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Abstract

A new feature evaluation index based on fuzzy set theory and a connectionist model
for its cvaluation are provided. A concept of flexible membership function incorporating
weighting factors, is introduced which makes the modeling of the class structures more
appropriate. A neuro-fuzzy algorithm is developed for determining the optimum
weighting coefficients representing the feature importance. The overall importance of
the features is evaluated both individually and in a group considering their dependence
as well as independence. Effectiveness of the algorithms along with comparison is dem-
onstrated on spcech and lIris data.  © 1998 Elsevier Science Inc. All rights reserved.

1. Introduction

The process of selecting the necessary information to present to the decision
rule is called feature selection. Its main objective is to retain the optimum sa-
lient characteristics necessary for the recognition process and to reduce the di-
mensionality of the measurement space so that cffective and easily computable
algorithms can be devised for efficient classification.

The criterion of a good feature is that it should be unchanging with any oth-
er possible variation within a class, while emphasizing differences that arc im-
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portant in discriminating between patterns of different types. One of the useful
techniques to achieve this is clustering transformation [1], which maximizes/
minimizes the interset/intrasct distance using a diagonal transformation, such
that smaller weights arc given to features having larger variance (Iess reliable).
Other scparability measures based on information theoretic approach include
divergence, Bhattacharya coefficient, and the Kolmogorov variational distance
[1-3]. Several methods based on fuzzy sct theory [4-6] and Artificial Neural
Network (ANN) [7-11] have also been rcported. Incorporation of fuzzy set
theory enables one to deal with uncertainties in a system, arising from vague-
ness, incompletencess in information etc., in an cfficient manner. ANNSs, having
the capability of fault tolerance, adaptivity and generalization, and scope for
massive parallelism, arc widely used in dealing with optimization tasks. Recent-
ly, attempts arc being made to integrate the merits of fuzzy set theory and
ANN under the heading “neuro-fuzzy computing™ for making the systems ar-
tificially more intelligent.

The present article is an attempt in this line. and has two parts. In the first
part a new fuzzy set theoretic featurc cvaluation index, in terms of individual
class membership, is defined and its performance with an existing onc [4,5] is
compared for ranking the features (or subscts of features). Its relation with
Mahalanobis distance and divergence measurc is experimentally demonstrated.
The second part provides a neuro-fuzzy approach where a new connectionist
model has been designed in order to perform the task of optimizing a modified
version of the aforesaid fuzzy evaluation index which incorporates weighted
distance for computing class membership values. This optimization process re-
sults in a set of weighting coefficients representing the importance of the indi-
vidual features. These weighting coefficients lead to a transformation of the
featurc space for flexible modeling of class structurcs.

The effectivencss of the algorithms is demonstrated on two different data
scts, namely, vowel and Tris data.

2. Evaluation index and feature subset selection

Let the pth pattern  vector (pattcrn) be  represented  as
£ = [/'I/J’),fz(p),...,fiw,...,f,',f’), where n is the number of features in M
(set of measurable quantitics) and /;.'“”) is the ith component of the vector.
Let prob, and dk(f(”)) stand for the a priori probability for the class C; and
the distance of the pattern f%® from the kth mean vector
my (= mg ., My, ...,My,....m,|), respectively. my, indicates the ith component
of thc vector my.

The feature evaluation index for a subset (Q) containing few of these n fea-
tures is defined as,
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E = ZZ—%S#M—),—XO(/” (l)

frec, k Zk'fkskk’(fW))

where £ is constituted by the features of © only.

se(£9) = e, (1) x (1 = pe, (7)) (2)
and

s0e(7) = 2 (e, (1) x (1= e, (1))
+% [uq_, (f7) x (1—uq (f(”))>}~ (3)

e, (f ¥} and te, (£ ")) are the membership values of the pattern £ in classes C;
and C, respectively. % is the normalizing constant for class C, which takes
carc of the effect of relative sizes of the classes.

