection of 7 is problematic if we want to get the global optimum.



2. The results hold in a certain interval containing the local optimum and the initial
point for the iteration needs to be taken in that interval in order to get that
particular local optimum. Thus, if we have more than one local optimum and
the initial point is taken in the respective interval of one of these local optima
then, with the proper choice of 7, the technique will converge to that optimum.

3. If the initial point is outside of the respective intervals of all local optima or 7 is
not chosen properly then f may not be contractive and hence the technique may
not converge. In other words, the process may diverge to 400 or -co or it may
oscillate between 400 and -oo.

4. Let the function g posess k local optima x1, o, ..., x for which h(z;) >0V i=
1,...,k. Let v; be a closed disk around z; such that dg(y)/dy # 0 for all y # z;
and y € v;. Let n; be a choice of n which makes f contractive for i = 1,... k.
Let A = min[ny, ..., 7] and let

.ﬂw=y—A%%Q (4)

Then, if y is an element of |J; v;, the limit of f"y as n goes to infinity belongs to
the set A where A = {z1,...,zx}. In other words, if Z is a nonempty compact
subset of A, then

lim f"(Z) € A.

n—oo

[ )

Since neural network applications involve data of higher dimensions, the generalization
to the NV dimensional case is stated below.

Theorem 3.2 Let ¢ be a function from R" to R with a local minimum at .
Let b;; = 0%g/0x;0x; such that b;; is continuous for each (i) pair and b;; (y)
denotes the value of b;; calculated at y. Let H be the Hessian matrix of g.

Let vy be an open disk containing &, such that Vg(x) # 0 for all  # x, and

x € vy. Let v3 be an open disc containing xo such that H (e) is positive

definite for all ¢ € v3. Then there exists a closed disc v around x, and a constant
n > 0 such that the function f, defined in Equation 1, is a contractive map on v
and its fixed point in v is xg.

Proof : Note that for each ¢ € vs, the eigenvalues of H(c) are all greater
than zero since H(¢) is positive definite. Consider a closed disc v around x
such that Vg(x) # 0 for all © # xy, « € v and H(c) is positive definite

for all ¢ € v. Note that v is a subset of vy |Jvs and such a v exists.

Consider the equation

fly) =y —nVy(y) (5)



Let a # b be two vectors in v. Now

If(a) = f(B)]] = lla—b—n(Vg(a)—Vg(d))]
= [la=b||+[|((a=b)/(|la—bl[))—n((Vg(a)—Vg(b))/(/la—b]))|]
= |la—b[[x||((a—b)/(/la—bl[)) —nH(c)((a—b)/(||a—b|))||

( Here c¢ is a convex combination of @ and b, and ¢ also lies in the set v.
The existence of such a ¢ is guaranteed from the literature [5].)

Let I represent the N dimensional identity matrix. Then

1£(@) = F®) = lla—bll* Il —nH(e))((a - b)/(lla—bI))]I
< lla =[]+ |[I —nH(c)]|.

Let a(c) = [[I —nH(c)||.

Now, if n is selected in such a way that o < 1 for each ¢ in v, then f

would be a contractive map and thus its fixed point would be x.

Let B(e) = I —nH(c). We observe that B(e) is symmetric so the norm of
B(e) is the maximum of the modulus of its eigenvalues (from Section 2). Hence
if 41 (c), pe(e), - -+, un(c) are the eigenvalues of H(c) then the eigenvalues

of B(e) are 1 — nu;(c) for i =1,2, ---, N. Note that (1) pi(c) > 0
Vi=1,2,---,N and V ¢ € v since H(c) is positive definite and (2)

u;i(e) is bounded for all i = 1, 2,---, N and for all ¢ in v since v is closed.
Hence 7 can be selected in such a way that

0 < 1- nuie) <1 fori=1,2,---,N and V c€ wv.

For this specific n, ||B(c)|| < 1. This makes f contractive in v.
Hence the theorem.

