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Abstract 

A new t~ature evaluation index based on fuzzy set theory and a connectionist model 
for its evaluation are provided. A concept of flexible membership function incorporating 
weighting factors, is introduced which makes the modeling of the class structures more 
appropriate. A neuro-fuzzy algorithm is developed for determining the optimum 
weighting coefficients representing the feature importance. The overall importance of 
the features is evaluated both individually and in a group considering their dependence 
as well as independence. Effectiveness of the algorithms along with comparison is dem- 
onstrated on speech and Iris data. © 1998 Elsevier Science Inc. All rights reserved. 

1. Introduct ion 

The process  o f  selecting the necessary in fo rma t ion  to present  to the decis ion 
rule is called J e a t u r e  se lec t ion .  Its main  object ive  is to re ta in  the o p t i m u m  sa- 
lient charac ter i s t ics  necessa12¢ for the recogni t ion  process  and to reduce the di- 
mens iona l i ty  o f  the measu remen t  space so that  effective and easily c o m p u t a b l e  
a lgor i thms  can be devised for  efficient classif ication.  

The  cr i ter ion o f  a good  feature  is that  it should  be unchang ing  with any oth-  
er poss ible  var ia t ion  within a class, while emphas iz ing  differences that  are im- 
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portant in discriminating between patterns of different types. One of  the useful 
techniques to achieve this is clustering transformation [1], which maximizes/ 
minimizes the interset/intraset distance using a diagonal transformation, such 
that smaller weights are given to features having larger variance (less reliable). 
Other separability measures based on information theoretic approach include 
divergence, Bhattacharya coefficient, and the Kolmogorov variational distance 
[1-3]. Several methods based on fuzzy set theory [4-6] and Artificial Neural 
Network (ANN) [7-11] have also been reported. Incorporation of  fuzzy set 
theory enables one to deal with uncertainties in a system, arising from vague- 
ness, incompleteness in information etc., in an efficient manner. ANNs, having 
the capability of fault tolerance, adaptivity and generalization, and scope for 
massive parallelism, are widely used in dealing with optimization tasks. Recent- 
ly, attempts are being made to integrate the merits of fuzzy set theory and 
ANN under the heading "neuro-fuzzy computing" for making the systems ar- 
tificially more intelligent. 

The present article is an attempt in this line, and has two parts. In the first 
part a new fuzzy set theoretic feature evaluation index, in terms of  individual 
class membership, is defined and its performance with an existing one [4,5] is 
compared for ranking the features (or subsets of  features). Its relation with 
Mahalanobis distance and divergence measure is experimentally demonstrated. 
The second part provides a neuro-fuzzy approach where a new connectionist 
model has been designed in order to peflbrm the task of optimizing a modified 
version of the aforesaid fuzzy evaluation index which incorporates weighted 
distance for computing class membership values. This optimization process re- 
sults in a set of weighting coefficients representing the importance of  the indi- 
vidual features. These weighting coefficients lead to a transformation of the 
feature space for flexible modeling of class structures. 

The effectiveness of the algorithms is demonstrated on two different data 
sets, namely, vowel and Iris data. 

2. Evaluation index and feature subset selection 

L e t  the pth pattern vector (pattern) be represented as 
- e l  ,J2 , . - . , J i  , . . . , j , ,  j, , . . . . . .  n is the number of features in M 

(set of measurable quantities) and /i. '~/ is the ith component of the vector. 
Let prob k and dk(f (p)) stand for the a priori probability for the class C~ and 
the distance of  the pattern f(P) from the kth mean vector 
m~(= imp:, ink2 . . . . .  m , , , . . . ,  rnk,,]), respectively, m~ indicates the ith component 
of the vector ink. 

The feature evaluation index for a subset (Q) containing few of these n fea- 
tures is defined as, 
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V" s (f i) 

where f(P) is const i tuted by the features of  £2 only. 

sk(f (p)) = ,Uc, (f(P)) x (1 - Uc, (re))) (2) 

and 

s,~, (f~')) = 

1 [UC.., (f(P)) X (1 --,UG ('('))) ] (3) 

tic, (f~")) and/~G, (f(P)) are the membership  values o f  the pat tern f~') in classes C, 
and C~,, respectively. ~ is the normalizing constant  for class Ck which takes 
care of  the effect o f  relative sizes of  the classes. 

