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Abstract. In this article, the concept of e-optimal stopping time of a genetic algorithm with
elitist model (EGA) has been introduced. The probability of performing mutation plays an
important role in the computation of the e-optimal stopping times. Two approaches, namely,
pessimistic and optimistic have been considered here to find out the e-optimal stopping time.
It has been found that the total number of strings to be searched in the optimistic approach
to obtain e-optimal string is less than the number of all possible strings for sufficiently large
string length. This observation validates the use of genetic algorithms in solving complex
optimization problems.

1. Introduction

Genetic algorithms (GAs) are stochastic search methods based on the principles of natural ge-
netic systems [9, 12, 14]. They perform a multidimensional search in providing an optimal
solution for evaluation (fitness) function of an optimization problem. Unlike the conventional
search methods, GAs deal simultaneously with multiple solutions and use only the fitness func-
tion values. GAs are theoretically and empirically found to provide global near optimal solutions
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700 035, India
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of various complex optimization problems in the fields of operations research, VLSI design, pat-
tern recognition, image processing, machine learning etc. [1, 2, 3, 4, 7, 16, 17, 18, 26].

While solving an optimization problem using GAs, each solution is coded as a string (called
“chromosome”) of finite length (say, L). Each string or chromosome is considered as an indi-
vidual. A collection of M ( M is finite) such individuals is called a population. GAs start with
a randomly generated population of size M. In each iteration, a new population of same size
is generated from the current population using three basic operations on the individuals of the
population. The operators are (i) Reproduction/Selection, (ii) Crossover and (iii) Mutation.

The new population obtained after selection, crossover and mutation is then used to generate
another population. Note that the number of possible populations is always finite since M is
finite. Usually, GAs run for a fixed number of iterations or terminate if no improvement is found
for a fixed number of iterations. No stopping criterion, which ensures the optimality, is available |
in the literature to the best of our knowledge. In GAs, the knowledge about the best string
obtained so far is preserved either within the population or in a separate location outside the
population; in that way the algorithm would report the best value found, among all possible
coded solutions obtained during the whole process. This paper deals with the GAs with the
elitist model (EGA) of selection of De Jong [29], where the best string obtained in the previous
iteration is copied into the current population if the fitness function values of all strings are less
than the previous best.

Some theoretical aspects of genetic algorithms have been studied in'the literature. The results
mainly rely on string representation of solutions and on the notion of a schema [12, 14]. Schema
is a template for string and it allows the exploration of similarities among strings. According
to the schema theorem of Holland, the selection process increases (éxponentially) the sampling
rates of the average schemata. But it does not guarantee the convergence of the process to the
global optimal solution. Vose extended this work and interpreted GAs as constrained random
walk and generalized the concept of schemata [23]. There are other articles also on the analysis
of schema distribution and deceptive problems [8, 13, 19].

Genetic algorithms have been successfully modelled as Markov chains [5, 10, 20 24, 28].
Vose [24], and Davis et. al. [10] have not preserved the knowledge of the previous best in their
model. Bhandari et. al. [5], Rudolph [20], Suzuki [27] preserved the knowledge of the previous
best in their model and proved the convergence of GAs to the optimal string. To the best of
our knowledge the optimal stopping time for GAs has not been provided in the literature.

In this paper, e-optimal stopping criterion for GAs with elitist model of De Jong [14] has
been provided and consequently e-optimal stopping time has been derived. The properties of
e-optimal stopping time have been studied. Optimal mutation probability has been provided in
the context of the worst case analysis. Subsequently, e-optimal stopping time has been derived
for GAs with elitist model of De Jong under an “optimistic” assumption.

The basic principles of genetic algorithms and a description of GAs with elitist model (EGAs)
are provided in the next section. The mathematical modelling of EGAs and the convergence are
discussed in sections 3. Section 4 and 5 deal with the optimal stopping time of EGAs.
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2. Basic Principles of Genetic Algorithms

We describe the basic principle of GAs in this section, considering a problem of maximizing a
function f(z), = € D where D is a finite set. The problem here is to find .y such that

f(l'opt) > f(il?);V T€D

Note that D is a discrete domain since D is finite.

2.1. Chromosomal Representation and Population

A string of length L over a finite set of alphabet A = {on,as, -+, a,} is used as a chromosomal
representation of the solution z. Each string S corresponds to a value z in D and is of the form

S =(BLbr-1 -+ Bebr); Bi€ A, Vi.

For example, if we consider A = {0,1} then a binary string of length L is a chromosomal or
string representation of a solution. Henceforth, throughout this article, we shall take A = {0, 1}.

Note that the total number of strings (i.e., the number of different values for the variable
z) is 2F. GAs find the optimal string among these 2L strings. A set of M such strings forms
a population for an iteration. To generate an initial population, generally, a random sample of
size M is drawn from 2% strings. &

2.2. Genetic operators

This subsection discusses the genetic operators while generating a new population in an iteration.
In every iteration, we evaluate each chromosome of the population using fitness function fit.
Evaluation or fitness function fit for a string S is equivalent to the function f :

fit(5) = f (=),

where S corresponds to z. Without loss of generality, we are assuming here that fit(S) > 0 . for
all S in S and the optimization problem under consideration is a maximization problem. If f
takes negative values, then a suitably large value is added to every f(z) to make fit(S) greater
than zero for every S.

