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SUMMARY, It is often of interest (o identify & linear stroctural relatinship among the mesn
vectors in the context of Multivariate Analyais of Variance(MANOVA). In this paper we have
generalized the remis of De and Ghosh (1994) for the bivariate case to & d-variste case for d > 2,
We have exchibited o Bayes solution for populations of arbitrury dimension and abso derived & useful
approstimation which could be used in practice. Aa in the bivariate case, the Bayes rule closely
resembles the ad hoe role introduced in De and CGhosh (1894) which was shown to have good
frequentist properties. A mimmlstion study wes carried out to compare the performance of the
proposed rules.

1. Imtrodurction

In a Multivariate Analysis of Varience (MANOVAY) set up (for examples and
references see De {19923} and De and Ghosh (1994} it is important to know if
the mean vectors have a lincar structural relationship among themselves., Let
us state the problem formally. We have p populations each of dimension d,
P > d. Let the mean vectors be gy, gy, ..., i, and {2 be the common known
dispersion matrix. Let M = (py~ jt, stz —J3, .. . pp— &), where p =p ' 31| ;.
We have & multipie decision problem with 4 + 1 posgible decisions {or actions):
2g,2,. ..,y where a; denotes the decizion or action — rank of M is k ie. the
mean vectors lie in a k& dimensional subapace. In this paper we will generalize
to arbitrary d the result of De and Ghosh (1994) for d = 2. We will find & Bayes
rule for the multiple decizion theoretic problem in 4 dimension which resermbles
the ad hoc rule of De and (Ghosh {1994) based on the eigenvalues of the between
sum of aquarea and product matrix. We will then exainine the petforrnance of
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the ad hoc rule and that of the Bayes rule for the casea p = 5,6,7 and 8 for
d = 3, nging simulation.

See also Rao (1973, 1965), Fujikoshi (1974) and Shen and Siaha (1991) which
are some other relevant references in this area. However, they deal with teats
rather than multiple decision procedures.

2.  Prior distributions

Prior distributions are chosen from considerations similar to those of De
snd Ghosh (1994). Let X;; represent a d dimensional vector m-th element of
which iz X,E“]'. The subscript {ij) stands for ithe j-th observation from the
i-th population, s = 1,...,p and j = 1,...,n. We assume X;; ~ Na(g, 1)
where g} = (u, ... ™. X and Xy are independent if (if) # (i'3"). Let

X, =n Y5, Xi. We also assume that the common covariance matrix is &
known positive definite matrix and without loss of generality, we may take it as
1

The prior distributions of ¥ and i are assumed to be independent and
the same distribution for ji is assumed under all d + 1 hypotheses. Let mm()
represent the prior distribution under the hypolhesis H,. Then m,{¥, &) =
T ()}, m = 0,1,...,p. Now mp(-) is defined in terms of ancther distri-
bution %, (-}, (see De and Ghash {1934) for explanation) and they are related
B

o () = Ko 1T 2 ¥itine (p) (1)

wm(it) = nﬂipﬂ# Tl i2) (2
where K's are constants. w; (ji} and thus #q{fi) would be chosen to be the
game distribution under each Hy.

Under =y, 2|5 ~ Na{O, Z;) and W25 ~ Np(OP @ I3 P =
7111, Let D 1TV be the spectral decompaosition of I}, where Uiz a d dl—
mensional orthegonal matrix and DY, is & diagonal matrix. We assume the prior
probability law of U to be the Haar measure in Lhe space of d dimensional or-
thogonal matrices. D, = diag{e},,. .., 0% 0, ..., 0), where gy > --- 2 00 =
{0 are fixed and are to be chosen.

TueoiteM 2.1. DHatribution of ¥ under the prior wp for & given X} =
UD. U, D = diag (&}; ..., 0. 0,..., 1) & normeal with mean O and co-
variance P& X, where Lm = UD,, U and Dy, = dieglon ... Com, 0,0, 0)
ot Tpp = [&-: ~n)~!, The constant K, in the ecpression |’U i l_[r_l{!

nat,)T .