Note  that,  st is zero (minimum) if #c'~ = 1 or 0, and is 0.25 (maximum) if 
Pc~ = 0.5. On the other  hand,  skk' is zero (minimum) when #c'~ = #c,, = 1 or 
0, and is 0.5 (maximum) for tLc. , = 1,/~c~., = 0 or vice-versa. 

Therefore ,  the term sk/Y~w¢k sa, is minimum if/~ck = 1 and/~ck, = 0 for all 
k' # k i.e., if the ambiguity in the belongingness of  a pat tern f(P) to  classes C~ 
and Cv Vk' ¢ k is minimum (the pat tern belongs to only one class). It is max- 
imum when #~ck = 0.5 for  all k. In other  words, the value of  E decreases as the 
belongingness of  the pat terns increases to only one class (i.e., compactness  of  
individual classes increases) and at the same time decreases for  other  classes 
(i.e., separat ion between classes increases). E increases when the patterns tend 
to lie at the boundaries  between classes (i.e.,/~ ~ 0.5). Our  objective is, there- 
fore, to select those features for which the value of  E is minimum. 

In order  to achieve this, the membership (#c, if(P))) o f  a pat tern f(P) to a class 
Ck is defined, with a mult i-dimensional  ~-function [12] which is given by, 

1 
/~c~(f (p)) = 1-2d~(f (Pl ) ,  O~<dk(f 0~)) < ~ 

l (4 )  = 211 -dk(fC"))] 2, ~ ~dk( f  (p)) < 1, 

= O, otherwise. 

The distance dk(f (p)) of  the pat tern  f(P) from mk (the center o f  class Ck) is de- 
fined as, 

[z '1 \ .,tj,, j 

where 

I/'2 

, (5 )  

(6) 
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and 

kS / ('I 
"~(:~" z (7) 

m~, - I C~l 

Eqs. (4)- (7) are such that the membership P(s (f~';') of  a pattern f(P:' is 1 if it is 
located at the mean of  Ck, and 0.5 if it is at the boundary (i.e., ambiguous re- 
gion) for a symmetric class structure. 

Let us now explain the role of.z% In Eq. (1), E is computed over all the sam- 
ples in the feature space irrespective of  the size of  the classes. Therefore, it is 
expected that the contribution of  a class of  bigger size (i.e. with larger number 
of  samples) will be more in the computat ion of  E. As a result, the index value 
will be more biased by the bigger classes; which might affect the process of  fea- 
ture selection. In order to overcome this i.e., to normalize this effect of  the size 
of  the classes, a factor 2k, corresponding to the class Ck, is introduced. In the 
present investigation, we have chosen ~k = 1 - prob~. However, other expres- 
sions like ~-k = l/iC~[ or ~ := l / p r o b  k could also have been used. 

The feature evaluation index (E in Eq. (1)) provides an aggregated measure 
of  compactness of  individual classes and separation between different classes. I f  
a particular subset (Fj) of  features is more important  than another subset (k3) 
in characterizing/discriminating the classes/between classes then the value of  E 
computed over Fl will be less than that computed over F2. In that case, both 
individual class compactness and between class separation would be more in 
the feature space constituted by Fl than that of  ~ .  Therefore, the task of  fea- 
ture subset selection boils down to selecting the subset (F) among all possible 
combinations of  a given set (M) of  n features for which E is minimum. In the 
case of  individual feature ranking, the subset F contains only one feature. 

3. Weighted membership function and feature ranking 

It is clear from Eqs. (4)- (7) that the class structures are modeled using a set 
of  predefined membership functions which are kept fixed throughout the com- 
putation. Instead of  modeling the class structures rigidly, a flexible (adaptive) 
membership function is defined by introducing a set of  weighting coefficients 
such that the feature space can suitably be translbrmed depending on these 
weighting coefficients. The incorporation of weighting factors also makes the 
method of  modeling the class structures more generalized. 

The new weighted membership function is expressed by Eq. (4) where 
dk(f (p)) is defined as 

d~(f(')) w~ L( ' i  - rnk, = ' : -  , w, E [0, 1]. (8) 
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Therefore, the membership values (/~) of  the sample points of  a class become 
dependent on wi. wi = 1, for all i, corresponds to Eq. (4). Other values of 
w~(< 1) make the function of  Eq. (4) flattened along the axis o f f .  The lower 
the value of  w~, the higher is the extent of flattening. In the extreme case, when 
w~ -- 0, for all i, dk = 0 and Pck = 1 for all the patterns. Therefore, the incorpo- 
ration of  the weighting factors adds flexibility to the expanse of the modeled 
class structures. The extent to which the modeled class structures needs to be 
expanded, depends on the amount  of  overlap between the adjacent classes. 
In other words, w~s should be such that both compactness of  individual classes 
and separation between classes increase. This is essentially being guided by the 
feature evaluation index E based on the weighted distance measure. 