Note that, s; is zero (minimum) if g, =1 or 0, and is 0.25 (maximum) if
K¢, = 0.5. On the other hand, sy is zero (minimum) when ye, = Me, = 1 or
0, and 1s 0.5 (maximum) for u., =1, e, = 0 or vice-versa.

Therefore, the term si/ Zk,ﬁ Sy is minimum if yo, = 1 and He, = = 0 for all
k' # k i.e., if the ambiguity in the belongingness of a pattern £ to classes Cy
and Cy VK’ # k is minimum (the pattern belongs to only one class). Tt is max-
imum when pe, = 0.5 for all £. In other words, the value of £ decreases as the
belongingness of the patterns increases to only one class (i.c., compactness of
individual classes increases) and at the same time decreases for other classes
(i.c., scparation between classes increases). E increases when the patterns tend
to lie at the boundaries between classes (i.c., g — 0.5). Our objective is, there-
fore, to select those features for which the value of E is minimum.

In order to achieve this, the membership (uc. (f ®))) of a pattern f¥ to a class
Cy is defined, with a multi-dimensional n-function [12) which is given by,

1
7
(f(p )< 1, (4)

pe, () =1 =22 (f7),  0<d(f”) <
2 l
=21 =@, ;<
=0, otherwise.
The distance dk(fu’)) of the pattern £ from my (the center of class Cy) is de-
fined as,
1/2
) 21
d f('_p) — ./; — My, .
W07 =1 2 ( = (5)
where
/s, = 2max [-Lf;"” —m |], (6)
P
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and

- <(p)
ny, = —Lllg(if / . (7)
k

Eqgs. (4)- (7) arc such that the membership -, (f%)) of a pattern £ is 1 if it is
located at the mean of Ci, and 0.5 if it is at the boundary (i.e., ambiguous rc-
gion) for a symmetric class structure.

Let us now explain the role of x,. In Eq. (1), £ is computed over all the sam-
ples in the feature space irrespective of the size of the classes. Therefore, it is
expected that the contribution of a class of bigger size (i.e. with larger number
of samples) will be more in the computation of E. As a result, the index value
will be more biased by the bigger classes; which might affect the process of fea-
ture selection. In order to overcome this i.e., to normalize this effect of the size
of the classes, a factor %, corresponding to the class Cy, is introduced. In the
present investigation, we have chosen @ = 1 — prob,. However, other expres-
sions like 2 == 1 /,Cy| or o == 1/prob, could also have been used.

The feature evaluation index (£ in Eq. (1)) provides an aggregated measurc
of compactness of individual classes and separation between different classes. If
a particular subset (/) of features is more important than another subsct (#3)
in characterizing/discriminating the classes/between classes then the valuc of £
computed over F will be less than that computed over £. In that case, both
individual class compactness and between class separation would be morc in
the fecature space constituted by F than that of F>. Therefore, the task of fea-
ture subset selection boils down to selecting the subsct (F') among all possible
combinations of a given set (M) of » features for which E is minimum. In the
casc of individual feature ranking, the subset F contains only one fcature.

3. Weighted membership function and feature ranking

It is clear from Egs. (4)- (7) that the class structures are modeled using a set
of predefined membership functions which are kept fixed throughout the com-
putation. Instcad of modeling the class structures rigidly, a flexible (adaptive)
membership function is defined by introducing a set of weighting coeflicients
such that the feature space can suitably be transformed depending on these
weighting coefficients. The incorporation of weighting factors also makes the
mcthod of modeling the class structures more generalized.