Proor. Let w = Uy, 1 = 1,...,pand 4 = {(1} i ,'-:d}}anﬂ["z
(M:a¥p) = {¢;U,...,¢LU}. SoT =L aU¥and I, =1,y @ U'¥; where
Tp= (s
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T has a rultinormal distribution with mean 0 and covariance PRD?, under H,.
S0 I'p has a muttinormal distribution with mean 0 and covatiance Pp,@ D}, under
H,.. Note 4 is identicaliy equal to zero becanse its mmn and variance are TETO,

for m < r < d and for all i. Let Tf™" = ( (7,4, ., 8L 8.

Then

e ™, 1 -3 P &D J ™
arimy = yri (Tém
T (A1) (22)™-D2|P, @ D2, [1;2 ( g fu

and D}, is the mxm diagonal matrix with positive diagonal elements.
Now,
Y = UL, 4B,
= 3 i+ (L - )
= 22 "'prﬂ’i +Z'I“‘1 E:ﬁ ¥; ¥;
= 2300w + LA Y v
=2 EI:I Er_‘l 'Tl E Ef;’:: :-n=1 TITE

i (P, @ L) TE
Therefore, the density of I‘f,"') under m,, is given as

e =t _ g gl )
En{dT™) = s tmfﬂ,n Ime;r‘ (P.el.) 't 4 (Pe D) it F(TEN

L Apt= [P al
~ iR PeDy A S i (P oDy L)) 1 d(r{™)
(3

Hence under r, given I3, EITYY) = 0 and Con(TTY) = P,'e (D, —
alg)] ' =Py @ (D}, — nl,) ! imply

Bl =0 and E(¥) =0

. Dy —nla)? | O _
EM{I}EP@‘(( 7] j G)LP'@Dm
and Cov(¥) =P&UD,T

Also it is clear from (3} that the distribution of ¥ is normal. On integrating
both aides of (3) we solve for K.
K—l = |P? @ Dé:l_]“
TP e (D — ala) 2




DIMENSION IN THE CONTEXT OF MANOGYA i

N
» =B -l - Dop

Therefore, K = H'[l ~ng® )T

r=]

3. Bayes rule

We firat prove a few lemmmas and then use themn to derive the Bayes rule (vide
Theorem 3.1). We then prove a useful approximation to simplify the Bayes rule.

LEMMA 3.1. Let Q be o d » & orthegonal malriz and Qq be the d x m
matriz consisting of firat m o cofumng of Q, m < d. Tet Abcamxm
diagonel melriz, A = diag (@;,...,4,) sey, such that a; > a; i < 7. Let
B be o d x d diegona motric, B = diag (by,...,bs) soy, such that b, > b; if
i< 3. Let f(Q)) = trAQ{BQ,. Then the maximum of f 48 3.0, el and
if 13 atfnined ol ™ wvolues of Q1 of the form

{ +1 D 0
0 41 0
b 0 41 (1)
0 0 - 0

5 9 . 1Y

PROOF. The (ij)-th element of Q) BQ; is
d F]
Z 5_: gibiegry = z by
- I=1

=1 k=1

a3 B is diagonal and by = b and by, = 0 for [ # k. So (#i)-th element of Q} BQy
iﬁ Efu biqgh Henoe,

m d
r(AQyBQ ) = > > atig

i=1 i=1
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Let @ =3 g Gk, o > 0 for all &k and b; = EL.‘ Bk, Br > 0for all k., Then

o

g

fﬁ&zz‘;‘h

=1 i=]

[ Ik
2 1s 1= 10

-
i
"1

tr(AQ) BQy)

= ot % minft, 1)