- A mating pool is generated using selection and the chromosomes of the mating pool un-
dergo crossover and mutation. Moreover, it is customary to preserve the knowledge of the best
chromosome obtained so far during the process.

Selection is an artificial version of natural selection, a Darwinian survival of the fittest among
string creatures. Usually, in this process, individual strings of the current population are copied
into a mating pool with respect to the empirical probability distribution based on their fitness
function values. In this process some chromosomes would be selected more than once and the
chromosomes with low fitness values would not be selected.




94 C. A. Murthy, D. Bhandari and S. K. Pal / Optimal Stopping Time

Crossover exchanges information between two potential strings and generates two offspring
for the next population. M/2 pairs are made randomly from the population. Then the crossover
is performed with probability p (crossover probability). In this paper, we are going to deal with
the single point crossover operation. _

Mutation : Mutation is an occasional random alteration of a character position. Mutation
introduces some extra variability into the population. Though it is performed usually with very
low probability ¢ (> 0), it has an important role in the generation process. Every character
B;, 4 = 1,2,---,L in each chromosome (generated after crossover) has an equal chance to
undergo mutation. Note that, any string can be generated from any given string by mutation
operation. This result is stated in the form of the following lemma.

Lemma 1. Probability of generating vany string S1 from a given string So is greater than zero
and its value is ¢(1 — )" where v (0 < v < L) is the number of places where those two
strings have distinct characters. (v is the Hamming distance between S, and Ss.

Proof:
Trivial. O

The mutation probability g is taken to be in the range of (0,0.5]. It may be due to the fact
that, intuitively, the probability of mutating ¢ bit positions is more than that of mutating 7 + 1
bit positions, i.e.,

qz(l - q)L—i Z qi+1(1 - Q)L_i-l Vi= 0) 1a2a cre 9L -1 )

which results in ¢ < 0.5. Hence the minimum probability of obtaining any string from any given
string is q~, that is, mutation needs to be performed at every character position of the given
string. )

The knowledge about the best string obtained so far can be preserved either (i) in a separate
location outside the population or (ii) within the population. For case (i), a string (Sop) is
maintained, in which the best string is stored. Before performing the genetic operations the
best string (Scur) of the current population is compared with Sip;, and S,y is replaced with
Seur if fit(Sopt) < fit(Scur). We will call a GA with this strategy of retaining the knowledge
of the best string obtained so far as general genetic algorithm (GGA). On the other hand, in
~case (ii), the best string of the current population is copied in a temporary location before
performing the genetic operations and is recopied into the new population obtained at the end
of the iteration. A way of implementing this strategy may be to replace the worst with the
previous best when the fitness values of all individuals in the new population is less than or
(equal to) the previous best. We refer to the GAs with this strategy as genetic algorithms with
elitist model or EGAs. The other ways of implementing (ii) are : replace the worst of the present
population with the previous best when the fitness value of the worst is less than the previous
best or replace the worst offspring of the new population with the previous best. This paper
deals with the genetic algorithms with elitist model or EGAs.



C. A. Murthy, D. Bhandari and S. K. Pal/ Optimal Stopping Time 95

The basic steps in an EGA are described below.

EGA :
1. Generate an initial population @ of size M and calculate fitness value of each string S of

Q.
2. Find the best string Scur of Q.
3. Do the selection operation of () to generate a mating pool Q};. Perform crossover and

mutation operations on the strings of the mating pool and obtain a population Q¢mp.
4. Compare the fitness value of each string S of Q¢mp with Scyr. Replace the string having

the minimum fitness value of Q¢mp With Scyr if the fitness value of each string of Q¢mp is
less than fit(Scyr); otherwise no replacement takes place in Q¢mp. Rename Qimyp as Q.

5. Go to step 2.

Note : Steps 2, 3 and 4 together make an iteration.

2.3. Genetic parameters

Genetic operations have been discussed, in detail, in the previous subsection. Note that the
values for the parameters L, M,p and g have to be chosen ‘properly’ before performing those
operations. Regarding M, it has already been stated that, M is taken as an even integer. The
probability (p) of performing crossover operation is taken to be any value between 0.0 and 1.0.
Usually in GAs, p is assumed to be a value in the interval [0.25,1]. The mutation probability ¢
is taken to be in the interval (0,0.5] whereas, usually, it lies in [0.001,0.01] [9]. It is also assumed
in this paper that the crossover and mutation probabilities (p and ¢) remain fixed during the
process.

Various genetic operations and their implementations have been described above. In an
iteration, these operations are performed on a population and they result in a new population.
In the next iteration, the new population will be subjected to these operations and the process
goes on. It is to be noted here that, to the best of our knowledge, there exists no stopping
criterion in the literature which ensures the convergence of GAs to an optimal solution. Usually,
two stopping criteria are used in genetic algorithms. In the first, the process is executed for a
fixed number of iterations and the best string, obtained so far, is taken to be the optimal one.
While in the other, the algorithm is terminated if no further improvement in the fitness value
for the best string is observed for a fixed number of iterations.