Remarks

1. Different proofs of the convergence of the gradient descent technique exist in
the literature; see [6]. However, this proof is unique in that it establishes a
relationship between gradient descent and contractive maps.

2. The continuity of the Hessian matrix in the neighborhood of xy is one of the
assumptions on which the above proof is based. The eigenvalues of H for different
c’s are bounded because of this assumption.

3. The fixed points of the function f are different for different closed discs, for
different n’s, and for different starting vectors. Note also that for the same 7,



the function f™(y) may oscillate as n goes to infinity for some y’s. The values
of n for which f"(y) oscillates depends on y and the particular problem under
consideration.

4. The selection of 7 is crucial to the performance of a neural network and its final
result. The current methods for choosing 7 are heuristic, not theoretical. One
such method is to choose a value of n which is very low. However, which values
of n are considered low is the subjective choice of the researcher, and may in fact
be quite large relative to the problem of interest.

5. Let the function ¢ possess k local optima x1,xs, ---, x; for which the corre-
sponding Hessian matrices are positive definite. Let v; be a closed disc around «;
such that the corresponding Hessian matrices are positive definite for all y € v;

and for all: = 1, 2,---, k. Let n; be a choice of n which makes f contractive
fori = 1, 2,---, k. Set A\ = min[n,n,---, nx]- Let
fy) =y —AVy(y) (6)

Then the limit of f"y as n goes to infinity belongs to the set A where A =
{x1, ®3,..., x;} if y is an element of |U; v;. In other words, if C' is a nonempty
compact subset of A, then

lim f*(C) € A.

n—0o0

)

In the next section, the connection between MLP and the above theorems is described.

4 MLP and Contractive Maps

Multilayer Perceptrons is a neural network model which is commonly used in super-
vised pattern classification. The connection weights in the network model are updated
with the help of back propagation [2]. There are two ways of implementing MLP -
batch mode and on line. The following arguments don’t depend upon the mode of
implementation. However, some authors have considered adding a momentum term to
the equation for updating the connection weights in MLP. The following discussion is
confined to the MLP as described in [2], and as such does not include models with the
momentum term modification.

The connection weights in the MLP are modified with the help of Equation 5. The
vector y represents the weight vector while nVg(y) represents the change in the weight
vector (as noted previously, g(y) is usually the error function [9]. In the batch mode
learning algorithm, the connection weights are changed after all the vectors in the
training set have been fed to the input layer whereas in the on line learning algorithm,
the weights are changed after each vector is fed to the input layer. In the back prop-
agation algorithm, initially, the connection weights in the topmost layer are modified.

10



Then the connection weights in the next lower layer are modified, and so on, until the
weights in the bottom-most layer are modified. The modification of connection weights
in any layer is done using Equation 5. It is expected that the back propagation algo-
rithm will provide a local optimal solution. It is not difficult to reach a stable value
for g by making a few trials with 7.

Theorem 3.2 establishes the relationship between MLP and fractals. It specifies that
the gradient descent technique employed by MLP converges for certain values of n and
certain starting values. For these values f is a contractive map. Systems of contractive
maps are often used to generate fractals. Note that the choice of 1 depends upon the
eigenvalues of the Hessian matrix. For this reason, given a real life problem, it may
be very difficult to use Theorem 3.2 (see Section 5). However, recent developments
in neural network theory regarding the computation of the Hessian matrix for certain
network models ([7],[9]) may ease its implementation.

5 Example

5.1 Preliminaries

We determined initially that constructing a hypothetical example involving the use
of a MLP to build a mathematical model for minimizing an expression of the form
> (0bs —exp)? would be extremely difficult [9]. This is due primarily to two facts: first,
that such an example would require the creation of a function g : R**9"*s — R where
weights is the number of weights in the MLP and a choice of training sample points
such that the expected results were known and could be compared to the experimental
results. Second, the function 3 (obs — exp)? must have a positive definite Hessian
matrix, where the derivatives are taken with respect to the network weights. However,
(1) this is often not the case in multilayer perceptron learning ([8], [9]), hence the
existence of modified Newton methods, and (2) determining whether the Hessian is
positive definite requires the calculation of its eigenvalues, a computationally intensive
task if the dimension of the Hessian is large. The extreme difficulties in constructing
a realistically complex example is highlighted by the lack of such an example in the
existing literature.