In pattern recognition literature, the weight w~ (Eq. (8)) can be viewed to re- 
flect the relative importance of the feature Jl in measuring the similarity (in 
terms of  distance) of  a pattern to a class. It is such that the higher the value 
of  w~, the more is the importance o f f  in characterizing (discriminating) a class 
(between classes), wi = 1 (0) indicates that Ji is most (least) important. 

Therefore, the compactness of  the individual classes and the separation be- 
tween the classes as measured by E (Eq. (1)) is now essentially a function of w 
(= [wi, w2, . . . ,  wn]). The problem of feature selection/ranking thus reduces to 
finding a set of  w,s for which E becomes minimum; w,s indicating the relative 
importance o f ~ s  in characterizing/discriminating classes. The task of minimi- 
zation may be performed with various techniques [13,14]. Here, we have adopt- 
ed gradient descent technique in a connectionist framework (because of its 
massive parallelism, fault tolerance etc.) for minimizing E. A new connectionist 
model is developed for this purpose. This is described in Section 4. 

Note that, the method of  individual feature ranking, explained in Section 2 
considers each feature individually independent of  others. On the other hand, 
the method described in this section finds the set of  wgs (for which E is mini- 
mum) considering the effect of  inter-dependencies of  the features. 

4. Neural network model for feature evaluation 

The network (Fig. 1) consists of  two layers, namely, input and output. The 
input layer represents the set of  all features in M and the output layer corre- 
sponds to the pattern classes. Input nodes accept activations corresponding 
to the feature values of  the input patterns. The output nodes produce the mem- 
bership values of  the input patterns corresponding to the respective pattern 
classes. With each output node, an auxiliary node is connected which controls 
the activation of  the output node through modulatory links, An output node 
can be activated from the input layer only when the corresponding auxiliary 
node remains active. Input nodes are connected to the auxiliary nodes through 
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Fig. 1. A schematic diagram of  the proposed neural network model. Black circles represent the anx- 
iliary nodes, and white circles represent input and output nodes. Small triangles attached to the out- 
put nodes represent the modulatory connections from the respective auxiliary nodes. 

feedback links. The weight of  the feedback link from the auxiliary node, 
connected to the kth output node (corresponding to the class Ck), to the ith in- 
put node (corresponding to the feature J}) is equated to -ink,. The weight of the 
feedforward link from the ith input node to the kth output node provides the 
degree of  importance of the feature Ji, and is given by, 

\ 2k, / ' 

During training, the patterns are presented at the input layer and the member- 
ship values are computed at the output layer. The feature evaluation index for 
these membership values is computed (Eq. (14)) and the values of w~s are up- 
dated in order to minimize this index. Note that, 2~,s and rnk, s are directly com- 
puted from the training set and kept fixed during updation of w~s. The 
auxiliary nodes are activated (i.e., activation values are equated to unity) 
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one at a time while the others are made inactive (i.e., activation values are fixed 
at 0). Thus, during training, at a time only one output node is allowed to get 
activated. 

When the kth auxiliary node is activated, input node i has an activation val- 
ue as~ 

f (p),~ 2 (P) [,x,, ) , (10) bl i k 

w) is the total activation received by the ith input node for the pattern where xgk 
f~P), when the auxiliary node k is active, x~ i is given by, 

(") - f ' > )  (11) Xik - -  . - -  m k .  

f~P! is the external input (value of the ith feature for the pattern f(/,l) and -ink, is 
the feedback activation from the kth auxiliary node to the ith input node. The 
activation value of  the kth output node is given by, 

v~ ) = g (y~)"), (12) 

where g(.), the activation function of  each output node, is a ~z-function as given 
in Eq. (4). i f ) ,  the total activation received by the kth output node for the pat- 
tern f/p) is given by 

y~,) (p) w~ 
= uik x (13) 

Note that, y~) is the same as dk (Eq. (8)) for the given input pattern f(P), and v~ ) 
is equal to the membership value of  the input pattern f~) in the class Ck. 