It has been stated that proportional selection strategy and single point crossover are com-
ponents of the EGA mentioned here. However, it may be noted that the results in this article
hold good for any selection strategy and for any crossover operation.

3. Convergence of Genetic Algorithms

3.1. Markov chain model of genetic algorithms

Researchers have successfully modelled genetic algorithms as Markov chains. The states of the
chain are denoted by the populations of the genetic algorithms. A population Q is a collection
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of strings of length L generated over a finite alphabet A and is defined as follows :

{51, S1, - (altzmes) S9, 82, -+, (02times), - - Sf’ S{, s (agtimes) : S5 E. S;

o; >1fori=1,2,---& Sp1 # SroVrl # r2 and Zaz M}.
i=1 .

Let Q denote the set of all populations of size M. The number of populations (N) or states in
this Markov chain is finite. ' ’

In [10], T. E. Davis and C. J. Principe also modelled a GA as a Markov chain. The transition
probabilities are calculated for several cases in their article. The theory for the existence of the
stationary distribution for the transition from one population to another has been provided in
[10], when the mutation probability is assumed to be a positive (> 0) constant. They also provide
the sufficient condition, analogous with the simulated annealing, on the mutation probability
parameter sequence to ensure that the nonstationary algorithm achieves limiting distribution.

Bhandari et. al. [5] proved the convergence the EGA to the optimal solution. The fitness
function is taken into account in their model and they preserved the best string during the
process. ‘A summary of their work is given below for convenience. The concepts provided by
them have been utilized in the derivation of e-optimal stopping time. Note that other authors
have also pfoved the convergence of EGA to the optimal string [20, 27]. The approach provided
in this article for der1v1ng stopping tlme is a direct consequence of the work of Bhandari et.

al. [5].

3.2. Convergence of GAs

Genetic algorithms search over a space S of 2L strings and eventually provide the best with
respect to the fitness function fit. The strings can be classified into a set of s classes depending
on their fitness function values. The classes are defined as

Si = {S: fit(S) = F}}

where F; denotes the ith highest fitness function value. Thus Fj >‘ Fy > -+ > F,. Let us also
assume without loss of generality that Fs > 0. :
The fitness function value fit(Q) of a population is defined as fzt(Q) = rglac}?c fit(S). Then
€

the populations are partitioned into s sets. E; = {Q : @ € Q and fit(Q) = F;} is a set of
populations having the same fitness function value F;. In an iteration or generation, the genetic
operators (selection, crossover and mutation) create a population Qy; € Ey; 1 =1,2,.--, e and
k=1,2,---,s; from some Q;; € E; where e; is the number of elements in Ej. The generatibn
of a population Qr from Qi; is considered as a transition from Q;; to Qg and let p;jx; denote
this transition probability. Then the probablhty of transition from Qz] to any populatlon in Ey
can be calculated as ; :

ek
pzjk—zpz]kh]—lz '16‘{; i7_k=1)2a"'as
=1 ' o



C. A. Murthy, D. Bhandari and S. K. Pal / Optimal Stopping Time 97

For all j =1,2,--+,e; and 4 = 1,2,---,s one obtains

Dijk > 0 if k<1
= (0 otherwise

(1)

by construction. This means that once GAs reach a population Q € Ej, they will always be
in some population Q' € E, for k < i. In particular, once GAs reach a population Q € E; they
will never go out of E.

Let pfj Ll be the probability that GA results in Qg; at the nth step given that the initial state

is Qi;. Let p;;x denote the probability of reaching one of the populations in Ej from Qi; at the
‘1 th step. Then p,] k szy ki

To show the eventual convergence of a GA with elitist model to a global optimal solution
the following theorem has been proved.

Theorem 1. For an EGA with the probability of mutation g € (0, 3,

limp—oopl™) = 0 for2<k<s;Vj=1,2--,¢andi=1,2,---.s
n)

Hence llmn__)oopij.l = 1 VJ = 1,2," S and i1 = 1’2,. 8.

Proof:
It can be easily shown that

pij.l >0forj=1,2,---e;and i =1,2,---,s (from lemma 1). Let

max (1= pia) = 4. @

Note that § < 1 since minp;; > 0. Now,
4,

s \ ,
1
Zpﬁj)k = Zpij.k =1-pij1 < ‘ = (3)
k#1 k=2 o _
eiy ‘
2
prj)k = Z Z Z PijiyjiPirjik  (since, prj, , = 0 for k > 1)
k#1 k=21i1#1j1=1
6;1
= Z Z Pijiyg Zpun k
11#1 j1=1
. . €i) - ‘
= z Z Pijiyg (1 = Pigjy 1) ,
141 j1=1 » @
ei) ) . .
<é Z Z Pijiig (from (2))
1#1n1=1
= ¢ Z Dijiy
11#£1

= §(1 - pij1) < 6%
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similarly, by mathematical induction, it can be shown that Z pzﬁc < 6™ forall 7j.
k#£1
Note that 6" — 0 as n — oo since 0 < 6 < 1. Hence Zpgl)c — 0 as n — oo. Which,
k#1
immediately implies n]}gloo Pk =0 for 2 <k < sforalliand j.
It is clear that,

lim pf;l)l lim (1-— Z pgl)c)

n—o0 n—roo
k#1
= 1. )
Following conclusions can be made from the above Theorem :

e The proofis independent of the selection operation. The result is valid if any other selection
operation is used, as long as the number of selected chromosomes is M.