The new weighted membership function is cxpressed by Eq. (4) where
dk(fi”)) is defined as

172

ry _ 2
(1) = Zw(f—)—/k—'l’i) . wi e [0.1). )
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Therefore, the membership values (u) of the sample points of a class become
dependent on w;. w; = 1, for all i, corresponds to Eq. (4). Other values of
w;(< 1) make the function of Eq. (4) flattencd along the axis of f;. The lower
the value of w;, the higher is the extent of flattening. In the extreme casc, when
w; = 0, for all i,d; = 0 and p, = 1 for all the patterns. Therefore, the incorpo-
ration of the weighting factors adds flexibility to the expanse of the modeled
class structures. The extent to which the modeled class structures needs to be
expanded, depends on the amount of overlap between the adjacent classes.
In other words, w;s should be such that both compactness of individual classes
and separation between classes increase. This is essentially being guided by the
feature evaluation index E based on the weighted distance measurc.

In pattern recognition literature, the weight w; (Eq. (8)) can be viewed to re-
flect the relative importance of the feature f; in measuring the similarity (in
terms of distance) of a pattern to a class. It is such that the higher the value
of w;, the more is the importance of f; in characterizing (discriminating) a class
(between classes). w; = 1(0) indicates that f; is most (least) important.

Therefore, the compactness of the individual classes and the separation be-
tween the classes as measured by £ (Eq. (1)) is now essentially a function of w
(= [wi,wa,...,wy]). The problem of feature selection/ranking thus reduces to
finding a set of w;s for which £ becomes minimum; w;s indicating the relative
importance of f;s in characterizing/ discriminating classes. The task of minimi-
zation may be performed with various techniques [13,14]. Here, we have adopt-
ed gradient descent technique in a connectionist framework (because of its
massive parallelism, fault tolerance etc.) for minimizing £. A new connectionist
model is developed for this purpose. This is described in Section 4.

Note that, the method of individual feature ranking, explained in Section 2
considers cach feature individually independent of others. On the other hand,
the method described in this section finds the set of w;s (for which £ is mini-
mum) considering the effect of inter-dependencies of the features.

4. Neural network model for feature evaluation

The network (Fig. 1) consists of two layers, namely, input and output. The
input layer represents the sct of all features in M and the output layer corre-
sponds to the pattern classes. Input nodes accept activations corresponding
to the feature values of the input patterns. The output nodes produce the mem-
bership values of the input patterns corresponding to the respective pattern
classes. With each output node, an auxiliary node is connected which controls
the activation of the output node through modulatory links. An output node
can be activated from the input layer only when the corresponding auxiliary
node remains active. Input nodes are connected to the auxiliary nodes through
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(p)
f.P fZ(P) f3(P) fép)

Fig. 1. A schematic diagram of the proposed neural network model. Black circles represent the aux-
iliary nodes, and white circles represent input and output nodes. Small triangles attached to the out-
put nodces represent the modulatory connections from the respective auxiliary nodes.

feedback links. The weight of the fcedback link from the auxiliary node,
connected to the kth output node (corresponding to the class Cy). to the ith in-
put node (corresponding to the feature f;) is equated to —nz,. The weight of the
feedforward link from the ith input node to the kth output node provides the
degree of importance of the feature f;, and is given by,

During training, the patterns are presented at the input layer and the member-
ship values are computed at the output layer. The featurc cvaluation index for
these membership values is computed (Eq. (14)) and the values of w;s are up-
dated in order to minimize this index. Note that, 4;;s and my,s are directly com-
puted from the training sct and kept fixed during updation of w;s. The
auxiliary nodes are activated (i.c., activation values are equated to unity)
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one at a time while the others are made inactive (i.e., activation values are fixed
at 0). Thus, during training, at a time only one output node is allowed to get
activated.

When the kth auxiliary node is activated, input node i has an activation val-
ue as,

ugg’) _ (xqu))zy (10)

where x ) is the total activation received by the ith input node for the pattern
o, whcn the auxiliary node & is active. x’ is given by,

x"”—f”’ — my,. (11)

£ is the external input (value of the ith feature for the pattern f’) and —my, is
the feedback activation from the kth auxiliary node to the jth input node. The
activation value of the kth output node is given by,

= g(yk(’”)-, (12)

where g(.), the activation function of each output node, is a n-function as given
m Eq. (4). y(’” , the total activation received by the kth output node for the pat-
tern ), is given by

(Zu,k X <—>2>]/2. (13)

Note that, yk ) is the same as d; (Eq. (8)) for the given mput pattern %), and uk
is equal to the membership value of the input pattern f%' in the class C.