The expression for E(w) (from Eq. (1)), in terms of  the output node activa- 
tions, is given by 

E(W)= '~  k ~ ,  1,(/;:' V~'(1 v~ p)) x~k. (14) 

The training phase of  the network takes care of  the task of  minimization of  
E(w) (Eq. (14)) with respect to w which is performed using gradient-descent 
technique. The change in wi (Awi) is computed as, 

OE 
Awi = - q ~ w i  Vi, (15) 

where r/is the learning rate. 
For the computation of  OE/Owi, the following expressions are used. 
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Owi - 2 ~ + - Ow, J ' 

Owi Owi ' 

and 

Ov~ p) . ;o Oy~' (p~ 1 
o , v i  - " O < .  < - Owi ' 2 '  

= _ 4 [  1 _ y~/] OY~ '} _1 <<. y~t~ < 1  
Ow, ' 2 

= 0, otherwise, 

i t(P) m ) 2. 0 )~  ) _. wi [ j i  7--- k, 

The steps involved in the training phase of  the network are as follows: 

(16) 

(17) 

(18) 

(19) 

Calculate the mean vectors (mk) of  all the classes from the data set and 
equate the weight of the feedback link from the auxiliary node correspond- 
ing to the class Ck to the input node i as -m/<, (for all i and k). 

• Get the values of2~, s (bandwidths in Eq. (6)) from the data set and initialize 
the weight of the feedforward link from ith input node to kth output (for all 
values of i and k) node. 

• For  each input pattern: 
Present the pattern vector to the input layer of  the network. 
Activate only one auxiliary node at a time. 
Whenever an auxiliary node is activated, it sends the feedback to the input 
layer. The input nodes in turn send the resultant activations to the output 
nodes. The activation of  the output node (connected to the active auxiliary 
node) provides the membership value of the input pattern to the corre- 
sponding class. Thus, the membership values of the input pattern corre- 
sponding to all the classes are computed by sequentially activating the 
auxiliary nodes one at a time. 
Compute the desired change in wis to be made using the updating rule giv- 
en in Eq. (15). 

• Compute total change in wi for each i, over the entire set of patterns. Update 
wi (for all i) with the average value of  AWl. 

• Repeat thc whole process until convergence, i.e., the change in E becomes 
less than certain predefined small quantity. 
After convergence, E(w) attains a local minima. In that case, the values of 

wis indicate the order of  importance of the features. 
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The effectiveness of  the above-mentioned algorithms was tested on two types 
of  data sets, namely, vowel data [3] and Iris data [15]. The vowel data consists 
of  a set of  437 Indian Telugu vowel sounds collected by trained personnel. 
These were uttered in a consonant-vowel-consonant context by three male 
speakers in the age group of  30-35 years. The data set has three features, 
f l ,  f2 and J~ corresponding to the first, second and third vowel formant fre- 
quencies obtained through spectrum analysis of the speech data. Fig. 2 shows 
a 2-D projection of  the 3-D feature space of the six vowel classes (0, a, i, u, e, o) 
in the Ji - f2 plane (for ease of depiction). The details of the data and its ex- 
traction procedure are available in [3]. This vowel data is being extensively used 
for two decades in the area of pattern recognition. 

Anderson's Iris data [15] set contains three classes, i.e., three varieties of Iris 
flowers, namely, Iris Setosa, Iris Versicolor and Iris Virginica consisting of 50 
samples each. Each sample has four features, namely, Sepal Length, Sepal 
Width, Petal Length and Petal Width corresponding to Ji ,  f : ,  f3 and J4, respec- 
tively. Iris data has been used in many research investigation related to pattern 
recognition and has become a sort of  benchmark-data. 

5.1. Results obtained using.fuzzy feature  evaluation index 

Table 1 indicates the order of different subsets of  features of  vowel data 
based on the values o f E  (Eq. (1)). This order is also compared with that ob- 
tained by Pal et al. [4,5]. Table 1 shows that the subset {f2} is the best and 
{Ji,f2} is the second best using Eq. (1), while the corresponding order is 
{fl , f2}  and {f2} in the case of  Pal et al. However, in both the methods, the dif- 
ference in index values for the subsets {f2} and {fl;f2} is insignificant..f~ 
stands at the bottom of  the order list, in both the cases. Note also that, the in- 
clusion of./} in a subset improves its characterization/discrimination ability. 
This further justifies the significant importance of f2 in characterizing vowel 
classes. These results conform to the earlier findings [3] on speech recognition 
(from the point of  correct rate of  classification of vowel sounds). 