e The proof is independent of the crossover operation too. The result holds good if any
other crossover is used, as long as the number of strings generated after crossover is M.

e For any state (or population) Q;j; 1 > 2, pm — 0 as n — 0o, Yk > 2. In other words,
for sufficiently large number of iterations Q;; will result in Qy; for some | = 1,2,--- ¢,
i.e., the convergence to optimal string is assured with any initial population.

e The proof does not utilize the condition on ¢ namely ¢ < 0.5. Even if 0.5 < ¢ < 1.0,
the proof is still valid. ¢ < 0.5 will be utilized while discussing the stopping times. &

4. Optimal Stopping Time

4.1. Foundation

In the previous section, the proof for convergence of EGA has been provided. According to
theorem 1, an EGA will result in the best string as the number of iterations n goes to co. But
the process needs to be stopped for some finite value of n. The value of n at which the process
is stopped is called the stopping time of the process. The objective here is to determine the
value of n which is in some sense ‘optimal’. More specifically, the problem is to find a value for
n which will provide the best solution.

Note that, for a starting population ¢}, GAs can result in many populations with different
probabilities after n iterations. Thus, if the process is to be stopped after a specific number of
iterations, it may not always be guaranteed that the optimal string is obtained. In fact, the
lemma stated below indicates that, there is a positive (> 0) probability of not obtaining the
optimal solution after a finite number of iterations.

Lemma 2. Let the fitness function be such that there exists a string So which is not an optimal
string (there always exists such an Sy of the function is not constant). Let us consider the
population Q;; such that Q;; contains M copies of So. Then, the probability PE?ZJ that the
process will remain in Q;; after n steps is positive (> 0) forall n.



C. A. Murthy, D. Bhandari and S. K. Pal/ Optimal Stopping Time 99

Proof: v
Trivial. O

The above lemma provides a trivial result from the point of view of probability. But, it follows
from the above lemma that no finite stopping time can guarantee the optimal solution. On the
other hand, the process is to be terminated after finitely many iterations with the expectation
that the process has achieved the optimal solution. Thus any decision regarding the stopping
time should necessarily be probabilistic, since GA is a stochastic process.

The literature on stopping time for stochastic processes is vast [21]. We are stating the
existing definition for e-optimal stopping time below in the context of genetic algorithms.

Let Q;; € E; and Qz(-;-l) denotes the population that is obtained at the end of the nth iteration

of the genetic algorithm with the starting population as @Q;;. Let gy.‘) denote the fitness function

value of the population Qg-’) . Let & (gg})) denote the expected value of gg-l), then

£ =3 Fnl o - (5)
k=1

Now the e-optimal stopping time of GA can be defined as follows.

Definition 1. Let ¢ > 0 and Ny be a positive integer. Then Nj is said to be an e-optimal
stopping time for a GA if |

n>Ny = E(@P)>Fi—¢ Viandj. &
In particular, if € = 0, Ny is called 0-optimal stopping time or simply optimal stopping time
[21]. Note that the above definition can not be used directly for GAs, since we do not know

the value of F;. Thus we have modified the above definition slightly. From now onwards, the
following definition will be referred as the e-optimal stopping time for a GA.

Definition 2. (e-optimal stopping time) : Let ¢ > 0. Let N be a positive integer. Then N is
said to be an e-optimal stopping time for a GA if

n>N = E@G)>Fi(l—¢ Viandj. & , (6)

Note that F} is used in the above definition too. But, the following manipulations remove the
dependency of Fi on the e-optimal stopping time.

. 1
E@M) =3 Fiph > Fipl)  Viandj . (7)
k=1

Thus, from (6) and (7), N needs to be found such that

M >1-c Viandj . (8)
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Note that, if IV is an e-optimal stopping time for a GA then any N; > N is also an e-optimal
stopping time for the GA. Thus for a given € > 0, we have to find Ny such that Ny is an e-optimal
stopping time for GA and N < Ny would imply N is not an e-optimal stopping time for the
GA. In other words, we want to find the minimal e-optimal stopping time for GA to reduce the

computations.

Definition 3. (Minimal e-optimal time) For an € > 0, Ny is said to be minimal '6-0ptimal time
of a GA if Ny is an e-optimal stopping time and N < N, would imply N is'not-_ an ¢-optimal
stopping time for the GA. & '

Definition 4. '(e-optz'mal string) The best s;cring obtained at the end of N iterations is called
e-optimal string where N is an e-optimal stopping time for the GA &

Note also that e can not take the value zero for a finite e-optimal stopping time (lemma 9.
Thus, from now onwards, € is taken to be strictly greater than zero.
We have pfjn)l >0and lim pf?)l =1 (from theorem 1). This implies that for a given e (>0)
7.
stopping time exists for a GA.