> mﬂ i

£ Y

—

because (¢ ) is doubly stochastic hence both 3., of and 377, qf, ere less than

equal to 1. So it follows that
™ r a
3 e { (E:iﬂj) + (r 3 ﬁ:‘)}
r=l j=1 F=r+l1

)

- TaXTa

r=1 i=1 =2

= ZZ&,Z&

i=1 r=i
m

= Zﬂ.‘ﬁi.
i=l

Now we claim that the equality holds iff Q; is of the form as given in equation
4. We prove that if

tr(AQyBQy)

1

t T
quﬁ=mjn{t,r] fort=1,....dir=1,...,m;

t=r]l 1=1

then @y must be of the form az given in equation 4. The other part of the daim
is trivial.

Let (£,7) = (1,1) then ¢}, = 1 which implies ¢%; = 0 for j > 1 and ¢4 =0
fori » 1.

Take (£, 1) = {2, 2) then

G+ Gl + 1 + Gy = 2
or gy =1 =>q§j=[l, Gy = 0 for i,j # 2.

Next we congider (£,v) = (3, %) and by similar argument it follows that ‘1'325 =

U, gh = 0 for 1,7 # 2. After 5 — 1 steps we know the form of first 5 — 1 Tows
and those many columns of Q) and they are as given in equelion 4. Now
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take (t,7) = (5,8} and 37, !, @& = » implies ¢, = 1 then qu =10, ¢ =
0 for 1, 7 &£ 5. This completes the proof of the clsim and that of the lemma. &7

Lemma 3.2, Let f be as defined in the pretious lermnme. Let H be such

that the columns of
1
(-—-) +H .- {5}

are of norm 1 and mutuelly arthogonal and the elernents of H be infinitesi-
mally smaoll {so that Srd and higher order products are negligible compared
to the second order ones}. Then

H(&)5)-1(3)
- 3 (w—a(bi—b =) - 3 ag(b; — b )by, ... (6)

1£i< =m lzism, (mH1)=;d

ProOF. From the condition that columns ave of norm 1 we have the following
equations

d
(l+hﬂ.:|3_|_zh?j=1, i=1,...,m.
iy

a
1 ;
= hﬁf== _-E E hia J ::lj...jfﬂ.
i1

Setting the cross product of j-th and the k-th columns equal to zero we gel
3 hishee + {1+ By + (1 + hadhiy =0
i#ik

Subatituting

d d
1 : 1
hﬂ'zz—'i E hi and ﬁuk1=-—§ E hﬂ
i=1 i=1

in the above equation we get

R = —hig— 3 hishi
irgk

2 2
= hfi =] hfj
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H(F)x) -+ ()
= @ {b][:hn + 1}2 +5‘2h§1 +"'+bﬂ'h’5]}
4o {bihly + belhm + 1) + -+ bahly )

o (Il + Bohdy, + -+ b (R 17 -+ bghn )
— 3 ety

Writing ¥ mib; as 3 ab; {I:hu +1 + 3 hﬁ,} the above expression is equal
o

arhd (by — by) + ahd (b — by} + -+ bl (By — Bn) +

+ ephlg{l — o)+ ambin (b, — bu) 4+ amhi, (ba — b
Using h?k = Hi-,‘ for 7 < k, the above is approximately equal Lo

— Y (mi—a)h - bhY; - > ai(b — by phY;

1=3i<i<m 1=icm, [m41)<fzd
£5

The following lemma and the subsequent theorem use the notations of Muir-
head (1982). The symbol [dX) denotes the exterior product of the elements of
X. Exterior product is denoted by the symbel A. )t is a pon-cormmutative bi-
nary operation like the ordinary product but has the property a Ab = —b A g,
in particular a fa = 0.