Table 2 provides the order of different subsets of features of the Iris data. 
Although, the order obtained using Eq. (1) differs from that obtained with 
the FE1 of  Pal et al., like vowel sounds, the successive difference of  the index 
values between these subsets are found to be small. Among the individual flow- 
er features, the ranking done by Eq. (1) and FEI of  Pal et al. [4,5] i s f 4 , f 3 , f~ , J ;  
and f 3 , f 4 , f ~ , f I ,  respectively. This shows that f3 and f4 are more important 
than f l  and f2. This conforms to the earlier finding using fuzzy set theoretic 
[16] and neural approaches [17]. 

The relation of  FEI with Mahalanobis distance and divergence measure is 
graphically depicted in Figs. 3 and 4 (for vowel data), and Figs. 5 and 6 (for 
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Table 1 
Values of FEI for every feature subset of  vowel data 
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Feature subset Order obtained using 

Eq. (I) FEI of Pal et al. [4,5] 

{f, } 5 3 
{A} 1 2 
{./3} 7 6 
{f, ,j~} 2 1 
{f~ ,f~} 6 7 
{J2, f ,  } 4 4 
{f~,f2,f3} 3 5 

Iris data). They are computed over every pair of  classes. As expected, Figs. 3--6 
show a decrease in feature evaluation index with increase in Mahalanobis dis- 
tance and divergence measure between the classes. 

5.2. Results obtained with neural network 

Tables 3 and 4 provide the degrees of importance (w) of different features 
corresponding to the vowel and Iris data respectively, obtained by the neural 
network method described in Section 4. Three different initializations of w were 
used in order to train the network. 

Table 2 
Values of FEI for every feature subset of  Iris data 

Feature subset Order obtained using 

Eq. (1) F E l o f P a l  et al. [4,5] 

{fl} 14 14 
{f,} 15 13 
{f3} 3 1 
{f4} 1 4 
{A,J;_} 13 15 
{f~,f3 } 9 8 
{fl,f~} 6 12 
~[,_ , J] } 8 2 
{f2,J~ } 4 7 
{J.:,,A } 2 3 
Ui,f2,l3} 12 ~o 
{.f,,J;,J~ } 10 11 
{Ji,f3,J~ } 7 9 
{ f2 , f ; , f , }  5 5 
{Ji , f2, f3, f4} 11 6 



184 S.K. Pal et al. / Journal o f  Information Sciences 105 (1998) 173 188 18o! 
160r 

~ ~ 1°° i ~1 

u. 8°1- 

6° r 

4o I 
2 

i 
I J I J I i f I 

3 4 5 6 7 8 9 10 11 % 
Mahalanobis distance 

Fig. 3. Graphical representation of the relationship between feature evaluation index and Mahalan- 
obis distance for the vowel data. 
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Fig. 4. Graphical representation of the relationship between feature evaluation index and diver- 
gence measure for the vowel data. 
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Fig, 5. Graphical reprcscntation of  the relationship between feature evaluation index and Mahalan- 
obis distance for Iris data. 
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Table 3 
Degrees of importance of different features of vowel data 

Feature Initial w 

= 1.0 in [0,11 = 0.5 =t= 

w Rank w Rank w Rank 

Ji 0.001194 3 0.000048 3 0.001037 3 
['2 0.342003 1 0.337536 1 0.342621 1 
J~ 0.192297 2 0.001745 2 0.092156 2 

Table 4 
Values of degrees of importance of different features of Iris data 

Feature Initial w 

= 1.0 in [0,1] = 0.5 -t- e 

w Rank w Rank w Rank 

f |  0.029140 3 0.003230 3 0.029066 3 
f2 0.090552 2 0.102529 2 0.074984 2 
f3 0.320185 1 0.322186 1 0. 320367 1 
f4 0.002404 4 0.002027 4 0.002833 4 