The expression for E(w) (from Eq. (1)), in terms of the output node activa-
tions, is given by

‘ B Z v}/f’)(l - v,(f’))
= rﬁze:ck k Zk’;‘k%l: (-I”(l - l’k’)> + Ufg’)<1 - Uz(cp))]

X Ag. (]4)

The training phase of the network takes care of the task of minimization of
E(w) (Eq. (14)) with respect to w which is performed using gradient-descent
technique. The change in w; (Aw;) is computed as,

OFE

AW,' = _’1%—

Vi, (15)

where 7 is the learning rate.
For the computation of 9F/dw;, the following expressions are used.
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Bswe (F) 1 o) o ) 9
=3 [1 —2Lk,] T [1 — o ] | (16)
Fs (f) ] O
= 12 5 (17)
ol 0 O o _ 1
= — ’ < —
0“),' 4yk 6W,’ b 0\}’/( < 2’
w1y, (18)
— _ _ (p) yk _ D,
=1 y*]aw,’ 3 <% <L
=0, othcrwise,
and
;s 2
' _ wi (£ —m, 9
Bw, L S, ’ (19)
i Y :

The steps involved in the training phase of the network are as follows:

e Calculate the mean vectors (my) of all the classes from the data set and
equate the weight of the {eedback link from the auxiliary node correspond-
ing to the class C; to the input node i as —my, (for all i and k).

* Get the values of 4, s (bandwidths in Eq. (6)) from the data set and initialize
the weight of the feedforward link from ith input node to kth output (for all
values of i and k) node.

e For each input pattern:

Present the pattern vector to the input layer of the network.

Activate only onc auxiliary node at a time.

Whenever an auxiliary node is activated, it sends the feedback to the input
layer. The input nodes in turn send the resultant activations to the output
nodes. The activation of the output node (connected to the active auxiliary
node) provides the membership value of the input pattern to the corre-
sponding class. Thus, the membership values of the input pattern corre-
sponding to all the classes are computed by sequentially activating the
auxiliary nodes onc at a time.

Compute the desired change in w;s to be made using the updating rule giv-
en in Eq. (15).

e Compute total change in w; for each i, over the entire set of patterns. Update
w; (for all /) with the average value of Aw;.

e Repeat the whole process until convergence, i.e., the change in £ becomes
less than certain predefined small quantity.

After convergence, E(w) attains a local minima. In that case, the values of

w;s indicate the order of importance of the features.
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5. Results

The effectiveness of the above-mentioned algorithms was tested on two types
of data sets, namely, vowel data [3] and Iris data [I5]. The vowel data consists
of a set of 437 Indian Telugu vowel sounds collected by trained personnel.
These were uttered in a consonant-vowel-consonant context by threc male
speakers in the age group of 30-35 years. The data set has three fcatures,
f1. /> and f3 corresponding to the first, second and third vowel formant fre-
quencies obtained through spectrum analysis of the speech data. Fig. 2 shows
a 2-D projection of the 3-D featurc space of the six vowel classes (0, a, 1, u, €, 0)
in the f; — /2 plane (for case of depiction). The details of the data and its ex-
traction procedure are available in [3]. This vowel data is being extensively used
for two decades in the area of pattern recognition.

Anderson’s Iris data [15] set contains three classes, i.e., three varicties of Iris
flowers, namely, Iris Setosa, Iris Versicolor and Iris Virginica consisting of 50
samples each. Each sample has four features, namely, Sepal Length, Sepal
Width, Petal Length and Petal Width corresponding to f1, />, f3 and f4, respec-
tively. Iris data has been used in many research investigation related to pattern
recognition and has become a sort of benchmark-data.