LEMMA 3.3, Tn the neighborhood of Qy = Hr) , the following is true

m m—1 d "
(QdQu =1] [ das [I T]em . T)
i B i i=milj=1

Proor. By definition

m o
Qidd)=A A qjda
i=1f=+1
m o o
=A A 3 asda

=1 j=i+1 k=1
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In the neighborhood of (T) the ahove expression m:lu-:m to

dgn Ada A\ A a1 Al z Gmrrdqs) . A( Z radnr) A

E=mt] =m+1
d . d
dgz A\ Ao ALY Gemirdam) .. A( Y. Grada) \
k=t k=m+1

o d
dgmut \C D" Gemirdgin) - ALY gredaenm)

E=m+1 =+l

m m-1
= A A dqqf\[ z Qem+ 1081 ) . A( z Wd’“‘l)h
i=2 jei =m+1 f=m+1
4 )
{ Z ﬂlmﬂdtriﬂ---ﬂ{ Z Wdﬁ'ﬂ},{\
| R =+l

d d
(2 amrdgea) - ALY dradgrm)

=t =t 1
m m-1 d d d
= AAds ANzl A da) AlQal A dad A (1Qul A dain)
=2 jei i-m+1 i=m ] i=m+]
m m—1
= A )"\ d‘!i't: )’\ﬂqnlm A Adﬂ'u
=1 i =m+] j-1

Now the determinant of Qg is 1 because it iz (d — m) % (d — m) orthogonal
matrix. Hence

m m—]

(QdQ:) =[] [T das 1] Hcﬁ;u

=1 j<i i=m+] j=1

We now state the main results of this section.

TheoREM 3.1. The morginal density of X, where X' = (X";,..., X'}),
under Hy, for a given DY may be expressed as

P(X(Hn) = €O [[ 1 - o) ¥ fq g & TEDALY (gq) ...¢0)
k=1 &
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where ((d) fa the space of orthogonal Mmatrices of dimengion d, (dQ) de-
notes normalized Haar measure and CO(X) &2 6 factor common to p{ X | Hy,)
form=0,...,d

THEOREM 3.2.
P{X | Hm) ~ -+ (9)

Vol O(d cones s
ox) ﬁiﬂ(d} m]'H nu“}‘re%Jga“Akx .. (10)

I] {5 ot — o)~ A}  x I1 {3l — A} )

lgicf=m 1zism, (mil)<gd
PROOF OF THEOREM 3.1. For fixed £, 5}

p(X|Hy) ox f . f TT00 = noy) R ettE bR %} 12 (203 (i
k=1

™
= H{l s ﬂﬂ';;‘:lziiﬂlgftjr EPJ?-!-;I'E‘}"P&B;Y

k=1
where ¥' = (¥7,..., ¥} Now
VPaILYy
= (L-p D)) Yo Y- Y Y VY
i f
= (1-p S, Y YV —p e Y VLYY,

iy
= (1-p ey V¥ -ple) ¥EL(-Y)
= (I—p JeEL Y WY +p ey Y ELVY/
= t=rZ), Y WY
So for a fixed 7

P(XHn) = O [](1 —nergy) e FIEL LW
k=1
) [[(1 - nofy) e FUTCRZED)

=G [(1 - naty) 5 e T FUDLUZLE
k=1

= C(X) ﬁ{l - ol ) T trQDLQL
: =1
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Integrating with reapect to the normalized Haar measure {0})

p(X|Hn D) = CCO) [ - not)'F fqm THIADIQL (4,

k=1

PrRoOF OF THEOREM 3.2, Let
. D, | O
D} = (—_I—) :

trQD;, Q'L = trD} Q4 LQ; .
By lemma 9.5.3 (Muirhead 1982} we can write

f SSrQDLQL oy
Qeofd)

a 53,'—111:1‘11]);_ cllrL {qrdq}

Then

1
VolO{d) fQEa{d}

_._1_‘_ "*!;utrnﬁ.rq:l LQl rdK r d
Voo fq.m,fxmﬂ;. ® (K'Y (Qy Q)

VolO(d — ) utrD;, Q: LQy
oD Jen, * =S

where VolO{d) iz the volume of the space of d dimensional orthogonal matrices
and iz equal to (Murthead 1382)