Now, the problem is to find the values for pg’)l for any initial population Q:j. In other words,

in solving a problem using GAs, once the values for pz(;l)l are known, the e-optimal stoppiﬁg time
N can be determined. Since, the transition probabilities depend on the characteristics of the

fitness function [5], we shall briefly discuss the fitness function below.

there exists an N such that ;0(7-'1 > 1—e€forn > N. Hence, for a given ¢ > 0, finite e-optimal

4.2. Fitness function

Extensive literature is available on the characteristics of the fitness function to expedite the
search using GAs [12, 14]. The convergence depends also on the number of points or strings at
which the maximum value occurs. It can be intuitively seen that if the number of strings having

the maximum fitness function value is larger, the chance of fast convergence is higher. |

Theorem 2. Let fy be a fitness function, which assumes s distinct values Fy, Py, .- Fy, defined
onS. Let Sy and Sy be two different strings such that f1(S1) = £,(S2) and f1(8) < fi1(81) VS €
§. Let us now define fo on S as follows :

f2(S) = f1(S), VS # 53 and fo(S2) = F;, for some i > 1.

Let p' and p? be the transition probabilities for the functions f; and f5 respectively. Let pé}(ln)
be the probability-that at the end of n iterations, GA results in a population containing the
(n) ’

best string from a population Q € Q for the fitness function f). Similarly, pQQ.1 is that for fy.
Then for any population Q € Q, pb,l 2 I%.l, and in general pé?‘(ln ) > p2Q.(1" )
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Proof:
Let Q be any population and Q' be a population containing one of the best strings. Then

1 _ 1
Pga = Z PQ.q
Q' €k

= > Pt D, Phg

Q'€E1,S5:2¢Q’ Q'€E1,52€Q’
> ), P
Q' €E1,S2¢Q’
‘ ‘ : 2> p2Q,1 .
Note that the equality holds when S; € Q.
Now,

1(2) _ 1 1
P = ZPQ-leQm

Q1
= Y poal X oot D Pog)

Q'€E,,52¢Q’ Q'€E,5:€Q’

(o}
Zqub.Ql( > Pue)

1 Q'€E,,5:¢Q’
2 (2
2 pQ.(l .

Similarly, by using mathematical induction,
1 (n) 2 (n)
Po1 2DPg1 - W
(W

It is now clear from the theorem that the probabilities in reaching to a population containing
one of the best strings will be higher if the number of strings having the highest fitness function
value is more. That is, the e-optimal stopping time for the function f2 is also an e-optimal
stopping time for f;. Thus, in this article, we shall deal with the functions which possess exactly
one optimum string. These fitness functions are termed as single optimal fitness functions. Let
W = {fit : fitis a fitness function and it has exactly one optimal string }.

Definition 5. A fitness function fit is said to be a single optimal fitness function if fit e W.

Another important problem is related to the distribution of the fitness values over the search
space (set of 27 strings). The inherent assumption in the implementation of GAs is that the
variations in the fitness function values are less if the Hamming distance between the strings
is less. But this assumption is not always true for certain fitness functions (e.g., the minimum
deceptive problem [10]). For convenience, let us demonstrate a function in which the above
assumption is not true.

Example 1: Let §* = 111111---111 and

fit(S*) = L+1
fit(S) = D(S,8%) ;S8 # 5 .
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Where the Hamming distance D(S, S*) between S and S* is the number of bits at which the
alleles are different. Note that, ft takes only L+1 values. Once the operators of GAs generates a
population whose fitness value is fi¢(000000 - - - 000) high mutation probability will probably help
the process to obtain the global optimal solution. Section 4.4 discusses the different strategies
in selecting the mutation probabilities.

4.3. Upper bound for optimal stopping time

In this subsection an upper bound for e-optimal stopping time is obtained for an EGA. The
fitness function under consideration is a single optimal fitness function. Let the fitness function

fit have only one optimal string S* € S, i.e.,
Fit(S*) > fit(S), VSES; §+#S5* .

Consider the population Q' consisting of M copies of a string S*, the complement of S* where
S* is the optimal string, i.e., D(S*,5%) = L

Theorem 3. Let sg.1 represent the probability of reaching a population containing S* from Q
in one iteration with mutation operation alone. Then sg.1 > sg'.1Vg.

Proof:
It follows from the principles of probability theory. 0

Theorem 4. Let pg., be the probability of reaching a population containing the optimal string
from @ in one iteration using selection, crossover & mutation operations.

Then pg1 > pgr.a for all Q.

Proof:
Let sg.1 be the probability of reaching a population containing the optimal string from Q by
using mutation operation alone. Let @ = {S7.:--,Sp}. be the given populetion.
Let p; represent the probability of selecting the string S; to the mating pool. Then 0 < p; <
1& Y7 pi = 1.
Let after selection, the possible no. of mating pools be 7 and they may be represented by
» Qla Q?v Q‘r
Note that Probability (obtammg a population Q, {Sij....Sim} where Sj; € Q =V, ;)

= l'IFlp”. Vi=1,2,--

T

Then Zﬂjj\ilpij = L.
=1
Given a mating pool @;;1 < 1 < 7, the possible no. of populations that may be obtained

after crossover be V; and they may be represented by Qi1,Qi2,Qiv;. Let the probability of
obtaining the population Q;; from Q; by using the crossover population alone be represented by
Wij. '
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; Vi
Where 0 < Wij <1 Vj =12,---,V; andiz 1,2,...,7 &ZWU =1V,=12,---,71.
j=1
Then the possible populations that may be obtained after selection & crossover are