For these reasons we chose instead to demonstrate the use of the above theory to
minimize a function using a neural network of the form

a(x)
o

® ¢ 0O O O o
h(xq) h(x,) h(xy)

Figure 1: Neural network model
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where (1) xy,...,z, are the network weights as well as the function variables, (2)
hi(z), ... ,hy(z) are factors of g(z) (i.e., g(z) = hi(z) * --- * hy(z)), and (3) no
transfer function is used. Nevertheless, if one has a function to be minimized which
meets the assumptions of the above theorems, then our methodology will work for
solving problems of the type outlined in the previous section.

5.2 Construction

Let x = (z1,... ,%,). The function ¢g(z) to be minimized was required to have a pos-
itive definite Hessian matrix, i.e., y; > 0V i = 1,...,n, where (u1,...,1,) are the
eigenvalues of

- 2 2 2 -
32&01 g(.T) 330(1933629(&) T T az?azn g(i)
62 32
02011 g(i) 82—$29(£) o e
Hg — . .
, : : L
I aw?azng(@) 8129_%9@) ]

We chose to minimize the function g(z1,z2) = 52?2 + 8z1x5 + 5z2. In this case, the
Hessian matrix is

H=[10 8]

8 10
with eigenvalues p; = 2 and pus = 18.

Our neural network may be diagrammed as

2 + 8x1x ot 5x 22

/\

5Xl +4x5 4x1 +5X 5
Figure 2: Example neural network

Note that the z; and x5 are the input values as well as the network weights. Given
an initial input/weight vector (%, z3) and a learning parameter v, the network will
search for the value (x}, z3) which minimizes g(x1, z2) by iteratively updating the set

of weights. The updating equations are given by

:Ezf'l _ le B 39((;;562))
o5t Th T\ ogl(@iea) |
Oz (% ,)
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(2 10z + 84}
“ {2t ) T\ 8zt 410z

where (z¢, z%) denotes the value of (z1,15) after the 4" iteration and 7 is chosen such
that

0<1l—nu; <1 for i =1,2

ie.,

0<1—-7m(2)<1land 0<1—-7n(18) <1 = 0<n<1/18
Note that

g(z1,z9) = 522 + 8119 + 522
:5x%+2*\/5*%*m1x2+15_633§+( _15_6)335
= (521 + Jzw2)® + 323 > 0

so (z%,z3) = (0,0). Hence we wish to choose (2%, 19) as a value which lies within

an open disk around (0,0).

Given that g(x1,72) has a positive definite Hessian matrix, if we (1) choose 7
such that 0 <n < 1/18, (2) choose (2?,29) within an open disk around (0,0), and (3)
update the network weights using the given formulas, then the above theory ensures
that

(a7, 03) — (a3,23) as n — oo

5.3 Results

For our experiments, we chose three initial values for (x1,22) and three values for 7.
The value n = 0.2 is outside of (0,1/18) and was chosen for comparison purposes. The
program was written so that the algorithm was considered to have converged as soon
as the updating values in the weight updating equations dropped below a tolerence
value, i.e., if 7 denoted the tolerence value (supplied by the user), the program would
stop when

102% + 8z < 7 and 82! +102) < 7

Our experimental results are shown below. Note that n = number of iterations for
updating values to fall below tolerence (i.e., until the algorithm had reached desired

13



convergence) and D denotes scientific notation, e.g., 8.05D-2 = 8.05 * 1072. No toler-
ence value was set for n = 0.2.