Wk
Pd(%}‘

Let f{Qq) = trD;‘Qiqu . ‘I'ben from lemma 3.1 it follows that mesxdnoum
of f{Qq)is Y., 0%k and it is attained at each of the 2™ values of Qy of
the form aa given in (4). So we apply the Laplace’s method by considering
neighborhoods around the 2™ points of maximum of f. Using symmetry the
above integral is approximated by

Z"VolO(d — m) rtrDLQ LGy o
Vol d) fqleﬁ[t} (2 R)

VolO(d} = (11

where N(*) denotes a neighborhood around the matrix given in expression (5)
in lemma 3.2.
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From lemma 3.2 f can be represented iocally in terms of m? + m{d — m)
independent variables and using lemma 3.3 we can wrile Lthe ahove as

"Vol(d —m) =i y,ea, oLy, a3 e A
VolO{d) 2 [: 2 11 daux

i 1<k<{<m

= <] = <]
f . / & =5 ol ) -2l I i
18 e

1zksm, (m+1)stcd

— ?n—'_‘rﬂlo‘:d_m) T i e Grgt — gt = -1 x
T ValO(d) o ™% Lo 15!_:!5“{55.—‘{_& N1 — A}

[T {%ein -2}

12k<m, (m1)lad

Using the previous theorem the assertion {3} follows. 7

BEMARK 3.1. The approximation (local) is good for large n{p—1}. It iz nec-
egsary to assume that the o}, 's are all different so that there are finite number
of points of maximum. Laplace’s method is then applicable in the neighborhood
of finite number of peaks of f. If the a},'s are not different then there is no
sharp peak and the integral can not be approximated well by this method.

REMARK 3.2. One can also prove theorem (3.2} by uaing proof of theorem
(9.5.4) of Muirhead {1982} and some of the results it refers to. However, our cal-
culations seem new and simpler, especially in the handling of the local maxima
and integration with respect to the Haar measure locally. Alse the application
in this context is new.

So the Bayes rule nray be expressed as follows
ifpl[lersD:} o ~ E

p(X|H:, Dy) I,
where H; i3 the prior probability of Hy.

For moderately large n(p — 1} the leit hand side of the above inequality is
well approximated by

.. (12)

accept M, over H,

28 MValO(d —r) - L WAV g
— et ingky Tl _ ...113
VolO(d— 3) I i fi—noi)Te if r>a {13

k=1
For the three dimensional case the marginal probabilities are as follows

p(X|H;) =

CIX)BE? {(1 — not)(1 — no)(1 —noe)} T @ ¥ Chirreohiviok)
VolO(3) {n{p ~ 1)1 ({02, — o) (M — Ma)od, — o2} = Aa){ogs — aaa}{ﬁﬁ ;} PAIL
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p(X|Hy) =

CLXIB(2H)? {(1 - noy,)(1 — nogy)} T e bidcropi)

VolO(3} {n(p — D}** {(o}; — 1)1 — Aa)oh) (A — As)(ofg)(z — M)} *{IIE}

..(16)

p(X{Hy) = C(X)202x)ArH(1 - not )} T e Tl :
VolO(3m(p — 1} {{o?,)(Ma — Aa) (o, )0 — As)}

4. SBimulation study for the trivariate case

For detailed study of the trivariate case we choose p = 6 . We avoid the
values 4 or 5 becanse a preliminary study showed the error probabilitiez under
different hypotheses are too high to be of much practical use. We keep the
sample size n= 10. Fhe covariance matrix for g is talken aa I under all the 4
hypotheses which of course, s mentioned earlier, does not affect the rule.