Qij;3 =1,2,-++,V;; i=1,2,---,7 with probabilities W;;II}L, pj.
T W
Note that Y > Wy L, pix = 1
, i=1 j=1
Then
_ T Vi M
pQ-]- - Zi:l Ej:l W’LJ Hk:l Pik SQij'l

>3 X5 Wi IL pix sqra
= sgu1 Lie1 Loy Wi L, oy
= sg.1.
Thus pg1 2> sgri-

Now, note that pgr1 = sg.1  since

i) The mating pool, formed after selection operation is performed on @', is nothing but Q.
and
ii) The population to be obtained after crossover operation on @' is nothing but @’.

Hence pg1 > pg'1 Vo
Now for @', pgr.1 can be obtained by computing the probability of mutating each bit position

of at least one string of Q'.

pgra1 = (?)(q")—<A_‘;'[)(qL)2+---+(—1)M(AAZ ) (gb)M

— f: < Af ) (qL)r(_l)r+1 (10)
= 1-(-ghM. |

Note: The minimum probability of reaching a population containing the best string is indepen-
dent of the characteristics of the fitness function values. Since one can always assume without
loss of generality that there exists the complement of S*. It is also to be mentioned here that the
expression for pg 1 is independent of the probability of crossover p and the selection procedure.

2. Recall 4, defined in the proof of theorem 1.
§ = Mazq(l-pqg.)

= 1- Mingpg.
= 1—pg.1(From Theorem 4)
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Theorem 5. Let fit be a fitness function with ezactly one optimal string S*. Let S* be the
complement string of S* and Q' be a population consisting of M copies of S* where M is the
population size. Let Qo be any population of size M. Then

Poa1 21— (1M . W
Proof: ‘
We have pgry = 1—(1— q“)M. Then, from the above note (2) and the theorem (1), this theorem
follows. & _ : : O

Upper bound for e-optimal stopping time : It follows from the above theorem that

Poor 2 1= (=g for Qo ¢ Ey 2)
= 1 for Qg € E; .
Thus, p(Qn)l >1-(1—-¢")M" vQ. Let 0 <e< 1. Nowif 1 —(1—¢¥)M* >1—¢for n > N then
N is an e-optimal stopping time for the GA.
Note that, ’

1—e < 1_(1_qL)Mn,
= € > (1-—4F Mn ,
( ) (13)
log% _ loge
M log Til'[;f ~ Mlog(1—gb)

Let N(e,M,q,L) = Toohsry -

Note that given ¢, M, q and L, N(¢,M,q,L) is an upper bound for e-optimal stopping
time by construction. Note that we do not have the knowledge of minimal e-optimal stopping
time for GAs. Hence, in the subsequent analysis we assume that N (e, M, g, L) iterations will be

performed during the process.

Remarks :

1. For a given ¢, M, g and L, N(e, M, q, L) is independent of the characteristics of the fitness
function, crossover probability and the selection procedure.

2. :,Note that, if the starting population is not Q' then also e-optimal string will be obtained

in N(e, M, q, L) iterations. o

3. Given ¢, g and L, N(e,M,q,L)M (the product of N(e, M,q, L) and M) is a constant.
Note that, N(e, M,q,L)M provides the number of strings searched upto N (e M,q,L)
iterations. This means that the number of strings to be searched to obtain e-optimal
string is independent of the population size M. ’

4. It can be seen that for given M, ¢q and L,

€1 < € = N(€17M’q;L) >N(€2aM7QaL)'

It implies that the number of iterations required is more to obtain a more accurate solution.
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5. It is also clear that, for given €, ¢ and L,
Ll > L2 = .N(€7M,Q7L1) > N(G’M7QaL2)'

This also coincides with our intuition that for a fixed e if the length of the string increases

the required number of iterations also increases.
6. Note that the expression for N (¢, M, g, L) has been derived from the following inequalities.

p5) 2l 21-(-pgu)”

1— (1 —pg.1)" is taken to be > 1—e. Note that Q' is a pessimistic choice of an initial
population and the stopping time has been derived from the above inequality. Thus the
stopping time derived is also a pessimistic one and we shall denote it by Npes(e, M, g, L).

So far we have discussed the stopping time keeping the mutation probability q as fixed. In
the next section, we shall study the behavior of e-optimal stopping time with different mutation
probabilities.

5. Mutation Probability and e-optimal Stopping Time

In the previous section, the behavior of N(e, M, q, L) has been studied keeping the mutation
probability ¢ as constant. Here first of all we shall study the behavior of N (e, M, q, L) if different
values for ¢ are considered. Then, we shall try to find the modified expression for e-optimal
stopping time with the assumption that the characteristics of the fitness function is well related
to the hamming distance of the strings with the best string S*. That is, the differences in the
fitness function is such that they decrease with the reduction in D(S, §*), the hamming distance
between S and the optimal string S*.

Npes(€, M, q, L) represents an upper bound for e-optimal time. Here we shall try to find the
optimal value of ¢ which will minimize Npes(e, M, g, L). A closer look at equation 13 reveals that

for g1 < g2 0.5, Npes(€, M, q1,L) > Npes(€, M, g2, L).