3.1, Results obtained using fuzzy feature evaluation index

Table 1 indicates the order of different subscts of features of vowel data
based on the values of £ (Eq. (1)). This order is also compared with that ob-
tained by Pal et al. [4,5]. Table 1 shows that the subset {f3} is the best and
{f1,/2} is the second best using Eq. (1), while the corresponding order is
{/1.f2} and {f2} in the casc of Pal et al. However, in both the methods, the dif-
ference in index values for the subsets {f2} and {f1./2} is insignificant. f3
stands at the bottom of the order list, in both the cases. Note also that, the in-
clusion of f; in a subset improves its characterization/discrimination ability.
This further justifies the significant importance of f> in characterizing vowel
classes. Thesc results conform to the earlicr findings [3] on speech recognition
(from the point of correct rate of classification of vowel sounds).

Table 2 provides the order of different subsets of features of the Iris data.
Although, the order obtained using Eq. (1) differs from that obtained with
the FEI of Pal ct al., like vowel sounds, the successive diffecrence of the index
values between these subsets are found to be small. Among the individual low-
cr featurcs, the ranking done by Eq. (1) and FEI of Pal et al. [4,5] is f4, f3. /1. />
and f3, f4. f2. /1, respectively. This shows that f3 and f4 are more important
than f; and f>. This conforms to the earlier finding using fuzzy set theorctic
[16] and neural approachcs [17].

The relation of FEI with Mahalanobis distance and divergence measure is
graphically depicted in Figs. 3 and 4 (for vowel data), and Figs. 5 and 6 (for
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Table 1
Values of FEI for every feature subset of vowel data
Feature subset Order obtained using

Eq. (1) FET of Pal et al. [4,5]
{1} 5 3
{2} I 2
{5} 7 6
{/i.f2} 2 1
{fl )f?} 6 7
{f2./2} 4 4
.1 f3) 3 5

Iris data). They are computed over every pair of classes. As expected, Figs. 3-6
show a decrease in feature evaluation index with increase in Mahalanobis dis-
tance and divergence measurc between the classes.

5.2. Results obtained with neural network

Tables 3 and 4 provide the degrees of importance (w) of different features
corresponding to the vowel and Iris data respectively, obtained by the neural
network method described in Section 4. Three different initializations of w were
used in order to train the network.

Table 2
Values of FEI for cvery feature subset of Iris data
Feature subsct Order obtained using

Eq. (1) FEI of Pal et al. [4,5)
{fl} 14 14
{2} 15 13
() 3 1
{4} 1 4
{h.f2} 13 15
{n.51} 9 8
{1/} 6 12
{2, /3} 8 2
{21} 4 7
{f5.fs} 2 3
{n.f.51} 12 10
{hH:f2:fa} 10 11
{f1.f5. 12} 7 9
{./21/:3vﬁ} 5 5
. f2. f5. 1o} 11 6
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Fig. 3. Graphical representation of the relationship betwceen feature evaluation index and Mahalan-
obis distance for the vowel data.
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Fig. 4. Graphical representation of the rclationship between feature cevaluation index and diver-
gence measure for the vowel data.



S.K Pal et al. | Journal of Information Sciences 105 (1998) 173188 185

D
[=]
T
[ OV Sp—

o
(5]
T

Feature evaluation index
& 3
o0

T 7

i

.\\-.