0

(X(l)a X2) n Xil Xg g(Xi‘, Xg) T n
(1,1) 0.05 | 9.99D-26 9.99D-26 1.8D-49 0.05D-5 | <25
0.10 | 2.037D-10 | 2.037D-10 | 7.47D-19 0.05D-5 | < 100
0.20 | 3.14D+41 | 3.14D+41 | 1.778D+84 | x * * x x | < 100
(2,-3) 0.05 | 6.64D-05 -6.64D-05 | 8.818D-09 | 0.05D-3 | < 100
0.10 | 4.07D-10 -6.11D-10 | 7.05D-19 0.05D-6 | < 100
0.20 | -1.57D+41 | -1.57D+41 | 4.44D+83 | % * | < 100
(-0.5,-1) | 0.05 | 6.64D-06 -6.64D-06 | 8.81D-11 0.056D-4 | <100
0.10 | -1.01D-10 | -2.03D-10 | 4.25D-19 0.05D-6 | < 100
0.20 | -2.35D+41 | -2.35D+41 | 1.00D+84 | * xxx*x | < 100

Table 1: Experimental Results

Our method did converge to the minimum function value for the given starting values
and the values of n : 0 < n < 1/18. Note that for n = 0.20, the algorithm diverged
instead of converging to the minimum. This is consistent with the above theory.

5.4 Comments

1. At first glance, it may appear quite easy to find a function with a positive definite
Hessian matrix. However, many simple, ‘nice’ functions do not have positive def-
inite Hessian matrices. For example, the function f(z1,zs) = 2222 has Hessian

matrix
[ 2.(5‘% 4.’L'1.T2 ]

2
dz129 277

which is not positive definite. Note that with this function it is not possible to
chose a starting value (29,z9) which lies within an open disk of the minimum
value. This is because when z; = 0 (or z2 = 0) there are infinitely many values
of x5 (1) at which the function reaches its minimum. One must be careful when

applying the above theory to any problem.

2. For a given starting value (z9,29), the method outlined above may still lead
to the minimum value of a function g(z) even when the learning parameter 7
does not meet the above specifications. Using the same function as above and a
starting value of (2%, 23) = (2, —2), we attained the following results:
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(x1,x3) | 7 x] X3 g(x1,x3) T n
(2,-2) [0.05]5.31D-05 | -5.31D-05 | 5.644D-09 | 0.05D-3 | < 100
0.10 [ 407D-10 | -4.07D-10 | 3.319D-19 | 0.05D-7 | < 100
0.20 | 1.306D-22 | -1.306D-22 | 3.414D-44 | 0.05D-20 | < 100

Table 2: Example with n outside specifications

The algorithm converged when 1 = 0.20 even though this value is outside of
our specifications. However, the algorithm is not guaranteed to converge for
such values; only if 7 is chosen appropriately does the above theory guarantee
convergence.

6 Discussion

A relationship between the gradient descent technique and contractive maps has been
derived. Noting that gradient descent is used in multilayer perceptron learning and
the application of contractive maps gives rise to fractals, the above relationship is a
connection between MLPs and fractals. Given the amount of research and attention
being devoted to both neural networks and fractals, we hope that this connection will
attract the attention of researchers and lead to advancements in both subjects.

Now that a connection has been made between these two subjects, this connection
can be examined with future research. The similarity between gradient descent and
fractal generation may lead to improvements in the gradient descent algorithm (hence
enhancing MLP performance), as well as improvements in other optimization algo-
rithms which use iterative techniques (such as genetic algorithms).

The utility of Theorem 3.2 in modifying the connection weights for real life prob-
lems needs to be explored. We would also like to examine what Theorem 3.2 can tell
us about the selection of MLP parameters such as 1 (to avoid oscillation or divergence)
and how recent advances in Hessian computation may ease implementation.

The research of the authors is supported by the Army Research Office under the Grant
DA AH04-96-1-0082.
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