Unlike the case of d = 2 in De and Ghosh {1994), here the values for o 's
are chosen in conjunction with those for [I{H;}’s . We want the rf.'s to be near
1 but all different. We restricted the choice to theaet { 1.5141.31.21.11.009
0.8 }. As the joint distribution of A;, Az, A; iz a bit unwieldy, we lock al their
marginal distributions nnder each hypolhesis for various combinations of o, 's.
A rule of the following form emerged after studying the marginal distributions

accept Hyif My > e

accept Haif Ay > band My < e

accept Hy if My »cand dy <hand Y3 <
accept H otherwise

where o, b and ¢ are in the neighborhoods of 0.9, 1.9 and 3.5 respectively. The
Bayes rule that follows from the previous section may be written as

accept Hy over Hy if

I 2
A (Hsm) n(p— D)ol
(1 - nats) T

e (-2

II, 2
s> ta(0L)
2= Haen f nip— 103,

where cp =
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where oy -‘-ﬁ %1 {l_nmi“}EiE .
VAV e nlo, — o) ol Ga — M}

accept H, over Hy if
IT; 2
> a5
: Myer0 ) mip — 1o,
(1— oy

rip—1} {"’{:_'[J'tl — Ag) (A — l&]‘}m‘

As in the bivariate case in De and Ghosh (1994} some proxy walues for (e — )
on the right hand side of the above equations are used. Since p = & is moderately
large, it turns out that the factors involving the differencea (A, — A;} has little
influence on the Bayes ratio. Thiz implies that we would not need o refine the
ad hoc rale s waa done in the bivariate case through the (A — A)'s.

Different sets of values for o3, 's and [I;'s are wsed to determine the Bayes
rule and their performance is studied. Combinations that lead to either too high
of to¢ low error probability under one hypothesia are rejected. After repeated
trials and adjustmenta the following combination appeared to be satisfactory.

where o =

12 11 " 9
:m:r;]=ﬁ; nn.;h:E; ﬂum=ﬁ; ...{17
Iy =0.14; T =025 =037 =024 ... {18)
and the ad boc rule is finalized as

accept Hy if M>1; .. (19)
accept Ha if A > 21 and Ay < 1;
accept Hy if Ay =35apd by <21 and A3 < 1;
accept Hp otherwise.

We do not give the joint distribution of the eigenvalues of P—"_"TA and that of E.t
and also omit the table of Bayes ratio because of their voluminous size. Table-1
shows the performance of the ad hoc and the Bayes rules for vanious values of
P
TABLE 1. FERFORMANCE OF AD-HGC AND BAYES RULES
FOR VARIOUS VALUES OF p.

P
b & T 8

Overall error ad-hoc  0.28 018 0.15 013
Overall error Bayea 020 013 0.13 010
Overall difference 0.12 003 0408 011
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The two rules perform equally weil for p = 6 because the ad hoe rule was
constructed te mimic the Bayes rule for p = 6. The performance of the Bayes
rule improves very fast as p increases. The ad hoe rule alsn shows improvement
in error probabilities with the increase in p but the gap between the ad hoc rule
and the Bayes rule widens. So for each value of p & new set of cut-off values
may be determined to reduce this difference.

Frequentist performance was checked in some detail, in the same manner a3
in De and Ghosh {1994). Not only the average errors at various (e, e, £5) of the
ad hoc rule and the Bayes rule are comparable but the two rules agree widely
{mestly, more than 94% of the times).

Also it wag found that under Hg, excent where either £ or £5 or both are
small, probakility of a wrong decision favouring Hy or Hy is negligible. Under
Hy, except where e, is small, errors are mainly due to the choice of the hypothesis
Hj3. Moat of the wrong decisions under H; lead to Hz. These provide evidence
that the rules behave consistently in the zense that mestly adjscent hypotheaes
are chosen in case of errers.

The performance of the ad hoc rule seemed satisfactory when it was com-
pared with the most powerful test {based on eigenvalues of the between sum
of squares and product matrix) derived from the simulaied probability tables.
Fur the various sets of {e;,ez,e35) we tried, most of the times the ad hoc rule
performed ak lenst D0% as efficiently as the most powerful teat.
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