It follows that the optimal value of ¢ for Ny (€, M,q, L) is 0.5. Note that 0.5 is a very high
value for ¢ in the implementation of a GA.

It has been found above that Npes(e, M, g, L) is minimum when ¢ = 0.5. ¢ = 0.5 provides the
usual Monte Carlo search ( pure random search) for optimal. Note that the mutation probability
q is indeed very high (q = 0.5) for making Np.s(€, M, ¢, L) minimum. In practice, the researchers
take ¢ to be very low in order to ape the usual genetic systems. Thus ¢ being very high would
go against the practice of the usual genetic system. But one can still find ¢ = 0.5 to be useful
provided the number of strings searched upto Npes(e, M, g, L) iterations is less than 2~. We shall
show below that the number of strings searched upto Np.s(€, M, q, L) iterations is greater than
2L

Note that,
logl
M-Npes(f, M,q,L) = l—i—— . (14)

%91=o5T
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Now
Substituting M N with 2L we get

logt

- < L
logimsr ? o (15)
< logl < 2Mogi—.r,

e > (-4 (16)
Note that, as L — oo, (1 —0.51)2° — ¢! > 0.37. Which implies, that for ¢ = 0.5 and for
sufficiently large values of L, if the number of strings searched is 2% then it can be stated that
the fitness value obtained will be at least equal to F;(1 —0.37) = 0.63F}.

Note that pessimistic stopping time always assumes that the starting population for any
iteration is Q'. This is not the case in practice. Note also that for many fitness function, even if
the initial population is @', it will result in some other population after a few iterations except-
ing for minimum deceptive problem. Observe that, usually, for minimum deceptive problem,
D(S,5%) is less <= difference between fit(S) and fit(S*) is high. On the other hand, for the
general optimization problems, D(S,S*) is less <= difference between fit(S) and fit(S*) is
also less. | |

Thus from the above observation, we shall study the stopping time for EGA under the

following assumption.

Assumption : Let §* be the optimal string. Let there exist an integer d, 1 <.d < L —1
such that for every two strings S1 and Sz, S1 # S, D(S51,5*) < d, D(S2,58*) > d implies
|fit(S1) — fit(S*)| < |f12(S2) — fit(S*)] |

Remarks :

1. The above assumption provides a cut off point d for the Hamming distance between the
optimum string and the other strings. Note that, if the fitness function satisfies the above
assumption for a specific d and if a string S is present in a starting population for an EGA
such that D(S,S*) < d then the best string of any subsequent iteration will possess the
Hamming distance < d with the optimal one.

2. The above assumption holds good for many practical problems. It is not valid for minimum
deceptive problems.

3. Note that d is taken to be a positive integer and it is strictly less than L. If there does
not exist any d which satisfies the above assumption (or, d =0 or d = L) then the fitness
function is deceptive.

4. Suppose a fitness function fit satisfies the above assumptlon for any d < dy. In that case,
the fitness function will be regarded as ——well related —— with respect to the Hamming
distance.

Let Q ¢ E; be the population at the start of an iteration and §* be the best string, and

D(S*,Q) = d. Then,
po1 =2 1-[1—¢q (1 —q)l9M |
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and,
PGy > 1-[1—g*(1 -

Now, e-optimal string will be obtained if

logt
n > %9 , for d <

> — - . (17)
I g2

2o | b

Assuming L, M and e as constants the minimum value of n is obtained when ¢ = %.

It is also to be noted that the value for ¢ does not exceed 0.5 and hence the optimal value
for ¢ is min(0.5, %). Thus the number of iterations required to obtain an e-optimal string is

logl
n > Miog ngl , for d< g : (18)
1—

(§)4(2pE)E-d

This expression is obtained with an optimistic assumption and hence, we shall term it as an
optimistic e-optimal stopping time and denote it by Ny, i.e.,

log%

Nop(e, M,d, L) = (19)

1
) (2pE)L-d

Mlogl_(%

Remarks :

1. Unlike Npes, Nop(€, M, d, L) is not independent of the characteristics of the fitness function
for given ¢, M, d and L. But it is independent of crossover probability and the selection
procedure.

2. Given ¢, d and L, N, M (the product of Nyy(e, M, d, L) and M) is a constant. Note that,
Nop(e, M, g, L)M provides the number of strings searched upto Ney(€, M, g, L) iterations.
This means that the number of strings to be searched to obtain the e-optimal string in
Nop many iterations is independent of the population size M.

3. It can be seen that for given M, d and L,

€1 <€ == Nop(el,M', d, L) > Nop(ez,M, d,L).
It is also clear that, for given ¢, d and M,
Li> Ly = Nop(e, M, d,Ll) > Nop(e,M, d,Lz).

4. Now, we are in a position to explain the affinity of researchers to assume g to be very small.
Let the fitness function be well related to the Hamming distance between the best string
and the best obtained so far. Since, the characteristics of the fitness function are completely
unknown, the users will appreciate any improvement in the fitness function value due to
even a single change in any bit position of the string. More specifically, the intention of
GA users is to make a small change to improve the result in hand. Then to obtain a better
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string compared to the string obtained so far, one needs to change d < L/2 (say) bit
positions (i.e., reduce the Hamming distance by d) and assume mutation probability ¢ to
be —. For example, if a user expects an improvement by changing only 1 bit then the
suitable value for g will be 0.01 for L = 100 and d = 1. ¢ will be 0.001 for L = 1000 and
d =1 and so on.