These  are: 
(i) wi = 1, for all i, i.e., all the fea tures  are  cons ide red  to be equa l ly  m o s t  im-  
p o r t a n t ,  
(ii) wi E [0, 1], for all i, i.e., the n e t w o r k  s tar ts  s ea rch ing  for  a s u b - o p t i m a l  set 
o f  weights  f rom an  a rb i t r a ry  p o i n t  in the search space,  a n d  
(iii) wi = 0.5 + ~, for all i, e c [0,0.01]. In  this case the  fea tures  are cons id -  
ered  to be a l m o s t  equa l ly  b u t  n o t  fully i m p o r t a n t .  No te  tha t ,  w; = 1 m e a n s  
the fea ture  f,. is mos t  i m p o r t a n t .  T h a t  is, its presence  is a m u s t  for cha rac te r -  
iz ing the  p a t t e r n  classes. S imi lar ly ,  wi = 0 m e a n s  Ji has  n o  i m p o r t a n c e  a n d  
therefore ,  its presence  in the fea ture  vec tor  is n o t  requi red ,  w; = 0.5 indica tes  
an  a m b i g u o u s  s i t u a t i o n  a b o u t  such presence  off , . ,  c adds  a smal l  p e r t u r b a -  
t ion  to the  degree o f  p r e s e n c e / i m p o r t a n c e .  
i t  is f o u n d  f rom T a b l e  3 tha t  the o rde r  o f  features  o f  the vowel  da ta ,  in all 

the  cases, is f 2 , J3 ;J i  whereas  it is f 2 , f l , J 3  in T a b l e  1. Similar ly ,  for Iris d a t a  
(Tab le  4), the o rde r  is seen to be f3, f2, f l  ,f4 un l ike  J 4 , f ~ , f l  ,J2 in T a b l e  2. Th i s  
d i s c r epancy  m a y  be because  o f  the  fact tha t  the  neu ra l  n e t w o r k  based  m e t h o d  
cons ide r s  i n t e r d e p e n d e n c e  a m o n g  the  features ,  whereas ,  the o the r  m e t h o d  as- 
sumes  fea tures  to be  i n d e p e n d e n t  o f  the others .  I t  has  been  obse rved  experi-  
m e n t a l l y  tha t  the n e t w o r k  converges  m u c h  s lowor u,lth ,.~,~ :~:,:--': . . . .  " 
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wi = 1, for all i, as compared to the others. For  example, the number of  itera- 
tions required to converge the network corresponding to the initializations 
wi = 1, [0,1] and 0.5 + e are 152, 49 and 60 for vowel data, and 269, 154 and 
134 for the Iris data. 

6. Conclusions 

In this article, we have presented a new feature evaluation index based on 
fuzzy set theory and a neuro-fuzzy approach for feature evaluation. The index 
is defined based on the aggregated measure of  compactness of  the individual 
classes and the separation between the classes in terms of  class membership 
functions. The index value decreases with the increase in both the compactness 
of  individual classes and the separation between the classes. Using this index, 
the best subset from a given set of  features can be selected. As Mahalanobis 
distance and divergence between the classes increase, the feature evaluation in- 
dex decreases. 

The incorporation of feature importance as weighting factors into member- 
ship functions gives rise to a transformation of  the feature space which pro- 
vides a generalized framework for modeling class structures. A new 
connectionist model is designed in order to perform the task of minimizing this 
index. Note that, this neural network based minimization procedure considers 
all the features simultaneously, in order to find the relative importance of the 
features, in other words, the interdependencies of the features have been taken 
into account. Whereas, the other method (without considering the weighting 
factors and neural network), considers each feature or subset of  features inde- 
pendently. 

Results obtained by the feature evaluation index (Eq. (1)) is seen from 
Tables 1 and 2 to be comparable with that defined in [4,5]. However, in 
[4,5], the separation between two classes is measured by pooling the classes to- 
gether, and modeling them with a single membership function. Therefore, for 
an m-class problem, the number of  membership functions required is 

m + ; where the first and the second terms correspond to individual class 

and palrwlse class membership functions, respectively. In other words, one 
needs m ( m  ~- 1) parameters for computing the FE1 [4,5]. On the other hand, 
for computing the evaluation index of  Eq. (1), one needs to compute only m 
individual class membership functions i.e., 2m parameters. 

In the neuro-fuzzy approach, the class means and bandwidths are deter- 
mined directly from the training data (under supervised mode). However, the 
method may be suitably modified in order to adaptively determine the class 
means and bandwidths under unsupervised mode so that it can give rise to a 
versatile self-organizing neural network model for feature evaluation. 
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