L

36— : N :
2 4 & 8 10 12 14 16

Mahalanobis distance

Fig. 5. Graphical representation of the relationship between feature evaluation index and Mahalan-
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Table 3
Degrees of importance of different features of vowel data
Feature Initial w
=1.0 in [0.1] =05+te¢
w Rank w Rank W Rank
AN 0.001194 3 0.000048 3 0.001037 3
S 0.342003 1 0.337536 1 0.342621 1
S 0.192297 2 0.001745 2 0.092156 2
Table 4
Values of degrees of importance of different features of Iris data
Feature Initial w
=10 in [0,1] =05x¢
w Rank w Rank w Rank
N 0.029140 3 0.003230 3 0.029066 3
£ 0.090552 2 0.102529 2 0.074984 2
5 0.320185 1 0.322186 1 0.320367 1
fa 0.002404 4 0.002027 4 0.002833 4
These are:

(i) w; = 1, for all i, i.c., all the features are considered to be equally most im-
portant,

(ii) w; € [0, 1], for all i, i.e., the network starts searching for a sub-optimal set
of weights from an arbitrary point in thc search space, and

(ii)) w; = 0.5 £ ¢, for all i, e € [0,0.01]. In this case the features are consid-
ered to be almost equally but not fully important. Note that, w; = | means
the feature f; is most important. That is, its presence is a must for character-
izing the pattcern classes. Similarly, w; = 0 means f; has no importance and
therefore, its presence in the feature vector is not required. w; = 0.5 indicates
an ambiguous situation about such presence of f;. ¢ adds a small perturba-
tion to the degree of presence/importance.

It is found from Table 3 that the order of fcatures of the vowel data, in all

the cases, is f3, f3, f| whercas it is f3, /1, f; in Table 1. Similarly, for Iris data
(Table 4), the order is scen to be f3, /2, f1, f4 unlike /4, f3, f1. /2 in Table 2. This
discrepancy may be because of the fact that the neural network based method
considers intcrdependence among the features, whereas, the other method as-
sumes features to be independent of the others. It has been observed experl-

mentally that the network converges much slower with tha foie

N )
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w; = 1, for all i, as compared to the others. For example, the number of itera-
tions required to converge the network corresponding to the initializations
w; = 1, [0,1] and 0.5 + ¢ are 152, 49 and 60 for vowel data, and 269, 154 and
134 for the Iris data.

6. Conclusions

In this article, we have presented a new fcature evaluation index based on
fuzzy set theory and a neuro-fuzzy approach for feature evaluation. The index
is defincd bascd on the aggregated measure of compactness of the individual
classes and the separation between thc classes in terms of class membership
functions. The index value decreases with the increase in both the compactness
of individual classes and the separation between the classes. Using this index,
the best subset from a given sct of fecatures can be selected. As Mahalanobis
distance and divergence between the classes increase, the feature evaluation in-
dex dccreases.

The incorporation of fcature importance as weighting factors into member-
ship functions gives rise to a transformation of the feature space which pro-
vides a generalized framework for modeling class structures. A new
connectionist model is designed in order to perform the task of minimizing this
index. Note that, this neural nctwork based minimization procedure considers
all the featurcs simultaneously, in order to find the relative importance of the
features. In other words, the interdependencies of the features have been taken
into account. Whereas, the other method (without considcring the weighting
factors and neural network), considers each feature or subset of featurcs inde-
pendently.

Results obtained by the feature evaluation index (Eq. (1)) is seen from
Tables 1 and 2 to be comparable with that defined in [4,5]. However, in
[4,5]. the separation between two classes is measured by pooling the classes to-
gether, and modeling them with a singlc membership function. Therefore, for
an m-class problem, thc number of membership functions required is

m+ r; ; where the first and the second terms correspond to individual class

and pairwise class membership functions, respectively. In other words, one
needs m(m + 1) parameters for computing the FE/ [4,5]. On the other hand,
for computing the evaluation index of Eq. (1), onc needs to compute only m
individual class membership functions i.e., 2m parameters.

In the neuro-fuzzy approach, the class means and bandwidths are deter-
mined directly from the training data (under supervised modc). However, the
method may be suitably modificd in order to adaptively dctermine the class
means and bandwidths under unsuperviscd mode so that it can give rise to a
versatile self-organizing ncural nctwork model for feature cvaluation.
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