. It can also be seen that the number of strings searched to get an e-optimal string in N,

iterations is < 2L for sufficiently large L and for any € > 0. To estimate the value of € for
M.N < 2L let us substitute M N by 2L in (18) and we get

loge < 2Mogy—gyarezy=a

. (20)
or e > [1- (2Lt

Let us consider § = £, then from (20) we have

(1 _ 99L . (1 _ 9)(1—9)L)2L

v

€

or (1—6517‘-)% < 60.(1-6)1° .

Note that 67 (1 —8)'~? is minimum when 6 = 0.5 and the minimum value of 6% - (1 —)1~¢
is 0.5. Thus if # < 0.5 then % . (1 — 0)1=% > 0.5. Let us assume

05<6°- (1-0)"%<054+p, for0<p<05 . (21)

Then, note that (1 — (0.5 + p)£)2" — 0 as L — oo and € > (1 — (0.5 + p)L)2*

For an appropriate value of q one can find an e-optimal string (for any given €) by searching
< 2L strings for sufficiently large value of L. It is to be noted that if ¢ decreases then p
increases and consequently (1 — (0.5 + p)L)2L decreases and hence € can be taken to be
a small value. But it should be remembered that ¢ being small implies that the fitness
function is well behaved in the sense of convergence of GAs. That is, it has been shown
theoretically that GAs are indeed useful in searching optimal solution and the number of
strings to be searched is less than 2% if (1) assumption 1 is satisfied and (2) the starting
population contains a string whose Hamming distance with the optimal string is less
than or equal to d. Investigations are to be conducted if assumption 1 does not hold.
Mathematical treatment of stopping times, where the effects of selection and crossover are
also taken into consideration, is necessary.

Conclusions and Discussion

In this paper, the problem of optimal stopping time for elitist model of genetic algorithms has
been discussed. In this model, the best string of the previous iteration is preserved in the present
population if the fitness function value of each offspring is worse than that of the previous best.
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The maximization problem is considered here and took the mutation probability to be constant
throughout the process. The binary representation scheme is considered in this article. An
objective criterion for stopping the process in the implementation of GAs has been suggested.
Consequently e-optimal stopping times have been derived from pessimistic and optimistic points
of view for the case of single optimal fitness function. For the pessimistic approach it has been
found that the value of optimal mutation probability is 0.5.

It has also been shown that the number of strings to be searched to obtain e-optimal string is
less than 2% from the optimistic point of view and for sufficiently large L. This fact ensures the
utility of genetic algorithms in solving complex optimization problems. It has also been shown
that the mutation probability is small for optimistic e-optimal stopping time whereas it is 0.5
for pessimistic e-optimal stopping time.

We have found the values of Ny for L = 80 and M = 100. Now
2L = 1208925819614629174706176. For ¢ = 1/e and g = 0.5, the value of Nps is
12089258196146291747062. For q¢ = 0.2 and € being the same as above, Npes is found to be a
53 digit integer. For ¢ = 0.1, Np; is found to be an integer with minimum 70 digits. If € is 0.2
and q = 0.5, the N, is
19456910474082525747527. It is found experimentally that as € decreases, Npe; increases. As g
decreases from 0.5, Npes increases. As M increases, Ny, decreases.

Similarly, the values of N,, are found for L = 80 and M = 50.
The value of N, for e = 0.1 and d = 20 is 1587704615975069749.
The value of N, for e = 0.1 and d = 10 is 566998412210.
For e = 0.1 and d = 5, Ny, = 6109419.
For € = 0.1 and d = 1, N,p = 10.
Nop decreases as d decreases. Some more values of N,, are given below for d = 1 for the
convenience of the readers when L = 80 and M = 50. For ¢ = 0.05, N,, = 13.
For € = 0.005, N,p = 23.
For € = 0.00001, N,, = 50.
The values of Npes and Nop provide combinatorial verification of the theoretical results stated
in the article. It can be seen from the above values that N,,/2” is small even for d = 20 when
€ =0.1, L =80 and M = 50. When d = 1, the values of N,, are extremely small.

A detailed theoretical investigation should be made on the selection process and the utility
of crossover operations. The optimistic approach reflects that a varying mutation probability
with respect to iteration number may be useful in faster convergence of the process. It is
also to be noted that the similar study can be made to derive the e-optimal stopping time for
general genetic algorithms where the best string is preserved in a separate location outside the
population. : :

As far as our knowledge goes, stopping times for GAs, have not been derived mathematically
in the literature. This article is an attempt in this regard. The results obtained may not be
as impressive as they should be. Further mathematical investigations are therefore necessary to
provide more general and realistic versions of stopping times for GAs. Investigations are also
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necessary to judge theoretically the effect of selection and crossover operators on the stopping
times, though the obtained stopping times are valid for an EGA with selection, crossover and

mutation operations.
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